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Abstract. Flooding is of particular concern in low-lying coastal zones that are prone to flooding impacts from multiple drivers: 

oceanographic (storm surge and wave), fluvial (excessive river discharge), and/or pluvial (surface runoff). In this study, we 10 

analyse for the first time the compound flooding potential along the contiguous United States (CONUS) coastline from all 

flooding drivers, using observations and reanalysis datasets. We assess the overall dependence from observations by using 

Kendall’s rank correlation coefficient (τ) and tail (extremal) dependence (χ). Geographically, we find highest dependence 

between different drivers at locations in the Gulf of Mexico, southeast, and southwest coasts. Regarding different driver 

combinations, the highest dependence exists between surge-waves, followed by surge-precipitation, surge-discharge, waves-15 

precipitation, and waves-discharge. We also perform a seasonal dependence analysis (tropical vs extra-tropical season), where 

we find higher dependence between drivers during the tropical season along the Gulf and parts of the East coast and stronger 

dependence during the extra-tropical season on the West coast. Finally, we compare the dependence structure of different 

combinations of flooding drivers using observations and reanalysis data and use the Kullback–Leibler (KL) Divergence to 

assess significance in the differences of the tail dependence structure. We find, for example, that models underestimate the tail 20 

dependence between surge-discharge on the East and West coasts and overestimate tail dependence between surge-

precipitation on the East coast, while they underestimate it on the West coast. The comprehensive analysis presented here 

provides new insights on where compound flooding potential is relatively higher, which variable combinations are most likely 

to lead to compounding effects, during which time of the year (tropical versus extra-tropical season) compound flooding is 

more likely to occur, and how well reanalysis data captures the dependence structure between the different flooding drivers. 25 

1 Introduction 

The Contiguous United States (CONUS) comprises 48 states (i.e., all states excluding Hawaii and Alaska). Approximately 

40% of the United States (US) population lives in coastal counties which make up less than 10% of the total area of the 

CONUS; this leads to a high population density relative to inland areas, especially in the 17 major port cities with over 1 

million inhabitants located along the US coast (Hanson et al., 2011). The coastal counties combined, if they were a single 30 
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country, would rank third in the world in terms of the gross domestic product (GDP) after the US and China (NOAA Office 

for Coastal Management, 2021). Furthermore, 40% of the people living in coastal counties are at high risk of being affected 

by coastal flood hazards, including vulnerable populations such as the elderly, children, non-native English speakers, and low-

income communities (NOAA Office for Coastal Management, 2021). 

Floods are the most dangerous and costly natural disaster. In the US, the total direct economic losses from major weather and 35 

climate disasters (where each disaster caused a minimum direct loss of USD 1 billion) amounted to USD 1.75 trillion for the 

period 1980-2020 (Smith, 2020). 66% of these losses (USD 1.15 trillion) resulted from inland floods (33 events) and tropical 

cyclones (52 events) causing extreme wind, rain, storm surge, and waves. Hurricanes Harvey in 2017 and Katrina in 2005 both 

had estimated damages totalling around USD 300 billion (Smith, 2020). In low-lying coastal areas flooding occurs due to 

different meteorological and hydrological drivers, including: storm surge and waves (both oceanographic), excessive river 40 

discharge (fluvial), and direct runoff due to precipitation (pluvial). Impacts from these four drivers can be exacerbated 

depending on local characteristics if they occur concurrently (at the same time) or in close succession (separated by a few 

hours or days), a phenomenon that is known as ‘compound flooding’. 

The definition of compound events has evolved over the past decade (e.g., Seneviratne et al., 2012; Leonard et al., 2014; 

Zscheischler et al., 2018). A widely adopted definition is the one by Zscheischler et al. (2018) defining compound events as 45 

“a combination of multiple drivers and/or hazards that contributes to societal or environmental risk”. Compound 

meteorological and hydrological extremes have received increased attention due to their adverse impacts on the environment, 

society, and economy. Flood risk assessments (including those conducted in coastal locations) traditionally account for 

individual drivers and independence between them is often falsely assumed, which can lead to an underestimation of flood 

risk (Wahl et al, 2015). 50 

According to the proposed typology in Zscheischler et al. (2020), compound flooding is considered as a multivariate event 

where multiple climate drivers and/or hazards can occur in the same geographical region, that may not be extreme themselves, 

but their joint occurrence leads to extreme impacts. The four main flooding drivers in coastal regions are often causally related 

through associated weather patterns; for instance, when a storm causes extreme rainfall, storm surge and/or high waves, and 

river discharge is enhanced by local characteristics of the catchment (Hendry et al., 2019). The statistical modelling framework 55 

suggested by Zscheischler et al. (2020) for this type of multivariate compound event consists of multivariate probability 

distribution functions, which represent both the marginal distributions and dependence of multiple random variables. High-

dimensional datasets can be modelled using copula-based approaches, but due to their complexity these multivariate statistical 

models have mostly been applied in local studies (Lian et al., 2013 in Fuzhou China; Kew et al., 2013 in the Netherlands; 

Rueda et al., 2016 in Santander, Spain; Bevacqua et al., 2017 in Ravenna, Italy; Couasnon et al., 2018 in Houston, US; Jane 60 

et al. 2020 in South Florida, US; Santos et al., 2021 in Texas, US). At larger spatial scales (continental to global), where the 

compound flooding risk varies along coastlines, previous assessments were often limited to the bivariate case where two 

flooding drivers were analysed (e.g., Zheng et al., 2013; Wahl et al., 2015; Moftakhari et al., 2017; Paprotny et al., 2018; Ward 

et al., 2018; Marcos et al, 2019; Hendry et al, 2019; Couasnon et al., 2020). There are some notable exceptions where 
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dependence between three or even all four flooding drivers were considered, but those focused only on Europe (Petroliagkis 65 

et al., 2016; Paprotny et al., 2020; Camus et al., 2021). At the global scale, Bevacqua et al. (2020) quantified the dependence 

between sea level and discharge and sea level and precipitation to explore if one is a reasonable proxy for the other, and under 

which conditions. In addition, Ridder at al. (2020) identified hotspots and assessed the statistical dependence for different 

combinations of hazards and hazard drivers, including coastal flooding drivers. 

Typical flooding driver combinations that were previously assessed include: surge and discharge (e.g., Moftakhari et al., 2017); 70 

surge and precipitation (e.g., Wahl et al., 2015); surge and waves (e.g., Marcos et al., 2019); surge, discharge, and precipitation 

(e.g., Svensson and Jones, 2002; 2004); surge, waves, and discharge (e.g., Petroliagkis et al., 2016); and surge, waves, 

discharge, and precipitation (e.g., Hawkes and Svensson, 2006; Camus et al., 2021). Many studies were performed using 

observational data (e.g., Wahl et al., 2015; Ward et al., 2018), while some included model hindcast data (Marcos et al., 2019; 

Couasnon et al., 2020; Camus et al., 2021), and very few included both or compared different datasets (e.g., Paprotny et al., 75 

2020; Ganguli et al., 2020; Zscheischler et al., 2021). For the CONUS coastline, two previous studies assessed compound 

flooding potential at the continental scale (while the CONUS was also included in global scale assessments): Wahl et al. (2015) 

analysed storm surge and precipitation and Moftakhari et al. (2017) analysed storm surge and discharge. Both studies 

highlighted that existing dependence between coastal and freshwater flooding drivers should be taken into account for coastal 

flood risk assessments and that non-stationarity can lead to a further increase in compound flooding potential.  80 

Here we build on these previous studies and perform the first continental-scale analysis of the compound flooding potential 

caused by oceanographic (storm surge and waves), fluvial (excessive river discharge), and pluvial (direct surface runoff) 

sources using both observational and model hindcast/reanalysis data. We have three key objectives. Our first objective is to 

characterize and map the dependence between different drivers at locations around the CONUS coastline and identify spatial 

patterns. We carry out this specific objective using different methods to quantify the (bivariate) dependence between the 85 

variables representing the flooding drivers. This will show where compound flooding potential is relatively higher and which 

pairs of drivers are more likely to lead to compounding effects. Our second objective is to perform the dependence analysis 

separately for the tropical (June-November) and extra-tropical (December-May) seasons. This is to investigate if dependence 

between the different flooding drivers is relatively higher in one of the seasons and to assess if there are any spatial patterns to 

these differences. Our third and final objective is to compare the dependence structures of different combinations of flooding 90 

drivers derived from observations to those derived from model hindcast/reanalysis data. Comparing dependence structures 

across different datasets is something only very few studies have addressed to date (Paprotny et al., 2020; Ganguli et al., 2020; 

Zscheischler et al., 2021). This last analysis step will show how well models capture dependence structures between flooding 

drivers and identify the pairs of drivers and locations where model results overestimate or underestimate the dependence.  

The paper is structured as follows. The datasets and methods are detailed in Sect. 2 and Sect. 3, respectively. The results are 95 

presented in Sect. 4, key findings are discussed in Sect. 5, and conclusions are given in Sect. 6. 
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2 Data 

We use both observational data (for objectives 1 to 3) and model hindcast data (for objective 3) for multiple locations around 

the CONUS coastline. The four flood generating variables considered here are storm surge (S), waves (W), river discharge 

(Q), and precipitation (P); waves are characterized by the significant wave height. In the following subsections, we first 100 

describe the observational data, directly followed by the hindcast data; in the case of waves we use two different model-based 

data sets (we refer to them as a hindcast data set and a reanalysis dataset) due to the absence of long observational records 

from wave buoys. Importantly, the hindcast data that we use for the different variables were all derived with coherent forcing 

from the ERA5 atmospheric reanalysis (Hersbach et al., 2020), thereby avoiding inconsistencies stemming from using different 

reanalysis products. 105 

2.1 Storm surge 

We use hourly sea level data from the National Oceanic and Atmospheric Administration (NOAA; 

http://tidesandcurrents.noaa.gov/) database. Following Rashid et al. (2019), we identify 35 sites (Fig. 1) with long records 

extending back to 1950 or earlier and where time series at individual sites are 80% or more complete. We used the R package 

‘rnoaa’ (Chamberlain et al., 2016) to retrieve the hourly data, year-by-year starting in 1900, via the website API. Next, the 110 

hourly time series are detrended to remove the effects of sea-level rise and variability (i.e., annual mean sea level values are 

derived and subtracted). Following that, the Unified Tidal Analysis and Prediction UTide package in Matlab (Codiga, 2011) 

is used to perform a harmonic tidal analysis on a year-by-year basis to obtain tidal constituents, using the standard set of 67 

harmonic constituents. The predicted astronomical tides are then subtracted from the detrended hourly sea level time series to 

derive the non-tidal residual, which is used herein as the storm surge component. 115 

http://tidesandcurrents.noaa.gov/
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Figure 1: Selected study sites based on tide gauge data availability and separated into east coast, Gulf coast, and west coast locations. 

Hourly model-based storm surge time-series were derived from the Coastal Dataset for the Evaluation of Climate Impact 

(CoDEC) (Muis et al., 2020). CoDEC was generated by forcing the third generation Global Tide and Surge Model (GTSM 

v3.0), with a coastal resolution of 2.5 km globally (1.25 km in Europe), with meteorological fields from the ERA5 climate 120 

reanalysis (Hersbach et al., 2020)  to simulate extreme sea levels for the period 1979 to 2017. The validation against observed 

sea levels demonstrated a good performance, with the annual maxima having a mean bias 50% lower than that of the previous 

Global Tide and Surge reanalysis dataset (GTSR) (Muis et al., 2016). We use the surge component from the model grid point 

that provides the maximum Kling Gupta Efficiency (KGE) (Gupta el al., 2009) from the closest 9 grid points to each tide gauge 

location. The KGE metric compares observations and simulations using linear correlation, variability, and bias. 125 

2.2 Waves 

As outlined above we only consider the significant wave height, which is one of the most important wave parameters to 

represent the wave climate. In-situ observations from wave buoys are limited temporally along the US coast with lengths often 

restricted to 10-15 years, and hence much shorter than the time series we have available for the other flooding drivers. In 

addition, the spatial coverage is sparse making it difficult to find relatively long wave records in the vicinity of the tide gauges 130 

with long records. Therefore, we use hourly hindcast wave data obtained from the US Army Corps of Engineers Wave 

Information Studies (USACE-WIS) (http://frf.usace.army.mil/wis/) as a substitute for observational data. USACE-WIS is a 

http://frf.usace.army.mil/wis/
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regional product that has been widely applied for engineering purposes and extensively validated against wave buoy 

observations; it provided wave information for the US coastlines for over 30 years with continuous development of hindcasts 

and evaluation of model results and technology. Models are forced with winds generated from the National Center for 135 

Atmospheric Research NCEP-NCAR Reanalysis 1 (spatial resolution = 0.5°×0.5° and temporal resolution = 6 hours). The 

Atlantic, Pacific, and Gulf of Mexico are each modelled independently for best results with a coastal grid resolution of 5 mins 

and temporal coverage from 1980-2014. We select the WIS grid points that are closest to the tide gauge locations. We do not 

pair tide gauges that are located further upstream in estuaries with wave data, as these locations are often sheltered for wave 

action, which leads to 31 sites where co-located data are identified and used for the analysis.  140 

We compare the WIS data against wave time-series extracted from the ERA5 reanalysis (spatial resolution = 0.5°×0.5° and 

temporal resolution = 1 hour) (Hersbach et al., 2020) based on the wave model WAM (WAMDI Group, 1988). For our analysis 

we use the grid points closest to the WIS gird points selected before. 

2.3 River discharge 

We obtained observed river discharge time series from the United States Geological Survey (USGS) National Water 145 

Information System (NWIS) (https://waterdata.usgs.gov/nwis). USGS-NWIS provides nationwide water flow (and quality) 

information in streams and lakes. The R package ‘dataRetrieval’ (De Cicco et al., 2018) was used for retrieving data from 

desired locations close to the 35 tide gauge sites identified before. The selected stream gauges were chosen to satisfy the 

following criteria: (1) a minimum catchment area of 1000 km2, (2) a maximum Euclidean distance to the matching tide gauge 

< 500 km, (3) a river basin outlet within a maximum distance of 55 km (0.5 degree) from the tide gauge (Ward et al., 2018), 150 

and (4) to lead to overlapping records with the tide gauges of 20 years or more. Based on these rules we identify 23 sites where 

tide gauge data can be paired with discharge data.  

Modelled river discharge time series were extracted from the Global Flood Awareness System (GloFAS)-ERA5 reanalysis 

(Harrigan et al., 2020). This is a global gridded reanalysis dataset (excluding Antarctica), with a horizontal resolution of 

0.1°×0.1° at a daily time step over 40 years starting 1979. The GloFAS-ERA5 river discharge reanalysis was produced by 155 

coupling the land surface model runoff component of the ECMWF ERA5 global reanalysis with the LISFLOOD hydrological 

and channel routing model. LISFLOOD allows the lateral connectivity of ERA5 runoff grid cells routed through the river 

channel to produce river discharge. ERA5 runoff is produced from the HTESSEL land surface model (Hydrology Tiled 

ECMWF Scheme for Surface Exchanges over Land) with an advanced land data assimilation system to assimilate conventional 

in-situ and satellite observations for land surface variables. We again identify the 9 gird points closest to the stream gauges 160 

selected before and retain the ones with the highest KGE statistic. 

2.4 Precipitation 

We use precipitation observations from the Global Historical Climatology Network Daily (GHCN-D) hosted by NOAA’s 

National Centers for Environmental Information (NOAA-NCEI) (https://www.ncdc.noaa.gov/ghcnd-data-access). For data 

https://waterdata.usgs.gov/nwis
https://www.ncdc.noaa.gov/ghcnd-data-access
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retrieval we used the R package ‘rnoaa’ (Chamberlain et al., 2016). GHCN-D contains precipitation and other climate data 165 

from more than 100,000 stations worldwide covering periods ranging from 1 year to over 175 years. We consider the 

accumulated daily precipitation depth (similar to Camus et al (2021) and Wahl et al (2015)) since higher frequency data is not 

available for long enough time periods to be useful for our continental scale analysis. We use data from rain gauges that are 

located closest to the selected tide gauges with at least 20 years of overlapping data; in 31 instances the closest precipitation 

gauges providing long records are found within a 30 km radius around the respective tide gauges, for the other 4 sites the 170 

distance is larger but always smaller than 60 km. 

Model-based precipitation time-series were extracted from the ERA5 reanalysis which is based on the Integrated Forecasting 

System (IFS) cycle 41r2. The ERA5 reanalysis replaces the ERA-Interim reanalysis with a significantly enhanced horizontal 

resolution of 31 km (~ 0.25°×0.25°), compared to 80 km for ERA-Interim. In addition, biases are strongly reduced in ERA5 

compared to ERA-Interim precipitation data. The ERA5 hourly dataset spans 1979 onwards and we used that to derive 175 

accumulated daily precipitation. Similar to the other drivers we selected the 9 grid points closest to the precipitation gauges 

and selected the ones with the highest KGE statistic. 

2.5 Final study sites 

Following the procedure outlined above leads to a dataset that comprises information on storm surges, significant wave height, 

precipitation, and river discharge derived from observations and model hindcasts for 35 sites around the US coast (see Fig. 1); 180 

the overlapping record lengths between the various data pairs considered in the compound flooding potential analysis range 

from 20 years to 100 years (mean = 47 years, median = 35 years) (Fig. 2). 
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Figure 2: Histogram showing the length of overlapping time series in years (on the x-axis) and the corresponding frequency n (on 
the y-axis) for the observational data used in the analysis (lengths of model data sets are outlined in the text and the same for all 185 
locations for a given variable); note that we analyse 35 locations and a maximum of 6 driver combinations (from 4 drivers) at each 
location, all of which were used to derive the histogram. Bars are separated into East coast, Gulf coast, and West coast locations. 

3 Methods 

Our analysis is performed in three stages each corresponding to one of the three objectives outlined in Sect. 1. These are 

described in turn below. 190 

3.1 Dependence Analysis 

Our first objective is to characterize and map the dependence between different flood driver combinations at the 35 sites around 

the CONUS coastline and identify spatial patterns. First, we derive daily data for all four variables. For storm surge and 

significant wave height these are the maximum hourly values that occurred during a given day, for precipitation we use the 

accumulated daily precipitation depth, and for discharge we use the daily mean.  From these daily time series, we further 195 

identify extreme events using the annual block maxima method. This avoids having to select appropriate thresholds for all 

sites and variable pairs as would be required when using the peaks-over-threshold method; both approaches were contrasted 

in a comprehensive sensitivity analysis by Camus et al. (2021) who found comparable results.  

We use six combinations of variables and for each we apply two-way conditional sampling similar to previous studies (Wahl 

et al., 2015; Ward et al., 2018; Couasnon et al., 2020; Jane et al., 2020; Santos et al., 2021; Camus et al., 2021), where at least 200 
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one variable is extreme. In particular, we use annual maxima of the first (conditioning) variable and the corresponding 

maximum value of the other (conditioned) variable within a time window that we vary between 0 to ±10 days; the relatively 

long lag-times are chosen as we do not correct for the travel time of river flow from where it is measured/modelled and the 

tide gauge further downstream. Previous studies calculated these lag-times for river discharge and then applied a time window 

of ±7 days for sampling between surge and lagged discharge (e.g., Ganguli and Merz, 2019a; 2019b; Ganguli et al., 2020). 205 

From all the time windows tested we chose the one that maximizes dependence (Kendall’s τ). For surge and wave, for example, 

that leads to the selection of a time window of 0 days as the high values usually occur on the same day. Across all locations 

and variable pairs the median time window that is selected is 3 days; window lengths of 10 days are only considered in rare 

cases for the S-Q combination. In general, the reason for the choice of a time window is that compound events do not have to 

occur on the same day to enhance impacts, they can occur separated by a number of days. The occurrence of one event could 210 

impact flood defense systems or disaster management efforts leading to enhanced impacts when another event occurs shortly 

after (Ganguli et al., 2020). The six variable pairs (and 12 combinations from the two-way sampling) are the following; the 

variable that is listed first if the conditioning variable (e.g., S_Q means that annual maxima S is paired with (near-) coincident 

Q, whereas Q_S means that annual maxima Q is paired with (near-)coincident S): 

 Surge and discharge (S_Q & Q_S); 215 

 Surge and Precipitation (S_P & P_S); 

 Surge and Waves (S_W & W_S); 

 Discharge and precipitation (Q_P & P_Q); 

 Discharge and waves (Q_W & W_Q); and 

 Precipitation and waves (P_W & W_P). 220 

We assess dependence using Kendall’s rank correlation coefficient (τ) (Kendall, 1938) which, in contrast to Pearson’s linear 

correlation coefficient (R), can also capture non-linear dependence between the variable pairs and was used in previous studies 

to assess dependence (e.g., Wahl et al., 2015; Ward et al., 2018; Hendry et al., 2019; Marcos et al., 2019). Another option 

would be to use Spearman’s rank correlation coefficient (ρ) which measures the strength of monotonic dependence between 

bivariate variables (e.g., Couasnon et al., 2020). Camus et al. (2021) compared both measures and found that Spearman’s rank 225 

correlation coefficient was typically higher than Kendall’s rank correlation coefficient. However, both showed the same spatial 

characteristics when applied to many locations along the European coastline. Significance is assessed here at 𝛼𝛼 = 0.05 (i.e., 

95% confidence level). 

In addition to using Kendall’s τ in association with the two-way sampling approach, we also assess extremal dependence using 

tail dependence coefficients. In this method, extremal (or tail) dependence falls into two categories: (1) asymptotic tail 230 

dependence or (2) asymptotic tail independence (Ledford and Tawn, 1997). If (A, B) are a pair of variables with cumulative 

distribution functions (𝐹𝐹𝑎𝑎, 𝐹𝐹𝑏𝑏) transformed to unit scale (0,1), (U = 𝐹𝐹𝑎𝑎(A), V=𝐹𝐹𝑏𝑏(B)). Then (A, B) are asymptotically tail 

dependent if 
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𝜒𝜒 =  lim
𝑞𝑞⟶1

𝑃𝑃 (𝐹𝐹𝑎𝑎(𝐴𝐴) > 𝑞𝑞|𝐹𝐹𝑏𝑏(𝐵𝐵) > 𝑞𝑞) 𝜖𝜖 (0,1] 

and asymptotically tail independent if 𝜒𝜒 = 0. The coefficient χ represents the probability of one variable being extreme 235 

(exceeding a threshold q) given that the other variable is extreme (exceeding the same threshold q). We choose q= 0.9 (90th 

percentile) following previous studies (e.g., Vignotto et al., 2021). We estimate χ using the function ‘taildep’ from the R 

package extRemes (Gilleland and Katz, 2016). To estimate whether the calculated χ values are significant, a bootstrap method 

following Svensson and Jones (2002) is implemented. Data is bootstrapped randomly by shuffling the temporal order of one 

variable (using blocks of 1-year length) to break up the dependence structure while preserving seasonality. This is repeated 240 

1,000 times and if less than 5% of the bootstrapped estimates are greater than χ calculated from the original records, then χ is 

considered significant. 

Since both approaches use different samples from data and are implemented differently, we also expect differences in the 

results. The tail dependence (calculated using daily timeseries) only characterizes compound events when both drivers are 

extreme (both exceed a certain threshold). On the other hand, Kendall’s τ (using two-way sampling) characterizes compound 245 

events generated when one of the drivers is extreme but not necessarily the other, providing information about the relative 

severity of the secondary driver. Both metrics provide insight into the existence (or non-existence) of dependence according 

to different compound flooding mechanisms (as outlined in Wahl et al. (2015)). 

3.2 Seasonal Dependence Analysis 

Our second objective is to perform a seasonal dependence analysis where we analyse data from the tropical cyclone season 250 

(June-November) separately from the extra-tropical season (December-May). Data from each season were studied separately 

and compared to investigate if dependence varies between them. The analysis is performed in the same way as outlined in 

Sect. 3.1, i.e., for the rank correlation analysis instead of using annual maxima we use seasonal maxima of the conditioning 

variables and match those with near-coincident values of the conditioned variables. The tail dependence analysis is conducted 

separately for both seasons using daily data corresponding to each season.  255 

To assess the significance of the difference in dependence and tail dependence between seasons, confidence intervals were 

calculated for each statistic (Kendall’s τ and tail dependence χ) using a bootstrapping method similar to Svensson and Jones 

(2004) and Wahl et al. (2015). This is done by generating many new datasets from the existing dataset through resampling 

(sampling with replacement). Unlike the bootstrapping method explained in Sect. 3.1 where significance was assessed based 

on independence, here we sample (with replacement) both pairs at the same time: for Kendall’s τ we draw a bivariate 260 

observation (in a season-year) while for tail dependence χ we draw a bivariate block (of length 1 season-year) at a time. To 

ensure that each season-year is sampled equally often, a balanced resampling approach was implemented, which avoids bias 

from certain years being sampled more often than others. For each season, a two-column matrix with N*B rows is created, 

where N is the length of the overlapping data of a certain pair of flooding drivers and B is set to 1,000. The resulting matrix is 

then shuffled while keeping the bivariate pairs intact and afterwards sliced into B slices of length N. For each of the B matrices 265 
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of length N the desired statistics (Kendall’s τ or tail dependence χ) are calculated and the 95% confidence intervals are 

estimated (2.5% and 97.5% quantiles). The confidence intervals derived for each season are compared and if they do not 

overlap then we consider the difference in dependence (expressed as τ or χ) to be significant. 

3.3 Observation-based vs Model-based Dependence Structure 

Our third and final objective is to compare the dependence structures derived from observation-based data and model-based 270 

data. We perform this part of the analysis only for the extremal (tail) dependence χ. This is because the two-way sampling 

approach uses the annual (or seasonal) maxima values of the different variables, and those are often not well captured by model 

hindcasts leading to a higher sensitivity in the results as opposed to the tail dependence which uses the full daily time series, 

and here a threshold of q = 0.9. We calculate the extremal (tail) dependence χ (at q=0.9) from observation and hindcast data 

for periods where data from both sources are available (Paprotny et al., 2020). We apply the Kullback-Leibler (KL) divergence 275 

to assess significance in the difference in tail dependence derived from the two types of data. The method based on KL 

divergence has been introduced by Zscheischler et al. (2021) to assess if the dependence structure between wind and 

precipitation extremes was different across different datasets in a study location in Europe. The method builds on earlier work 

of Naveau et al (2014) for comparing univariate datasets and extends it to bivariate datasets. Vignotto et al. (2021) also used 

the KL divergence for clustering bivariate dependencies of compound precipitation and wind extremes over Great Britain and 280 

Ireland. 

We provide a brief description of the methodology (see Zscheischler et al. (2021), Vignotto et al. (2021), and references therein 

for more details). For two bivariate distributions X(1) = �𝑋𝑋1
(1),𝑋𝑋2

(1)�  and X(2) = �𝑋𝑋1
(2),𝑋𝑋2

(2)� , corresponding to bivariate 

distributions from observation-based and model-based data, the divergence is only defined in the tail of the distributions after 

normalizing the marginal distributions to standard Pareto distributions. A risk function (r: 𝑅𝑅2 ⟶ 𝑅𝑅) calculated on the Pareto 285 

scale is used to define extremal regions on each of the bivariate distributions. From the risk functions introduced in Zscheischler 

et al. (2021) we choose the ‘minimum’ corresponding to r(𝐱𝐱) = min (𝑥𝑥1, 𝑥𝑥2) , with 𝐱𝐱 =  (𝑥𝑥1, 𝑥𝑥2)  as it covers both 

asymptotically dependent and independent data. This results in two univariate variables:  R(1) = 𝑟𝑟(X(1)) and R(2) = 𝑟𝑟(X(2)). 

We consider points as extreme when the variable R(j)  exceeds a given high quantile threshold 𝑞𝑞𝑢𝑢
(𝑗𝑗)  corresponding to an 

exceedance probability 𝑢𝑢 𝜖𝜖 (0,1), 𝑗𝑗 = 1,2. Varying the threshold 𝑞𝑞𝑢𝑢
(𝑗𝑗) changes the extremal region of interest (we used u = 0.9 290 

to be consistent with the tail dependence threshold we employed). Applying the minimum risk function for each of the two 

bivariate distributions, the extreme points are contained in the set {R(j) > 𝑞𝑞𝑢𝑢
(𝑗𝑗)}, 𝑗𝑗 = 1,2. This set is then divided into a fixed 

number of disjoint sets 𝐴𝐴1
(𝑗𝑗), … ,𝐴𝐴𝑊𝑊

(𝑗𝑗). For the minimum risk function the data is partitioned into W = 3 sets where one contains 

the co-occurring extremes and the other two contain data when only one variable is extreme. 

For the two random samples (𝑋𝑋11, … ,𝑋𝑋𝑛𝑛1) and (𝑋𝑋12, … ,𝑋𝑋𝑛𝑛2) from the two distributions X(1) and X(2), the empirical proportions 295 

of data points in each of the previously mentioned sets 𝐴𝐴𝑤𝑤
(𝑗𝑗) are computed as:  
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�̂�𝑝𝑤𝑤
(𝑗𝑗) =  

#{𝑖𝑖 ∶  𝑋𝑋𝑖𝑖
(𝑗𝑗)𝜖𝜖 𝐴𝐴𝑤𝑤

(𝑗𝑗)} 

# {𝑖𝑖 ∶  𝑟𝑟 �𝑋𝑋𝑖𝑖
(𝑗𝑗)� > 𝑞𝑞𝑢𝑢

(𝑗𝑗)}
, 𝑤𝑤 = 1, … ,𝑊𝑊;  𝑗𝑗 = 1,2;  𝑖𝑖 = 1, … ,𝑛𝑛. 

The difference between the extremal behaviours of the two distributions can be measured as the KL divergence between the 

two multinomial distributions defined through the previous empirical proportions as follows 

𝑑𝑑12 = 𝐷𝐷�𝑋𝑋1
(1),𝑋𝑋2

(1)� =  
1
2
����̂�𝑝𝑤𝑤

(1) − �̂�𝑝𝑤𝑤
(2)� log�

�̂�𝑝𝑤𝑤
(1)

�̂�𝑝𝑤𝑤
(2)��

𝑊𝑊

𝑤𝑤=1

 300 

The divergence 𝑑𝑑12 is a natural way to contrast the differences between extremal dependence structures for asymptotically 

dependent and independent data. Also, this divergence is symmetric and does not require additional model assumptions as it 

is a non-parametric statistic. The statistic 𝑑𝑑12 follows a 𝜒𝜒2(𝑊𝑊 − 1) distribution in the limit as the sample size approaches ∞ 

under suitable assumptions allowing us to estimate whether it is significantly different from zero.  

We repeat the analysis after splitting the dataset into tropical and extra-tropical seasons to investigate if models’ performance 305 

is better in one season compared to the other. 

4 Results 

4.1 Overall Dependence Analysis 

This section describes the results for the first objective, relating to the bivariate dependence analysis between the four drivers. 

First, we show the results from Kendall’s rank correlation analysis applied to the two-way samples derived with the annual 310 

maxima method, and then we show results from extremal (tail) dependence (that will be referred to as tail dependence 

hereafter). 

In Fig. 3, the dependence based on Kendall’s τ is shown between all combinations of drivers at the 35 study sites around the 

CONUS coastline. Sites where one driver was not available or where the number of overlapping years between bivariate 

drivers was less than 20 are blank and insignificant dependence (at 𝛼𝛼 = 0.05) is shown as an asterisk (*). For surge and 315 

discharge, out of 23 sites analysed, more sites show significant correlation for Q_S (14 sites) than S_Q (11 sites). Along the 

coasts of Florida and US southeast higher values of τ are found for S_Q than Q_S. In contrast, along the coasts in the western 

Gulf of Mexico and US southwest, the values of Q_S are higher than for S_Q. For surge and precipitation, from the 35 sites 

analysed, more sites show significant dependence in S_P (24 sites) compared to P_S (16 sites). Along the East coast, more 

sites possess significant dependence in S_P (14 sites compared to 9 sites in P_S) and at the same time the dependence values 320 

for S_P are higher than P_S values. Interestingly, along the Gulf and West coasts, although more sites have significant 

dependence in S_P (10 sites compared to 7 sites in P_S), the strength of the dependence is higher for P_S in most cases (6 out 

of the 7 sites); this is in agreement with results from Wahl et al. (2015). For surge and waves, out of 31 sites analysed, we find 
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more sites with significant dependence in the case of S_W (25 sites) compared to W_S (16 sites), especially along the East 

coast. For the East and Gulf coasts, the strength of dependence is also higher for S_W compared to W_S, which is reversed on 325 

the West coast. For discharge and precipitation, out of 23 sites analysed, more sites show significant dependence in the case 

of Q_P (17 sites) compared to P_Q (13 sites), which is again most pronounced on the East coast. The strength of dependence 

of Q_P and P_Q in the Gulf and West coasts is higher than that for the East Coast. In most sites, the strength of dependence is 

higher for Q_P than P_Q. For waves and discharge, out of 17 sites analysed, only three show significant dependence in both 

cases. For W_Q all three are located in Florida and show relative high dependence strength. Lastly, for wave and precipitation, 330 

out of 31 analysed sites, there is approximately an equal number of sites showing significant dependence for W_P (12 sites) 

and P_W (11 sites). However, the strength of dependence is overall higher for W_P compared to P_W at most sites (4 of 5 

sites) where both are significant.  

In general, our results indicate from a geographic perspective that dependence, when assessed through Kendall’s τ, is higher 

between most drivers along the Gulf, southeast, and southwest coasts compared to northeast and northwest coasts. From a 335 

flooding driver perspective, the highest dependence is found between surges and waves which are both oceanographic drivers, 

followed by surge and precipitation, surge and discharge, waves and precipitation, and waves and discharge. 
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Figure 3: Dependence between different pairs of flooding drivers based on Kendall's τ and two-way sampling using annual maxima. 
Sites are grouped into East, Gulf, and West coast locations (see colours on the left and legend). The blue colour bar denotes 340 
dependence strength, blank squares indicate that data for the particular pair didn’t exist or that the number of overlapping years 
was less than 20 and squares with * indicate that correlation is not significant. 

The results from the tail dependence analysis using 𝜒𝜒 calculated at q =0.9 are shown in Fig. 4. Recall that for the calculation 

of 𝜒𝜒 we consider the full daily time series of all variables; hence we only obtain results for one case as opposed to the results 

presented above which are based on the two-way sampling procedure. The results for the tail dependence analysis indicate that 345 

there are more sites with significant tail dependence compared to the two-way sampling analysis with Kendall’s τ. 

Geographically, we find more places with significant tail dependence in the northwest coast for the pairs S_P, W_Q, and W_P 

whereas the rank correlation analysis using Kendall’s τ pointed to insignificant correlation between the same pairs. 

Nevertheless, in terms of the strength of dependence between different variable pairs the order found with Kendall’s τ persists. 
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 350 
Figure 4: Tail dependence χ between different pairs of flooding drivers for a threshold of q = 0.9. Sites are grouped into East, Gulf, 
and West coast locations (see colours on the left and legend). The blue colour bar denotes tail dependence strength, blank squares 
indicate that data for the particular pair did not exist or that the number of overlapping years was less than 20, and squares with * 
indicate that dependence is not significant. 

4.2 Seasonal Dependence Analysis 355 

This section describes the results for the second objective, relating to the seasonal dependence analysis between the four 

drivers. Here we analyse data from June-November (tropical cyclone season for the Atlantic and Gulf coast) separately from 

December-May (extra-tropical season) and compare results. First, we show the results from Kendall’s rank correlation analysis 

applied to the two-way samples derived with the seasonal maxima method, and then we show results from analysing tail 

dependence. 360 

The comparison between dependence using Kendall’s τ in the tropical season (plotted on the x-axis) and extra-tropical season 

(plotted on the y-axis) is shown in Fig. 5. Note, that for the scatter plot we did not distinguish between the two cases, i.e., the 

pair Q_S that is shown as filled circles includes the results for both Q_S and S_Q cases. Overall, the values are dispersed 

widely from the diagonal 1:1 line (Pearson’s correlation coefficient R = 0.42) indicating the existence of differences in the 
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dependence across the two seasons where different types of storms are dominant. The deviation from the diagonal is more 365 

pronounced in the lower left where the majority of markers are located, whereas markers tend to be closer to the diagonal for 

sites/pairs where the dependence is generally higher.  In the majority of cases, the dependence values tend to be stronger in the 

tropical season (as indicated by the dashed lines in Fig. 5 representing linear regression fits to the data subsets for different 

regions). This is particularly notable for the Gulf coast (shown in green), where the majority of markers fall below the diagonal 

indicating stronger dependence in the tropical season. This tendency also exists for the East coast sites, but much less 370 

pronounced, whereas for the West coast sites the markers are scattered more symmetrically around the diagonal. 

 
Figure 5: Scatter plot comparing dependence derived with Kendall’s τ and two-way sampling using seasonal maxima approach for 
tropical and extra-tropical seasons. Colours denote the location (separated into East, Gulf, and West coast) and markers represent 
the different variable pairs. Black dots on markers indicate significant difference in dependence between seasons. Dashed lines show 375 
linear regression fits corresponding to all data points (black) and for different subsets according to locations (coloured as outlined 
in the legend). 

To better discern spatial patterns where differences in the seasonal dependences for certain variable pairs are larger, Fig. 6 

shows the same results as in Fig. 5 but separately for each of the 12 variable pairs (considering both cases of the two-way 

sampling) and all individual sites. For the pairs S_Q, Q_S, S_P, and P_S higher values of τ are found along the Gulf and East 380 

coasts for the tropical season, while higher values are found for the extra-tropical season on the West coast. For surge and 

waves, higher dependence is found for both pairs (S_W and W_S) in the Gulf of Mexico during the tropical season and the 

difference is significant. S_W is higher during the tropical season on the East coast, and lower on the West coast. In contrast, 

W_S is lower during the tropical season on the East, and higher on the West coast. For the rest of the pairs (Q_P, P_Q, W_Q, 
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Q_W, W_P, P_W) the dependence is overall higher during the tropical season compared to the extra-tropical season in the 385 

Gulf of Mexico, whereas mixed patterns are found along the East and West coasts. 

 
Figure 6: Heat map showing differences in Kendall’s τ derived from two-way sampling using seasonal maxima approach for tropical 
and extra-tropical seasons. Sites are grouped into East, Gulf, and West coast locations (see colours on the left and legend). The colour 
bar denotes the difference between τ in the tropical versus extra-tropical season, where red colour denotes higher dependence in the 390 
tropical season, and blue colour denotes higher dependence in the extra-tropical season. Squares with * indicate that difference in 
dependence across seasons is not significant. Blank squares indicate that data for the particular pair did not exist or that the number 
of overlapping years was less than 20. 

Similar to the overall dependence analysis, we also assess differences in seasonal tail dependence using χ. The results are 

shown in Fig. 7 and Fig. 8. Interestingly, the results point to different patterns as we found from the dependence analysis based 395 

on Kendall’s τ. In Fig. 7, markers for different pairs are scattered more closely around the diagonal (1:1 line) with a Pearson 

correlation coefficient of R=0.75 indicating more similarity across seasons. For the West coast, many markers (especially S_P, 

S_Q, and Q_P) above the diagonal indicate stronger tail dependence in the extra-tropical season while for the East and Gulf 

coasts results are more symmetric. 
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Discrepancies found in results when comparing between seasons using tail dependence χ and Kendall’s τ are mainly due to 400 

the sample from which each statistic is calculated. For tail dependence, all bivariate daily values exceeding a certain threshold 

(q=0.9) are used while for calculating Kendall’s τ two-way sampling using block (seasonal or annual) maxima is used. Two-

way sampling makes members of the samples independent and identically distributed (1 value is picked per block) while 

excesses above a certain threshold that are used for χ are not declustered. 

 405 
Figure 7: Scatter plot comparing tail dependence (for q=0.9) derived for tropical and extra-tropical seasons using daily time series 
of both variables. Colours denote the location (separated into East, Gulf, and West coast) and markers represent the different 
variable pairs. Black dots on markers indicate significant difference in tail dependence between seasons. Dashed lines show linear 
regression fits corresponding to all data points (black) and for different subsets according to locations (coloured as outlined in the 
legend). 410 
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Figure 8: Heat map showing differences in tail dependence (for q=0.9) derived for tropical and extra-tropical seasons using daily 
time series of both variables. Sites are grouped into East, Gulf, and West coast locations (see colours on the left and legend). The 
colour bar denotes the difference between χ in the tropical versus extra-tropical season, where red colour denotes higher dependence 415 
in the tropical season and blue colour denotes higher dependence in the extra-tropical season. Squares with * indicate that difference 
in dependence across seasons is not significant. Blank squares indicate that data for the particular pair did not exist or that the 
number of overlapping years was less than 20. 

4.3 Observation-based vs Model-based Dependence Structure 

This section describes the results for the third and final objective, relating to the comparison between the dependence structures 420 

when using model-based versus observation-based data. We perform this part of the analysis only for the tail dependence χ. 

This is because the two-way sampling approach uses the annual (or seasonal) maxima values of the different variables, and 

those are often not well captured by model hindcasts leading to a higher sensitivity in the results as opposed to the tail 

dependence which uses the full daily time series, and here a threshold of q = 0.9. 

We start by comparing results for the full (annual) data sets and these are shown in Fig. 9 and Fig. 10. We find that in general 425 

the models perform well in capturing tail dependence (Pearson correlation R =0.75). Using KL divergence provides 
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complementary information on whether tail dependence structures calculated using models are significantly different from 

those derived with observations. Pairs where the difference is significant are highlighted with black dots in Fig. 9. Figure 10 

shows the same results but in a way that allows us to discern the spatial patterns. Both figures show that models tend to 

overestimate W_P dependence in most of the analysed sites. S_Q is underestimated by models on the East and West coasts 430 

but well captured among sites analysed in the Gulf. S_P is well captured along Gulf and southeast coasts but overestimated in 

the northeast and northwest and underestimated in the southwest. S_W is overestimated in some sites in the Gulf and southeast 

coast. For the rest of the pairs there is mixed behaviour with no clear spatial pattern. 

We note that in some cases the difference in the tail dependence is small (i.e., markers lying on or close to the 1:1 line in Fig. 

9 or showing light colour in Fig. 10) but still significantly different according to the KL divergence. This is because two 435 

bivariate distributions with equal (or very similar) tail dependence coefficients may still vary in their dependence structure and 

this cannot be assessed by just calculating the difference in χ. The reason is that χ only focuses on the diagonal (Zscheischler 

et al., 2021), whereas KL divergence partitions the extremal space defined by the risk function (above the selected threshold) 

into a number of sets and thus better captures the dependence structure. 

 440 
Figure 9: Scatter plot comparing extremal (tail) dependence (for q=0.9) derived using observations (x-axis) and models (y-axis) using 
daily time series of both variables. Colours denote the location (separated into East, Gulf, and West coast) and markers represent 
the different variable pairs. Black dots on markers indicate significant difference in tail dependence structure between observations 
and models according to KL divergence. Dashed lines show linear regression fits corresponding to all data points (black) and for 
different subsets according to locations (coloured as outlined in the legend). 445 
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Figure 10: Heat map showing differences in tail dependence (for q=0.9) derived for models (reanalysis) and observations using daily 
time series of both variables. Sites are grouped into East, Gulf, and West coast locations (see colours on the left and legend). The 
colour bar denotes the difference between χ in the reanalysis versus observations, where red colour denotes higher dependence in 
the reanalysis and blue colour denotes higher dependence in the observations. Squares with * indicate that difference in dependence 450 
is not significant. Blank squares indicate that data for the particular pair did not exist or that the number of overlapping years was 
less than 20 

We repeat the analysis again for the tropical and extra-tropical seasons to assess whether models perform better in one of them 

when tail dependence is compared to observations. Figure 11 shows that overall models perform better during the tropical 

season (Pearson correlation R= 0.77) in comparison with the extra-tropical season (Pearson correlation R= 0.7). Especially for 455 

higher values of χ points are more aligned with the 1:1 line for the tropical season, with a tendency of model overestimation 

(markers above the diagonal) for the pair S_W for several sites on the East coast. For the extra-tropical season, and for higher 

values of χ models tend to overestimate S_P at several sites across all coasts, with no clear pattern. Figure 12 shows that models 

overestimate the tail dependence between W_P everywhere during both seasons and also overestimate S_P during the extra-

tropical season in the Gulf. Tail dependence between Q_P is overestimated at several sites on the West coast (in California) 460 

during the tropical season but underestimated during the extra-tropical season. 
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Figure 11 Scatter plot comparing extremal (tail) dependence (for q=0.9) derived using observations (x-axis) and models (y-axis) for 
tropical (left) and extra-tropical (right) seasons using daily time series of both variables. Colours denote the location (separated into 
East, Gulf, and West coast) and markers represent the different variable pairs. Black dots on markers indicate significant difference 465 
in tail dependence structure between observations and models according to KL divergence. Dashed lines show linear regression fits 
corresponding to all data points (black) and for different subsets according to locations (coloured as outlined in the legend). 
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Figure 12: Heat map showing differences in extremal (tail) dependence (for q=0.9) derived using observations and models using 
daily time series of both variables for tropical (top) and extra-tropical (bottom) season. Sites are grouped into East, Gulf, and West 470 
coast locations (see colours on the left and legend). The colour bar denotes the difference between χ in the models versus observations, 
where red colour denotes higher dependence in the models and blue colour denotes higher dependence in the observations. Squares 
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with * indicate that difference in dependence between models and observations is not significant. Blank squares indicate that data 
for the particular pair did not exist or that the number of overlapping years was less than 20. 

5 Discussion 475 

In this study we have assessed the compound flooding potential from all four flooding drivers along the CONUS coastline. 

The dependence analysis is conducted using Kendall’s τ and block maxima (either annual or seasonal maxima) with a two-

way conditional sampling between flooding drivers. The choice of block maxima was to avoid having to identify individual 

thresholds and declustering windows for all sites and variable pairs individually when implementing POT. Previous studies, 

e.g., Ward et al. (2018) and Camus et al. (2021), indicate that using block maxima versus POT does not affect the overall 480 

results from large-scale dependence analyses in the context of compound flooding. Camus et al. (2021) showed through a 

comprehensive sensitivity analysis that using annual maxima and different thresholds in a POT framework leads to comparable 

results; while dependence values tended to be higher in the annual maxima approach, the spatial distribution (which is what 

we are mostly interested in) of the dependence was the same in both methods.  

Our first objective was to characterize and map the dependence between the four different compound flooding drivers and 485 

identify spatial patterns. We find sites of highest dependence between the different pairs of drivers to be in the Gulf of Mexico, 

southeast, and southwest coasts (Fig. 3). For the Gulf and East coast this is due to the occurrence of hurricanes and tropical 

storms (which was confirmed in the second objective focused on the seasonal analysis) especially for pairs of drivers 

conditioned on surge. Dependencies using Kendall’s τ were consistent with past regional and global studies (e.g., Wahl et al. 

(2015) for surge-precipitation, Ward et al. (2018) for surge-discharge, and Marcos et al. (2019) for surge-waves). From the 490 

perspective of different variable pairs, the highest dependence is found between S_W as both are oceanographic drivers, but 

we also find that significant dependence for S_P is more prevalent than for S_Q (especially along the northeast coast). This 

highlights that catchment characteristics (e.g., size, surface type, steepness, and antecedent moisture content), rainfall intensity 

and duration, and snowmelt play an important role and not all dependence between S and P translates to dependence between 

S and Q (Hendry et al., 2019; Bevacqua et al., 2020; Couasnon et al., 2020). Additionally, more sites have significant 495 

dependence for Q_P than for P_Q, especially along the northeast coast, highlighting that extreme precipitation can occur in 

the absence of moderate or extreme river discharge, but extreme river discharge usually occurs simultaneously with moderate 

or extreme precipitation. This shows again that other mechanisms contribute to high discharge events other than precipitation. 

From the perspective of using different dependence metrics, we find more places with significant tail dependence χ (Fig. 4) 

than with significant Kendall’s τ (Fig. 3), and this is likely a result of how the data is sampled. Kendall’s τ analysis includes 500 

extreme conditions of one variable (sampled in a year or season) and anything from low to extreme for the other providing 

information about the relative severity of the secondary variable. On the other hand, tail dependence χ assesses the probability 

for one variable to be extreme when the other is extreme. This is done based on all daily values which are not declustered and 

hence prolonged high values could introduce stronger tail dependence. Both metrics provide insight into the existence (or non-

existence) of dependence according to different compound flooding mechanisms (as outlined in Wahl et al. (2015)). 505 
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From the seasonal analysis, which is part of our second objective, we find that for the different pairs of variables the dependence 

is always higher in the Gulf of Mexico during June-November (the tropical cyclone season for the Atlantic and Gulf coast) as 

compared to December-May (the extra-tropical season) (Fig. 5 and Fig. 6). This is attributed to the occurrence of hurricanes 

and tropical storms where low pressure systems accompanied by strong winds elevate coastal water levels through storm surges 

and also produce high waves. When the storm systems travel further inland, they often cause extreme precipitation leading to 510 

pluvial flooding and high river discharge leading to fluvial flooding. In both cases the flooding impacts can be worse if drainage 

is blocked at the river mouth/outfall due to elevated coastal water levels, as happened in Texas in 2017 during hurricane Harvey 

(Emanuel, 2017). Along parts of the US East coast we find higher dependence during the tropical season for flooding pairs 

S_Q, Q_S, S_P, and P_S which is likely also a result of the occurrence of hurricanes but could also be attributed to convective 

weather systems including thunderstorms that favour the occurrence of coastal and inland extreme events as shown by Catto 515 

and Dowdy (2021). The latter found that those weather types are more frequent during summer (tropical season) in association 

with increased thermodynamic instability and heating. On the other hand, we find higher dependence during the extra-tropical 

season on the West coast, especially for pairs conditioned on storm surge (S_P, S_Q, and S_W). Bromirski et al. (2017) studied 

storm surges along the pacific coast of North America and found that storm surges peak during winter (December-February) 

caused by low pressure systems and in turn linked to high rainfall events driven by atmospheric rivers that occur on the West 520 

coast during winter. In this part of the country, the landfall of low-pressure systems causing high surge associated with extreme 

rainfall events compounds the adverse impacts of coincident high surge and waves on sea cliffs. On the East coast, the stronger 

dependence between W_S during the extra-tropical season compared to the tropical season can be attributed to stronger wind-

sea and swell energy during winter. Zheng et al. (2016) studied the spatial and seasonal distribution of wind-sea and swell 

energy and found that for the northern hemisphere the peak is in winter (December-February) and the seasonal average wind 525 

speed reaches a maximum during that time. 

From the seasonal tail dependence analysis we find that results are more aligned with the 1:1 line (Fig. 7) compared to the rank 

correlation analysis (Fig. 5), and some of the conclusions are reversed, but mostly for sites where dependence is weak. This 

shows how using different methods based on different subsets of the data can lead to different results and conclusions, 

introducing subjectivity. In a recent study, Camus et al. (2021) showed that tail dependence coefficients between two drivers 530 

were strongly positively correlated with joint occurrences of the same drivers, which was not always the case for Kendall’s τ. 

This implies that tail dependence χ is not always positively correlated with Kendall’s τ, especially when both are calculated 

using different subsets of the data sample, and explains the discrepancies found between Fig. 6 and Fig. 8. The method of 

choice depends on the objective of the analysis. Deriving Kendall’s τ is often an important interim step when performing joint 

probability analysis, e.g., using copula models. Tail dependence χ, on the other hand, is a very useful metric when assessing 535 

tail dependence structures, as done here for example when comparing model results and observations. 

In comparing dependence structures derived from model and observational data, which is our third objective, we followed the 

methodology in Zscheischler et al. (2021). Results showed that for pairs S-Q and S-P the tail dependence derived from models 

is very similar to that derived from observations in the Gulf of Mexico. The models underestimate the tail dependence for S-
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Q along the East and West coast, which might be a result of water management not captured by the models. For S-P, the 540 

models overestimate dependence at some sites along the East coast and underestimate it at most sites on the West coast. This 

points to spatial variations of models’ performance in estimating tail dependence for S-P. Moreover, weather types driving 

extreme inland and coastal events were found to be different on the West and East coast by Catto and Dowdy (2021). Models 

overestimate the tail dependence between S-W in the Gulf and southeast coast (Fig. 10). These are the locations where 

hurricanes and tropical cyclones occur and the seasonal analysis confirmed that tail dependence was overestimated by models 545 

particularly during the tropical season from Virginia to the western Gulf of Mexico (Fig. 12). In a comprehensive analysis for 

Europe, Paprotny et al. (2020) also compared dependence structures between observations and model hindcasts and found that 

on average the dependence between surge and discharge was underestimated. Dependence between surge and precipitation on 

the other hand was overestimated along the North Sea and English Channel but strongly underestimated in southern Europe. 

This existence of strong spatial variation in the ability of models to reproduce dependence structures between drivers (in 550 

particular for surge and precipitation) is also confirmed by our analysis. 

In this study, we carried out bivariate dependence analysis between four main drivers which can potentially cause compound 

flooding. At some locations on the Gulf coast (e.g. west coast of Florida), significant correlation was found among most pairs 

of drivers. These are locations exposed to hurricanes and storms that can cause three or all four flooding drivers to coincide. 

The bivariate dependence analysis presented here could be extended to include multivariate dependence, which can be 555 

modelled using higher dimension copulas (e.g., Bevacqua et al., 2017; Jane et al., 2020). 

6 Conclusions 

We have quantified, for the first time, the compound flooding potential that arises from the combination of storm surge, waves, 

precipitation, and river discharge along the CONUS coastline. Our first objective was to characterize and map the dependence 

between the four different compound flooding drivers and identify spatial patterns. We carried out the analysis at 35 sites, 560 

where long enough overlapping datasets were available for the different variables. From a geographic perspective, more sites 

with significant dependence between the different drivers exist along the Gulf, southeast, and southwest coasts as compared 

to the northwest and northeast. From a flooding driver perspective, the highest dependence is found between surges and waves 

which are both oceanographic drivers, followed by surge and precipitation, surge and discharge, waves and precipitation, and 

waves and discharge. 565 

Our second objective was to perform a seasonal dependence analysis (tropical vs extra-tropical season). We found higher 

dependence between the different drivers during the tropical season in the Gulf of Mexico and parts of the East coast that are 

prone to tropical cyclone impacts, whereas dependence was stronger on the west coast during the extra-tropical season. 

Differences between seasons were larger when using two-way sampling and Kendall’s τ as a measure of dependence compared 

to when assessing tail dependence χ; the latter leads to more similar results for both seasons. Seasonal differences in the 570 
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strength of dependence between the different flooding drivers show in which season certain areas are more likely to be affected 

by compound flooding, which can be integrated into coastal management and flood risk mitigation efforts. 

Our third objective was to compare the dependence structure of different combinations of flooding drivers using observation-

based and model-based data, where all model data were derived with coherent forcing from the state-of-the-art ERA5 

reanalysis. For S_Q and S_P and in the Gulf of Mexico both models and observations point to the same dependence structure 575 

in the tails of the joint distributions. Models overestimate the tail dependence between P_W in all sites. On the West coast, 

models also underestimate dependence in the tails in S_Q, S_P, and S_W, which is also found along the East coast but in fewer 

places and with the exception of S_P that is overestimated on the East coast. The seasonal analysis shows that models reproduce 

the dependence structure better during the tropical season compared to the extra-tropical season for the whole CONUS 

coastline. 580 

Importantly, our study focuses only on the hazard component of flood risk, hence assessing the potential of compound flooding 

caused by at least one extreme driver. Our assumption is that severe impacts can occur when at least one of the drivers is 

extreme, but from an impacts perspective this may not necessarily be the case. However, identifying which combinations of 

drivers have relatively higher dependence (and during which time of the year) is an important first step which can help 

identifying areas which require more scrutiny. The results can also guide choices in terms of which types of models are required 585 

and need to be coupled to capture the relevant interactions between the four flooding drivers. 

Code availability 

Data pre-processing, analysis and visualization were carried out in R programming language (R Core Team, 2020). The 

following R packages were used: ‘dataRetrieval’ (De Cicco et al., 2018) and ‘rnoaa’ (Chamberlain et al., 2016) for data 

retrieval; ‘dplyr’ (Wickham et al., 2020b), ‘lubridate’ (Spinu et al., 2020), and ‘tidyr’ (Wickham, 2020) for data pre-processing. 590 

‘extRemes’ (Gilleland and Katz, 2016) and other routines for data analysis; and ‘ggplot2’ (Wickham et al., 2020a) and 

‘pheatmap’ (Kolde, 2015) for visualization. 

Data availability 

Observational sea-level data is available from NOAA (http://tidesandcurrents.noaa.gov/), wave hindcast from USACE 

(http://frf.usace.army.mil/wis/), river discharge from USGS (https://waterdata.usgs.gov/nwis), and precipitation from NOAA 595 

(https://www.ncdc.noaa.gov/ghcnd-data-access). For reanalysis data, ERA5 (https://doi.org/10.24381/cds.adbb2d47), 

GloFAS-ERA5 (https://doi.org/10.24381/cds.a4fdd6b9), and CoDEC (https://doi.org/10.24381/cds.8c59054f) data are 

available from the Copernicus Climate Change Service (C3S) Climate Data Store. 
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