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Abstract. Low density of conventional rain gauge networks is often a limiting factor for radar rainfall bias correction. Citizen 

rain gauges offer a promising opportunity to collect rainfall data at higher spatial density. In this paper hourly radar rainfall 

bias adjustment was applied using two different rain gauge networks consisting of tipping buckets (measured by Thailand 10 

Meteorological Department, TMD) and daily citizen rain gauges in a two-step Kalman Filter approach. Radar reflectivity data 

of Sattahip radar station and gauge rainfall data from the TMD and citizen rain gauges located in Tubma basin, Thailand were 

used in the analysis. Daily data from the citizen rain gauge network were downscaled to hourly resolution based on temporal 

distribution patterns obtained from radar rainfall time series and the TMD gauge network. The radar rainfall bias correction 

factor was sequentially updated based on TMD and citizen rain gauge data using a Kalman Filter. Results show that an 15 

improvement of radar rainfall estimates was achieved by including the downscaled citizen observations compared to bias 

correction based on the conventional rain gauge network only. These outcomes emphasize the value of citizen rainfall 

observations for radar bias correction, in particular in regions where conventional rain gauge networks are sparse.  

 

Keywords: Kalman filter, citizen rain gauge, radar rainfall, bias correction, downscaling, Thailand. 20 

1 Introduction 

Hydrometeorological hazards, like flash floods and landslides cause severe damage to economies, properties, and 

human lives worldwide. In this context, flood forecasting and warning systems are a valuable non-structural measure to 

mitigate damage. However, such systems require input of rainfall data at a high spatial and temporal resolution. In most regions 

of the world, automatic rain gauge networks are insufficient for this purpose. Weather radar, which can better capture the 25 

variation of rainfall fields at fine spatial and temporal resolutions could be used as an alternative rainfall product for improving 

the accuracy of flash flood estimates and warning. (Collinge and Kirby, 1987; Sun et al., 2000; Uijlenhoet 2001; Bedient et 

al., 2003; Creutin and Borga, 2003; Mapiam et al., 2009a, 2014; Mapiam and Chautsuk, 2018; Corral et al., 2019). However, 

weather radar provides indirect measurement of backscattered electromagnetic waves called radar reflectivity data (Z). To 

obtain radar rainfall data (R), ground-truthing by rain gauge data is required to calibrate the Z-R relationship (Z=ARb) for 30 
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dynamic bias correction. The calibrated Z-R equation is used to convert the measured instantaneous reflectivity data to rainfall 

intensity and thereafter accumulating them into the required temporal resolution. However, the A and b parameters vary 

significantly, even within a single storm event depending on the rainfall characteristics which can exhibit a highly dynamic 

raindrop size distribution (DSD) (Ulbrich, 1983: Smith et al., 2009). Additionally, past studies found that the Z-R parameters 

are sensitive to the temporal resolution of rain gauge rainfall data that is used for the Z-R calibration (Hitchfeld and Bordan, 35 

1954; Smith et al., 1975; Wilson and Brandes, 1979; Klazura, 1981; Steiner et al., 1995; Mapiam and Sriwongsitanon, 2008; 

Mapiam et al., 2009b). Consequently, an important source of error remains associated with the Z-R conversion process (Jordan 

et al., 2000; Berne and Krajewski, 2013). Many researchers attempted to correct this kind of error by classification of the 

measured reflectivity data into different storm types and thereafter constructing the Z-R equation corresponding to the 

classified storm characteristics. (Joss and Waldvogel, 1970; Rogers, 1971; Battan, 1973; Klazura, 1981; Austin, 1987; 40 

Rosenfeld et al., 1992, 1993; Tokay and Short, 1996; Amitai, 2000; Arai et al., 2005; Fang et al., 2018). For the effect of using 

rain gauge data with different temporal resolutions on Z–R relationships, Mapiam et al. (2009b) developed a universal scaling 

transformation function for converting the reference A parameters (obtained from using daily gauge rainfall data in the 

calibration) to the A parameters for sub-daily resolutions. This improved accuracy of the estimated sub-daily radar rainfall, 

especially in locations with limited short-duration rain gauge measurements.  45 

After Z-R conversion, bias is expected to remain between the assessed radar rainfall and the true rainfall amount at 

the rain gauge locations if a fixed Z-R relationship is used to estimate radar rainfall over the entire radar domain (Chumchean 

et al., 2006; Wang et al., 2015). An effective bias correction technique is key for enhancing the quality of radar rainfall 

estimates (Steiner et al., 1999) and to remove the residual errors between radar rainfall obtained from the Z-R relationship and 

rain gauge data. Mean field bias (MFB) adjustment is the conventional method to obtain a static bias factor which assumes 50 

that the Z-R relationship is homogeneous in space but varies in time (Smith et al., 2007; Vieux and Bedient, 2004; Wilson, 

1970). In this method, a multiplicative correction factor is applied uniformly across the radar coverage. Since the MFB 

approach does not consider noise and uncertainty of the rain gauge observations, nor spatial variability in observation bias, 

this can lead to large errors in radar rainfall estimates, particularly in areas where the density of rain gauge networks is limited. 

Kalman filter (KF) is an efficient algorithm that has been applied to correct the spatially uniform mean field bias, especially 55 

in real-time by accounting for the temporal variation of the mean bias as well as uncertainties in the ground rainfall 

measurements (Ahnert, 1986; Smith and Krajewski, 1991; Anagnostou et al., 1998; Seo et al., 1999; Dinku et al., 2002; 

Chumchean et al., 2006).  

Previous studies used the KF for predicting and correcting the mean field bias to mitigate the observation error 

variances affecting the mean field bias estimate Chumchean et al. (2006) found that the density of the rain gauge network also 60 

plays an important role in the radar rainfall bias adjustment. They found that lowering the density of rain gauge observations 

in the KF process reduced accuracy of radar rainfall estimates. They found that the KF approach outperforms the use of MFB 

if rain gauge density is less than 1 per 90 km2, and both KF and MFB produce identical performance when the rain gauge 

density is greater than 1 per 70 km2. In basins where a dense rainfall network is not available, Citizen Science (CS) offers a 
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promising opportunity for enhancing the density of rainfall observations (Davids, et al., 2019). Citizen rainfall observations 65 

are typically provided at daily scale and need downscaling to be useful for sub-daily radar bias adjustment. This study aimed 

to modify the Kalman Filter logic by integrating hourly rain gauge data with daily citizen rain gauge data that are downscaled 

to hourly time scale. The question we aimed to answer is to what extent the downscaled citizen rainfall observations improve 

the accuracy of hourly radar rainfall estimates. Several scenarios of hourly rainfall distribution patterns were applied for 

downscaling to investigate the most suitable technique for hourly radar rainfall assessment. Tubma basin located in Rayong 70 

province, eastern Thailand, was used as a case study area to test the approach.  

2. Study Area and Data 

2.1 Study Area 

 The study area is the Tubma basin located in Rayong province, eastern Thailand, situated between latitude 12°40′44″ 

to 12°52′39″ N, and longitude 101°5′17″to 101°17′51″ (Fig. 1). It covers a catchment area of approximately 197 km2 with 75 

basin elevation ranging from 4 to 416 m MSL. The main river, Klong Tubma, is 42 km in length and originates in Chom Hae, 

Kate, and Kra Bok mountains and flows downstream to the northwest before meeting the Gulf of Thailand at Pak Nam district. 

The Tubma watershed is susceptible to flooding, in particular Rayong.  

2.2 Radar Data  

2.2.1 Reflectivity Data Collection  80 

The Tubma basin is covered within the range of Sattahip radar station. The Sattahip radar, which belongs to the 

Department of Royal Rainmaking and Agricultural Aviation (DRRAA), is a S-band Doppler radar that transmits radiation with 

a frequency of 2.9 GHz and a beam width of 1.0๐. The radar reflectivity product is in a Cartesian grid covering 240 km x 240 

km extent with 0.6x0.6 km spatial resolution and 6-min temporal resolution. The Sattahip radar provides the CAPPI reflectivity 

data derived from the 2.5-km constant altitude plan position indicator (CAPPI). This CAPPI reflectivity data are at the altitude 85 

below the climatological freezing level, so the effects of the measurement error caused by the bright band were considered to 

be negligible. The effects of ground clutter were removed from the reflectivity data by finding the clutter locations and 

discarding the radar measurements in these areas. Additionally, the noise and hail effects were eliminated by setting reflectivity 

values below 15 dBZ to zero, and reflectivity values greater than 53 dBZ to 53 dBZ. After data quality control, we separated 

the data into 3 datasets. The first dataset during May–October 2013 and May–September 2014 was used for the climatological 90 

Z-R calibration. The second dataset in October 2014 were used for the Z-R verification, and the dataset for August–October 

2019 was used in the bias correction processes. 
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2.2.2 The Z-R calibration and radar rainfall aggregation  

The Z–R conversion error is a crucial source of error in radar rainfall estimates. The Z-R relationship as shown in Eq. 

(1) was used to convert the measured reflectivity data (Z, mm6/m3) into rainfall rates (R, mm/h).  95 

 

𝑍 = 𝐴𝑅௕      (1) 

 

The Z–R calibration and verification are essential procedures to ascertain the parameters A and b in the relationship. 

Firstly, the instantaneous 6-minute radar reflectivity was converted to rainfall intensity using the climatological relationship 100 

Z=200R1.6 proposed by Marshall and Palmer (1948). Secondly, the estimated 6-min initial instantaneous radar rainfall data 

were aggregated to 1-hour rainfall resolution using the accumulation algorithm proposed by Fabry et al. (1994). Thirdly, gauge 

rainfall was aggregated to 1-hour resolution. Fourthly, the optimal value of the A parameter was established by minimizing the 

mean absolute error (MAE) between the gauge and radar rainfall estimates, while the b exponent was considered to be fixed 

as 1.5 in our study. This is because radar rainfall estimates are relatively insensitive to b with typical values between 1.2 and 105 

1.8 (Battan 1973; Ulbrich 1983). The value of 1.5 was generally suitable to represent the b parameter in the Z–R relation 

(Doelling et al., 1998; Steiner and Smith, 2000; Hagen and Yuter; 2003; Germann et al., 2006; Chantraket et al., 2016). The 

mean absolute error is illustrated in Eq. (2).  

 

𝑀𝐴𝐸 =  
ଵ

ே
∑ ∑ ห𝐺௜,௧ − 𝑅௜,௧ห

ேಸ,೟

௜ୀଵ
்
௧ୀଵ      (2) 110 

 

where Gi,t is the gauge rainfall (mm/h) at gauge i for hour t, Ri,t is the radar rainfall accumulation (mm/h) at the pixel 

corresponding to the ith rain gauge for hour t, NG,t is the total number of radar-rain gauge pairs available at time t, N is the total 

number of radar-rain gauge pairs available, and T is the total period used in the calculation. The calibrated climatological Z-R 

relationship was validated against a second, independent dataset. Results found that a locally calibrated Z-R relationship that 115 

was used in this study is Z=251R1.5.  

 

2.3 Rain Gauge Data  

2.3.1 Rainfall Data Collection 

Data from the network of 297 continuous tipping-bucket gauge stations located within the Sattahip radar radius were 120 

collected (Fig. 1). These 15-min rain gauges are owned and operated by the Thai Meteorological Department (TMD). All 

continuous rain gauges used in this study have tipping-bucket sizes of 0.5 mm. The data quality screening was first carried out 

using double mass curves method of two adjacent rain gauges. To avoid no-rainfall events and systematically underrecord 
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rainfall accumulation of the tipping-bucket gauge for the analysis, hourly data greater than the tipping-bucket resolution of 0.5 

mm were selected in the next step. A rain gauge with more than 80% of the dataset below the threshold was excluded from the 125 

analysis. We found that rainfall data obtained from 134 rain gauges corresponding to the collected reflectivity datasets were 

used for the Z-R calibration and validation processes. For the bias adjustment computation, the selection of rain gauge networks 

with rainfall behavior similar to the study area is necessary. We selected 14 rain gauges of TMD in the region surrounding 

Tubma basin (Rayong and Chonburi provinces) based on spatial decorrelation analysis in the process.  

Out of the total network, only one of the TMD rain gauge is located in the 197 km2 Tubma basin. To increase the 130 

density of the rain gauge network in the basin, low-cost citizen rain gauges were implemented in this study to better capture 

spatial heterogeneity of rainfall in the basin. Sixteen citizen rain gauges were installed (Fig. 1) with local residents taking daily 

measurements. This increased the density of rain gauges to 1 gauge/15 km2 for the Tubma basin. All citizen rain gauge data 

were screened for errors and inconsistencies using double mass curves. If a citizen rain gauges reported >100mm/day rainfall 

(maximum capacity of the citizen rain gauge) this data was excluded from the analysis. If days with no-rainfall data were found 135 

from all citizen rain gauges, the bias correction of that day was discarded from the assessment. By considering the data selection 

criteria, rainfall data recorded during August–October 2019 with rainy day more than 80% of the whole period for the bias 

adjustment process was then used for further evaluation.  

 

 140 

Figure 1: Location of study domain, showing Thailand Meteorological Department (TMD) automatic rain gauges, citizen 

rain gauges, Sattahip radar, and Tubma basin.   
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3. Methods 

The methodology for radar rainfall bias correction using tipping bucket and citizen gauges consists of the following 

steps. First, daily citizen rain gauge data were downscaled to hourly time scale to be used as input for bias correction. The 145 

downscaling methods used in this paper are discussed in section 3.1. Next, an hourly radar bias correction model was developed 

combining rain gauge as well as downscaled citizen rain gauge data using a Kalman filter approach, as presented in section 

3.2.  

3.1 Downscaling daily to hourly rainfall  

 To downscale the daily citizen rain gauge data to hourly time-scale, information on the temporal storm distribution 150 

pattern is needed. Methodologies to obtain the temporal rainfall distribution patterns are outlined in Table 1. 

 
Table 1: The four methods used in this study to downscale daily citizen rainfall amounts to hourly rainfall data. 
 

Distribution Code Methodologies Description Code description 

RP Hourly rainfall patterns derived from 

radar rainfall time series of the radar 

pixel corresponding to citizen rain 

gauge location were used for 

downscaling. 

The distribution patterns of radar 

rainfall at each radar pixels. 

RMP Hourly radar rainfall distributions of all 

radar pixels corresponding to citizen 

rain gauge locations were averaged to 

represent the mean temporal 

distribution pattern of radar rainfall. 

The RMP downscaling pattern was 

applied to all citizen rain gauges. 

The mean distribution pattern  

of radar rainfall. 

GMP Hourly gauge rainfall patterns of all 14 

gauges in the region surrounding 

Tubma basin were averaged to 

construct the mean hourly distribution 

pattern of regional rain gauge rainfall. 

The GMP was applied to all citizen rain 

gauges. 

The mean distribution pattern  

of rain gauge rainfall. 

https://doi.org/10.5194/hess-2021-262
Preprint. Discussion started: 11 May 2021
c© Author(s) 2021. CC BY 4.0 License.



7 
 

Distribution Code Methodologies Description Code description 

GTubma The hourly rainfall pattern of the single 

rain gauge situated in the Tubma basin 

was used for correction of all citizen 

rain gauges in the basin. 

The distribution pattern of the rain 

gauge in the Tubma basin. 

 155 

3.2 Hourly radar bias model  

3.2.1 Kalman Filter for mean field bias adjustment (KF) 

Mean field bias adjustment (MFB) is a common technique used for bias correction in radar rainfall relative to ground 

stations. It can be computed as the ratio of mean hourly radar rainfall estimate and rain gauge measurement (Anagnostou and 

Krajewski, 1999; Yoo and Yoon, 2010; Hanchoowong et al., 2013; Shi et al., 2018). However, direct application of MFB as a 160 

multiplicative does not account for uncertainty of the bias associated with each radar-gauge measurement. Alternatively, a 

Kalman Filter (KF) has been adopted to estimate the spatially uniform mean field bias in real-time in several studies, including 

Ahnert et al. (1986), Smith and Krajewski (1991), Anagnostou et al. (1998), and Seo et al. (1999), Chumchean et al. (2006), 

Kim and Yoo, (2014), Shi et al. (2018). Kalman Filter has the benefit of accounting for noise in the observations by weighing 

the contribution of measurements by their respective variances (Kalman, 1960). Here we take advantage of the KF scheme by 165 

combining two data sources with different uncertainty characteristics, hourly rain gauge data from TMD and hourly 

downscaled citizen rain gauge data. Any day that citizen rain gauge data are not available, the ordinary Kalman Filter scheme 

will be applied using only the TMD datasets as the observed mean field bias. Since the mean field bias (G/R ratio) is assumed 

to follow a log-normal distribution. However, the radar bias is modelled as random variables from a normal distribution in the 

KF process. Before application of the KF scheme, mean field radar rainfall bias at time t is thus log-transformed to follow 170 

normal distribution as follows (Smith and Krajewski, 1991; Anagostou et al., 1998), where 𝛽௧ is logarithmic mean field bias 

at hour t:  

 

𝛽௧ = 𝑙𝑜𝑔ଵ଴ ቆ
∑ ீ೔,೟

ಿಸ,೟
೔సభ

∑ ோ೔,೟
ಿಸ,೟
೔సభ

ቇ      (3) 

 175 

The logarithmic mean field radar rainfall bias is frequently modelled as an Autoregressive order one (AR1) process 

having a stationary variance (Smith and Krajewski, 1991). The radar bias at time t can be modelled as a relationship between 

the bias at previous time (𝛽௧ିଵ) and the process noise (𝑊௧) by the following equations. 
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𝛽௧ = 𝑟ଵ𝛽௧ିଵ + 𝑊௧;     𝑊௧~𝑁(0, 𝜎ௐ೟
ଶ )      (4) 180 

 

𝜎ௐ೟
ଶ = (1 − 𝑟ଵ

ଶ) 𝜎ఉ
ଶ      (5) 

 

where r1 is lag-one correlation coefficient of the time-varying bias β, and σβ
2 is a stationary variance of logarithmic 

mean field bias process. Meanwhile, the observations are modelled as random samples from a normal distribution 185 

conditioned on the underlying unknown bias at that time with measurement error variance (𝜎ெ೟
ଶ ) as follows.  

 

𝑦௧ = 𝛽௧ + 𝑀௧;     𝑀௧~𝑁(0, 𝜎ெ೟
ଶ )      (6) 

 

A factor graph representation of the radar bias and observation models is illustrated in Fig. 2 (a), with circles denoting 190 

random variables, and black squares denoting ‘factors’ or relations between variables in the model.  

 

 

 

 (a) (b) 195 

Figure 2: On the left (a), a factor graph representation of the radar bias model: white circles depict random variables (bias at 

each time step), grey circles are rainfall observations (yt for TMD rainfall and zt for citizen rain gauge rainfall), and black 

squares are relations between variables (conditional normal distributions in this case). The right figure (b) depicts uncertainty 

propagation along the edges of the factor graph, from previous bias to current bias (Kalman prediction step) and from the 

observations to current bias (Kalman update step). 200 

 

There are two sequential steps to estimate βt using KF comprising an updating (prediction) step and a measurement 

updating (Correction) step, as presented in detail below. 
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1) Time update step (prediction) 

This first step of KF consists of estimating the logarithmic mean field bias and its associated error variance at the 205 

current time step to obtain an a priori estimate of β (symbolized by 𝛽መି). The  𝛽መି is estimated as shown in Eq. (7).  

 

𝛽መ௧
ି = 𝑟ଵ𝛽መ௧ିଵ      (7) 

 

The a priori error variance of  𝛽መ௧
ି

 at time t (𝑃௧
ି) can be calculated as presented in Eq. (8). 210 

 

 𝑃௧
ି = 𝑟ଵ

ଶ𝑃௧ିଵ + (1 − 𝑟ଵ
ଶ)𝜎ఉ

ଶ     (8) 

 

where Pt-1 is the a posteriori estimate error variance at time t-1. For the initial estimator at time step 0 (t = 0), we 

assume β0 = 0 (climatological logarithmic mean field bias) and P0 = (1-r1
2) σβ

2 (represents stationary process variance) (Smith 215 

and Krajewski, 1991; Chumchean et al., 2006). 

2) Measurement update step (Correction) 

This step involves correcting the a priori estimate 𝛽መି using the observed data at the current time step. This corrected 

estimate is then referred to as the a posteriori estimate (symbolized by 𝛽መ ). The measurement update process starts with 

calculating the Kalman Gain (Kt) and is estimated as:  220 

 

𝐾௧ = 𝑃௧
ି൫𝑃௧

ି + 𝜎ெ೟
ଶ ൯

ିଵ
     (9) 

 

where 𝜎ெ೟
ଶ  is the observation error variance at time t. Thereafter, the 𝛽መ௧ and the a posteriori estimate error variance 

of 𝛽መ௧ (𝑃௧) can be computed as follows. 225 

 

𝛽መ௧ = 𝛽መ௧
ି + 𝐾௧(𝑂௧ − 𝛽መ௧

ି)     (10) 

 

𝑃௧ = (1 − 𝐾௧)𝑃௧
ି      (11) 

 230 

where 𝑂௧ is observed logarithmic mean field bias at hour t. If there is no observation data available at any time t, 

this measurement process update will be skipped and the a priori estimate be calculated as below.  

 

  𝛽መ௧ = 𝑟ଵ𝛽መ௧ିଵ      (12) 
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  235 

𝑃௧ = (1 − 𝑟ଵ
ଶ)𝜎ఉ

ଶ      (13) 

 

The Kalman Filter calculations based on the prediction and correction update steps can be visualized in the form of a 

graphical depiction showing the flow of the calculations over the edges of the factor graph in Fig. 2 (b). 

 240 

The state estimator for mean field bias at time t (Bt) are finally obtained by converting the estimated log bias, 𝛽መ௧ 

into Bt using the following equation (Smith and Krajewski, 1991).  

 

  𝐵௧ = 10(ఉ෡೟ା଴.ହ௉೟)      (14) 

  245 

3.2.2 Kalman filter mean field bias adjustment combined with citizen rain gauge data (CKF) 

Investigating the benefit of bias adjustment incorporating data from the citizen gauge network is the main goal of this 

study. The procedure starts with assessing the bias adjustment based on the ordinary KF approach using hourly rain gauge 

rainfall measured by the TMD gauges. At the end of each day, if daily observation data collected by the citizen rain gauges 

was available, these data were downscaled to hourly time-scale. Then, a second update was done using the same equations as 250 

listed above (Eqs. 9-11), but using the posterior values (𝛽መ௧, 𝑃௧) from the first update as predictions (𝛽መ௧
ି, 𝑃௧

ି) for the second 

update. 

The procedure of the CKF consists of 4 steps, visualized in Figure 3.  

1) Since the citizen rain gauge data were received at the last hour of day i, at an hour before obtaining the citizen 

rain gauge data, the ordinary KF and observed hourly data of TMD were used to predict and correct the hourly 255 

bias adjustment factor of the day i. 

2) If the citizen rain gauge data was available at the end of the day i, the citizen rain gauge data were downscaled 

to hourly time-scale, as explained in section 3.1. 

3) The downscaled hourly citizen rain gauge data were used to back-calculate the hourly citizen rain gauges data 

for day i and to conduct a second measurement update in the KF process for all hourly time-steps of day i.  260 

4) Bias adjustment factors were applied every hourly time step to obtain the final product of hourly radar rainfall 

estimation of day i. The bias factor for the last hour of the day i was used afterward as the initial value for 

calculating the Ordinary KF of day i+1.  
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 265 

Figure 3: A diagram of the procedure of Kalman Filter combined with the citizen rain gauge data (CKF) 
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3.2.3 Parameter estimation  

Parameter values were obtained by finding the optimal fit to the probability distribution by maximizing the marginal 

likelihood function (Bock et al., 1981; Harvey, 1990; Proietti et al., 2013; Pulido et al., 2018). As mentioned earlier, we have 

two sources of observed log mean field bias at hour t, from TMD (𝑦௧) and citizen rain gauge (𝑧௧). In case only TMD data was 270 

available in the KF analysis, the expression for the marginal likelihood of the observed log mean field bias (p(D)) was 

computed according to Eq. (15), where D is the data vector that contains all observed values. The equation was later replaced 

with continuous variables sampled from the Gaussian distribution as shown in Eq. (16). 

 

𝑝(𝐷) =  ∏ ∫ 𝑝(𝑦௧|𝑥௧)𝑝(𝑥௧|𝑦௧ିଵ, … , 𝑦଴)𝑑𝑥௧
்
௧ୀ଴     (15) 275 

 

𝑝(𝐷) =  ∏ 𝑁(𝑦௧; 𝛽መ௧
ି, 𝜎௬೟

ଶ + 𝑃௧
ି)்

௧ୀ଴      (16) 

 

where 𝑥௧ is the true hidden state of log mean field bias at hour t, and 𝑇 is total hourly timesteps in the calculation. For 

the situation of combining TMD and citizen rain gauge datasets in the measurement updating, Eq. (17) and Eq. (18) were 280 

applied for parameter estimation.  

 

𝑝(𝐷) =  ∏ ∫ 𝑝(𝑦௧|𝑥௧)𝑝(𝑧௧|𝑥௧)𝑝(𝑥௧|𝑦௧ିଵ, 𝑧௧ିଵ, … , 𝑦଴ , 𝑧଴)𝑑𝑥௧
்
௧ୀ଴   (17) 

 

𝑝(𝐷) =  ∏ 𝑁(𝑦௧; 𝑧௧ , 𝜎ெ೤,೟
ଶ + 𝜎ெ೥,೟

ଶ )𝑁(
ଵ

భ

഑ಾ೤,೟
మ ା

భ

഑ಾ೥,೟
మ

(
௬೟

ఙಾ೤,೟
మ +

௭೟

ఙಾ೥,೟
మ ); 𝛽መ௧

ି,
ଵ

భ

഑ಾ೤,೟
మ ା

భ

഑ಾ೥,೟
మ

+ 𝑃௧
ି)்

௧ୀ଴       (18) 285 

 

Where  𝜎ெ೤,೟
ଶ  and 𝜎ெ೥,೟

ଶ  are the variance of the observation noise at hour t from rain gauges network of the TMD and 

citizen rain gauge, respectively. We assumed that the variance of the observation error (𝜎ெ೟
ଶ ) could be represented by the 

variance of spatial average observed logarithmic mean field bias across all rain gauge location at time t as shown in Eq. (19). 

Where (𝜎ை೟
ଶ ) is the variance of observed logarithmic mean field bias at time t, and 𝑛௧ is number of observable rain gauges at 290 

hour t. Therefore 𝜎ெ೤,೟
ଶ  and 𝜎ெ೥,೟

ଶ  were individually estimated for each dataset. 

 

𝜎ெ೟
ଶ =

ఙೀ೟
మ

௡೟
      (19) 

 

  To obtain the optimal values of the two parameters 𝑟ଵ  and 𝜎ఉ
ଶ  of the Kalman Filter that maximize the marginal 295 

likelihood, the Nelder-Mead Simplex was used, which is an algorithm for searching a local optimum of a function (Lagarias 

et al., 1998; Luersen et al., 2004; Gao et al., 2012).   
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3.4 Verification of the proposed bias correction approaches 

To investigate which bias adjustment technique among the MFB, KF, and CKF gives the most suitable radar rainfall 

estimates for the Tubma basin, the adjusted radar rainfall estimates were validated against measured rainfall data. There was 300 

only one automatic TMD rain gauge available in the basin, which was insufficient for validation purposes. Consequently, for 

testing the performance of hourly rainfall bias correction, data from 13 TMD stations located within a 100 km radius from the 

center of the Tubma basin were used, together with 1 TMD station in the basin. Furthermore, daily time scale validation was 

conducted, using the daily rainfall data from 16 citizen rain gauges located in the Tubma basin. Leave-one-out cross-validation 

(LOOCV) algorithm was implemented to avoid bias occurring from selecting the validation rain gauges. The calibration rain 305 

gauges were randomly selected to calculate the bias adjustment factor using the 3 different techniques, and 1 rain gauge was 

left out for validation. This was repeated for all combinations and then the error of radar rainfall estimates after correcting with 

the estimated bias factor at each radar pixel corresponding to the held-out gauge was computed for all trials. In this study, Root 

Mean Square Error (RMSE) and Mean Bias Error (MBE) were applied as statistical measures to evaluate the effectiveness of 

the different bias correction methods at each validation rain gauge. The RMSE and MBE at rain gauge i are shown in Eq. (20) 310 

and Eq. (21), respectively. The number of possible combinations is equal to the total number of validated gauges (NG). Data 

for the period August-October 2019 were used in the evaluation. Four scenarios combining the 3 bias adjustment techniques 

were evaluated, summarized in Table 2.  

 

𝑅𝑀𝑆𝐸௜ =  ට
ଵ

்
∑ (𝐺௜,௧ − 𝑅௜,௧)ଶ்

௧ୀଵ      (20) 315 

 

𝑀𝐵𝐸௜ =  
ଵ

்
∑ (𝐺௜,௧ − 𝑅௜,௧)்

௧ୀଵ      (21) 
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Table 2: Simulation cases for evaluating the effectiveness of bias correction techniques. 320 

Evaluation 
Case 

Tested 
approaches 

Number of rain gauges used for different purposes Temporal and 
spatial scale of 

rainfall for 
validation 

 
rain gauges 

datasets 

gauges for 
calculating 

MFB and KF 

gauges for 
combining with 

KF 

validation 
gauges (NG) 

KF-TMD-H 
MFB and 

KF 
14 TMD 13 TMD - 14 TMD 

Hourly, Tubma 
plus 100 km 

radius 

KF-TMD-D 
MFB and 

KF 

14 TMD  
and 16 citizen 

rain gauges 
14 TMD - 

16 citizen rain 
gauges 

Daily, Tubma 
basin 

CKF-D 
MFB, KF 
and CKF 

14 TMD  
and 16 citizen 

rain gauges 
14 TMD 

15 citizen rain 
gauges 

16 citizen rain 
gauges 

Daily, Tubma 
basin 

CKF-H* 
MFB, KF 
and CKF 

14 TMD  
and 16 citizen 

rain gauges 
13 TMD 

16 citizen rain 
gauges 

14 TMD 
Hourly, Tubma 

plus 100 km 
radius 

*CKF-H includes 4 scenarios for 4 different hourly downscaling patterns for the citizen rain gauges, according to 

Table 1.   

 

KF-TMD: Thirteen TMD gauges from the total of 14 gauges were randomly separated for calculating the bias 

adjustment factors using MFB and KF and the remaining 1 TMD gauge was left out for validation. Aggregated hourly rainfall 325 

between the adjusted radar and gauge rainfall data were compared to obtain the RMSE and MBE.  

KF-TMD-D: To identify which approach between MFB and KF is more accurate on daily rainfall simulation, fourteen 

TMD and 16 citizen rain gauges were used for the analysis. All TMD gauges were used for assessing MFB and KF, and 

estimated bias factors were applied for daily time-scale. Assessment of RMSE and MBE of daily rainfall was examined at all 

16 citizen rain stations as the validation gauges. 330 

CKF-D: To evaluate the added value of using citizen rain gauges in the basin for bias correction, 15 citizen rain 

gauges (leave 1 citizen rain gauge out for validation) were used in addition to the TMD gauges following the CKF procedure 

explained in 3.2.2. Estimation of daily RMSE and MBE was carried out at the held-out citizen rain gauge. 

CKF-H*: To test whether the CKF with the most suitable storm pattern could benefit radar rainfall estimates in the 

area further away from the Tubma basin, 14 TMD gauges were used to generate 4 cases of hourly rainfall distribution patterns 335 

as described in Table 1 for downscaling the selected 16 daily citizen rain gauge data into an hourly time scale. The synthesized 

hourly citizen rain gauge data were later used to recompute the update procedure of the Kalman filter. Thirteen TMD gauges 

(leave 1 TMD out) were used to produce MFB and KF, and all 16 citizen rain gauges were merged for CKF computation.  
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All bias adjustment techniques evaluated the effectiveness at the held-out gauge for all possible combinations of the LOOCV 340 

procedure. 

4. Results and discussion 

4.1 Simulation of bias adjustment factor 

4.1.1 Parameter estimation for the KF and CKF 

Five scenarios were investigated for radar bias correction using the Kalman Filter, based on TMD and citizen rain 345 

gauge observations, including four scenarios comparing different hourly downscaling approaches for the citizen rain gauge 

data (Table 1). Parameter estimates of the Kalman Filters are shown in Table 3. These results indicate that the r1 parameter, 

the lag-one correlation coefficient of the logarithmic mean field bias, ranges from 0.15 to 0.53, depending on the hourly 

downscaling approach. While 𝜎ఉ
ଶ representing the stationary variance of the logarithmic mean field bias remains relatively 

invariant (ranging from 0.24-0.28) over the same time-series period of simulation.  350 

 

Table 3: The parameters of the Kalman Filter estimated from different datasets of observation gauge rainfall. KF-TMD is using 

only TMD hourly rain gauge observations, CKF is using TMD and citizen rain gauge observations, where RP, RMP, GMP and 

GTubma represent different strategies for hourly downscaling of the citizen rain gauge observations (Table 1) 

Type of observation 

gauge rainfall 

The KF’s parameters 

𝑟1 𝜎𝛽
2 

KF-TMD 0.29 0.24 

CKF-RP 0.53 0.28 

CKF-RMP 0.33 0.24 

CKF-GMP 0.15 0.24 

CKF-GTubma 0.38 0.25 

 355 

4.1.2 Hourly rainfall distribution patterns 

 Four hourly rainfall distribution patterns were obtained as outlined in Table 1. Figure 4 illustrates the cumulative 

fraction of daily rainfall at hourly scale during the simulation period August-October 2019. It can be seen that most rainfall 

was concentrated in the afternoon hours, with very little rainfall falling at night. RP and RMP showed relatively more rainfall 

concentrated afternoon rainfall, while RP and GMP showed larger variability over the day, associated with variability in the 360 

locations underlying the rainfall distributions (multiple radar pixels within the Tubma basin for RP versus multi TMD gauges 
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surrounding the Tubma basin for GMP). GMP showed the flattest distribution with the longest rainy period of around 11 hours 

compared to the others having a period of heavy rainfall around 4-5 hours a day. This is explained by the larger spatial 

variability in the gauges covered by GMP.  

 365 

 

Figure 4: Variation of fraction of 24-hour rainfall for each rainfall distribution scenario. 

4.1.3 Bias adjustment factor comparison 

 To test the performance of the bias adjustment techniques among KF-TMD, CKF-RP, CKF-RMP, CKF-GMP, and CKF-

GTubma, all approaches were used to assess the mean field bias for each hour using the data period August – October 2019. The 370 

results were compared to the MFB calculated using the 14 TMD rain gauges (MFB-TMD) in the Tubma basin and 100 km 

radius surroundings. Results summarized in figure 5 show that:  

- The daily observed bias is somewhat higher and shows larger variability for the citizen gauges compared to TMD 

gauges. The hourly observed bias based on downscaled citizen gauge data are in the same range as hourly bias based on TMD 

gauges, with somewhat higher median values and spread (25-75 %-ile range) for the RP and GTubma downscaling scenarios.  375 

- Hourly observation error variance is smallest for the CKF-RP downscaling approach and somewhat larger for the 

other CKF approaches compared to observation error variance for the TMD gauges.  
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- Estimated hourly bias values based on KF-TMD show a slightly higher mean and smaller variability range compared 

to observations. The bias produced by the KF-TMD is close to the MFB-TMD if the observation error variance is small. In 

case that no measured data is available for the bias update, the computed bias factor (𝐵௧) progressively converged to 1.3, to 380 

meet the climatological logarithmic mean field bias. 

- Estimated bias values based on the CKF approaches are able to reproduce bias variability as observed by TMD 

gauges, with median values deviating by 0.2 to 0.4 and value range slightly larger for CKF-RP and smaller for CKF-RMP.  

 - CKF gives different bias values according to the storm distribution pattern and the availability of the daily citizen 

rain gauge data used in combination with the KF. In case that no citizen rain gauge data is available for updating, the bias 385 

generated by the CKF for every combination is close to the ordinary KF with small differences depending on their respective 

𝑟ଵ and 𝜎ఉ
ଶ parameters.  

 

Figure 5: Comparison of (a) daily observed mean field bias based on TMD rain gauges in the region and the citizen rain gauges 

in the Tubma basin, (b) hourly observed mean field bias based on TMD rain gauge observations and downscaled citizen rain 390 

gauge observationss, (c) hourly observation error variances and (d) hourly estimated mean field bias obtained based on MFB 

and the five different KF approaches. Bias calculations cover 16 citizen gauges in the Tubma basin and 14 TMD gauges within 

100 km radius from the Tubma basin. Hourly scale calculations for the citizen gauges (CKF) are based on 4 different sub-daily 

interpolation scenarios (RP, RMP, GMP and GTubma, Table 3).  

 395 
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4.2 Effectiveness evaluation of bias correction approaches  

4.2.1 Hourly rainfall validation for the larger region (100 km radius) surrounding Tubma basin using MFB and KF 
approaches (Case 1) 

Figure 6 (a) shows cross-validation results based on RMSE and MBE between TMD rain gauges and adjusted radar 

rainfall using MFB and KF for hourly bias adjustment. Bias adjustment reduces RMSE and especially MBE, with KF-TMD 400 

performing somewhat better than MFB-TMD especially in terms of RMSE. This confirms the ability of the KF approach that 

considers the error variance of observed hourly data as the weight for correcting the predicted mean bias instead of using only 

the calculated mean field bias (Smith and Krajewski, 1991; Chumchean et al., 2006).  

 

Figure 6: Variation in RMSE and MBE across the cross-validation scenarios for the various evaluation cases: (a) case 1, hourly 405 

bias updating based on MFB and KF using TMD gauges (b) case 2, daily bias updating based on MFB and KF using only 

TMD gauges and (c) case 3, daily bias updating using MFB, KF (TMD gauges) and CKF (TMD and citizen gauges). Validation 

covers 16 gauges in the Tubma basin for daily scale and 14 gauges within 100 km radius from the Tubma basin for hourly 

scale. 

4.2.2 Daily rainfall validation in the Tubma using MFB and KF approaches, citizen gauges for validation (Case 2) 410 

 
Figure 6 (b) shows bias correction performance within the Tubma basin, for MFB and KF-based daily bias adjustment. 

The two approaches show similar performance at the daily scale and improve RMSE by 20-30% and MBE by 50-60% (for 

median and upper 75%-ile, respectively) The added value of a KF-based approach is limited for this case, since 14 TMD rain 

gauges in the region were be used to compute observation variance which cannot represent the mean field bias behaviour in 415 

the Tubma basin. 

(a) (b) (c) 
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4.2.3 Daily rainfall validation in the Tubma using CKF approaches (Case 3) 

Figure 6 (c) shows cross-validation results at daily scale for the Tubma basin, comparing bias correction approaches 

using TMD only and TMD combined with citizen gauges. Following the CKF steps, citizen rain gauge data are downscaled to 

hourly time scale using four different approaches, resulting in variation in hourly observed bias and error variances as shown 420 

in Fig. 5 (b) and (c), respectively. Cross-validation results after accumulation to daily scale show that CKF-RP outperforms the 

other approaches (CKF-RMP, CKF-GTubma, MFB-TMD, KF-TMD, and CKF-GMP) in terms of both RMSE and MBE. The 

performance of CKF techniques for radar rainfall simulation in the Tubma basin relates to the reliability of the downscaled 

hourly observations. This is reflected in the variation of the estimated observation error variances for CKF-RP as shown in Fig. 

5 (b) and (c). The better performance of CKF-RP is explained by the smallest range in observation error variance, indicative 425 

of better consistency observation bias. Comparison with No-bias, CKF-RP can improve RMSE by 32-25 % and MBE by 90-

80 % for median and upper 75%-ile, respectively. While CKF-GMP exhibits the worst performance compared with the other 

CKF approaches with the improvement of RMSE by 13-16 % and MBE by 57-56 %, respectively. This apparently decrease 

in efficiency of the CKF can confirm by the highest median value of the estimated observation error variances of CKF-GMP 

(see Fig. 5(c)) with 33% higher than that of CKF-RP.  430 

4.3.4 Hourly rainfall validation using MFB, KF, and CKF approaches (Case 4) 

Cross-validation results at hourly time-scale show a strong improvement achieved by bias adjustment using citizen 

gauges, in particular close to the Tubma basin where the citizen gauges are located. Figure 7 (b) and Fig. 7 (c) show validation 

results based on TMD gauges for gauges close to (0-40 km radius) and further away (40-90 km radius) from the center of 

Tubma basin (see Fig. 7 (a), both ranges cover the similar number of TMB gauges). Figure 7 (b) and Fig. 7 (c) show that CKF-435 

RP bias adjustment significantly improves radar rainfall estimates at hourly time scale, compared to bias adjustment approaches 

based on TMD gauges only in the 0-40 km range closest to Tubma basin. While there is a modest improvement in mean RMSE, 

the upper 75%-ile RMSE is reduced from about 6 mm/h to 3.5 mm/h. Mean MBE is changed from 0.1 to -0.15 mm/h. For the 

40-90 km range, CKF-RP performs similarly to MFB-TMB and KF-TMB. It is noted that the upper 75%-ile RMSE of the 

shorter range is remarkably high while using only TMD gauges for the bias adjustment. These errors occurred in 3 hours at 440 

different 3-gauge locations when heavy rainfall data were only measured at the validated gauge location while there was 

relatively uniform light rainfall at all available surrounding TMD gauges used for the bias adjustment calculation. 

Consequently, the calculated bias factors from the available gauges cannot represent the heavy rainfall at the tested location 

leading to the significant RMSE. Figure 8 appears that the considerable RMSE occurs from three hours for three days 

comprising 15 September 2019, 12:00; 21 September 2019, 15:00; and 22 September 2019, 14:00 associated with the validated 445 

gauge 4780001, 4780005, and 4780003, respectively. However, these RMSE can considerably reduce if the CKF-RP was 

implemented only in the shorter range. Figure 9 illustrates that hourly rainfall distribution patterns of TMD rain gauges in the 

40-90 km range, influenced mainly by the southwest monsoon, appear to be more similar to the mean citizen rain gauge data 
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than the range beyond 40 km. Consequently, the application of CKF-RP based on combining citizen rain gauge network to 

TMD rain gauge network with similarity of rainfall characteristic is a key for improving radar rainfall estimates. 450 

 Results in Fig. 7 also show that the MBE values in the 0-40 km range are explicitly lower than that in the 40-90 km 

range. Apparently, at shorter range, positive and negative errors represented in MBE cancel out more frequently than they do 

for the gauges at larger distance. In other words, gauges more or less randomly over or underestimate rainfall values as we can 

see similar rainfall distribution patterns among all gauges with high variation of rainfall amount during the storm period in 

Figure 9 (b). Conversely, in the 40-90 km range, bias correction at gauge locations consistently leads to over- or 455 

underestimation of rainfall. This can be explained by gauge at larger distance being affected by different rainfall generation 

patterns, associated with their location closer to the coast or mountains (see Fig. 7 (a)). The influence of the southwest monsoon 

strongly affects all gauges located in the coastal region on the windward side of a mountain, while rain gauge locations on the 

leeward side have less rainfall amount. Figure 9 (c) shows that TMD gauges located on the leeward side (e.g., 4590009 and 

4590011) obviously appear steady light rainfall accumulation, whereas the gauges on the windward side (e.g., 4590002 and 460 

4590003) show the mass curves with a sharper gradient.  

 

 

Figure 7: Comparison of the RMSE and MBE for different range interval from the centroid of the Tubma (a) Rain gauge 

locations at each range interval (b) the comparisons for the range 0-40 km (c) the comparisons for the range 40-90 km. For 465 

CKF, only results for the CKF-RP approach are shown, based on its better performance at daily time-scale (shown in Figure 

6c). 

 

https://doi.org/10.5194/hess-2021-262
Preprint. Discussion started: 11 May 2021
c© Author(s) 2021. CC BY 4.0 License.



21 
 

  

 470 

Figure 8: Hourly rainfall hyetographs obtained from TMD rain gauge network available for each hour compared with the 

validated rain gauge occurring in 3 different days (a) storm event during 15 September 2019 based on using 4780001 as the 

validated gauge, (b) storm event during 21 September 2019 based on using 4780005 as the validated gauge, and (c) storm 

event during 22 September 2019 based on using 4780003 as the validated gauge. 

 475 

 

 

Figure 9: Comparison of mass curves of hourly rainfall among various rain-gauge locations (a) the citizen rain gauges 

located in the Tubma (b) TMD rain gauges within 0-40 km radius from the Tubma basin (c) TMD rain gauges within 40-90 

km radius from the Tubma basin. 480 

5. Conclusion  

In this study we introduced a modified Kalman Filter approach in radar bias correction in the Tubma basin, eastern 

Thailand, that integrates daily data from a dense citizen rain gauge network with hourly data from a much sparser network of 

conventional rain gauges. Daily citizen rain gauge observations were downscaled to hourly time scale using four different 
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approaches. The question we aimed to answer is to what extent the downscaled citizen rainfall observations improve the 485 

accuracy of hourly radar rainfall estimates. Results showed that citizen rain gauges significantly improve the performance of 

radar rainfall bias adjustment, up to a range of about 40 km from the centre of the Tubma basin (197 km2) where the citizen 

rain gauge network is located. While a modest improvement in mean RMSE was obtained, the upper 75%-ile RMSE was 

reduced from 6 mm/h to 3.5 mm/h. The mean bias error was changed from 0.1 to -0.15 mm/h across the validation period 

(August–October, 2019). In the Tubma basin, beyond the 40 km range, no significant improvement by inclusion of the citizen 490 

gauges was found. The rainfall distribution pattern is key for downscaling the daily measured citizen rain gauge observations 

into hourly temporal resolution. We found that in the Tubma basin downscaling based on the rainfall patterns derived from 

hourly radar rainfall at overlying radar pixels corresponding to the citizen gauge location was the most suitable technique, 

resulting in the smallest variation of observation error variances of the mean field bias. In the case of a sparse rain gauge 

network, the mean field bias and the Kalman filter approach both show improvement, and the degree of improvement was 495 

similar between the two approaches. In other words, in a sparse gauge network, the added value of error information 

represented in the Kalman filter is limited. 
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