
[1] The manuscript “Preprocessing approaches in machine learning-based groundwater potential 

mapping: an application to the Koulikoro and Bamako regions, Mali “ represents an important 

contribution aligned with the objective of the HESS journal and can interest the scientific 

community working on machine learning applied in water management. Concerning the scientific 

quality, I think that the used scientific approach and applied methods are interesting but the 

sections of the manuscript have unbalanced structure and some sections are inappropriate and need 

in-depth analysis with improving the used English language. For that, I think this paper needs 

major modification and resubmission 

 

Thank you for the positive feedback. We have strived to address all comments and suggestions, as well as 

to incorporate them to our manuscript. 

 

 

General Comments. The introduction : 

 

[2] -the section dedicated to the Reviews of literature concerning Groundwater potential mapping 

studies should be more developed with the presentation of the brief results of   the pertinent studies. 

 

Agreed. We have improved the second and third paragraphs of the introduction, with an emphasis on the 

machine learning literature. The review of literature concerning GPM studies now reads: 

 

“Groundwater potential mapping (GPM) is recognized as a valuable tool to underpin planning and 

exploration of groundwater resources (Elbeih, 2015). GPM may be understood as a means to estimate 

groundwater storage in a given region, as a measure of the probability of finding groundwater, or as a 

prediction as to where the highest borehole yields may occur (Díaz-Alcaide and Martínez-Santos, 2019). 

However, it consists of computing spatially distributed estimates for a target variable (groundwater 

potential) based a set of dependent variables such as soil, lineaments, slope, geology, landforms, 

lithology, and drainage density. GPM often uses existing cartography, digital elevation models, aerial 

photographs, satellite imagery and geophysical information (Díaz-Alcaide and Martínez-Santos, 2019). 

Recent years have witnessed a growing interest in groundwater potential studies in Africa, largely as a 

result of the need to achieve the Sustainable Development Goal #6. The majority of these work with a 

combination of remote sensing, geographic information systems and geophysics (Delgado 2018, Adeyeye 

et al., 2019, Magaia et al 2018, Mpofu et al 2020, Owolabi et al 2020, Saadi et al 2021, Al-Djazouli et al. 

2021), while others rely directly on the interpretation of information from borehole databases (Díaz-

Alcaide et al 2017).  

 

The literature shows that there are two main approaches to GPM, namely, expert-based decision systems 

and machine learning methods. Expert-based system methods have been used for a long time (DEP, 

1993). These include multi-influence factor techniques (Magesh et al., 2012; Nasir et al., 2018; Martín-

Loeches et al 2018), analytical hierarchy processes (Mohammadi-Behzad et al., 2019; Al-Djazouli et al., 

2021), and Dempster-Shafer models (Mogaji and Lim 2018, Obeidavi et al 2021). Other frequently used 

methods are weight of evidence and frequency ratio analysis (Falah and Zeinivand, 2019; Boughariou et 

al., 2021).  Machine learning is comparatively newer. A major difference between machine learning and 

expert approaches is that supervised classification uses the advantages of artificial intelligence to find 

complex associations among explanatory variables that might otherwise pass unnoticed. Hence, machine 

learning is well suited to map complex spatially-distributed variables such as groundwater occurrence. 

The GPM literature showcases a wide variety of supervised classification approaches. Thus, Al-Fugara et 

al. (2020) used mixed discriminant analysis to map spring potential in a watershed of Jordan; much like 

Odzemir (2011) mapped spring potential in a Turkish basin by means of a logistic regression method. 

Random forests have proved adept at mapping groundwater potential, both in mountain bedrock aquifer 

(Moghaddam et al., 2020), as well as in large metasedimentary basins (Martínez-Santos and Renard 

2019). Other supervised classification methods include boosted regression trees (Naghibi et al., 2016), 

support vector machines (Naghibi et al., 2017b), neural networks (Lee et al., 2012; Panahi et al., 2020) 

and Ensemble methods (Naghibi et al., 2017a; Martínez‐Santos and Renard, 2019; Nguyen et al., 

2020b).” 

 

 



[3] the introduction missed the presentation of the water resources problems in the study  area and 

the need to elaborate the Groundwater potential map 

 

Agreed. We have incorporated this information to the first paragraph of the introduction. This now reads: 

 

“Water is crucial for human beings. Water provides food security, cleanliness and hydration, which 

translates into health, economic activity and arguably, better education opportunities (United Nations, 

2002, 2010). Today, 2.5 billion people depend exclusively on groundwater for their domestic supply 

(Grönwall and Danert, 2020). Groundwater is particularly crucial in most of the Sahel, where rainfall 

and surface water are absent for several months (Llamas and Martínez-Santos, 2005; Díaz-Alcaide et al., 

2017). In a context of climate change, in which rainfall is expected to decrease in most arid and semiarid 

regions and drought episodes are likely to become more intense (Arneth et al., 2019), groundwater 

resources will be increasingly relied upon. This is the case of the Republic of Mali, where access to 

drinking water and sanitation remains a concern for a large part of the population. In 2017, only 68% of 

the rural population had “at least basic” drinking water access, while 24% still relied on unimproved 

water sources (UNICEF/WHO, 2019). Since the country’s aquifers are still relatively unknown, there is 

an impending need to endow water managers with tools to optimize groundwater use.” 

 

[4] Then the results discussed must be more in-depth, especially by explaining the results of the 

GPM obtained in connection with the hydrogeological context of the study area and the used 

explanatory parameters. 

 

Agreed. We have rewritten the first paragraph of section 3.4 to comply with this observation. It now reads: 

 

 “Classifier outcomes were extrapolated to produce groundwater potential maps. Figure 10 shows the 

groundwater potential predictions rendered by each of the five best-performing algorithms (Decision Tree 

(DTC), Random Forest (RFC), AdaBoost Classifier (ABC), Gradient Boosting (GBC) and ExtraTrees 

(ETC)) under the two most effective scaling methods (MaxAbs scaling method and standardized scaling 

method). Red areas are those in which the algorithms have found a combination of explanatory variables 

leading to a negative potential. In turn, green zones represent a positive groundwater potential. GPM 

outcomes show a gradient characterized by the predominance of high potential areas in the south to a 

greater proportion of negative areas in the north. This appears to be related to rainfall patterns. Low 

potential areas occur around mountain outcrops of the southwest. The large green zone around the 

southern region corresponds to the weathering mantle of basement rocks. Groundwater in basement 

aquifers is most often found in weathered formations and piedmonts of the outcrops. Piedmonts may 

exhibit high GPM because these are essentially a mixture of weathered and transported materials 

(Martín-Loeches et al., 2018). This area presents smooth orography, so that high GPM is mainly 

determined by the weathered mantle. Previous research by Diaz-Alcaide et al. (2017) attributes a medium 

GPM for the southern part of the Koulikoro region. Discrepancies between this and our results likely stem 

from the fact that they used a regional approach. Furthermore, they relied on borehole yield data, while 

this work only classifies groundwater potential in positive-negative terms.  

 

The central part of the agreement map shows a high potential for both methods, except in the higher 

altitude areas. This region, consisting of consolidated metasedimentary materials, has an average aquifer 

thickness of 30 to 50 meters (Traore et al., 2018). High yields are associated with the weathered mantle 

developed in the upper part instead than with the predominant lithology. This becomes evident in the 

metasedimentary outcrops located in the highlands. These present a low groundwater potential because 

fracturing facilitates rapid groundwater percolation into the plains, where it accumulates in the alteration 

zone. Areas near major rivers, such as the Niger, Sankarani and Bani, also have a high potential. This is 

attributed to the high permeability of alluvial sediments. The northern part of the study area, formed by 

consolidated and unconsolidated sedimentary materials, has a low groundwater potential. Although 

geological conditions are more favorable for groundwater due to the type of materials than in other areas 

of the region groundwater potential is limited by low rainfall. This is demonstrated by the feature 

importance analysis, which shows that precipitation is one of the two most important explanatory 

variables for groundwater occurrence.” 

 

 

 



[5] The methodology. (1) The hydrogeological context of the studies area is unfairly presented; (2) 

then the explanatory parameters used are unclearly presented. It is important to explain in-depth 

these used data to enrich the explanation of the results of GPM. 

 

Agreed. We improved section 2.1 to provide a better hydrogeological background. It now reads: 

 

“Figure 2 shows the major geological domains of the study area (BGS, 2021). The rocks that make up the 

Precambrian craton (south) are composed mainly of gneiss, schist and quartzite, representing 

metamorphosed volcanic-sedimentary sequences. The original sedimentary layers, which include shale, 

arkose, gravel and conglomerate, were intercalated with volcanic rocks, such as basalt, gabbro, dolerite, 

rhyolite and tuff. Further north, metasedimentary rocks of Proterozoic age, predominantly low-medium 

grade metamorphosed sandstones, with varying amounts of mudstone and limestone, take up over 50% of 

the study area. Volcanic outcrops (basalts and gabbros) are located in the central sector and in the 

northern end. Sedimentary rocks (sandstone, limestone and shale) of Cambrian-Carboniferous age and 

Cretaceous-Tertiary age occur in the northern third of the study area. Quaternary fluvial deposits 

associated with the Niger River are observed along the riverbed (Traore et al., 2018).  

 

 
Figure 2. Geological map with the main units that outcrops in the study area (adapted from BGS, 2021) 

 

From a hydrogeological perspective, four major aquifer units are distinguished (Traore et al., 2018). 

These include basement aquifers, aquifers linked to fractures and intergranular porosity of consolidated 

sedimentary rocks (Precambrian and Paleozoic), aquifers formed in intrusive volcanic rocks, and aquifers 

in unconsolidated sedimentary materials (Fig. 3).  

 

Basement aquifers are mostly located towards the south of the Koulikoro region. These are characterized 

by a thick weathered mantle. The average thickness of the weathered formation over the basement in this 

region is between 10 and 50 meters. In these aquifers, groundwater flows preferentially in the weathered 

mantle, and, within this, the lower part is generally more transmissive due to lower clay content. The 

upper part is less permeable to flow but can still be important as a groundwater reservoir. Fractures can 

increase reservoir permeabilitym although their storage capacity is typically low (Martín-Loeches et al., 

2018). Borehole yields range from 4 to 6 m3/hour (Traore et al., 2018).  



 

The Precambrian metasedimentary materials are located in the central part of the Koulikoro region. 

Metasediments are considered a mixed permeability aquifer: low permeability layers provide higher 

storage, while more fractured layers present higher permeability and lower storage. Mean aquifer 

thickness ranges from 30 to 50 meters and the average yield varies from 5 to 10 m3/hour. However, some 

boreholes yield exceeds 100 m3/hour. In the north, the fractured Paleozoic rocks allow water to flow 

through the sandstone and limestone layers. Average borehole yields are around 6 m³/hour and the 

fractured horizons are about 40-45 m thick. Finally, unconsolidated sedimentary materials are composed 

by shales and argillaceous sandstone interbedded with limestone. The average borehole yields around 7 

m3/hour. The thickness of the saturated zone ranges from less than 100 m to over 400 m (Traore et al., 

2018).” 

 

Furthermore, we now add a figure showcasing the region’s major hydrogeological domains (below). 

 
 

Figure 3. Main aquifer units of the study area (Adapted from Traore et al. (2018)) 

 

 

 

[6] (2) Then the explanatory parameters used are unclearly presented. It is important to explain in-

depth these used data to enrich the explanation of the results of GPM. 

 

Agreed. We have reorganized the explanatory variables section in two subsections. The first one deals 

specifically with the target variable, whereas the second is devoted to the explanatory variables. This now 

reads. 

 

2.2.1 Target variable 

  

For the purpose of this study, groundwater potential is defined as the likelihood of a drilled borehole 

being successful. Successful boreholes are those that yield sufficient water to justify the installation of a 



hand pump (>0.5 m3/h) (Foster et al., 2006). The target variable is therefore binary, and can be 

interpreted as the presence/absence of groundwater.  

 

For algorithm training, villages where more than 50% of wells were known to be successful were labelled 

“positive”. The positive classification also applies to those villages with more than one high yield 

borehole (>10m3/h). The others were labelled “negative”. The resulting input dataset consisted of 650 

villages, out of which 390 were labelled positive and 260 were negative. This comprises information from 

3,345 boreholes, out of which 2,101 were successful and 1,244 were unsuccessful. 

 

2.2.2 Explanatory variables 

 

Groundwater recharge is influenced by five main factors (Kumar, 1997; Jyrkama et al., 2002). These are 

climate (e.g. precipitation, temperature, potential evapotranspiration), soils (e.g. texture, saturated 

hydraulic conductivity, moisture capacity), land cover (e.g. vegetation density and type), geomorphology 

(e.g. surface slope, drainage density) and hydrology (e.g. streamflow, water table depth).  

 

Rainfall is the principal source of groundwater recharge. The amount of this recharge depends on the 

precipitation rate, as well as on the surface and subsurface factors that will allow or prevent infiltration. 

Soil is important because its characteristics (permeability, grain shape, grain size, and void ratio) control 

percolation. Higher infiltration potential is associated with sandy and gravelly soils, while clayey and 

silty soils rank among the least favorable for recharge (Díaz-Alcaide and Martínez-Santos, 2019).  

Integration of land use and land cover is often used in groundwater potential mapping studies because 

Land use changes, which are mostly induced by human activities, affect hydrological dynamics (Díaz-

Alcaide and Martínez-Santos, 2019). For instance, croplands and forests, located in the southern part of 

the study area, could be associated with high groundwater potential because ploughing, root development 

and biological activity favor infiltration. Areas close to permanent water bodies also tend to correlate 

with a higher groundwater potential (Naghibi et al., 2017a). In contrast, urban settlements and 

wastelands are assumed to have low groundwater potential due to the presence of impervious surfaces, as 

well as to the absence of moisture (Magesh et al., 2012). Geomorphology may be useful in identifying 

features that may be favorable for groundwater infiltration and storage (Díaz-Alcaide and Martínez-

Santos, 2019). Alluvial fans, sand dunes, weathering mantles, floodplains, and other accumulations of 

unconsolidated materials are generally recognized as the most interesting geomorphological features 

from a groundwater point of view (Venkateswaran and Ayyandurai, 2015). In contrast, landforms such as 

inselbergs, scarps, and ridges may be considered of little interest. 

 

Hydrological factors such as drainage density or water table depth also play an important role in 

groundwater recharge. High drainage density means that runoff can be evacuated quickly and therefore 

infiltration is less probable. (Magesh et al. 2012; Fashae et al. 2014). In addition, a high drainage density 

can be assimilated to a higher erosion potential. Meijerink (2007) shows that parallels can be found 

between drainage density and soil permeability in certain geological settings. Water table depth is useful 

for mapping water tables to determine the main recharge and discharge zones of an aquifer. 

 

Nineteen explanatory variables were selected based on an extensive review of the GPM literature (Díaz-

Alcaide and Martínez-Santos 2019). Explanatory variables (Table 1) include lithology (Fig. 2), landforms, 

land use, soil, expected thickness (Fig. 5), rainfall, water table depth, vegetation-related indices (NDVI, 

NDWI), slope curvature, slope, topographic wetness index, stream power index, drainage density, 

distance from channels, clay content and clay mineral alteration ratio (Fig. 6). An additional layer with 

mean borehole flow rates per village was developed for the purpose of calibrating the results. 

 

 

Table 1. Explanatory variables used in GPM. The scale/resolution, acquisition time and source of data for 

each factor are provided. 

Explanatory 

variables 
Scale/resolution Time (dd/mm/yyyy) Source of data 

Alteration Band 

Ratio 
30 meters 07-16/03/2020 Own elaboration from Landsat 8 

Clay content 250 meters N/A SoilGrids250m 2.0 



Curvature 30.53 meters N/A Own elaboration from DEM 

Saturated 

thickness 
30.53 meters N/A 

Own elaboration from DEM and borehole 

database 

Water table 

Depth 
30 meters 2010 Own elaboration from Borehole database 

Distance from 

channels 
30.53 meters N/A Own elaboration from DEM 

Geology 1:5 million N/A British Geologycal Survey 

Geomorphology 30.53 meters N/A Own elaboration from DEM 

Land use 300 meters 2009 
ESA Climate Change 

Initiative 

Soil 1:3M N/A European Soil Data Centre 

Rainfall 0.5° 1950-2009 
CRU TS 3.21 dataset (Climatic Research Unit at 

the University of East Anglia) 

Drainaige density 30.53 meters N/A Own elaboration from DEM 

Thickness matrix 30.53 meters N/A Derived from DEM and borehole database 

Elevation (DEM) 30.53 meters 23/09/2014 Shuttle Radar Topography Mission (SRTM) 

NDVI 30 meters 07-16/03/2020 Own elaboration from Landsat 8 

NDWI 30 meters 07-16/03/2020 Own elaboration from Landsat 8 

Slope 30.53 meters N/A Own elaboration from DEM 

SPI 30.53 meters N/A Own elaboration from DEM 

TWI 30.53 meters N/A Own elaboration from DEM 

 

QGIS 3.0’s Geomorphon plugin (Jasiewicz and Stepinski, 2013) was used to prepare the landform map. 

This approach uses DEM for the classification and mapping of landform features based on the principle 

of pattern recognition, rather than on differential geometry. By default the Geomorphon plugin classifies 

landforms in ten different categories. Because some of them can be expected to play a similar role in the 

context of GPM, these were subsequently regrouped in four (Fig. 5a).  

 

Soil descriptions (Fig. 5b) of the study area were obtained from the European Soil Data Centre (Dewitte 

et al., 2013). About 45% of the region is characterized by the presence of Pisoplinthic Plinthosols a type 

of soils with plinthite (Fe-rich), strongly cemented to indurated concretions or nodules, humus-poor 

mixture of kaolinitic clay and other products of strong weathering (IUSS Working Group, 2015). It usually 

changes irreversibly to a layer with hard concretions or nodules or to a hardpan on exposure to repeated 

wetting and drying. Hypoluvic arenosols are present in 20% of the total surface and are characterized by 

being deep sandy soils, which explains their generally high permeability. These are residual sandy soils 

following in situ weathering of rocks generally rich in quartz. Nearly 13% of the study are characterized 

by Petric Plinthosols, that share multiple features with Pisoplinthic Plinthosols, which share multiple 

characteristics with Pisoplintic Plinthosols but unlike the latter are arranged in continuous or fractured 

sheets of connected concretions or nodules and are strongly cemented to indurated. Lithic Leptosols (very 

thin soils on continuous rock and extremely rich in coarse fragments with continuous rock from ≤ 10 cm 

from the soil surface), Haplic Lixisols (higher clay content in the subsoil than in the topsoil, as a result of 

pedogenetic processes), Eutric Regosols (very weakly developed mineral soils in unconsolidated 

materials) constitute about 15% of the study area. 

 

The study area is clearly divided in terms of land use (Fig. 5c). There seems to be a clear association with 

the precipitation gradient. The southern part is characterized by open broadleaf deciduous forest (ESA, 

2010). The central part is characterized by an alternation of shrublands, mosaics of cropland vegetation 

and rainfed cropland. West of Bamako, in the sparsely populated mountains, there are forests mixed with 

shrublands. The northern part of the study areais dominated by cropland mosaics and, further north, the 

landscape is made up of open grasslands, sparse vegetation and bare areas. 

 

Boreholes in the study area are often drilled until the unaltered bedrock is reached. As a result, borehole 

depth can be a suitable proxy for aquifer thickness (Fig. 5d). Because the borehole database includes 

static level measurements, an expected saturated thickness layer was computed by subtracting one from 



the other (Fig. 5d). 

 

 
Figure 5. Explanatory variables used to predict the GPM: a) geomorphology b) Land use (A.a = artificial 

areas; W.b = water bodies; M.c.v = Mosaic cropland vegetation; R,c = Rainfed cropland; B.a = Bare 

areas; O.g = Open grassland; M.v./c = Mosaic vegetation/cropland; C./O.s = Close to open shrubland; 

B.e or s.f. and M.f/s = Broadleaved evergreen or semidecidous forest and Mosaic forest / shrubland) c) 

Soil (Eu.Cam. = Eutric Cambisols; Eu.Nit. = Eutric Nitrisols; Eu.Reg. = Eutric Regosols; Hap.Lix. = 

Haplic Lixisols; Hap.Ver. = Haplic Vertisols; Hyp.Are. = Hypoluvic Arenosols; Lit.Lept. = Lithic 

Leptosols; Pet.Pl. =Petric Plinthosols; Pis.Pl. = Pisoplinthic Plithosols; Und.Gl. = Undifferentiated 

Gleysols; Und.Fl. = Undifferentiated Fluvisols; Vet.Cam = Vetric Cambisols) d) expected thickness 

matrix. 

 

Another important variable in terms of aquifer recharge is precipitation, as both can be assumed to be 

correlated to some extent. Rainfall data in this case represents the mean annual precipitation for the 

1950-2009 interval (Fig. 6a) 

 

Satellite monitoring does not penetrate deep into the ground, but provides information about features that 

may be associated with shallow groundwater (Díaz-Alcaide and Martínez-Santos, 2019). This can be 

important in the case at hand, where the borehole database shows the static level to remain around 5-15 

m below the surface (Fig. 6b). Vegetation-related indices can be useful in this context, particularly when 

computed at the end of the dry season (Fig. 6c,d). Take for instance the normalized difference vegetation 

index (NDVI, Fig. 6c), which is an estimate of vegetation vigour and is derived from the response of 

vegetation to red and visible infrared wavelengths (Xie et al., 2008). Similarly, the normalized difference 

water index (NDWI, Fig. 6d) is used as a measure of the amount of water in the vegetation or soil 

moisture (Xu, 2006). Based on Landsat 8 products, the NDVI and the NDWI are computed as per Eq. 1 

and Eq. 2, respectively, where B3 represents the green band (0.53 - 0.59 μm), B4 is the red band (0.64 - 

0.67 μm) and B5 is the near infrared band (0.85 - 0.88 μm). 

 

NDVI (Landsat 8) = (B5 – B4) / (B5 + B4)      (1) 

NDWI (Landsat 8) = (B3 – B5) / (B3 + B5)      (2) 

 

The digital elevation model (DEM) was obtained from the radar-based Shuttle Radar Topography Mission 

(SRTM), with a resolution of 1 arcsecond (30 m). The topography is a relevant factor in groundwater 

distribution, storage, and flow, as well as surface runoff and infiltration, are partially constrained by 

surface features and parameterized by properties that can be extracted from the surface data (Elbeih, 

2015). In this case, the DEM was used to develop the curvature (Fig. 6e), slope (Fig. 6f), topographic 

wetness index (TWI, Fig. 6g), stream power index (SPI, Fig. 6h) and geomorphology layers (Fig. 5a). It 

was also used to obtain the channel network, which is used in turn to elaborate a drainage density map 

(Fig. 6i). and distance from channels layer (Fig. 6j). 

 

 



The Topographic Wetness Index (TWI) represents the ease with which water may accumulate at the 

surface (Beven and Kirkby, 1979). Similarly, the Stream Power Index provides a measure of the erosive 

power of flowing water (Moore et al., 1991).  

The channels extracted from the DEM are used to develop the drainage density and distance from 

channels maps. Drainage density is computed as the total length of the streams per catchment unit area. 

Distance from channels was developed by extracting all major channels into a separate layer and 

developing 500, 1500 and 2500 meter buffers. 

 

Clay content in the first few meters of the surface largely determines the percolation of water into the 

aquifer. Therefore, an additional clay content layer (g/kg) in the top two meters of the terrain was 

considered (Poggio and de Sousa, 2020). This layer is obtained by state-of-the-art machine learning 

methods that use global soil profile information and covariate data to model the spatial distribution of soil 

properties around the world. (Fig. 6k). This layer provides information about subsurface clay content. To 

complement the information on clay content on the subsurface, an additional layer has been developed by 

combining bands 6 (short-wave infrared 1) and 7 (short-wave infrared 2) of Landsat 8 (Ourhzif et al., 

2019). This layer provides information on clay content on the surface and the relationship with infiltration 

(Fig. 6l).  

 



Figure 6. Explanatory variables used to predict the GPM: a) rainfall (mm/year) b) water table depth 

(metersc) normalized difference vegetation index (NDVI) e) curvature f) slope (degree) g) topographic 

wetness index (TWI) h) stream power index (SPI) i) drainage density j) Distance from channels k) Clay 

content (g/kg) l) alteration band ratio (B6/B7)  

 

 

Revision suggestions: 

 

ABSTRACT: 

 

[7] line9: “Groundwater is crucial for domestic supplies in the Sahel” 

 

it is necessary to precise the location. which Sahel? 

 

In our view, the dependence on groundwater for rural groundwater supply is similar across the Sahel belt, 

so this statement is suitably general. The specific area of the research (Mali) is mentioned a couple of lines 

below. 

 

[8] Line11 & 12: “This paper presents a machine learning method to map groundwater potential 

and illustrates it through an application to two regions of Mali”. It is poorly structured sentences! 

 

Agreed. The abstract has been rewritten. It now reads: 

 

“Groundwater is crucial for domestic supplies in the Sahel, where the strategic importance of aquifers 

will increase in the coming years due to climate change. Groundwater potential mapping is a valuable 

tool to underpin water management in the region, and hence, to improve drinking water access. This 

paper presents a machine learning method to map groundwater potential in two regions of Mali. A set of 

explanatory variables for the presence of groundwater is developed first. Scaling methods 

(standardization, normalization, maximum absolute value and min-max scaling) are used to avoid the 

pitfalls associated with the reclassification of explanatory variables. Noisy, collinear and 

counterproductive variables are identified and excluded from the input dataset. Twenty machine learning 

classifiers are then trained and tested on a large borehole database (n=3,345) in order to find meaningful 

correlations between the presence or absence of groundwater and the explanatory variables. Tree-based 

algorithms (accuracy >0.85) consistently outperformed other classifiers. Maximum absolute value and 

standardization proved the most efficient scaling techniques. Borehole flow rate data is used to calibrate 

the results beyond standard machine learning metrics, thus adding robustness to the predictions. The 

southern part of the study area was identified as the better groundwater prospect, which is consistent with 

the geological and climatic setting. Outcomes lead to three major conclusions: (1) picking the best 

performers out of a large number of machine learning classifiers is recommended as a good 

methodological practice; (2) standard machine learning metrics should be complemented with additional 

hydrogeological indicators whenever possible; and (3) variable scaling helps minimize expert bias”. 

 

 

[9] Line 13: “A set of explanatory variables for the presence of groundwater is developed first” 

I suggest to replacing the presence of groundwater by groundwater occurrence 

 

Agreed. Fixed. Please see [8]. 

 

[10] Line17: “This process identifies noisy, collinear and counterproductive variables and excludes 

them from the input dataset”: 

It is a result details, I suggest deleting this sentence. 

 

On the contrary, this is a crucial methodological detail. This step is relatively often overlooked in machine 

learning studies, although it is potentially important. We prefer to keep it, although we have rewritten the 

sentence. 

 

[11] Line 18, 19 & 20: “Tree-based algorithms, including the AdaBoost, Gradient Boosting, Random 

Forest, Decision Tree and Extra Trees classifiers were found to outperform other algorithms on a 



consistent basis (accuracy >0.85), whereas maximum absolute value and standardization proved the 

most efficient methods to scale explanatory variables”. 

 

I suggest replacing by: 

 

The results shows that the Tree-based algorithms, including the AdaBoost, Gradient Boosting, 

Random Forest, Decision Tree and Extra Trees classifiers were found to outperform other 

algorithms on a consistent basis (accuracy 

>0.85), whereas maximum absolute value and standardization proved the most efficient methods to 

scale explanatory variables. 

 

Agreed. Fixed. Please see [8]. 

 

[12] Line 22 & 23: “From a methodological standpoint, the outcomes lead to three major 

conclusions”: 

I suggest replacing by: The outcomes of this study lead to three major conclusions 

 

Agreed. Fixed. Please see [8]. 

 

Introduction 

 

[13] Line 38 & 39: “Groundwater potential mapping (GPM) is recognized as a valuable tool to 

underpin planning and development of groundwater resources (Elbeih, 2015)”. 

I suggest replacing by 

 

Groundwater potential mapping (GPM) is recognized as a valuable tool to underpin planning and 

exploration of groundwater resources (Elbeih, 2015). 

 

Agreed. Fixed. 

 

[14] Line 41 & 42: “In practice, however, it consists in computing spatially-distributed estimates for 

a target variable (groundwater potential) based a set of explanatory variables” 

What are the explanatory variables, you should explain them, I suggest to replace these sentences by: 

 

However, it consists of computing spatially distributed estimates for a target variable (groundwater 

potential) based a set of dependent variables such as soil, lineaments, slope, geology, landforms, 

lithology, and drainage density (Díaz-Alcaide and Martínez-Santos 2019a) 

 

Agreed. Fixed. 

 

[15] Line 42, 43 & 44: “GPM typically relies on existing cartography, digital elevation models 

obtained from satellite, aerial photographs, satellite imagery and geophysical information 

(Schetselaar et al., 2007)”. 

The GPM based on the assembling of data from different sources. I suggest replacing by: 

 

GPM typically relies on the compilation of data derived from existing maps, aerial photographs, 

satellite imagery, and airborne geophysical information (Schetselaar et al. 2008). 

 

Agreed. Fixed. 

 

 

[16] Line 46: “There are two main approaches to GPM: expert-based decision systems and machine 

learning methods”. 

I suggest replacing by: 

 

Recently, expert-based decision systems and machine learning methods have been implemented in 

many groundwater studies. 

Agreed. Fixed. 



 

 

[17] Line 46 &47: “Expert-based systems have existed for a long time (DEP, 1993)” 

I suggest replacing by: Expert-based system methods have been used for a long time (DEP, 1993) 

 

Agreed. Fixed. 

 

[18] Line 52 & 53: Algorithms used in the GPM literature include Mixture Discriminant Analysis 

(Al-Fugara et al., 2020), Random Forest (Kalantar et al., 2019; Moghaddam et al., 2020), 

I suggest replacing by:  

In literature, The Machine Learning Algorithms used in the GPM studies include Mixture 

Discriminant Analysis (Al-Fugara et al., 2020), Random Forest (Kalantar et al., 2019; Moghaddam 

et al., 2020), 

 

Agreed, but this part of the paragraph has changed at the suggestion of the other reviewer. 

 

[19] Line 58: “GPM works under the assumption that the presence of groundwater can be partially 

inferred from surface features” 

I suggest replacing by: 

 

The GPM is based on a common assumption is that the groundwater occurrence can be  partially 

inferred from surface features. 

 

Agreed. Fixed. 

 

[20] Line 60 & 61: Supervised classification algorithms are trained to find the associations between 

these variables and known groundwater data. 

The data are trained using the algorithm not the algorithms are trained: I suggest replacing by: 

 

These explanatory variables are trained using Supervised classification algorithms to find the 

associations between them and known groundwater data. 

 

Agreed. Fixed. 

 

[21] Line 64 & 65: add reference.  

Because the number of available boreholes to train and test the algorithms is usually “small”, and 

because the number of explanatory variables can be relatively high, a crucial issue in machine-

learning studies is how explanatory variables should be reclassified in order to minimize noise 

 

Agreed. The sentence now reads: 

 

“Because the number of available boreholes to train and test the algorithms is usually “small”, and 

because the number of explanatory variables can be relatively high, a crucial issue in machine-learning 

studies is how explanatory variables should be reclassified or grouped in order to minimize noise and 

decrease the variability of the values of each conditioning factor. The technique of grouping the values of 

the explanatory variables is widely used. (Gnanachandrasamy et al., 2018; Qadir et al., 2020; Saravanan et 

al., 2020) 

 

 

[22] Line 68: add reference 

Sometimes the intervals are based directly on expert criteria, which means that a bias may be 

incorporated from the beginning of the process. 

 

Agreed.  

 

Sometimes the intervals are based directly on expert criteria, which means that a bias may be incorporated 

from the beginning of the process (Martínez‐Santos and Renard, 2020) 

 



[23] Line 71 & 72: The outcomes of machine learning GPM studies are almost invariably assessed by 

means of standard big data metrics such as precision, recall, and area under the receiver operating 

characteristic curve. 

I suggest replacing by: 

 

The outcomes of GPM studies using machine learning algorithms are almost invariably assessed by 

means of standard big data metrics such as…. And add reference to this observation 

 

Agreed. Fixed. The sentence now reads: 

 

The outcomes of GPM studies using machine learning algorithms are almost invariably assessed by means 

of standard big data metrics such as precision, recall, and area under the receiver operating characteristic 

curve (Pradhan, 2013; Naghibi et al., 2016; Chen et al., 2019). 

 

 

[24] Line 76 to Line 80: Within this context, this research presents two main additions to the 

literature. In the first place, it explores different scaling methods. The goal is to avoid the pitfalls 

associated with the reclassification of explanatory variables. Scaling is thus advocated as an 

essential part of algorithm training since each subsequent procedure depends on the choice of unit 

for each feature (Huang et al., 2015). Furthermore, scaling is expected to transform feature values 

based on a defined rule, so that all scaled features have the same degree of influence (Angelis and 

Stamelos, 2000). 

 

I suggest replacing by: 

 

Within this context, this research presents two main additions to the literature. In the first place, it 

explores different scaling methods to avoid the pitfalls associated with the reclassification of 

explanatory variables. Scaling is thus advocated as an essential part of algorithm training, since 

each subsequent procedure depends on the choice of unit for each feature (Huang et al., 2015). 

Furthermore, scaling is expected to transform feature values based on a defined rule, so that 

all scaled features have the same degree of influence (Angelis and Stamelos, 2000). (This is d detail of 

methodology I propose to add to the methodology section) 

 

Agreed. Fixed. We have moved this paragraph to the methodology section. 

 

Material and methods. Study area 

 

[25] Line 93 to 111: I suggest to add a hydrogeological section or a geologic map to highlight the 

aquifers units of the study area 

 

Agreed. Please see [5] above. 

 

 

[26] Line 89 to 101: “Water in these aquifers is preferentially located in the weathered mantle, and, 

within this, the lower part is generally more transmissive due to lower clay content. The upper part 

is less permeable to flow, but can still be important as a groundwater reservoir. Fractures can 

produce significant quantities of water, although their storage capacity is typically low (Martín-

Loeches et al.,2018)” 

I suggest replacing by: 

 

 

In these aquifers, groundwater flows preferentially in the weathered mantle, and, within this, the 

lower part is generally more transmissive due to lower clay content. The upper part is less 

permeable to flow but can still be important as a groundwater reservoir where the fractures can 

raise the reservoir permeability although their storage capacity is typically low (Martín-Loeches et 

al.,2018). 

 

Agreed. This sentence has been rewritten differently based on a comment by the other reviewer. 



 

[27] Line 107: “Some boreholes however exceed 100 m3/hour” 

I suggest replacing by: 

 

However, some boreholes yield exceeds 100 m3/hour 

 

Agreed. Fixed. 

 

[28] Line 107 & 108: “The Paleozoic rocks located in the north are determined by fractures that 

allow water to flow through the sandstone and limestone layers”. 

I suggest replacing by: 

 

In the north, the fractured Paleozoic rocks allow water to flow through the sandstone and limestone 

layers. 

 

Agreed. Fixed. 

 

Borehole database 

 

[29] Line 115: Borehole data were provided by Direction Nationale de l’Hydraulique (2010) 

I suggest replacing by: 

 

Borehole data were provided by the National Water Directorate (DNH, 2010) 

Agreed. Fixed. 

 

 

[30] Line 115 to 116: “The database contains 115 information on 5,387 boreholes 

(3,772 successful and 1,615 unsuccessful), distributed across 1,605 human settlements”. 

I suggest replacing by: 

 

The database contains information of 5,387 boreholes (3,772 successful and 1,615 unsuccessful), 

distributed across 1,605 fields. 

 

Agreed. Fixed. 

 

[31] Line 121 to 123: “This can be assumed to be the thickness of the (Courtois et al., 2010). Water 

table depth 

I suggest replacing by: 

 

There is a considerable number of boreholes with a 100% success rate (530), many villages are 

supplied by a single borehole 

 

There seems to be something missing about this comment. 

 

[32] Line 126 to 127: For algorithm training purposes, this raises the question as to whether villages 

with a small number of boreholes are statistically representative, particularly in cases where the 

mean yield is low 

I suggest replacing by: 

 

This raises the question in the application of algorithm in the choice of training datasets, especially 

to whether villages with a small number of boreholes are statistically representative, particularly in 

cases where the mean yield is low 

 

Agreed. Fixed. 

 

[33] Line 145: Figure 3: correct the word classification metrics 

 

Agreed. Fixed. 



 

 
Figure 7. Conceptual model of the predictive mapping procedure with MLMapper v2.0. 

 

[34] Line 156 to 157: Sixteen explanatory variables were selected based on an extensive review of the 

GPM literature (Díaz-Alcaide and Martínez-Santos 2019). 

 

I think to explain in detail this extensive review in the Introduction part 

 

Agreed. The sentence was incorrectly worded. The extensive review was carried out by Díaz-Alcaide and 

Martínez-Santos (2019). The sentence now reads: 

 

Nineteen explanatory variables were selected from an extensive review of the literature on GPM 

conducted by Diaz-Alcaide and Martinez-Santos (2019). 

 

[35] Line 161: you should add a description of the main factors that can influence the groundwater 

recharge before explaining the description of each used variables or factors in the groundwater 

potential mapping 

 

Agreed. Please see [6] (first two paragraphs). 

 [36] Line 162: Geology constrains the presence of groundwater to an important extent 

I think to delete this sentence 

 

Agreed. Fixed. 

 

[37] Line 173: Soils are important in GPM because soil characteristics such as permeability… 

I suggest replacing by: 

 

Soil is important factor to determine the groundwater occurrence ………. 

 

Agreed. Fixed. 

 

 

[38] Line 174: Soil descriptions of the study area were obtained from the European Soil Data Centre 

You should describe the main soils of the study area types and their characteristics 

 

Agreed. Please see [6]  



 

 

[39] Line 175 and 176: Integration of land use and land cover is often used in groundwater potential 

mapping studies because human activities alter hydrological dynamics (Díaz- Alcaide and Martínez-

Santos, 2019). 

I suggest replacing by: 

 

Integration of land use and land cover is often used in groundwater potential mapping studies 

because Land use changes, which are mostly induced by human activities, affect hydrological 

dynamics (Díaz-Alcaide and Martínez-Santos, 2019). 

 

Agreed. Fixed. 

 

[40] Line 175 to 180: you should describe the land use of your study area and the data used for the 

elaboration of this map 

Agreed. We have described the land use and now it reads: 

 

“The study area is clearly divided in terms of land use mainly due to the north-south precipitation gradient. 

The land use map provided by ESA Climate Change Initiative shows that the southern part is 

characterized by open broadleaf deciduous forest. The central part is characterized by an alternation of 

shrublands, mosaics of cropland vegetation and rainfed cropland. West of Bamako, in the sparsely 

populated mountains, there are forests mixed with shrublands. The northern part of the study area, with 

less rainfall, is dominated by cropland mosaics and, further north, the landscape is made up of open 

grasslands, sparse vegetation and bare areas.” 

 

[41] Line 182: You should add the reference of used rainfall data 

Agreed. Fixed. Suggested by the other reviewer, we added a table containing the reference and source of 

all data. Rainfall source data was CRU TS 3.21 dataset (Climatic Research Unit at the University of East 

Anglia). 

 

Explanatory 

variables 
Scale/resolution 

Time 

(dd/mm/yyyy) 
Source of data 

Alteration Band 

Ratio 
30 meters 07-16/03/2020 Own elaboration from Landsat 8 

Clay content 250 meters N/A SoilGrids250m 2.0 

Curvature 30.53 meters N/A Own elaboration from DEM 

Saturated 

thickness 
30.53 meters N/A 

Own elaboration from DEM and borehole 

database 

Water table 

Depth 
30 meters 2010 Own elaboration from Borehole database 

Distance from 

channels 
30.53 meters N/A Own elaboration from DEM 

Geology 1:5 million N/A British Geologycal Survey 

Geomorphology 30.53 meters N/A Own elaboration from DEM 

Land use 300 meters 2009 
ESA Climate Change 

Initiative 

Soil 1:3M N/A European Soil Data Centre 

Rainfall 0.5° 1950-2009 
CRU TS 3.21 dataset (Climatic Research 

Unit at the University of East Anglia) 

Drainaige density 30.53 meters N/A Own elaboration from DEM 

Thickness matrix 30.53 meters N/A Derived from DEM and borehole database 

Elevation (DEM) 30.53 meters 23/09/2014 
Shuttle Radar Topography Mission 

(SRTM) 

NDVI 30 meters 07-16/03/2020 Own elaboration from Landsat 8 

NDWI 30 meters 07-16/03/2020 Own elaboration from Landsat 8 

Slope 30.53 meters N/A Own elaboration from DEM 



SPI 30.53 meters N/A Own elaboration from DEM 

TWI 30.53 meters N/A Own elaboration from DEM 

 

 

 

 

[42] Line 184: Figure 4: you should add the lineaments and faults in the geological map 

 

Agreed. Unfortunately, there is no such map. The available geologic maps are large scale and do not 

contain the lineaments and faults. We attempted to extract the lineaments automatically from the DEM, 

but the large area of the study region led to unsuccessful results. 

 

[43] Line 191 & 192: DEMs are relevant because shallow groundwater flow and infiltration are 

partially conditioned by surface features and parameterized by properties that can be extracted 

from the surface data (Elbeih, 2015) 

I suggest replacing by: 

 

The topography is a relevant factor in groundwater distribution, storage, and flow, as well as 

surface runoff and infiltration are partially conditioned by surface features and parameterized by 

properties that can be extracted from the surface data (Elbeih, 2015) 

 

Agreed. Fixed. 

 

 

[44] Line 197: The topographic wetness index 

I suggest replacing by: 

 

The Topographic Wetness Index (TWI) 

 

Agreed. Fixed. 

 

[45] Line 243: Figure 6. Explanatory variables used to predict the GPM: a) water table depth 

(meters) b) slope (degree) c) curvature d) borehole yield (m3/h) e) normalized difference vegetation 

index (NDVI) f) normalized difference water index (NDWI) g) alteration band ratio (B6/B7) h) 

Drainage density i) Stream power index (SPI) j) topographic wetness index (TWI) k) Clay content 

245 (g/kg) l) rainfall (mm/year) 

 

What is the difference of the figure 6g (alteration band ratio (B6/B7) ) and the figure 6k (Clay 

content); in the text it means the same information line 230 to 233: This layer provides information 

on clay content on the surface and the relationship with infiltration. Clay content on the surface is 

calculated as per Eq. 5, where B6 is the short-wave infrared 1 and B7 the short-wave infrared 2. 

 

Agreed. The text might be slightly confusing. Clay content layer was obtained by state-of-the-art machine 

learning methods that use global soil profile information and covariate data to model the spatial 

distribution of soil properties around the world. This layer provide information about the clay content in 

the top two meters of soil, i.e. information about subsurface clay content and was obtained from SoilGrids 

(Poggio and de Sousa, 2020). In contrast, the alteration band ratio was used in this study for its ability to 

map clay minerals using bands 6 and 7 of Landsat 8 (Ourhzif et al., 2019). This layer provides information 

about the surface clay content. 

 

If our manuscript continues in the revision process, we will rewrite the information about these layers in 

the explanatory variables section. 

 

 

[46] Line 267: reference of equation 6 

 

Agreed. Fixed. 



 

[47] Line 273: reference of equation 7 

 

Agreed. Fixed. 

 

[48] Line 380 to 400: I find this paragraph should be added to the introduction section to explain the 

use of used algorithms in literature 

 

Agreed. If our manuscript continues in the revision process, we will add this paragraph to the introduction 

section. 

 

[49] Line 437: Classifier outcomes were extrapolated to produce groundwater potential maps 

What you want to say it is not clear! 

 

Agreed, the text might be slightly confusing. We refer to the fact that the algorithms were trained and 

validated with the information from the borehole database. In contrast, to develop the final groundwater 

potential maps, it’s necessary to know the distribution of the explanatory variables throughout the study 

area. Therefore, we discussed extrapolating the patterns learned from the borehole database to the entire 

study area to produce the groundwater potential maps. 

 

[50] Line 437 to 438: Figure 9 shows the groundwater potential predictions rendered by each of the 

five best-performing algorithms under the two most effective scaling methods 

 

I suggest adding the abbreviations of used algorithms and scaling methods between parentheses 

 

Agreed. Fixed. 

 

[51] Line 447: The agreement map (Fig. 10) allows for an analysis of discrepancies among the best 

performing algorithms. 

What you want to say about the agreement map! 

 

Agreed. The description regarding the source of this map was in the supervised classification routine 

subsection: 

 

“Each algorithm operates differently and relies on a different combination of explanatory variables, which 

inevitably leads to discrepancies in the predictions. In order to analyse the degree of agreement between 

the classifiers, an ensemble map is developed by computing the arithmetic mean at the pixel scale of those 

algorithms exceeding 0.85 predictive accuracy. Green pixels mean that all the best-performing algorithms 

agreed on a positive groundwater potential outcome (arithmetic mean = 1). Conversely, red zones 

represent those pixels where all the best-performing algorithms agreed on a negative groundwater 

potential (arithmetic mean = 0). Intermediate colours represent various degrees of agreement among the 

algorithms.” 

 

[52] Line 455: Figure 9. Mapping outcomes of the top five supervised classification algorithms for 

the two best performing scaling methods. At the top the MaxAbs scaling method, below it the 

standardized scaling method. From left to right: AdaBoost classifier, Gradient Boosting classifier, 

Random Forest classifier, Decision Tree classifier and Extra Trees classifier. 

I suggest to add number or letter for each map like: 

AdaBoost classifier, (b) Gradient Boosting classifier, (c) Random Forest classifier, (d) Decision Tree 

classifier and (e) Extra Trees classifier. 

Agreed. Fixed. 



 
Figure 10. Mapping outcomes of the top five supervised classification algorithms for the two best performing scaling methods. At 

the top the MaxAbs scaling method: A) AdaBoost classifier B) Gradient Boosting classifier C) Random Forest classifier D) 

Decision Tree classifier E) Extra Trees classifier. below it the standardized scaling method: F) AdaBoost classifier; G) Gradient 

Boosting classifier H) Random Forest classifier I) Decision Tree classifier J) Extra Trees classifier.  

 

[53] Line 492 to 494: “On a final note, the literature features few examples of groundwater potential 

studies in the study area. Perhaps the only systematic precedent is the one carried out by Díaz-

Alcaide et al. (2017). These authors performed a national-scale assessment of groundwater potential 

for the Republic of Mali based on the same borehole database that has been used in this research”. 

 

This is a literature review about similar studies in pilot area, I suggest to add in the Introduction 

section 

In this case we attempt to place our results in the context of other studies of the same area, which is 

suitable for the discussion. 

 

 

On a final note, we would like to thank Reviewer #2 again for a thorough review of our manuscript. We 

hope our answers will be enough to merit publication in HESS. 
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