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Abstract. Water resource management (WRM) practices, such as abstractions and discharges, may impact baseflow. Here the 10 

CAMELS-GB large-sample hydrology dataset is used to assess the impacts of such practices on baseflow index (BFI) using 

statistical models of 429 catchments from Great Britain. Two complementary modelling schemes, multiple linear regression 

(LR) and machine learning (random forests, RF), are used to investigate the relationship between BFI and two sets of covariates 

(natural covariates only and a combined set of natural and WRM covariates). The LR and RF models show good agreement 

between explanatory covariates. In all models, the extent of fractured aquifers, clay soils, non-aquifers, and crop cover in 15 

catchments, catchment topography and aridity are significant or important natural covariates in explaining BFI. When WRM 

terms are included, groundwater abstraction is significant or the most important WRM covariate in both modelling schemes 

and discharge to rivers is also identified as significant or influential, although natural covariates still provide the main 

explanatory power of the models. Surface water abstraction is a significant covariate in the LR model but of only minor 

importance in the RF model. Reservoir storage covariates are not significant or are unimportant in both the LR and RF models 20 

for this large-sample analysis. Inclusion of WRM terms improves the performance of some models in specific catchments. The 

LR models of high BFI catchments with relatively high levels of groundwater abstraction show the greatest improvements, 

and there is some evidence of improvement in LR models of catchments with moderate to high discharges. However, there is 

no evidence that the inclusion of the WRM covariates improves the performance of LR models for catchments with high 

surface water abstraction or that they improve the performance of the RF models. These observations are used to formulate a 25 

conceptual framework for baseflow generation that incorporates WRM practices. It is recommended that information on 

WRM, particularly groundwater abstraction, should be included where possible in future large-sample hydrological data sets 

and in the analysis and prediction of BFI and other measures of baseflow. 

1 Introduction 

Baseflow, defined as streamflow fed from the deep subsurface and shallow subsurface storage between precipitation and/or 30 

snowmelt events (Tallaksen, 1995; Price, 2011), is a hydrological phenomenon that represents a whole catchment response to 
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meteorological and other environmental signals (Bloomfield et al., 2011). It integrates the outcomes of a wide range of natural 

and human-influenced surface and sub-surface catchment processes. These include geomorpohological controls related to 

surface topography and soils processes (Vivoni et al, 2007; Price et al., 2011; Singh et al., 2019) and geological controls on 

baseflow (Longobardi and Villani, 2008; Bloomfield et al., 2009; Kuentz et al., 2017; Carlier et al., 2018). Land use and land 35 

cover (LULC) change may also have profound effects on baseflow generation (Zhang and Schilling, 2006; Wang et al., 2014), 

including effects of changing forest cover and agriculture (Juckem et al., 2008; Zhang et al., 2017) and urbanization (Simmons 

and Reynolds, 1982; Chang 2007; Dow, 2007; McGrane 2015). Through these processes, the dynamics of baseflow generation 

is modulated by meteorological variability over a range of spatial and temporal scales (Van Loon and Laaha, 2015; Longobardi 

and Van Loon, 2018). There is growing evidence for the potential impact of climate change on baseflow across a variety of 40 

climate and catchment settings (Wang et al., 2014; Ficklin et al., 2016) and it has been proposed that this should be viewed in 

the context of increasing sensitivity of changes in droughts and low flows to wider anthropogenic influences (Van Loon et al., 

2016; Sankarasubramanianet al., 2020). 

In addition to climate and geophysical controls, there is evidence that baseflow may be impacted by water resource 

management (WRM) practices. Using a baseflow recession analysis, Wittenburg (2003) identified reduced baseflow resulting 45 

from abstraction for agricultural irrigation in northern Germany. Similarly, using an empirical analysis of baseflow recession, 

Wang and Cai (2009) modelled the impact of abstraction and returns on stream flow in a catchment in Illinois, USA and 

showed that they affected flow recession processes and increased low-flow magnitude but decreased low flow variability. In 

a statistical analysis of trends in baseflow in a catchment in Florida, USA, Webber and Perry (2006) demonstrated decline in 

baseflow due to over-abstraction of groundwater. Thomas et al. (2013) emphasised the importance of taking ‘human 50 

interference’ into account when estimating the baseflow recession constant after documenting higher baseflow recession 

constants associated with groundwater withdrawals from catchments in New Jersey, USA. A variety of modelling studies have 

simulated the impact of abstraction and other WRM practices on baseflow (Kirk and Herbert, 2002; Parkin et al., 2007; Sanz 

et al., 2011; de Graff et al., 2014). For example, de Graffe et al., (2014) calibrated the PCR-GLOBWB model with a dynamic 

allocation scheme to simulate surface water and groundwater abstractions and corresponding feedbacks. They found impacts 55 

of WRM were experienced during periods of low flows when the contribution of groundwater through baseflow is the largest 

and that return flows changed the timing and duration of the low flow periods, causing baseflow to be maintained for longer. 

However, there have been no large-sample, data-led analyses of the impacts of WRM practices on baseflow. This is 

despite new opportunities being offered to investigate and quantify catchment processes through open access, large-sample 

hydrology datasets (Addor et al., 2020). Such datasets have been used to provide insights into catchment processes and 60 

functioning across multiple climate and catchment settings (Beck et al., 2013; Ochoa-Tocachi et al., 2016; Fouad et al., 2018; 

Gnann et al. 2019; Dudley et al., 2020). CAMELS-GB, a recently published large-sample hydrology dataset for Great Britain 

(GB) (Coxon et al., 2020a; 2020b), is unusual in that it contains quantitative information on WRM practices including surface 

water and groundwater abstractions, discharges, and reservoir numbers and capacities at the catchment scale. The aim of the 

present study is to use the CAMELS-GB large-sample dataset to identify which, if any, WRM activities influence baseflow; 65 
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to assess the importance of these activities in the context of other factors known to influence baseflow, such as meteorology, 

catchment hydrogeology, catchment physiography, and LCLU (Price, 2011); and, to investigate if WRM factors are important 

in any particular catchment or management settings. 

As Price (2011) has noted, there are four broad approaches to quantify baseflow, as follows: low flow event time 

series; flow-duration statistics; baseflow recession analysis; and, metrics of the proportion of baseflow to total flow, also known 70 

as baseflow indices. This study focusses on the latter and specifically on the two measures of Baseflow Index (BFI) reported 

in CAMELS-GB (Coxon et al., 2020a; 2020b). Two statistical models (multiple linear regression, LR, and machine learning 

using random forests, RF) are used here to investigate the relationships between BFI and WRM and other catchment covariates 

in the CAMELS-GB dataset. Note that in the present study the modelling is not designed to compare the respective efficacy 

of the models in estimating baseflow: this is not a model inter-comparison study (Refsgaard and Knudsen, 1996). Instead, the 75 

models are designed to provide complementary evidence for the nature and importance (or not) of WRM practices on 

influencing BFI.  

2 Study area and data 

2.1 Study area 

This study focuses on 429 catchments across GB (Fig. 1) covering a wide range of climate-landscape-water management 80 

features (Fig. 2). Catchments in north and north-west of the study area tend to have higher mean elevations than those in the 

south and south-east (Coxon et al., 2020a). Meteorology tends to reflect the broad gradient in catchment physiography, with 

wet and cooler conditions typically prevalent in the north and west of the study area compared with relatively dry and warmer 

conditions in the south-east (Fig. 2a). The dominant land cover also reflects the prevailing physiographic and meteorological 

conditions with grass cover predominating in the north and west and crop cover in the south and east, with urban land-cover 85 

dominant in London and the other large cities of central and northern England (Fig. 2b). High productivity aquifers are found 

in the south-east and east (Fig. 2c; Bloomfield et al., 2009; Marchant and Bloomfield, 2018), whereas less productive aquifers 

and non-aquifers are generally more extensive in the west and north-west. Catchments in which clay dominated soils overlie 

mudrock and clay bedrock formations and catchments with extensive glacial till deposits that are present in central and eastern 

areas (Fig. 2d) (Bloomfield et al., 2009; Bricker and Bloomfield, 2014).  90 
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Figure 1. Location of catchments in the study area 

 

Groundwater is used throughout England and forms on average about 30% of the public supply, as well as being used 

extensively for agricultural irrigation and industrial supplies (Ascott et al., 2017). For 2017 (the last year of published 95 

abstraction data) estimated actual abstractions from all sources (except tidal) in England totalled 10,395 million cubic metres 

(Mm3), with 8,350 Mm3 from surface waters and 2,044 Mm3 from groundwater. Just over half of all these abstractions were 

used for public supply (5,332 Mm3) (UK Government, 2020).  Regionally groundwater use is more important in southern and 

eastern England where groundwater abstraction may consist of 100% of public supply (Ascott et al., 2020). Consequently, 

there is a tendency for more extensive surface water abstraction in the north and more groundwater abstraction in south-east 100 

(Fig. 2e and 2f) (Coxon et al., 2020b). Discharges are generally relatively high in catchments in and near major urban centres 

such as London, central England, and across parts of the north-west (Fig. 2b and 2g) while the highest reservoir capacity is 

generally associated with catchments in northern and western parts of the study region (Fig. 2h).  
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 105 

Figure 2. Selected catchment characteristics from CAMELS-GB. 

2.2 Data 

The data used in this study have been taken from the CAMELS-GB large-sample hydrology data set for Great Britain (GB) 

(Coxon et al., 2020a, 2020b), itself part of the wider CAMELS (Catchment Attributes and MEteorology for Large-sample 

Studies) initiative (Newman et al., 2015; Addor et al., 2017; 2020; Alvarez-Garreton et al., 2018; Chagas et al., 2020).  110 

CAMELS-GB is unique in that it contains human-influence attributes for some catchments, and it is that sub-set of catchments 

which are used here. These initially consisted of 442 catchments for which there are ‘human influence attributes’ (Coxon et 

al., 2020a, Table2). However, these were further reduced to 429 catchments (Fig. 3) following a consideration of the estimates 

of BFI that are available for those catchments and the availability of data for the covariates of interest, as described below. 

 115 
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Figure 3. The distribution of a. BFI_CEH, b. BFI_LH, and c. relationship between the two measures of BFI with a 1:1 line for 

reference. 120 

 

CAMELS-GB contains two estimates of baseflow. One index, ‘baseflow_index_ceh’ (BFI_CEH) (Fig3a.), is derived 

using a method developed by the UK Centre for Ecology & Hydrology and has been used in previous studies of baseflow and 

flow regimes in Great Britain (Gustard et al., 1992; World Meteorological Organization, 2008). The other, ‘baseflow_index’ 

(BFI_LH) (Fig. 3b), was estimated by baseflow separation using the Lyne and Hollick digital filter as implemented by Ladson 125 

et al., (2013). A comparison of the two CAMELS-GB baseflow indices (Fig. 3c) confirms the common observation that 

different techniques used for baseflow separation influence the estimated indices (Eckhardt, 2008; Beck et al., 2013, Addor et 

al., 2017). Given that the true BFI for any given catchment is unknown, catchments for analysis in this study have been selected 

where there is a reasonable agreement between the two baseflow indices. Ten catchments were removed where there is an 

absolute difference between BFI_CEH and BFI _LH of greater than 0.14, equivalent to the largest 2.5%tile of the absolute 130 

differences of the population. A further three catchments were removed due to missing covariate data leaving the 429 

catchments for analysis (Figs. 1 and 3). Coxon et al. (2020b) note that the CAMELS-GB baseflow indices have been estimated 

for flow time series available during water years from 1st Oct 1970 to 30th Sept 2015, but that individual time series lengths 

and completeness may vary between catchments. On average, flow records for the 429 catchments are 91% complete with 

only 48 catchments with <75% complete. No sites have been omitted from the analysis based on the length of their flow 135 

records. Figure 3c shows that that there is a generally good linear agreement between the two estimated BFI indices but that 

for BFIs up to about 0.7 BFI_CEH is systematically lower than BFI_LH, and that at BFIs above about 0.7 BFI_CEH is 

systematically higher than BFI_LH. In addition, for sites above a BFI of about 0.7 the correlation between the two indices is 

reduced.  
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21 of the CAMELS-GB catchment attributes (Coxon et al., 2020a) related to catchment physiography, climate, 140 

hydrogeology, land cover and soils as well as WRM practices have been selected as covariates for analysis (Table A1). The 

spatial distribution of selected covariates are provided in Fig. 2 and fully described in Coxon et al. (2020b). The 21 CAMELS-

GB covariates used in this study have been selected to be representative of each of the major components in a new conceptual 

model of baseflow generation (Fig. 4). Price (2011) presented a conceptual model that illustrated how components of the 

terrestrial water cycle and specific catchment processes are related to baseflow based on stores and flows of water in 145 

catchments. It didn’t, however, incorporate WRM concepts and how these might influence or modify baseflow. In addition, it 

didn’t include aspects of catchment physiography as it focussed on catchment inputs, storage and losses. Fig. 4 is a revised 

conceptual diagram (building on Price et al, 2011) indicating conceptual relationships between baseflow, catchment 

compartments and processes that lead to baseflow generation, including aspects of WRM.  

 150 

 

Figure 4. Conceptual model of the relationships between the major compartments of the terrestrial water cycle that exert an 

influence on baseflow. Baseflow and storm flow components are highlighted in blue, driving climatology, catchment 

characteristics and compartments are shaded in green, and human influences within the conceptual model are shaded in orange 

and grey (the latter outside the scope of this study). The 21 CAMELS-GB covariates and the two BFI parameters used in this 155 

study are listed against their respective compartments within the conceptual framework. 
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3. Modelling methods 

Modelling is used in this study not for predictive purposes but to explore model structures and performance to assess the 

evidence for the relative importance (or not) of WRM practices in influencing BFI. Two complementary modelling schemes, 

a multiple linear regression (LR) scheme and a random forest scheme (RF), have been applied to two estimates of BFI (BFI_LH 160 

and BFI_CEH) using two sets of covariates (Set A and Set B). Set A consists of the 16 natural covariates and Set B consists 

of all 21 CAMELS-GB covariates, i.e. the combined natural and human influence covariates (Table A1). Consequently, eight 

models have been developed and evaluated. The LR and RF models are first calibrated for the Set A covariates, then a second 

separate calibration is undertaken using Set B covariates. The resulting model structures are investigated and their performance 

in estimating observed BFI compared without and with WRM covariates to understand the influence of WRM covariates on 165 

BFI. 

The accuracy of the model estimates has been assessed using RMSE and by calculating Lin’s concordance coefficient 

(Lin, 1989) for the predicted and measured values. Lin’s coefficient indicates the degree of similarity between two variables. 

This is in contrast to a more standard Pearson correlation coefficient that is an indication of the explanatory power of a linear 

relationship between the two variables. Lin’s concordance coefficient is calculated both to assess the accuracy of a given model 170 

at replicating the training data and in a 10-fold cross-validation procedure to explore the model accuracy at locations that were 

not used in calibration. If Lin’s coefficient is substantially smaller upon cross-validation then this could be an indication that 

the model is overfitted. 

3.1 Linear regression 

Regression is commonly used to model the effect of a given set of covariates on a variable of primary interest (Fahrmier et al., 175 

2013). Here generalised linear regression (Dobson, 2002) is used to investigate the relationship between BFI_LH and 

BEI_CEH and the 21 catchment covariates. Logit transformation was applied to the BFI data, as 𝑦𝑖 = log⁡(𝑧𝑖/(1 − 𝑧𝑖)), where 

𝑧𝑖 is the BFI of catchment 𝑖. This is to ensure the fitted, back transformed BFI values are constrained between 0 and 1. 

The model considered in this paper is a linear mixed model with the following form, 

𝑌 = 𝑋1𝛽1 +⋯+⁡𝑋𝑝𝛽𝑝 + ⁡𝜖          𝜖⁡~⁡𝒩(0, 𝜎2𝑅)            (1) 180 

where 𝑌 = (𝑦1, …⁡𝑦𝑛)
′ denotes the column vector of BFI values from 𝑛 catchments, 𝑋𝑗 = (𝑥𝑗1, … , 𝑥𝑗𝑛)

′, 𝑗 = 1,… 𝑝, are the 

column vectors of the covariates (catchments attributes). The column vector 𝜖  represents the model residuals, which are 

assumed to follow a normal distribution, with covariance matrix 𝜎2𝑅, where 𝑅 reflects the correlation between transformed 

BFI values. The linear sums of covariates in a linear mixed model are referred to as the fixed effects and the residual term as 

the random effects.  185 

In this paper, the model parameters 𝛽 = (𝛽1, … , 𝛽𝑝)
′
 are estimated using the generalized least squares estimator 

(Dobson, 2002): 

𝛽 = (𝑋′𝑅−1𝑋)−1𝑋′𝑅−1𝑌            (2) 
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These parameter values maximise the likelihood or probability that the data would have arisen from the estimated model. 

Standard linear regression requires the assumption that the residuals are independent and identically distributed (iid) and that 190 

the correlation matrix is equal to the identity matrix, 𝐼. Such an assumption can be inappropriate for landscape measurements, 

as they are not selected according to a randomised design, and are often correlated in space as a result of the underlying 

geology, climate, etc. In particular, the BFI measurements made from locations closer to each other are more likely to share 

some similarity than those a long distance apart. If this correlation is ignored then the significance of some model terms could 

be exaggerated.   195 

A further issue is deciding which of the available covariates should be included. If too few covariates are included 

then some of the key drivers of BFI variation might be missed and the predictions that result might be imprecise. If too many 

covariates are included then the model might be overfitted. Some of the terms in an overfitted model replicate the random 

variation of the BFI values within the calibration data rather than generally applicable relationships between BFI and the 

covariates. Such a model can accurately predict the BFI for the sites used in calibration but performs less well on other data. 200 

The addition of a covariate to a model generally increases the maximised likelihood even in the absence of a true relationship 

between that covariate and the property of interest.  The addition cannot decrease this likelihood because the original model 

can be achieved if 𝛽𝑝+1 = 0. A statistical criterion must be used to decide whether the increase in likelihood upon the addition 

of a parameter is sufficient to justify the inclusion of that term. 

The modelling procedure consists of three steps. In the first step, given the candidate covariates, variable selection is 205 

carried out using the stepwise selection routine based on the Akaike Information Criterion (AIC; Akaike, 1973). The AIC, 

which is twice the negative log-likelihood of the model minus 2 times the number of model parameters, 

𝐴𝐼𝐶 = ⁡−2 log{ℒ(𝛽, 𝜎2; 𝑌)} − 2(𝑝 + 1)⁡          (3) 

The model with the lowest AIC is considered to be the best compromise between accuracy and complexity. The forwards 

selection routine starts with a model containing no covariates. Each candidate covariate is considered in turn and the AIC that 210 

results from its addition to the model is recorded. The covariate which leads to the largest decrease in AIC is added to the 

model. The iterative procedure continues until none of the remaining covariates lead to a decrease in AIC. This procedure is 

initially conducted assuming independent residuals (i.e., 𝑅 = 𝐼) and is implemented using the “step” function from R package 

“stats”.  In the second step, spatial correlation is assessed by calculating empirical variograms (Cressie, 1993) of the model 

residuals using the “variogram” function from R package “gstat”. The variogram indicates how the expected squared difference 215 

between a pair of residuals varies according to their distance apart. Finally, a model including spatial correlation in the residuals 

is estimated when inspection of the variogram indicates that this is necessary. Specifically, the spatial correlation is reflected 

by the non-zero off-diagonal elements in the correlation matrix, 𝑅  which correspond to the values from an exponential 

correlation function (i.e., 𝑟(𝑑𝑖𝑗) = exp(−𝑑𝑖𝑗/𝜑), where 𝑑𝑖𝑗  is the Euclidean distance between two catchments 𝑖 and 𝑗 and 𝜑 

is an estimated model parameter). The model with spatial correlation can be estimated by residual maximum likilihood (REML; 220 

Lark et al., 2006) using the “gls” function from R package “nlme”. The statistical significance of each covariate included in 
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the model (i.e. whether the corresponding regression coefficient is significantly different to zero) is recorded for p values of 

0.1, 0.05 and 0.001. 

3.2 Machine learning 

 LR models require assumptions about the nature of baseflow variation that can restrict the patterns of variation which the 225 

model can represent. In the past few decades, machine learning methodologies have become increasingly popular for 

representing complex environmental variation (e.g. Hengl et al., 2018; Lange and Sippel, 2020; Nearing et al 2020). Machine 

learning algorithms lead to considerably more flexible relationships between environmental variables. For example, regression 

trees recursively partition observation locations according to a series of binary tests on their covariate values. Each location 

enters the tree at the initial decision node and then follows one of two branches according to the result of the initial test. Each 230 

branch leads to a network of further decision nodes and tests until the location is allocated to a terminal node. The predicted 

value of the environmental variable at an unobserved location is equal to the average of the training data that are allocated to 

the same terminal node. The tests at each node are optimised so that the total squared errors for a tree of a specified degree of 

complexity is minimised.  

Regression trees can replicate complex nonlinear relationships that include interactions between different covariates 235 

but they are prone to overfitting. A regression tree can perfectly predict the variable of interest for some training data if the 

number of terminal nodes is equal to the number of training observations but it cannot be expected to perform exactly when 

predictions are made at other locations. Overfitting can be reduced by introducing stopping criteria to the trees (e.g. each 

terminal node must contain a specified proportion of the training data) or by using cross-validation to decide whether a 

particular decision node should be included in the tree. Overfitting might be further reduced by combining an ensemble of 240 

regression trees to form a random forest (Breiman, 2001). The trees within the ensemble differ because they are estimated for 

a different bootstrap sample of the available data and a different subset of the candidate covariates is considered at each 

decision node. The prediction of the variable of interest at a particular location is equal to the average prediction across all the 

trees. Addor et al. (2018) found that the inclusion of 500 trees in a random forest considerably stabilised predictions and 

smoothed relationships between their covariates and BFI measurements.  245 

The random forest interprets the available data as if they were a random sample of the population of interest and does 

not account for spatial correlation amongst the observations. Also, the relationships implied by a random forest model cannot 

be stated in a simple parametric form such as Eq. (1) meaning that it can be a challenge to determine the drivers of variation. 

It is possible to assess the importance of each covariate by shuffling the values of that covariate amongst the observation 

locations and calculating the reduction in prediction accuracy. However, Schmidt et al. (2020) and Wadoux et al. (2020) advise 250 

caution when inferring causal relationships from random forest models. Wadoux et al. (2020) demonstrate that photographs of 

soil scientists projected across their study area can be utilised by a random forest to accurately map the soil carbon content. 

They suggest that knowledge discovery from machine learning models requires more than the recognition of patterns and 

successful prediction. Instead they recommend the pre-selection of relevant environmental covariates and the posterior 
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interpretation and evaluation of the recognised patterns: this is the approach taken here with the selection of 21 covariates 255 

representative of the conceptual framework being analysed (Fig. 4). 

Random forests are calibrated using the Matlab ‘Treebagger’ function with each forest containing 500 trees 

(consistent with Addor et al., 2018), the with-replacement bootstrap sample for each tree being of the same size as the set of 

available data and one third of the covariates are considered at each decision node. The ‘Treebagger’ function defines the 

importance of a covariate in a random forest to be equal to the increase in the mean squared error of all predictions averaged 260 

over all trees in the ensemble upon shuffling of the covariate values divided by the standard deviation of the predictions taken 

over the trees. 

4. Results 

4.1 Linear regression model structures 

Regression models were developed for both BFI_LH and BFI_CEH, with covariates from Set A and from Set B. For all four 265 

models the variograms of the residuals indicated substantial spatial correlation. Therefore, the models were re-estimated by 

REML and included spatial correlation parameterised by an exponential function. Note that although the inclusion of the 

residual correlation structure does not alter signs of the estimated coefficients, the significance of the model covariates changed. 

Some covariates were no longer significant after accounting for the spatial correlations. This could imply that part of the 

variation in BFI that was previously explained by certain covariates in the iid model may have been a result of spatial 270 

correlation. The full LR models are listed in Table A2 and the distribution of residuals for the LR models are illustrated in Fig. 

A1. 

Figure 5 shows the covariates identified as significant as well as the sign of the covariates. In this analysis, topography 

(“dpsbar”), climate (“aridity”), the spatial coverage of fractured aquifers (“frac_high_perc”), of crop coverage (“crop_perc”) 

and of clay soils (“clay_perc”) are highly significant in all four LR models, and the spatial coverage of areas with no active 275 

groundwater systems (“no_gw_perc”) is also a significant covariate in all four models to different levels of significance (Fig. 

5). In the LR models using Set B, surface and groundwater abstractions and discharges are all highly significant in explaining 

the variations in the BFI_LH and BFI_CEH although the number (“num_reservoirs”) and capacity of reservoirs 

(“reservoir_cap”) are not significant covariates. Urban land cover (“urban_perc”), previously noted as potentially influencing 

BFI in the Thames Basin in southern England (Bloomfield et al., 2009), is not a significant covariate in the LR models using 280 

covariate Set A once spatial correlation in the covariates has been accounted for, and is not significant at all when WRM 

covariates are include in the LR models. 

In the LR models, the signs of the significant covariates in Fig. 5 are consistent with current process-based 

understanding of the generation of baseflow (Price et al., 2011) as represented in the revised conceptual model (Fig. 4) and 

with previous regression models of BFI in the study area (Bloomfield et al., 2009). For example, there is a significant inverse 285 

relationship between BFI and the fraction of clay soils within catchments, the fraction of catchments underlain by rocks with 
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essentially no groundwater, and the aridity of catchments. Conversely, all LR models indicate a significant positive correlation 

between BFI and the fraction of catchments underlain by fractured aquifers.  

In all four LR models, the Lin’s concordance coefficients between the fixed effects predictions and the observed BFI 

are similar upon training and validation indicating that the models are not overfitted (Table 1). The coefficients for the models 290 

using Set A to predict BFI_LH and BFI_CEH are 0.75 and 0.81 respectively. There are moderate negative correlations between 

the residuals from these models and the surface water and groundwater abstractions and discharges from Set B covariates 

(Table 2). There are negligible correlations between the residuals and the number and capacity of reservoirs covariates. When 

the WRM covariates are added to the model the Lin’s concordance coefficients increase to 0.82 and 0.85 for BFI_LH and 

BFI_CEH respectively (Table 1). 295 

 

Figure 5. Signs and significance levels of the covariates in the LR models and the relative importance of covariates in the RF 

models. The signs of the significant covariates in the LR models are indicated using colour (pink for positive, blue for negative) 

and the corresponding significance levels of the covariates are indicated on the x-axis with asterisks (* for significance level 

between 0.05 and 0.1, ** for significance level between 0.01 and 0.05, *** for significance level below 0.001). Some covariates 300 

were only significant prior to accounting for the spatial correlations. These are marked with asterisks only in the figure at their 

respective level of significance. Table A1 gives full details of the regression coefficients. Relative RF importance ranges from 

zero to 2. Table 3 gives the scores for the relative importance of covariates in the four RF models.   
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 305 

Table 1. Lin’s concordance coefficients between LR model predictions and the data. 

Model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

Scheme LR LR LR LR RF RF RF RF 

 Set A Set A Set B Set B Set A Set A Set B Set B 

BFI data BFI_LH BFI_CEH BFI_LH BFI_CEH BFI_LH BFI_CEH BFI_LH BFI_CEH 

Training 0.75 0.81 0.82 0.85 0.95 0.96 0.97 0.97 

Validation 0.75 0.80 0.82 0.84 0.80 0.82 0.81 0.84 

 

Table 2. Pearson correlation between Set A model residuals and Set B model covariates 

Model Scheme LR LR RF RF 

BFI data BFI_LH BFI_CEH BFI_LH BFI_CEH 

surfacewater_abs -0.16 -0.17 -0.21 -0.19 

groundwater_abs -0.36 -0.31 -0.27 -0.27 

discharges -0.27 -0.23 -0.16 -0.13 

num_reservoirs -0.02 -0.02 -0.03 -0.02 

reservoir_cap -0.01 -0.02 -0.04 -0.03 

 

In summary, when spatial correlation effects are taken into account, the LR models do not appear to be overfitted, show a 310 

consistent though moderate improvement in explanatory power with the addition of the WRM covariates, and indicate that 

surface abstraction, groundwater abstraction, and discharges are all significant in explaining the variations in both the estimates 

of BFI.  

4.2 Machine learning model structures 

The relative importance of the covariates with respect to estimates of BFI are listed in Table 3 and illustrated in Fig. 5 for the 315 

RF models. Lin’s concordance coefficients on training data are larger for the RF predictions than for the LR models (Table 1). 

However, upon cross-validation the RF coefficients decrease and are comparable to the LR model values. This could be an 

indication of overfitted RFs, perhaps because the spatial correlation previously identified amongst the data (see LR results 

above) has not been accounted for in the RF models. The most important covariates in the RF models using Set A covariates 

are consistent for both BFI_LH and BFI_CEH and are in descending order of importance: the fraction of catchments underlain 320 

by fractured aquifers (“frac_high_perc”), clay soils (“clay_perc”), extent of catchments underlain by rocks with essentially no 

groundwater (“no_gw_perc”), and crop and grass coverage (“crop_perc”, “grass_perc”) (Table 3 and Fig. 5). 
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The residuals from the RF models are moderately and negatively correlated for the surface water and groundwater 

abstraction covariates (Table 2). The groundwater abstraction covariate has high importance in both RF models of Set B 

covariates (Table 3 and Fig. 5) and is in the top third of the covariates for both models. The discharges covariate has a moderate 325 

importance in the RF models, but the relative importance of the surface water abstraction covariate and the covariates for the 

number of reservoirs and for their total capacity is low (Table 3 and Fig. 5). 

 

Table 3. Score of the relative importance of covariates in RF model 

Covariate Model 5 Model 6 Model 7 Model 8 

area 0.36 0.43 0.28 0.18 

dpsbar 0.59 0.58 0.54 0.62 

aridity 0.63 0.64 0.55 0.57 

frac_snow 0.20 0.28 0.21 0.22 

inter_high_perc 0.43 0.52 0.39 0.44 

frac_high_perc 1.81 1.82 1.59 1.62 

no_gw_perc 1.14 1.3 1.09 1.16 

dwood_perc 0.69 0.59 0.6 0.55 

ewood_perc 0.39 0.30 0.34 0.31 

grass_perc 0.76 0.67 0.70 0.64 

shrub_perc 0.33 0.39 0.30 0.34 

crop_perc 1.05 1.07 0.88 1.00 

urban_perc 0.63 0.59 0.46 0.58 

inwater_perc 0.34 0.27 0.27 0.26 

cbares_perc 0.17 0.14 0.12 0.14 

clay_perc 1.59 1.53 1.41 1.34 

surfacewater_abs 0 0 0.24 0.28 

groundwater_abs 0 0 0.96 0.96 

discharges 0 0 0.55 0.45 

num_reservoirs 0 0 0.15 0.10 

reservoir_cap 0 0 0.19 0.21 

 330 

In summary, RF models show that the majority of the power to explain variations in BFI is due to the natural covariates 

and when WRM covariates are included in the models, groundwater abstraction is the most important and discharges of 

moderate importance in explaining both estimates of BFI. 
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4.3 Consistency between model structures 

The structures of the LR and RF models (Fig. 5) are broadly insensitive to the BFI being modelled. Although this is reasonable 335 

given the correlation between BFI_LH and BFI_CEH (Fig. 3), this observation supports the inference that the models are 

robust. Importantly for the purposes of the present study, significant covariates in the LR models and covariates with relatively 

large importance in the RF models are consistent regardless of whether the models are developed using BFI_LH or BFI_CEH 

(Fig. 5).  

There is a high level of agreement between the two modelling approaches regarding the significance or importance 340 

of the natural covariates in Set A. Both the LR and RF models indicate the primary importance of the presence of fractured 

aquifers in controlling BFI. This is consistent with the observation of Bloomfield et al (2009) where the percentage coverage 

of fractured aquifers in the Thames catchment in southern GB was found to be an important term in LR models of BFI. In the 

present study, in Models 1 to 4 the catchment fraction underlain by fractured aquifers is either a significant covariate or the 

covariate with the largest importance (Fig. 5), and catchment fraction of clay soils, those underlain by rocks with essentially 345 

no groundwater, and crop coverage are all significant in the LR models or have large importance in the RF models (Fig. 5). 

The two other catchment covariates identified as significant in the LR models (topography and aridity) also have high or 

moderate importance in the RF models.  

The same natural covariates that are identified as significant or of high importance in the LR and RF models in Set A 

are also significant or important in models using the Set B covariates (Fig. 5) and the majority of the variation in BFI is 350 

described by the natural covariates (Table A2). From these observations, it is taken that WRM practices, rather than being the 

principle explanatory factor of variance in BFI, act to modify BFI controlled primarily by natural catchment processes. There 

are also similarities in the significant or importance of WRM covariates between the Set B models. In both cases groundwater 

abstraction is significant or important, discharges are significant or of moderate importance, and both reservoir numbers and 

capacities are either not significant or are of low importance. There is however a notable dissimilarity between the model 355 

structures with regard to surface water abstraction: it is a significant covariate in the LR models (Fig. 5, see Models 5 and 6) 

but is not important in the RF model (Table 3 and Fig. 5, see Models 7 and 8).  

4.4 Evidence for the impact of water resources management practices 

The observations relating to the effect of WRM on BFI have been investigated further by considering the extent to which 

particular catchment context and management settings influence the respective model performance. Figure 6 shows that, 360 

particularly for a number of relatively high BFI catchments in central England and SE England to the north of London (Fig. 

6a), the LR model of BFI_LH using only natural covariates appears to underestimate BFI. Similar observations can be made 

with respect to estimates of BFI_CEH (Fig. A2a), with the additional observation that there are a few catchments in eastern 

England where the model appears to overestimate BFI. Inclusion of WRM covariates leads to some improvements in LR model 

estimates of BFI, with the largest improvements being in the high BFI catchments (Fig. 7a and A3a). These improvements are 365 
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particularly seen in the relatively high BFI catchments immediately to the north of London (Fig. 6b). Note, however, that 

addition of WRM covariates to the models does not appear to improve the estimates of BFI_CEH in the catchments in eastern 

England, where the model still appears to overestimate BFI (Fig. A2b).   

 

 370 

Figure 6. Maps of difference between modelled and observed BFI_LH (a to d) and corresponding scatter plots of BFI_LH 

against fitted BFI for covariate Sets A and B for LR and RF models (e to h)  

 

To explore further which WRM covariates (groundwater abstraction, surface water abstraction, and discharges) may 

be contributing to the improvement of the LR models, the distribution of differences between model estimates and observed 375 

BFI as a function of the magnitude of the three WRM covariates have been plotted for BFI_LH (Fig. 8) and for BFI_CEH 

(Fig. A4). Figure 8 shows that for LR models using Set A, underestimation of BFI is greater in catchments with higher levels 

of groundwater abstraction and, to a lesser extent, with higher discharges. Whereas, there is no apparent systematic association 

between under- or overestimation of BFI_LH and levels of surface water abstraction. When the WRM covariates are included 

in the models (Set B), estimates of BFI_LH are noticeably improved in catchments with high levels of groundwater abstraction 380 

and to a lesser extent moderate to high discharges. Similar patterns are seen for models of BFI_CEH (Fig. A4). From this it is 

inferred that most of the improvement in the LR model performance when WRM covariates are included in the models is due 

to the groundwater abstraction covariate and, to a lesser extent, to the discharge covariate. Inclusion of the surface water 

abstraction covariate appears to have a negligible influence on estimates of BFI using LR models.  
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Compared with the LR models, differences between estimates of BFI from the RF models and observed values of 385 

BFI_LH and BFI_CEH using Set A covariates are small and there are no clear regional patterns in model performance across 

the study area (Fig. 6 and A2), and, unlike the LR models, there is no evidence of preferential improvement in models as a 

function of catchment BFI (Fig. 7 and A3). Figure 8 shows that RF models using Set A covariates underestimate BFI in 

catchments with the highest levels of groundwater abstraction but there is no clear association between the performance of 

these models and levels of surface water abstraction or discharges. Inclusion of WRM covariates in the RF models (Set B) 390 

does not appear to change these relationships: BFI is still underestimated in catchments with the highest levels of groundwater 

abstraction and there is still no clear association between model performance and levels of surface water abstraction or 

discharges. Similar relationships also hold for the RF models of BFI_CEH (Fig. A4). There is no noticeable improvement in 

the performance of the RF models with the inclusion of WRM covariates. 

 395 

 

Figure 7. Scatter plots of improvement in modelled BFI as a function of observed BFI_LH for a) LR and b) RF models 
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Figure 8. Comparison of observed and modelled BFI_LH for covariate Sets A and B, for LR and RF models and as a function 400 

of different human management categories. 
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5. Discussion 

Given that this is not a model inter-comparison study, the following discussion focusses on insights to be gained from 

considering both the LR and RF model structures and the performance of the models with the inclusion of WRM covariates. 405 

The two contrasting modelling approaches, one relatively simple and tractable (LR modelling) and the other considerably more 

flexible but potentially harder to interpret (RF modelling), have resulted in remarkably similar model structures with high 

levels of consistency between both natural and WRM covariates being identified as either significant (LR models) or important 

(RF models). All results found are plausible in terms of the new conceptual model of baseflow generation (Fig. 4). In addition, 

analysis of the performance of the models appears to show that the LR models may offer some additional (model dependent) 410 

insights into which WRM covariates may be important in which catchment settings. 

The results of the models are, however, subject to standard caveats for such types of analysis. Inclusion of spatial 

correlation in the LR models was necessary and led to some otherwise significant covariates being removed, and the LR models 

were unable to represent non-linear relationships between the covariates. The RF models did not take into account spatial 

correlation identified in the LR analysis and there was some evidence of overfitting of the RF models, but they are able to 415 

represent any non-linearites that are present between the covariates that could not be included in the LR models. More 

generally, the CAMELS-GB data on which the models are based are measurements made in the landscape and are not the 

result of designed experiments (Coxon et al., 2020a; 2020b). Consequently, they have not been sampled at random and 

confounding variation cannot be controlled in the manner that can be achieved by a statistical experimental design. Therefore, 

the models must include some potentially additional sources of variation rather than those just found within the covariates of 420 

interest (e.g. natural and water management covariates) leading to potentially more complex model structures and potentially 

to some mismatches between model structure and reality.  

Notwithstanding these caveats, both modelling approaches point to the same natural covariates contributing to the 

majority of variation in BFI, including hydrogeology attributes such as the role of highly productive aquifers and non-aquifers 

influencing BFI. Given the importance of these covariates for BFI estimates, also previously reported by Bloomfield et al. 425 

(2009), it is interesting to note that the hydrogeology attributes in CAMELS-GB are “heuristic, based on hydrogeological 

inference that is based on mapped lithologies rather than on statistical analysis of borehole yields” (Coxon et al., 2020) (similar 

heuristic hydrogeological attributes are found in other CAMELS datasets, Addor et al., 2017). As a consequence, although 

uncertainties in hydrogeology attributes are particularly difficult to constrain they may be particularly influential in the overall 

performance of the models described here.     430 

Both modelling approaches are largely consistent in identifying the most influential WRM covariates, namely: the 

importance of groundwater abstraction, the modest effect of discharges to streams, and the unimportance of reservoirs in 

influencing BFI. What is less clear is why surface water abstraction was significant in the LR model but unimportant in the 

RF model even though conceptually it is expected to be important in effecting BFI (Fig. 4). Differences between the two 

modelling approaches may amplify the effects of linear and non-linear relationships between groundwater and surface water 435 
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abstraction and other covariates, including other WRM covariates. Water resources in England are currently well-regulated 

within the context of the European Water Framework Directive and daughter Directives (European Commission, 2000), 

however, a wide range of WRM practices are used to manage low flow and drought in England including: low flow alleviation 

schemes, ‘hands-off’ flow measures, and conjunctive use schemes (Wendt et al., 2020; 2021). Low flow alleviation schemes 

and ‘hands-off’ flow measures constrain the amount of water that is abstracted from rivers with abstractions being reduced or 440 

stopped at a given low flow trigger level. Conjunctive use schemes, such as the Shropshire Groundwater Scheme (Shepley et 

al., 2009), use combined management of groundwater and surface water abstractions to maintain ecological flows in 

catchments where there is an important groundwater resource in the catchment. These different WRM schemes have operated 

in different catchments in GB in response to perceived local regulatory and management needs, and in any given catchment 

WRM practices have evolved over the period which the CAMELS-GB baseflow indices have been estimated. All of these 445 

factors will affect the relationships between surface water abstraction and the other covariates and hence the respective 

sensitivities of the models to surface water abstraction effects. 

CAMELS-GB reflects the dominant WRM practices for GB only. Consequently, once systematic WRM practice 

information becomes available for other regions it is recommended that the present study should be extended to test additional 

WRM attributes and the applicability of the findings in other WRM regimes. For example, CAMELS-GB does not explicitly 450 

include information about WRM practices associated with hydropower schemes or seasonal changes in abstraction (e.g. for 

irrigation), so the effect of such schemes on BFI has not been assessed. In addition, CAMELS-GB does not include any 

information on within and between catchment water transfers (note the absence of these WRM terms from the conceptual 

model, Fig. 4). In addition, the approach to assessing the effect of WRM practices on BFI could also be applied and tested for 

relevance in other climate settings such semi-arid environments (Mwakalila et al, 2002), or where snowmelt is an important 455 

component of baseflow generation (Miller et al., 2014; Barnhart et al., 2016) once systematic information on WRM practices 

is available in those settings.   

Finally, there is an active debate on the comparative merits of process-based hydrological modelling and machine 

learning in hydrological forecasting. Specifically, questions have been asked related to the extent to which hydrological 

processes and our understanding of the uniqueness of place as encapsulated in our conceptual models of the terrestrial water 460 

cycle (Wagner et al., in review) has a role in hydrological prediction in the ‘age of machine learning’ (ML) (Bevan 2020; 

Nearing et al 2020). Although the purpose of the present modelling was not to develop models capable of predicting BFI, or 

of undertaking a model intercomparison between two different stochastic modelling approaches, it is interesting to note that 

there have been clear benefits in applying both simple statistical models (LR models) and more flexible machine learning 

approaches (RF models) to the same parameter space to identify common model structures and covariates of interest. Typically 465 

ML might have previously been applied to a much larger parameter space – over 100 catchment parameters and variables are 

available in CAMELS-GB – however limiting the analysis to 21 covariates has enabled direct comparison of LR and RF model 

structures. Even though the models described here are not process-based and have not been developed to predict BFI in 
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ungauged catchments, the results provide evidence to extend our current process understanding of baseflow based beyond 

individual LR (Bloomfield at al., 2009; Carlier et al., 2018; Zhang et al 2020) and RF (Addor, et al., 2018) studies. 470 

6. Conclusions 

By exploring model structures from complementary statistical modelling schemes applied to BFI data for GB, the aim of the 

present study was to identify which, if any, WRM activities influence baseflow; to assess the influence of these activities 

relative to other natural factors known to effect BFI; and, to investigate if WRM factors are important in any particular 

catchment settings or management context. The following concluding observations can be made:  475 

 Modelling shows that variation in BFI is predominantly controlled by natural (meteorological and catchment) 

characteristics, the preeminent of which is the extent of high productivity fractured aquifers within a catchment. 

 Although not the major control on variation in BFI, there is evidence that WRM practices systematically modify BFI 

in GB. Groundwater abstraction appears to be the most influential of these practices. Reservoir storage appears to be 

unimportant in modifying BFI, at least in the current study area and for the specific reservoir attributes provided in 480 

CAMELS-GB. 

 The effects of WRM practices on BFI are most evident in groundwater-dominated catchments where there are the 

highest levels of groundwater abstraction. 

 WRM practices can (Fig. 4) and should where appropriate be incorporated in future conceptual models of BFI and 

baseflow generation, and consequently data and information about WRM practices should be included in future large-485 

sample catchment datasets and in future investigations of baseflow.  

7. Data availability 
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2020b) is available from Earth System Science Data at https://essd.copernicus.org/articles/12/2459/2020/  490 
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12. Appendix 

Table A1. Description of the CAMESL-GB covariates used in the modelling and analysis. 700 

Covariate 

class 

CAMELS-GB 

covariate 

Details of CAMELS-GB covariate Context 

Catchment 

physiography 

area Catchment area (km2) based on date 

from UKCEH’s Integrated Hydrological 

DTM (Morris and 

Flavin, 1990). 

Catchment area is commonly identified 

as an important factor in explaining 

variability in low flows (Price et al., 

2011). However, it less important with 

respect to mean residence and transit 

times where topographic relief appears 

to be more important (McGlynn et al, 

2003; Asano and Uchida, 2012; Munoz-

Villiers et al., 2016). 

dpsbar Catchment mean drainage slope path (m 

km-1).  

Mean drainage path slope (Bayliss, 

1999) is an index of catchment 

steepness and is estimated as the mean 

of all inter-nodal slopes from UKCEH’s 

Integrated Hydrological DTM for a 

given catchment (Morris and Flavin, 

1990). 

Climate 

indices 

aridity Aridity (-). Aridity in CAMELS-GB, as 

with the other CAMELS data sets, is 

calculated as the ratio of mean daily 

potential evapotranspiration to mean 

daily precipitation (Addor et al., 2017, 

Coxon et al., 2020b). In the present study 

The primary input to the catchment 

water balance and hence to baseflow 

generation is precipitation minus 

evapotranspiration (Price  2011, Fig.1). 
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it has been reformulated as usually 

estimated (Joint Research Centre, 2019). 

 

frac_snow Fraction of precipitation falling as snow 

(for days colder than 0°C) was estimated 

by Coxon et al., (2020b). 

Barnhart et al (2016) demonstrated a 

strong correlation between snowmelt 

rate and baseflow efficiency for 

catchments from western USA. 

Hydrogeology 

classes  

 

 

inter_high_perc Percentage of catchment designated as 

being underlain by rock with 

intergranular flow & high productivity 

(%) (Hydrogeological attributes for each 

catchment were derived from the UK 

bedrock hydrogeological maps, British 

Geological Survey, 2019). 

As Price (2011) notes, catchment 

geology is a primary control on 

baseflow-generating process. Three of 

the nine CAMELS-GB hydrogeological 

attributes have been selected as 

covariates, these include the two high 

groundwater productivity attributes and 

the attribute that denotes essentially no 

groundwater. Bloomfield et al., (2009) 

had previously explained 97% of the 

variance in BFI for 44 catchments in the 

Thames Basin, UK, using a model that 

regressed four hydrogeological classes 

including two high productivity and two 

low productivity classes on BFI.    

fract_high_perc Percentage of catchment designated as 

being underlain by rock with flow 

through fractures & high productivity 

(%). 

no_gw_perc Percentage of catchment designated as 

being underlain by rocks with essentially 

no groundwater (%). 

Land cover 

 

 

dwood_perc Percentage of catchment designated as 

deciduous woodland coverage (%) 

(Attributes for each catchment were 

derived from the UK Land Cover Map 

2015 produced by UKCEH, Rowland et 

al., 2017). 

Processes associated with the 

transformation of the hydrological 

inputs, in forests and shrubby 

vegetation, such as interception, 

throughflow and stem flow, at the 

ground surface, such as ponding and 

infiltration, and in the soil, such as deep 

drainage and recharge (Price, 2011) 

depend on the nature of land use and 

land cover.   

 

 

 

 

 

ewood_perc Percentage of catchment designated as 

evergreen woodland coverage (%). 

grass_perc Percentage of catchment designated as 

grass and pasture coverage (%). 

shrub_perc Percentage of catchment designated as 

medium scale vegetation (shrubs) 

coverage (%). 

crop_perc Percentage of catchment designated as 

crops coverage (%). 
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urban_perc Percentage of catchment designated as 

suburban and urban coverage (%). 

 

 

 

 

 

 

interwater_perc Percentage of catchment designated as 

inland water coverage (%). 

bares_perc Percentage of catchment designated as 

bare soil and rocks coverage (%). 

Soil clay_perc Percentage clay content of soil (%). Soil 

attributes for each catchment were based 

on the European Soil Database Derived 

Data product (Hiederer, 2013). 

Using data from over 600 catchments in 

the CAMELS-US dataset, Addor et al., 

(2018) used ML to compare the 

influence of catchment attributes on a 

variety of hydraulic signatures 

including BFI_LH. Soil clay fraction 

was the most negatively correlated 

attribute with BFI_LH (Addor et al., 

2012, Fig. 4). 

Water 

resource 

management 

surfacewater_abs Mean surface water abstraction (mm 

day-1). Mean surface water and 

groundwater abstraction and discharge 

data were estimated by Coxon et al., 

(2020) based on monthly actual 

abstractions and returns for the period 

January 1999 – December 2014. 

 

Wittenburg (2003), Wang and Cai 

(2009), Webber and Perry (2006) and 

Tomas et al. (2013) have all previously 

identified changes in features of 

baseflow in catchments subject to 

groundwater abstraction or due to 

returns flows. 

groundwater_abs Mean groundwater abstraction (mm day-

1). 

discharges Mean discharges (mm day-1). Discharge 

data consists of daily discharges into 

water courses from water companies and 

other discharge permit holders reported 

to the Environment Agency from 1 

January 2005 to 31 December 2015. 

num_reservoirs Number of reservoirs in the Catchment 

(-). Reservoir attributes were taken from 

an open source UK reservoir inventory 

(Durant and Counsell, 2018). 

reservoir_cap Total storage capacity of reservoirs in 

the catchment (ML). 
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Table A2. Coefficients of the four LR models, and associated spatial structural parameters and summary statistics for the 

models 

 Model 1 Model 2 Model 3 Model 4 

 Set A Set B Set A Set B 

 BFI_LH BFI_CEH BFI_LH BFI_CEH 

intercept 1.3652 1.4068 1.1372 1.2137 

dpsbar 0.0029** 0.0056*** 0.0034*** 0.0063*** 

aridity -0.2182*** -0.3220*** 0.238*** -0.4002 

inter_high_perc    (-0.0031***) 

frac_high_perc 0.0107*** 0.0194*** 0.0105*** 0.0031*** 

no_gw_perc -0.0028** -0.0035* -0.0018* -0.0021*** 

crop_perc 0.0096*** 0.0157*** 0.0089*** 0.0149*** 

urban_perc (0.0027***) (0.0032***)   

inwater_perc (0.0850***)    

clay_perc -0.0412*** -0.0538*** -0.0350*** -0.0476*** 

surfacewater_abs   0.3278*** 0.5239*** 

groundwater_abs   1.3861*** 1.8737*** 

discharges   0.7099*** 0.7285*** 

Spatial structure parameters 

Range 0.504 0.446 0.473 0.426 

Nugget 0.408 0.383 0.496 0.387 

Summary of models 

MSPE 0.117 0.360 0.138 0.289 

Residual std. 0.435 0.642 0.388 0.581 

R^2 (iid model) 0.627 0.669 0.703 0.732 
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Figure A1. Distribution of residuals for LR models (Models 1 to 4) 

 710 
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Figure A2. Maps of difference between modelled and observed BFI_CEH (a to d) and corresponding scatter plots of BFI_CEH 

against modelled BFI for covariate Sets A and B for LR and RF models (e to h) [Note this is the same as Fig. 6, but for 

BFI_CEH]. 
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Figure A3. Scatter plots of improvement in modelled BFI as a function of observed BFI_CEH for a) LR and b) RF models. 

[Note this is the same as Fig. 7, but for BFI_CEH]. 
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Figure A4. Comparison of observed and modelled BFI_CEH for covariate Sets A and B, for LR and RF models and as a 

function of different human management categories. [Note this is the same as Fig. 8, but for BFI_CEH]. 
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