
Dear Editor, 

We, the authors, would like to thank the reviewers for their positive, thoughtful, and constructive 
feedback and comments on our submission titled “Assessing the dependence structure between 
oceanographic, fluvial, and pluvial flooding drivers along the United States coastline” submitted to HESS 
by Ahmed A. Nasr et al. 

We have revised the text carefully, provided replies to comments, and amended the manuscript according 
to replies to questions raised. We outline the changes made point by point below (answer in blue and new 
in the manuscript in red, anything to be deleted in manuscript is highlighted in yellow). 

Regards, 

The Authors 

 

REVIEWER 1 

This is a very interesting study with three explicit objectives: 1) assessing the dependence between four 
main flood drivers along the coastline of CONUS (surge, wave, rainfall and river discharge), 2) assessing 
the seasonal patterns of such dependence, and 3) comparing tail dependence detected from observational 
records and from the reanalysis data. Not only the idea is very interesting, but also the research design is 
robust and alternative approaches (i.e. POT vs block-maxima and rank vs tail dependance) have been 
well-discussed. This study and its outputs are very helpful for coastal compound flood hazard assessment 
and management, as address a very important challenge that compound flooding community is dealing 
with it. Appropriate characterization of exceedance probability (which is instrumental to risk assessment) 
is a difficult task when multiple variables are involved and such studies help the flood risk modelers in at 
least two ways. First, they will now where there is no significant dependence between flooding variables 
and make the simplifying assumption of independence between variables. Second, in case a significant 
dependence is detected what type of numerical modeling scheme can provide the most relevant 
information about the nonlinear interactions between interacting variables. The manuscript is very well-
written and results are nicely presented. Thus, I recommend publication of this manuscript in HESS after 
a minor revision. My comments are mainly about necessary justification/explanations and some editorial. 
Please, see the details below. 

We thank the reviewer for the constructive feedback and comments. 

 

[R1C1] My main concern here is the time-scale of hydrologic variables. While wave and surge are 
obtained and analyzed on an hourly basis, accumulated daily precipitation depth is taken as a 
representative of extreme pluvial flooding driver (L167). I doubt that such characteristic of rainfall can be 
a good representative of extreme precipitation contributing to compound coastal flooding events. This is a 
relatively long time window that somehow dampens the density of rain storm and so provides irrelevant 
information for compound coastal flood modeling. Please, explain if such selection was due to lack of 
data or methodological reasons? Anyways, I didn’t find it explicitly discussed in your manuscript.  

We thank the reviewer for raising this comment. Precipitation data is only available as cumulative daily 
depths for long enough periods to be useful for our study. Long hourly or sub-hourly records would be 
required to obtain the precipitation intensity, storm duration and depth per storm. However, with the 
available information, precipitation intensity which is important and can lead to severe flash floods in 



small catchments with high runoff coefficients (or imperviousness) cannot be calculated. As a justified 
approximation which has been used in previous studies (e.g., Camus et al (2021) and Wahl et al (2015)), 
cumulative daily precipitation depths are used as proxy for pluvial flooding. From a meteorological 
perspective it’s also unlikely that weather systems causing convective short-duration rainfall events also 
lead to high storm surge or waves. While this does not mean that they can’t be involved in causing 
compound flooding, we would not expect to find significant dependence.   

We will make the following changes in manuscript: 

[Line 163-169]: We use precipitation observations from the Global Historical Climatology Network 
Daily (GHCN-D) hosted by NOAA’s National Centers for Environmental Information (NOAA-NCEI) 
(https://www.ncdc.noaa.gov/ghcnd-data-access). For data retrieval we used the R package ‘rnoaa’ 
(Chamberlain et al., 2016). GHCN-D contains precipitation and other climate data from more than 
100,000 stations worldwide covering periods ranging from 1 year to over 175 years. We consider the 
accumulated daily precipitation depth (similar to Camus et al (2021) and Wahl et al (2015)) since higher 
frequency data is not available for long enough time periods to be useful for our continental scale 
analysis. We use data from rain gauges that are located closest to the selected tide gauges with at least 20 
years of overlapping data; in 31 instances the closest precipitation gauges providing long records are 
found within a 30 km radius around the respective tide gauges, for the other 4 sites the distance is larger 
but always smaller than 60 km. 

 

[R1C2] Also, for the two-way selection scheme, I guess 10 days is too long to justify 
coincidence/concurrence. It’s been justified with regard to the lag-time of river flow, but I doubt in any of 
the selected systems the transition time of the peak river flow from the upper tributaries to the outlet 
would be more than 5-6 days, at most. Do you have any reference on this? I am aware of other studies 
with comparable window length (i.e. 7 days), but “river flow lag time" might not be necessarily sufficient 
to justify such long sampling window length. Also, this is not a similar process between all cases. For 
example, such time window with justification from river discharge lag time has nothing to do with 
sampling wave and surge that have occurred up to 10 days apart. Moreover, even if it justifies the 10 days 
lag time in Q-S case, it does not automatically justify pairing an extreme surge with a river flow that has 
happened up to 10 days later. Such unified 10day time window needs a much stronger justification. 

For two way sampling, variable time windows for up to ±10 days were applied (Line 200-202); that 
means that we tried different window sizes for different pairs and locations varying the window size 
between 0 and ±10 days and selected the one that maximizes Kendall’s tau; i.e., we did not use a unified 
±10-day time window. 

Time windows of up to ±10 days were chosen to account for lag times (which we did not calculate) in 
addition to a number of days as buffer (concurrently or in close succession). The previous studies referred 
to by the reviewer where time windows of ±7 days were used probably include Ganguli and Merz 
(2019a;2019b) and Ganguli et al (2020). In these studies, first the discharge time series was lagged by a 
number of days calculated as a function of the catchment area, then the two-way sampling was performed 
between annual maxima surge and maximum value of discharge from lagged discharge time series within 
a time window of  ±7 days. 

The reason for the choice of a time window is that compound events do not have to occur concurrently, 
they can occur separated by a number of days. As stated in Ganguli et al (2020) “The choice of a window 
is motivated by the fact that two events do not need to occur at exactly the same day to enhance their 

https://www.ncdc.noaa.gov/ghcnd-data-access


impacts. For instance, the first event could weaken flood defense systems or stress disaster management 
capacities, posing a problem when the second event occurs with a few days delay”. 

Regarding Surge and Waves, only values occurring within the same day were paired together. A window 
size of ±1 day was tested but results did not change as the highest values tend to occur on the same day. 

The mean window size for different pairs ranged between 0 and ±5 days while the median ranged 
between 0 and ±4 days; only in very rare cases for certain pairs and in few locations window sizes of 10 
days were considered for the final analysis. In the vast majority of cases much shorter windows were 
used. The below table shows the10th percentile, mean, median, and 90th percentile of the time windows for 
different pairs. 

 S-Q S-P S-W Q-P Q-W P-W 
P10 (days) 1 1 0 1 1 1 
Median (days) 4 2 0 3 3 2 
Mean (days 5 3 0 4 4 3 
P90 (days) 10 5 0 6 7 5 

 

We will make the following changes in the manuscript: 

[Line 200-204]: maximum value of the other (conditioned) variable within a time window that we vary 
between 0 to ±10 days; the relatively long lag-times are chosen as we do not correct for the travel time 
of river flow from where it is measured/modelled and the tide gauge further downstream. Previous 
studies calculated these lag-times for river discharge and then applied a time window of ±7 days for 
sampling between surge and lagged discharge (e.g., Ganguli and Merz, 2019a; 2019b; Ganguli et al., 
2020). From all the time windows tested we chose the one that maximizes dependence (Kendall’s τ). For 
surge and wave, for example, that leads to the selection of a time window of 0 days as the high values 
usually occur on the same day. Across all locations and variable pairs the median time window that is 
selected is 3 days; window lengths of 10 days are only considered in rare cases for the S-Q combination. 
In general, the reason for the choice of a time window is that compound events do not have to occur on 
the same day to enhance impacts, they can occur separated by a number of days. The occurrence of one 
event could impact flood defense systems or disaster management efforts leading to enhanced impacts 
when another event occurs shortly after (Ganguli et al., 2020). The six variable pairs (and 12 
combinations from the two-way sampling) are the following; the variable that is listed first if the 
conditioning variable (e.g., S_Q means that annual maxima S is paired with (near-) coincident Q, 
whereas Q_S means that annual maxima Q is paired with (near-)coincident S): 

 

We will add the following references to the references list:  

Ganguli, P. and Merz, B.: extreme coastal Water Levels exacerbate fluvial flood Hazards in northwestern 
europe, Scient. Rep., 9, 1–14, https://doi.org/10.1038/s41598-019-49822-6, 2019a. 

Ganguli, P. and Merz, B.: Trends in Compound Flooding in Northwestern Europe During 1901–2014, 
Geophys. Res. Lett., 46, 10810–10820, https://doi.org/10.1029/2019GL084220, 2019b. 

https://doi.org/10.1038/s41598-019-49822-6
https://doi.org/10.1029/2019GL084220


Ganguli, P., Paprotny, D., Hasan, M., Güntner, A., & Merz, B.: Projected changes in compound flood 
hazard from riverine and coastal floods in northwestern Europe, Earths Future, 8, 
https://doi.org/10.1029/2020EF001752, 2020. 

 

[R1C3] I understand the value of information presented in Figures 5, 7, 9, but I don’t see much value in 
the way that these are currently presented. There are simply too much information on a single chart. I 
suggest either breaking these down to subpanels (a, b, c, …) that separately plots the pairs, or removing 
these charts (as kind of similar information is already presented in the heatmaps). Moreover, I found the 
dashed lines simply meaningless here. Both rank and tail dependence measures used here assess the 
nonlinear dependencies and I don’t understand what a linear regression means here? Please, explain if I 
am missing an important meaning behind these linear regression practice. 

We thank the reviewer for this comment. The purpose of Figures 5,7,9, and 11 is to compare different 
statistics (τ or χ) between seasons (Fig 5 and 7) or between observations and models (Fig 9 and 11). If 
there were no variations all marker points would lie on the diagonal (1:1) line. However, since there are 
variations, the marker points are scattered. The black dashed line represents the linear regression line 
between tropical and extra-tropical season (Fig 5 and 7) and between observations and models (Fig 9 and 
11) for all variable pairs in all regions. The colored dashed lines show the same but for regions split into 
East, Gulf, and West coast. Although the rank correlation assesses the non-linear dependence, we use a 
linear dependence/correlation to assess the association between the rank correlation values obtained in 
different seasons (Fig 5 and 7) or using observations and models (Fig 9 and 11). We tested using different 
panels for the different regions but then we lose the information from looking at all regions combined; we 
also tested having 6 panels for each of the variable pairs, but that resulted in many large figures (12 panels 
would be needed for Fig. 11) without displaying more information. 

The heatmaps in Figures 6 and 8 show the difference at individual locations in tropical and extra-tropical 
seasons. On the other hand, Figures 10 and 12 show the difference at individual locations in models and 
observations. Consequently, by removing Figures 5, 7, 9, and 11 (as suggested by the reviewer) 
information on the absolute values of dependence and tail dependence would be lost. 

 

[R1C4] L142: WAM has not been defined yet. 

We thank the reviewer. We will update the manuscript to be as follows: 

[Line141-142]: We compare the WIS data against wave time-series extracted from the ERA5 reanalysis 
(spatial resolution = 0.5°×0.5° and temporal resolution = 1 hour) (Hersbach et al., 2020) based on the 
wave model WAM model (WAMDI Group, 1988). 

We will add the following reference to the references list in the manuscript: 

WAMDI Group: The WAM model—A third generation ocean wave prediction model, J. Phys. 
Oceanogr., 18, 1775-1810, https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2 , 
1988 

 

[R1C5] L224: The equation does not seem right to me. There should be a typo in it. 

https://doi.org/10.1029/2020EF001752
https://doi.org/10.1175/1520-0485(1988)018%3c1775:TWMTGO%3e2.0.CO;2


We thank the reviewer and we agree that there were missing brackets and these have been added. In the 
new form the equation should be correct (see also section 3.1 of Zscheischler et al (2021); 
https://doi.org/10.5194/esd-12-1-2021) 

𝜒𝜒 =  lim
𝑞𝑞⟶1

𝑃𝑃 (𝐹𝐹𝑎𝑎(𝐴𝐴) > 𝑞𝑞|𝐹𝐹𝑏𝑏(𝐵𝐵) > 𝑞𝑞) 𝜖𝜖 (0,1] 

Reference: 

Zscheischler, J., Naveau, P., Martius, O., Engelke, S., and Raible, C. C.: Evaluating the dependence 
structure of compound precipitation and wind speed extremes, Earth Syst. Dynam., 12, 1–16, 
https://doi.org/10.5194/esd-12-1-2021, 2021. 

 

[R1C6] L305-321: Better to clearly explain earlier that numbers inside parenthesis show the number of 
sites. 

We thank the reviewer for this comment. We do show that the numbers in the parenthesis refer to the 
number of sites in Line 305 in the manuscript. Additionally, we have added the word “sites” to each 
number and will update the manuscript as follows. 

[Line 305-320]: discharge, out of 23 sites analysed, more sites show significant correlation for Q_S (14 
sites) than S_Q (11 sites). Along the coasts of Florida and US southeast higher values of τ are found for 
S_Q than Q_S. In contrast, along the coasts in the western Gulf of Mexico and US southwest, the values 
of Q_S are higher than for S_Q. For surge and precipitation, from the 35 sites analysed, more sites show 
significant dependence in S_P (24 sites) compared to P_S (16 sites). Along the East coast, more sites 
possess significant dependence in S_P (14 sites compared to 9 sites in P_S) and at the same time the 
dependence values for S_P are higher than P_S values. Interestingly, along the Gulf and West coasts, 
although more sites have significant dependence in S_P (10 sites compared to 7 sites in P_S), the strength 
of the dependence is higher for P_S in most cases (6 out of the 7 sites); this is in agreement with results 
from Wahl et al. (2015). For surge and waves, out of 31 sites analysed, we find more sites with significant 
dependence in the case of S_W (25 sites) compared to W_S (16 sites), especially along the East coast. For 
the East and Gulf coasts, the strength of dependence is also higher for S_W compared to W_S, which is 
reversed on the West coast. For discharge and precipitation, out of 23 sites analysed, more sites show 
significant dependence in the case of Q_P (17 sites) compared to P_Q (13 sites), which is again most 
pronounced on the East coast. The strength of dependence of Q_P and P_Q in the Gulf and West coasts is 
higher than that for the East Coast. In most sites, the strength of dependence is higher for Q_P than P_Q. 
For waves and discharge, out of 17 sites analysed, only three show significant dependence in both cases. 
For W_Q all three are located in Florida and show relative high dependence strength. Lastly, for wave 
and precipitation, out of 31 analysed sites, there is approximately an equal number of sites showing 
significant dependence for W_P (12 sites) and P_W (11 sites). However, the strength of dependence is 
overall higher for W_P compared to P_W at most sites (4 of 5 sites) where both are significant. 

 

[R1C7] L351: Looks like R here represents the Pearson corr coeff. (As mentioned in L441 and L413). If 
so please clarify first time appears in the manuscript. 

We thank the reviewer and we agree and have made the following changes in the manuscript: 

[Line 212]: correlation coefficient (R) 

https://doi.org/10.5194/esd-12-1-2021


[Line 351]: Pearson’s correlation coefficient R 

 

[R1C8] L475-479: The sentence is too long. Please, consider breaking it down. 

We agree with the reviewer and will make the following changes in the manuscript: 

[L475-479]: As could be expected, the highest dependence is found between S_W as both are 
oceanographic drivers, but we also find that significant dependence for S_P is more prevalent than for 
S_Q (especially along the northeast coast)., highlighting This highlights the fact that catchment 
characteristics (e.g., size, surface type, steepness, and antecedent moisture content), rainfall intensity 
and duration, and snowmelt play an important role and not all dependence between S and P translates 
to dependence between S and Q (Hendry et al., 2019; Bevacqua et al., 2020; Couasnon et al., 2020). 

 

[R1C9] L556: These citations are not necessary (better to say useful) at the end of conclusions. 

We thank the reviewer and agree with this comment.  We will remove them from the updated version of 
the manuscript as follows: 

[L555-556]: caused by at least one extreme driver. Our assumption is that severe impacts can occur when 
at least one of the drivers is extreme (Wahl et al., 2015; Zscheischler et al., 2018), but from an impacts 
perspective this may not necessarily be the case. 

 

Great work! 

Thank you! 

  



REVIEWER 2 

Congrats to the authors for putting together an interesting and generally well-written manuscript. The 
study uses observational and model-based data to characterize the pair-wise dependence between various 
flood drivers (storm surge, waves, rainfall, river discharge) for sites across the entire CONUS and for 
different seasons. The authors then compare model-based dependence against the observed dependence 
structures between flood drivers to investigate the ability of models to represent multi-hazard dependence. 
I recommend publication after addressing some points I raise below. 

We thank the reviewer for the constructive feedback and comments. 

 

 

Main Points: 

 

[R2C1] There are significant differences between the Kendall tau and tail dependence for the seasonal 
analysis. In particular, the kendall tau analysis suggests that the correlation is higher during the tropical 
season compared to extra tropical season (for the majority of locations and pairs). But the tail dependence 
analysis basically shows the exact opposite (figure 8 note all the blue boxes compared to the prevalence 
of red boxes in figure 6). The authors mention that some differences could be due to sampling differences 
and autocorrelation of the time series used for the tail dependence analysis, but I don’t think this fully 
explains the large discrepancy between the two methods. Moreover, the authors do not comment on how 
to interpret these differences. Which metric should we use to quantify hazard dependence? 

We thank the reviewer for this comment. For the Kendall τ analysis we performed a two-way sampling 
approach where we used extreme values (sampled using block (annual or seasonal) maxima approach) of 
one driver and the maximum values of the other driver within a time window. In that case, the other 
driver being chosen within a time window may or may not be extreme. On the other hand, for extremal 
(tail) dependance, using the daily timeseries (full or split into seasons), it calculates the probability of one 
driver being extreme (exceeding a threshold = 0.9) given that the other driver is extreme. The events here 
are not declustered or independent. 

For two drivers (say A and B), the two-way sampling approach for Kendall’s τ ensures that at least one of 
the drivers is extreme (that is A OR B are extreme). Extreme is defined as the annual (or seasonal) 
maxima value. On the other hand, for the tail dependence, it calculates the probability of one variable (say 
A) being extreme given that the other variable (say B) is extreme (directly proportional to A AND B are 
extreme). Extreme is defined as both values exceeding a threshold of 0.9. 

Since both approaches use different samples from data and have different definitions, differences will 
inevitably occur. The tail dependence only characterizes compound events when both drivers are extreme 
(both exceed a certain threshold). On the other hand, Kendall’s τ rank correlation analysis characterizes 
compound events generated when one of the drivers is extreme but not necessarily the other, providing 
information about the relative severity of the secondary driver. That’s why we mentioned that both 
metrics provide insight on the dependence. 

Considering two drivers, according to Wahl et al. (2015), compound flooding can occur when (1) two 
drivers are extreme (joint occurrence of two extreme events which is positively correlated to tail 



dependence as in Camus et al. (2021)) or (2) when one of the drivers is extreme but not necessarily the 
other (at least one of the drivers is extreme which is covered by the two-way sampling) 

The calculation of dependence using Kendall’s τ and the two-way sampling is important for copula 
modeling at a later stage and obtaining design values (which is beyond the scope of this paper and was 
extensively applied in previous studies, see e.g.: Wahl et al (2015)). On the other hand, the strength of 
using tail dependence is seen in objective 3 of this study where we investigate the ability of models in 
reproducing the extremal dependence structure between variables and whether there is significant 
underestimation or overestimation according to KL divergence (see original manuscript Section 3.3, Lines 
260-264). 

Lastly, we will also provide more explanation in the discussion as follows (original manuscript section 5, 
lines [510-514]). 

lines [510-514]: This shows how using different methods based on different subsets of the data can lead 
to slightly different results and conclusions, introducing subjectivity. In a recent study, Camus et al. 
(2021) showed that tail dependence coefficients between two drivers were strongly positively 
correlated with joint occurrences of the same drivers, which was not always the case for Kendall’s τ. This 
implies that tail dependence χ is not always positively correlated with Kendall’s τ, especially when both 
are calculated using different subsets of the data sample, and explains the discrepancies found between 
Fig. 6 and Fig. 8. The method of choice depends on the objective of the analysis. Deriving Kendall’s τ is 
often an important interim step when performing joint probability analysis, e.g., using copula models. 
Tail dependence χ, on the other hand, is a very useful metric when assessing tail dependence structures, 
as done here for example when comparing model results and observations.  

 

[R2C2] I didn’t see the KL divergence results presented anywhere in the manuscript. As the authors point 
out the KL metric takes into account the entire dependence structure rather than just the tail dependence, 
so I was expecting to see/read the KL values for different locations and pairs. I think this needs to be 
added to the manuscript 

We thank the reviewer for this comment. The KL calculations (the statistic d12) on its own is a measure of 
distance or dissimilarity. According to Line 292-293: “The statistic d12 follows a χ2 (W-1) distribution in 
the limit as the sample size approaches ∞ under suitable assumptions allowing us to estimate whether it is 
significantly different from zero.”. Under this assumption, the KL divergence value (d12) is significant if it 
lies outside the 95 % quantile of the limiting χ2 (W-1) distribution of the statistic d12 under the null 
hypothesis of equal tail dependence structures (leading to rejection of the null hypothesis). This is 
reflected in Figure 9 and Figure 11 by black dots in the markers and in Figure 10 and Figure 12 by 
showing values of the cells (insignificant values are shown by an asterisk *).  We noticed that captions for 
Figure 9,10,11, and 12 were not correct and we will update them in the new version of the manuscript 
(see reply for R2C11 and R2C12 for corrected captions). We debated whether to add all KL values (the 
statistic d12) and the 95% quantile of the limiting χ2 (W-1) distribution of the statistic d12 for all pairs and 
locations. That leads to a very large table which would have to go into a supplementary, which we don’t 
have at the moment. After some discussions we decided against it as we believe that these values won’t 
be of interest to the vast majority of the readers (and the final conclusions in terms of dependence 
structures being significantly different or not are already included in the figures). However, the table 
exists and we are happy to add it to a new supplementary material if the reviewer feels strongly about it.  



 

[R2C3] I don’t think the discussion could be organized better. Since one of the objectives/novelties of this 
work is to investigate hazard correlation across the entire CONUS, the discussion should be used to 
highlight regional trends. I suggest devoting one paragraph for each region, highlighting the main hazard 
correlations (and the meteorological reasons for the correlation), and then describing which season multi-
hazard events are more likely to occur and why. This should be followed by a paragraph discussing the 
differences between the tail dependence and kendall tau analysis (see the first bullet). Then I would have 
a paragraph describing the comparison of the model with the observations. There are a lot of results 
presented in this paper so the discussion really needs to summarize everything in an organized manner. 

The first sentence of this comment (saying that the discussion could NOT have been organized better) and 
the rest of it were contradictory and we assume that “don’t” in the first sentence was a typo and 
interpreted it accordingly. We decided to organize the discussion according to the three objectives that we 
define in the introduction and highlight/discuss our key findings for each of these objectives in turn. 
While the first one is indeed purely focused on identifying spatial patterns, the other two are not, although 
the results of course also show spatial variability. We believe that structuring the discussion according to 
the objectives allows the reader to easily capture the main take-aways regarding these objectives. After 
reading it again we realized that by making some modifications to the text we can make the structure 
clearer, which will hopefully make it more accessible to the reader. We show the proposed changes to the 
discussion section below.  

lines [461-469]: In this study we have assessed the compound flooding potential from all four flooding 
drivers along the CONUS coastline. The dependence analysis is conducted using Kendall’s τ and block 
maxima (either annual or seasonal maxima) with a two-way conditional sampling between flooding 
drivers. The choice of block maxima was to avoid having to identify individual thresholds and 
declustering windows for all sites and variable pairs individually when implementing POT. Previous 
studies, e.g., Ward et al. (2018) and Camus et al. (2021), indicate that using block maxima versus POT 
does not affect the overall results from large-scale dependence analyses in the context of compound 
flooding. Camus et al. (2021) showed through a comprehensive sensitivity analysis that using annual 
maxima and different thresholds in a POT framework leads to comparable results; while dependence 
values tended to be higher in the annual maxima approach, the spatial distribution (which is what we 
are mostly interested in) of the dependence was the same in both methods.  

lines [469-487]: Our first objective was to characterize and map the dependence between the four 
different compound flooding drivers and identify spatial patterns. We find sites of highest dependence 
between the different pairs of drivers to be in the Gulf of Mexico, southeast, and southwest coasts (Fig. 
3). For the Gulf and East coast this is due to the occurrence of hurricanes and tropical storms (which was 
confirmed in the second objective focused on the seasonal analysis) especially for pairs of drivers 
conditioned on surge. Dependencies using Kendall’s τ were consistent with past regional and global 
studies (e.g., Wahl et al. (2015) for surge-precipitation, Ward et al. (2018) for surge-discharge, and 
Marcos et al. (2019) for surge-waves). From the perspective of different variable pairs, As could be 
expected, the highest dependence is found between S_W as both are oceanographic drivers, but we 
also find that significant dependence for S_P is more prevalent than for S_Q (especially along the 
northeast coast), highlighting the fact that catchment characteristics (e.g., size, surface type, steepness, 
and antecedent moisture content), rainfall intensity and duration, and snowmelt play an important role 
and not all dependence between S and P translates to dependence between S and Q (Hendry et al., 



2019; Bevacqua et al., 2020; Couasnon et al., 2020). Additionally, more sites have significant 
dependence for Q_P than for P_Q, especially along the northeast coast, highlighting that not all extreme 
precipitation events can occur with moderate or high discharge, but extreme discharge events can occur 
with moderate or high precipitation extreme precipitation can occur in the absence of moderate or 
extreme river discharge, but extreme river discharge usually occurs simultaneously with moderate or 
extreme precipitation. This shows again that other mechanisms contribute to high discharge events 
other than precipitation. From the perspective of using different dependence metrics, we find more 
places with significant tail dependence χ (Fig. 4) than with significant Kendall’s τ (Fig. 3), and this is likely 
a result of how the data is sampled. Kendall’s τ analysis includes extreme conditions of one variable 
(sampled in a year or season) and anything from low to extreme for the other providing information 
about the relative severity of the secondary variable. On the other hand, tail dependence χ assesses the 
probability for one variable to be extreme when the other is extreme. This is done based on all daily 
values which are not declustered and hence prolonged high values could introduce stronger tail 
dependence. Both metrics provide insight into the existence (or non-existence) of dependence 
according to different compound flooding mechanisms (as outlined in Wahl et al., 2015). 

lines [488-507]: From the seasonal analysis, which is part of our second objective, we find that for the 
different pairs of variables the dependence is always higher in the Gulf of Mexico during June-November 
(the tropical cyclone season for the Atlantic and Gulf coast) as compared to December-May (the extra-
tropical season) (Fig. 5 and Fig. 6). This is attributed to the occurrence of hurricanes and tropical storms 
where low pressure systems accompanied by strong winds elevate coastal water levels through storm 
surges and also produce high waves. When the storm systems travel further inland, they often cause 
extreme precipitation leading to pluvial flooding and high river discharge leading to fluvial flooding. In 
both cases the flooding impacts can be worse if drainage is blocked at the river mouth/outfall due to 
elevated coastal water levels, as happened in Texas in 2017 during hurricane Harvey (Emanuel, 2017). 
Along parts of the US East coast we find higher dependence during the tropical season for flooding pairs 
S_Q, Q_S, S_P, and P_S which is likely also a result of the occurrence of hurricanes but could also be 
attributed to convective weather systems including thunderstorms that favour the occurrence of coastal 
and inland extreme events as shown by Catto and Dowdy (2021). The latter found that those weather 
types are more frequent during summer (tropical season) in association with increased thermodynamic 
instability and heating. On the other hand, we find higher dependence during the extra-tropical season 
on the West coast, especially for pairs conditioned on storm surge (S_P, S_Q, and S_W). Bromirski et al. 
(2017) studied storm surges along the pacific coast of North America and found that storm surges peak 
during winter (December-February) caused by low pressure systems and in turn linked to high rainfall 
events driven by atmospheric rivers that occur on the West coast during winter. In this part of the 
country, the landfall of low-pressure systems causing high surge associated with extreme rainfall events 
compounds the adverse impacts of coincident high surge and waves on sea cliffs. On the East coast, the 
stronger dependence between W_S during the extra-tropical season compared to the tropical season 
can be attributed to stronger wind-sea and swell energy during winter. Zheng et al. (2016) studied the 
spatial and seasonal distribution of wind-sea and swell energy and found that for the northern 
hemisphere the peak is in winter (December-February) and the seasonal average wind speed reaches a 
maximum during that time. 

lines [508-514]: From the seasonal tail dependence analysis we find that results are more aligned with 
the 1:1 line (Fig. 7) compared to the rank correlation analysis (Fig. 5), and some of the conclusions are 



reversed, but mostly for sites where dependence is weak. This shows how using different methods 
based on different subsets of the data can lead to slightly different results and conclusions, introducing 
subjectivity. In a recent study, Camus et al. (2021) showed that tail dependence coefficients between 
two drivers were strongly positively correlated with joint occurrences of the same drivers, which was 
not always the case for Kendall’s τ. This implies that tail dependence χ is not always positively correlated 
with Kendall’s τ, especially when both are calculated using different subsets of the data sample, and 
explains the discrepancies found between Fig. 6 and Fig. 8. The method of choice depends on the 
objective of the analysis. Deriving Kendall’s τ is often an important interim step when performing joint 
probability analysis, e.g., using copula models. Tail dependence χ, on the other hand, is a very useful 
metric when assessing tail dependence structures, as done here for example when comparing model 
results and observations. 

lines [515-529]: In comparing dependence structures derived from model and observational data, which 
is our third objective, we followed the methodology in Zscheischler et al. (2021). Results showed that for 
pairs S-Q and S-P the tail dependence derived from models is very similar to that derived from 
observations in the Gulf of Mexico. The models underestimate the tail dependence for S-Q along the 
East and West coast, which might be a result of water management not captured by the models. For S-P, 
the models overestimate dependence at some sites along the East coast and underestimate it at most 
sites on the West coast. This points to spatial variations of models’ performance in estimating tail 
dependence for S-P. Moreover, weather types driving extreme inland and coastal events were found to 
be different on the West and East coast by Catto and Dowdy (2021). Models overestimate the tail 
dependence between S-W in the Gulf and southeast coast (Fig. 10). These are the locations where 
hurricanes and tropical cyclones occur and the seasonal analysis confirmed that tail dependence was 
overestimated by models particularly during the tropical season from Virginia to the western Gulf of 
Mexico (Fig. 12). In a comprehensive analysis for Europe, Paprotny et al. (2020) also compared 
dependence structures between observations and model hindcasts and found that on average the 
dependence between surge and discharge was underestimated. Dependence between surge and 
precipitation on the other hand was overestimated along the North Sea and English Channel but 
strongly underestimated in southern Europe. This existence of strong spatial variation in the ability of 
models to reproduce dependence structures between drivers (in particular for surge and precipitation) 
is also confirmed by our analysis. 

 

[R2C4] I would also suggest adding some discussion about the limitations of using a bivariate approach 
for this analysis. For example, along the west coast of Florida, there is significant correlation between 
almost all the hazard pairs (Figure 3), suggesting that there may also be a significant threat for three or 
even all four of the hazards to occur simultaneously. 

We thank the reviewer for the suggestion. We will add the below paragraph addressing it in the updated 
manuscript at the end of the discussion section (after Line 529).  

In this study, we carried out bivariate dependence analysis between four main drivers which can 
potentially cause compound flooding. At some locations on the Gulf coast (e.g. west coast of Florida), 
significant correlation was found among most pairs of drivers. These are locations exposed to hurricanes 
and storms that can cause three or all four flooding drivers to coincide. The bivariate dependence analysis 



presented here could be extended to include multivariate dependence, which can be modelled using 
higher dimension copulas (e.g. Bevacqua et al. (2017) and Jane et al (2020)). 
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Specific Comments: 

 

Abstract: 

 

[R2C5] Line 33-34: change “elderlies” to “the elderly” and “the poor” to “low income communities” 

We thank the reviewer for the suggestion. We will implement this change in the revised manuscript as 
below 

[L33-34]: by coastal flood hazards, including vulnerable populations such as the elderly elderlies, 
children, non-native English speakers, and low-income communities the poor (NOAA Office for Coastal 
Management, 2021). 

 

[R2C6] Section 3.1: It’s not clear to me why two different dependence measures are implemented in this 
work (Kendall tau and tail dependence). Both measures aim to investigate dependence between hazard 
extremes (either indirectly by selecting the maximum value per year or by directly utilizing the 90th 
percentile threshold). What is the benefit of using two different metrics? What insight does the Kendall 
tau provide compared to the tail dependence (and vice versa)? The motivation for using these metrics 
needs to be stated explicitly here. 

We thank the reviewer for this comment. From the different compound flooding mechanisms explained in 
Wahl et al. (2015), compound flooding can occur when two extreme drivers co-occur (mechanism 1) in 
this case the extremal (tail) dependence aligns with this mechanism. Also, when at least one of the drivers 
is extreme (mechanism 2 and 3), meaning that the second driver may or may not be extreme and this is 
reflected in the Kendall’s τ analysis where we use two-way sampling approach. 

Now, both measures provide information on dependence between drivers and their compound flooding 
potential according to the different compound flooding mechanisms in Wahl et al. (2015). [see replies for 
the first comment R2C1] 

https://doi.org/10.5194/hess-21-2701-2017
https://doi.org/10.5194/nhess-20-2681-2020


The use of the tail dependence measure becomes more relevant for the third objective in this paper where 
we want to compare the dependence structure between different drivers using observations and model 
(reanalysis) data to see if models are able to reproduce the dependence structure [see original manuscript 
Section 3.3, Line 259-262] 

We will add 1 paragraph in the updated version of the manuscript in Line 233 to replace the existing 
paragraph [Line 233-237] as follows: 

[Line 233-237]: Since both approaches use different samples from data and are implemented differently, 
we also expect differences in the results. The tail dependence (calculated using daily timeseries) only 
characterizes compound events when both drivers are extreme (both exceed a certain threshold). On the 
other hand, Kendall’s τ (using two-way sampling) characterizes compound events generated when one of 
the drivers is extreme but not necessarily the other, providing information about the relative severity of 
the secondary driver. Both metrics provide insight into the existence (or non-existence) of dependence 
according to different compound flooding mechanisms (as outlined in Wahl et al., 2015).  

 

[R2C7] Figure 3: I suggest breaking up the East Coast region into two regions: Southeast and Northeast. 
It’s clear from Figure 3 that the Southeast region (up to North Carolina) shows similarities with the Gulf 
Coast region. In both regions the occurrence of TC events likely causes significant dependence between 
surge/discharge and surge/precipitation. However, moving to the northeast there are relatively few sites 
with significant S_P/P_S or S_Q/Q_S correlation. Therefore, I think it makes more sense to talk about the 
Southeast and Northeast rather than the entire East Coast as a whole. 

We thank the reviewer for this comment. In line (306), the distinction of the southeast coast and Florida 
from the west gulf coast and southwest coast are mentioned for S-Q cases. The southeast region from 
station 15 to station 19 is only 5 stations and not all show similar behavior to the Gulf. The northeast 
region, on the other hand, contains 14 stations (station 1 to 14).  

We produced a Figure as the reviewer suggested, but believe it does not add important new insights, 
while at the same time it would make the scatter plots throughout the manuscript more complex, as an 
additional color would have to be added. 

We mentioned in [L322-323] that the Gulf, Southeast, and Southwest coasts are regions with higher and 
significant dependence compared to the northwest and northeast coasts. We will make sure in the revised 
version that differences between the southeast and northeast are highlighted in the text where appropriate 
and for cases where these differences are prominent (which is not the case for all of them, in some 
instances results are more comparable between the southeast and northeast).  

 



 
Figure 3: Dependence between different pairs of flooding drivers based on Kendall's τ and two-way sampling using annual 
maxima. Sites are grouped into Northeast, Southeast, Gulf, and West coast locations (see colours on the left and legend). 
The blue colour bar denotes dependence strength, blank squares indicate that data for the particular pair didn’t exist or that the 
number of overlapping years was less than 20 and squares with * indicate that correlation is not significant. 

 

 

Section 4.2: 

[R2C8] It doesn’t really make sense to talk about a tropical cyclone season for the West coast. I think it’s 
valid to look at the seasonal differences between dependence values for locations in the West coast, but 
the authors should provide some justification for why June-November vs December-May still makes 
sense since TCs do not impact the West coast. 

We thank the reviewer for this comment. Indeed, we are looking at seasonal differences between June-
November (referred to as Tropical season) vs December-May (Extra-tropical season). In the results in 
section 4.2 we show that there is higher dependence and tail dependence during December-May (extra-
tropical season) vs June-November (tropical season) (Line 368, 384-385). We further provide an 
explanation in the discussion [ Section 5 Lines 499-502] by linking to meteorological conditions during 



winter that favor the occurrence of coastal and inland flooding driven by high surge and atmospheric 
rivers, respectively. 

We will implement the following changes in the manuscript: 

[Line 344-347]: This section describes the results for the second objective, relating to the seasonal 
dependence analysis between the four drivers. Here we analyse data from the tropical cyclone season 
(June-November) June-November (tropical cyclone season for the Atlantic and Gulf coast) separately 
from the extra-tropical season (December-May) December-May (extra-tropical season) and compare 
results. First, we show the results from Kendall’s rank correlation analysis applied to the two-way 
samples derived with the seasonal maxima method, and then we show results from analysing tail 
dependence (using daily timeseries split into seasons). 

 

[R2C9] Figure 5: Again, I think it would be more interesting to show the southeast and northeast regions 
separately. 

Please see reply on comment for Figure 3 [R2C7]. We have generated a new figure based on the 
suggestion of the reviewer. Both the Northeast and Southeast have the same regression line. We think that 
it will be too much information to have 4 regions distinguished in these scatter plots. A comment from 
Reviewer 1 indicated that these figures already contain a lot of information and breaking down regions 
even further would just add additional complexity. As outlined in our response above we will make sure 
to highlight differences between the southeast and northeast in the text in instances where these 
differences are prominent.  



 

Figure 5: Scatter plot comparing dependence derived with Kendall’s τ and two-way sampling using seasonal 
maxima approach for tropical and extra-tropical seasons. Colours denote the location (separated into Northeast, 
Southeast, Gulf, and West coast) and markers represent the different variable pairs. Black dots on markers indicate 
significant difference in dependence between seasons. Dashed lines show linear regression fits corresponding to all 
data points (black) and for different subsets according to locations (coloured as outlined in the legend). 

 

Section 4.3: 

[R2C10] Where exactly were the KL results presented? The authors mention that the KL divergence 
provides information about whether the dependence structure is significantly different between 
observations and model, but I did not find any figure/table presenting the KL results. 

This comment relates to comment [R2C2], please see our response to that.  

 

[R2C11] Figure 10: The caption here is not correct. The caption refers to differences between seasons, but 
I believe this figure is supposed to be showing the difference between reanalysis and observations 

We thank the reviewer and agree that the caption was incorrect. We also found that captions for Figures 9 
and 11 were not correct and this will be fixed in the revised manuscript as follows: 



[Line428-432]: Figure 9: Scatter plot comparing extremal (tail) dependence (for q=0.9) derived using 
observations (x-axis) and models (y-axis) using daily time series of both variables. Colours denote the 
location (separated into East, Gulf, and West coast) and markers represent the different variable pairs. 
Black dots on markers indicate significant difference in tail dependence structure between observations 
and models according to KL divergence. Dashed lines show linear regression fits corresponding to all 
data points (black) and for different subsets according to locations (coloured as outlined in the legend). 

[Line434-438]: Figure 10: Heat map showing differences in tail dependence (for q=0.9) derived for 
models (reanalysis) and observations using daily time series of both variables. Sites are grouped into East, 
Gulf, and West coast locations (see colours on the left and legend). The colour bar denotes the difference 
between χ in the reanalysis versus observations, where red colour denotes higher dependence in the 
reanalysis and blue colour denotes higher dependence in the observations. Squares with * indicate that 
difference in dependence is not significant. Blank squares indicate that data for the particular pair did not 
exist or that the number of overlapping years was less than 20. 

[Line449-453]: Figure 11: Scatter plot comparing extremal (tail) dependence (for q=0.9) derived using 
observations (x-axis) and models (y-axis) for tropical (left) and extra-tropical (right) seasons using daily 
time series of both variables. Colours denote the location (separated into East, Gulf, and West coast) and 
markers represent the different variable pairs. Black dots on markers indicate significant difference in tail 
dependence structure between observations and models according to KL divergence. Dashed lines show 
linear regression fits corresponding to all data points (black) and for different subsets according to 
locations (coloured as outlined in the legend). 

 

[R2C12] Figure 12: Caption incorrect again. 

We thank the reviewer and agree that the caption was incorrect. We will correct it to the following: 

[Line455-459]: Figure 12:  Heat map showing differences in extremal (tail) dependence (for q=0.9) 
derived using observations and models using daily time series of both variables for tropical (top) and 
extra-tropical (bottom) season. Sites are grouped into East, Gulf, and West coast locations (see colours on 
the left and legend). The colour bar denotes the difference between χ in the models versus observations, 
where red colour denotes higher dependence in the models and blue colour denotes higher dependence in 
the observations. Squares with * indicate that difference in dependence between models and observations 
is not significant. Blank squares indicate that data for the particular pair did not exist or that the number of 
overlapping years was less than 20. 

 

[R2C13] Line 480-481: I don’t understand this sentence: “not all extreme precipitation events can occur 
with moderate or high discharge, but extreme discharge events can occur with moderate or high 
precipitation”. I think you mean that high precipitation can occur in the absence of high river discharge, 
but high river discharge usually occurs simultaneously with high precipitation. 

We thank the reviewer for this comment. We will change this sentence to be the following as suggested 
by the reviewer 

[Line480-481]: highlighting that not all extreme precipitation events can occur with moderate or high 
discharge, but extreme discharge events can occur with moderate or high precipitation extreme 



precipitation can occur in the absence of moderate or extreme river discharge, but extreme river discharge 
usually occurs simultaneously with moderate or extreme precipitation 


