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Abstract. Water resource management (WRM) practices, such as groundwater and surface water abstractions and effluent 10 

discharges, may impact baseflow. Here the CAMELS-GB large-sample hydrology dataset is used to assess the impacts of such 

practices on baseflow index (BFI) using statistical models of 429 catchments from Great Britain. Two complementary 

modelling schemes, multiple linear regression (LR) and machine learning (random forests, RF), are used to investigate the 

relationship between BFI and two sets of covariates (natural covariates only and a combined set of natural and WRM 

covariates). The LR and RF models show good agreement between explanatory covariates. In all models, the extent of fractured 15 

aquifers, clay soils, non-aquifers, and crop cover in catchments, catchment topography and aridity are significant or important 

natural covariates in explaining BFI. When WRM terms are included, groundwater abstraction is significant or the most 

important WRM covariate in both modelling schemes and effluent discharge to rivers is also identified as significant or 

influential, although natural covariates still provide the main explanatory power of the models. Surface water abstraction is a 

significant covariate in the LR model but of only minor importance in the RF model. Reservoir storage covariates are not 20 

significant or are unimportant in both the LR and RF models for this large-sample analysis. Inclusion of WRM terms improves 

the performance of some models in specific catchments. The LR models of high BFI catchments with relatively high levels of 

groundwater abstraction show the greatest improvements, and there is some evidence of improvement in LR models of 

catchments with moderate to high effluent discharges. However, there is no evidence that the inclusion of the WRM covariates 

improves the performance of LR models for catchments with high surface water abstraction or that they improve the 25 

performance of the RF models. These observations are discussed within a conceptual framework for baseflow generation that 

incorporates WRM practices. A wide range of schemes and measures are used to manage water resources in the UK. These 

include conjunctive use and low flow alleviation schemes and hands-off flow measures. Systematic information on such 

schemes is currently unavailable in CAMELS-GB and their specific effects on BFI cannot be constrained by the current study. 

Given the significance or importance of WRM terms in the models, it is recommended that information on WRM, particularly 30 

groundwater abstraction, should be included where possible in future large-sample hydrological data sets and in the analysis 

and prediction of BFI and other measures of baseflow. 



2 

 

1 Introduction 

Baseflow, defined as streamflow fed from the deep subsurface and shallow subsurface storage between precipitation and/or 

snowmelt events (Tallaksen, 1995; Price, 2011; Zhang et al., 2017; Singh et al., 2019; Gnann et al., 2019), is a hydrological 35 

phenomenon that represents a whole catchment response to meteorological and other environmental signals (Bloomfield et al., 

2011). It is important as it sustains surface flows particularly during relatively dry periods and droughts (Smathkin, 2001; 

Miller et al., 2016), because it supports ecological flows and ecosystem functioning (Poff et al., 1997; Boulton 2003), and is a 

factor in regulating streamflow quality and temperature (Jordan et al., 1997; Gomez-Velez et al., 2015; Hare et al., 2021). It 

integrates the outcomes of a wide range of natural and human-influenced surface and sub-surface catchment processes (Price 40 

et al., 2011; Gnann et al., 2019) that include geomorpohological controls related to surface topography (Santhi et al., 2008) 

and soils processes (Vivoni et al., 2007; Price et al., 2011; Singh et al., 2019; Yao et al., 2021) and (hydro)geological processes 

that control baseflow (Longobardi and Villani, 2008; Bloomfield et al., 2009; Kuentz et al., 2017; Carlier et al., 2018). Land 

use and land cover (LULC) change may also have profound effects on baseflow generation (Zhang and Schilling, 2006; Wang 

et al., 2014), including effects of changing forest cover and agriculture (Juckem et al., 2008; Ahiablame et al., 2017; Zhang et 45 

al., 2017) and urbanization (Simmons and Reynolds, 1982; Chang 2007; Dow, 2007; McGrane 2015). Through these processes, 

the dynamics of baseflow generation is modulated by meteorological variability over a range of spatial and temporal scales 

(Beck et al., 2013; Van Loon and Laaha, 2015; Longobardi and Van Loon, 2018) including large-scale circulation patterns 

(Cheng et al., 2021). There is also growing evidence for the potential impact of climate change on baseflow across a variety 

of climate and catchment settings (Wang et al., 2014; Ficklin et al., 2016; Ahiabalme et al., 2017; Zhang et al., 2019) and it 50 

has been proposed that this should be viewed in the context of increasing sensitivity of changes in droughts and low flows to 

wider anthropogenic influences (Van Loon et al., 2016; Sankarasubramanian et al., 2020). 

 Despite this extensive work on baseflow generation dynamics, Gnann et al., (2019) observed that there is still no 

general theory to explain variations in baseflow between catchments despite the strong evidence that it is largely controlled by 

the interaction of climate and landscape processes. They explored the role of climate in baseflow generation using baseflow 55 

data from the United States of America (USA) and the United Kingdom (UK) and found that in humid settings baseflow can 

be highly variable due to variations in catchment storage and wetting potential, whereas in more arid settings baseflow has 

much lower variability and is primarily controlled by vaporization limits. In a complementary study of 435 catchments across 

the contiguous US and the UK, Yao et al., (2021) found that soil water storage capacity is an important control on baseflow 

and that generally, BFI increases with storage capacity for a given a climate condition and decreases with aridity for a given 60 

storage capacity.   

In addition to climate and catchment controls on baseflow, there is evidence that baseflow may be impacted by water 

resource management (WRM) practices. Here WRM practices is a loosely defined term that encompasses a wide range of 

activities related to the management of groundwater and surface water resources that are specifically distinct from wider 

‘human influences’ or ‘human activities’ (Zhang et al., 2019; Mo et al., 2021) that affect LULC, such as of urbanization, 65 
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deforestation, and land-management practices. Wang and Kai (2009) referred to WRM practice as ‘direct human interferences’. 

Some examples of WRM practices include abstraction and discharge, changes in conveyance of streams due to changes in 

channel structure for example for damming, flow regulation and flood management, and development of structures for water 

storage within catchments including dams and artificial wetlands. 

Using a baseflow recession analysis, Wittenburg (2003) identified reduced baseflow resulting from abstraction for 70 

summer irrigation in a catchment in Turkey but only saw limited effect of abstractions for agricultural irrigation on baseflow 

in a catchment in Germany. The latter was attributed to the location of the abstractions within the catchment (abstractions were 

primarily near the watershed) and that the abstracted groundwater was not entirely lost to the groundwater balance (with 

lowered evapotranspiration stress, relative to the Turkish case study, associated with the irrigation contributing to recharge). 

Using an empirical analysis of baseflow recession, Wang and Cai (2009) modelled the impact of abstraction and effluent 75 

returns on stream flow in a catchment in Illinois, USA. They found that the WRM practices significantly altered recession 

process and low-flow hydrograph characteristics (compared with land-use change process that affected both the rising and 

falling limbs of the hydrograph and peak flows) and showed that effluent returns caused a significant increase in low-flow 

(Q5) magnitude but a decreased low flow variability. In a statistical analysis of trends in baseflow in a catchment in Florida, 

USA, Webber and Perry (2006) documented a long-term decline in baseflow and spring flows. They assessed the possible 80 

effects of changes in rainfall, LULC and groundwater abstraction but concluded that the primary cause of decline in baseflow 

and spring flow was  over-abstraction of groundwater. Thomas et al. (2013) emphasised the importance of taking ‘human 

interference’ into account when estimating the baseflow recession constant after documenting higher baseflow recession 

constants associated with groundwater withdrawals from catchments in New Jersey, USA. They also noted that the location, 

size and degree of confinement of abstractions effected the degree to which streamflow was impacted. Large abstractions of 85 

groundwater close to streams resulted in larger impacts on streamflow than smaller abstractions from more distant locations, 

and abstractions from unconfined aquifers had larger impacts than from confined aquifers. A number of modelling studies 

have simulated the impact of abstraction and other WRM practices on baseflow (Kirk and Herbert, 2002; Parkin et al., 2007; 

Sanz et al., 2011; de Graff et al., 2014). For example, de Graffe et al., (2014) calibrated the PCR-GLOBWB model with a 

dynamic allocation scheme to simulate surface water and groundwater abstractions and corresponding feedbacks. They found 90 

impacts of WRM were experienced during periods of low flows when the contribution of groundwater through baseflow is the 

largest and that return flows changed the timing and duration of the low flow periods, causing baseflow to be maintained for 

longer. In summary, as with natural controls on baseflow (Gnann et al., 2019), there is as yet no general theory to explain the 

effects of WRM practices on baseflow, and the effect of a given WRM practice on baseflow may be contingent on a range of 

factors including climate, (hydro)geological setting, location, and timing of the activity.  95 

To date, there have been no large-sample, data-led analyses of the impacts of WRM practices on baseflow. This is 

despite new opportunities being offered to investigate and quantify catchment processes through open access, large-sample 

hydrology datasets (Addor et al., 2020). Such datasets have been used to provide insights into catchment processes and 

functioning across multiple climate and catchment settings (Beck et al., 2013; Ochoa-Tocachi et al., 2016; Fouad et al., 2018; 



4 

 

Gnann et al. 2019; Dudley et al., 2020). CAMELS-GB, a recently published large-sample hydrology dataset for Great Britain 100 

(GB) (Coxon et al., 2020a; 2020b), is unusual in that it contains quantitative information on WRM practices including surface 

water and groundwater abstractions, discharges, and reservoir numbers and capacities at the catchment scale. The aim of the 

present study is to use the CAMELS-GB large-sample dataset to identify which, if any, of these WRM activities influence 

baseflow; to assess the importance of these activities in the context of other factors known to influence baseflow, such as 

meteorology, catchment hydrogeology, catchment physiography, and LULC (Price, 2011); and, to investigate if WRM factors 105 

are important in any particular catchment or management settings. More generally, this study also directly addresses ‘Challenge 

2’ of Wagener et al., (2021) related to the need to improve understanding of the impact of human activities on the water cycle 

in GB. 

As Price (2011) has noted, there are four broad approaches to quantify baseflow, as follows: low flow event time 

series; flow-duration statistics; baseflow recession analysis; and, metrics of the proportion of baseflow to total flow, also known 110 

as baseflow indices. This study takes the last approach and specifically uses the two measures of Baseflow Index (BFI) reported 

in CAMELS-GB (Coxon et al., 2020a; 2020b). BFI is the ratio of baseflow volume to total flow volume expressed as a fraction 

(Nathan and McMahon, 1990) and can be estimated by hydrograph separation using a wide range of tracer-based and non-

tracer methods (Eckhardt, 2008; Gonzales et al., 2009; Price et al., 2011). The two measures of BFI in CAMELS-GB both use 

non-tracer-based methods, specifically a digital filter (Lyne and Hollick, 1979) and a graphical / statistical method (Gustard et 115 

al., 1992; Piggot et al., 2005). The former, although it is not based on the physics of discharge processes, produces objective 

and reproducible estimates of BFI (Cheng et al., 2021), while the latter has been used previously to characterise BFI across the 

study area (Bloomfield, 2009).      

Two statistical models (multiple linear regression, LR, and machine learning using random forests, RF) are used here 

to investigate the relationships between the two estimates of BFI and WRM and other catchment covariates in the CAMELS-120 

GB dataset. Although studies of BFI typically consider multiple baseflow filters to reduce uncertainty in estimates of BFI 

(Chen and Teegavarapu, 2020; Kissel and Schmalz, 2020; Zhang et al., 2020), the present study is not designed either to assess 

the relative efficacy of the filters used to estimate BFI, nor to compare the respective efficacy of the chosen statistical models 

in estimating baseflow: this is not a model inter-comparison study (Refsgaard and Knudsen, 1996). Instead, the estimates of 

BFI and the modelling approaches are designed to provide complementary evidence for the nature and importance (or not) of 125 

WRM practices on influencing BFI based on the published CAMELS-GB data.  

2 Study area and data 

2.1 Study area 

This study focuses on 429 catchments across GB (Fig. 1) covering a wide range of climate-landscape-water management 

features (Fig. 2). Catchments in north and north-west of the study area tend to have higher mean elevations than those in the 130 

south and south-east (Coxon et al., 2020a). Meteorology tends to reflect the broad gradient in catchment physiography, with 
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wet and cooler conditions typically prevalent in the north and west of the study area compared with relatively dry and warmer 

conditions in the south-east (Fig. 2a). The dominant land cover also reflects the prevailing physiographic and meteorological 

conditions with grass cover predominating in the north and west and crop cover in the south and east, with urban land-cover 

dominant in London and the other large cities of central and northern England (Fig. 2b). High productivity aquifers are found 135 

in the south-east and east (Fig. 2c; Bloomfield et al., 2009; Marchant and Bloomfield, 2018), whereas less productive aquifers 

and non-aquifers are generally more extensive in the west and north-west. Catchments in which clay dominated soils overlie 

mudrock and clay bedrock formations and catchments with extensive glacial till deposits that are present in central and eastern 

areas (Fig. 2d) (Bloomfield et al., 2009; Bricker and Bloomfield, 2014).  

 140 

 

Figure 1. Location of catchments in the study area 

 

Groundwater is used throughout England and forms on average about 30% of the public supply, as well as being used 

extensively for agricultural irrigation and industrial supplies (Ascott et al., 2017). For 2017 (the last year of published 145 

abstraction data) abstractions from all sources (except tidal) in England totalled 10,395 million cubic metres (Mm3), with 8,350 

Mm3 from surface waters and 2,044 Mm3 from groundwater. Just over half of all these abstractions were used for public supply 

(5,332 Mm3) (UK Government, 2020).  Regionally groundwater use is more important in southern and eastern England where 

groundwater abstraction may consist of 100% of public supply (Ascott et al., 2020). Consequently, there is a tendency for 
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more extensive surface water abstraction in the north and more groundwater abstraction in south-east (Fig. 2e and 2f) (Coxon 150 

et al., 2020b). Effluent discharges are generally relatively high in catchments in and near major urban centres such as London, 

central England, and across parts of the north-west (Fig. 2b and 2g) while the highest reservoir capacity is generally associated 

with catchments in northern and western parts of the study region (Fig. 2h). 

 

 155 

Figure 2. Selected catchment characteristics from CAMELS-GB. 

2.2 Data 

The data used in this study have been taken from the CAMELS-GB large-sample hydrology data set for Great Britain (GB) 

(Coxon et al., 2020a, 2020b), itself part of the wider CAMELS (Catchment Attributes and MEteorology for Large-sample 

Studies) initiative (Newman et al., 2015; Addor et al., 2017; 2020; Alvarez-Garreton et al., 2018; Chagas et al., 2020).  160 

CAMELS-GB is unique in that it contains human-influence attributes for some catchments, and it is that sub-set of catchments 
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which are used here. These initially consisted of 442 catchments for which there are ‘human influence attributes’ (Coxon et 

al., 2020a, Table2). However, these were further reduced to 429 catchments (Fig. 3) following a consideration of the estimates 

of BFI that are available for those catchments and the availability of data for the covariates of interest, as described below. 

  165 

 

Figure 3. The distribution of a. BFI_CEH, b. BFI_LH, and c. relationship between the two measures of BFI with a 1:1 line for 

reference. 

 

BFI is a hydrological signature (Price et al., 2011; McMillan, 2021) that can be estimated using a wide range of 170 

techniques. CAMELS-GB contains two estimates of baseflow. One index, ‘baseflow_index_ceh’ (BFI_CEH) (Fig3a.), is 

derived using a method developed by the UK Centre for Ecology & Hydrology and has been used in previous studies of 

baseflow and flow regimes in Great Britain (Gustard et al., 1992; World Meteorological Organization, 2008). The other, 

‘baseflow_index’ (BFI_LH) (Fig. 3b), was estimated by baseflow separation using the Lyne and Hollick digital filter (Lyne 

and Hollick, 1979) as implemented by Ladson et al., (2013). A comparison of the two CAMELS-GB baseflow indices (Fig. 175 

3c) confirms the common observation that different techniques used for baseflow separation influence the estimated indices 

(Nathan and McMahon, 1990; Eckhardt, 2008; Beck et al., 2013, Addor et al., 2017). There are often large uncertainties in the 

underlying streamflow data used to estimate BFI (Coxon et al, 2015) but these are difficult to characterise across large samples 

of catchments and uncertainty estimates are not available for all the CAMELS-GB catchments (Coxon et al., 2020b). However, 

BFI typically has lower uncertainty compared with other hydrological signatures, as it is based on temporal averaging 180 

(Westerberg and McMillan, 2015), and that only typically small differences in the BFI estimates are observed in the present 

study based on the two methods of estimate (Fig. 3). 

Given that the true BFI for any given catchment is unknown, catchments for analysis in this study have been selected 

where there is a reasonable agreement between the two baseflow indices. Ten catchments were removed where there is an 
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absolute difference between BFI_CEH and BFI _LH of greater than 0.14, equivalent to the largest 2.5%tile of the absolute 185 

differences of the population. A further three catchments were removed due to missing covariate data leaving the 429 

catchments for analysis (Figs. 1 and 3). Coxon et al. (2020b) note that the CAMELS-GB baseflow indices have been estimated 

for flow time series available during water years from 1st Oct 1970 to 30th Sept 2015, but that individual time series lengths 

and completeness may vary between catchments. On average, flow records for the 429 catchments are 91% complete with 

only 48 catchments with <75% complete. No sites have been omitted from the analysis based on the length of their flow 190 

records. Figure 3c shows that there is a generally good linear agreement between the two estimated BFI indices. However, for 

BFIs below 0.7 BFI_CEH is systematically lower than BFI_LH, and for BFIs above 0.7 BFI_CEH is systematically higher 

than BFI_LH. In addition, for sites above a BFI of about 0.7 the correlation between the two indices is reduced.  

21 of the CAMELS-GB catchment attributes (Coxon et al., 2020a) related to catchment physiography, climate, 

hydrogeology, land cover and soils as well as WRM practices have been selected as covariates for analysis (Table A1). The 195 

spatial distribution of selected covariates are provided in Fig. 2 and described in Coxon et al. (2020b). The 21 CAMELS-GB 

covariates used in this study have been selected to be representative of each of the major components in a new conceptual 

model of baseflow generation (Fig. 4) and are consistent with the recently proposed, broader perceptual hydrological model 

for GB (Wagener et al., 2021). Five WRM covariates from the CAMELS-GB dataset have been selected for analysis: 

groundwater abstraction (groundwater_abs), surface water abstraction (surfacewater_abs), effluent discharges (discharges) to 200 

streams and the number and capacity of reservoirs within catchments (num_reservoirs and reservoir_cap). Note that the 

discharge term only accounts for effluent from sewage treatment works and does not provide information on other water returns 

(Coxon et al., 2020b). Price (2011) presented a conceptual model that illustrated how components of the terrestrial water cycle 

and specific catchment processes are related to baseflow based on stores and flows of water in catchments. It did not, however, 

incorporate WRM concepts and how these might influence or modify baseflow. In addition, it did not include aspects of 205 

catchment physiography as it focussed on catchment inputs, storage and losses. Fig. 4 is a revised conceptual diagram (building 

on Price et al, 2011) indicating conceptual relationships between baseflow, catchment compartments and processes that lead 

to baseflow generation, including aspects of WRM. It conceptualises WRM practices as simple high-level flows between 

groundwater, streamflow and components of storage. Some flows that may be significant within a given catchment, such as 

mains leakage (conceptualised Fig. 4), however these are outside the current analysis as there is no information for these flows 210 

in CAMELS-GB.     

 



9 

 

 

Figure 4. Conceptual model of the relationships between the major compartments of the terrestrial water cycle that exert an 

influence on baseflow. Baseflow and storm flow components are highlighted in blue, driving climatology, catchment 215 

characteristics and compartments are shaded in green, and human influences within the conceptual model are shaded in orange 

and grey (the latter outside the scope of this study). The 21 CAMELS-GB covariates and the two BFI parameters used in this 

study are listed against their respective compartments within the conceptual framework. 

3. Modelling methods 

Modelling is used in this study not for predictive purposes but to explore model structures and performance to assess the 220 

evidence for the relative importance (or not) of WRM practices in influencing BFI. Two complementary modelling schemes, 

a multiple linear regression (LR) scheme and a random forest scheme (RF), have been applied to two estimates of BFI (BFI_LH 

and BFI_CEH) using two sets of covariates (Set A and Set B). Set A consists of the 16 natural covariates and Set B consists 

of all 21 CAMELS-GB covariates, i.e. the combined natural and human influence covariates (Table A1). Consequently, eight 

models (Models 1 to 8) have been developed and evaluated. The LR and RF models are first calibrated for the Set A covariates 225 

(Models 1 to 4), then a second separate calibration is undertaken using Set B covariates (Models 5 to 8). The resulting model 

structures are investigated and their performance in estimating observed BFI compared without and with WRM covariates to 

understand the influence of WRM covariates on BFI. 
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The accuracy of the model estimates has been assessed using RMSE and by calculating Lin’s concordance coefficient 

(Lin, 1989) for the predicted and measured values. Lin’s coefficient indicates the degree of similarity between two variables, 230 

where 

𝜌𝑐(𝑥, 𝑦) =
2𝜌(𝑥,𝑦)√var(𝑥)√var(𝑦)

var(𝑥)+var(𝑦)+(𝜇𝑥−𝜇𝑦)
2,                                               (1) 

 

and where 𝜌𝑐(𝑥, 𝑦)  is Lin’s concordance coefficient for variables 𝑥  and 𝑦 , 𝜌(𝑥, 𝑦)  is Pearson’s coefficient for the same 

variables, var(𝑥) is the variance of 𝑥, and 𝜇𝑥 in the mean of 𝑥. Lin’s concordance coefficient can take values between -1 and 235 

1. A value of 1 indicates an exact match between the two variables and the (𝜇𝑥 − 𝜇𝑦)
2
 term means that variables with different 

mean values have a small coefficient value in contrast to standard correlation coefficients where perfectly correlated variables 

can have vastly different mean values. Lin’s concordance coefficient is in contrast to a more standard Pearson correlation 

coefficient that is an indication of the explanatory power of a linear relationship between the two variables. Lin’s concordance 

coefficient is calculated both to assess the accuracy of a given model at replicating the training data and in a 10-fold cross-240 

validation procedure to explore the model accuracy at locations that were not used in calibration. If Lin’s coefficient is 

substantially smaller upon cross-validation then this could be an indication that the model is overfitted. 

3.1 Linear regression 

Regression is commonly used to model the effect of a given set of covariates on a variable of primary interest (Fahrmier et al., 

2013). Here generalised linear regression (Dobson, 2002) is used to investigate the relationship between BFI_LH and 245 

BFI_CEH and the 21 catchment covariates. Logit transformation was applied to the BFI data, as 𝑦𝑖 = log (𝑧𝑖/(1 − 𝑧𝑖)), where 

𝑧𝑖 is the BFI of catchment 𝑖. This is to ensure the fitted, back transformed BFI values are constrained between 0 and 1. 

The model considered in this paper is a linear mixed model with the following form, 

𝑌 = 𝑋1𝛽1 + ⋯ +  𝑋𝑝𝛽𝑝 +  𝜖          𝜖 ~ 𝒩(0, 𝜎2𝑅)            (2) 

where 𝑌 = (𝑦1, … 𝑦𝑛)′ denotes the column vector of BFI values from 𝑛 catchments, 𝑋𝑗 = (𝑥𝑗1, … , 𝑥𝑗𝑛)′, 𝑗 = 1, … 𝑝, are the 250 

column vectors of the covariates (catchments attributes). The column vector 𝜖  represents the model residuals, which are 

assumed to follow a normal distribution, with covariance matrix 𝜎2𝑅, where 𝑅 reflects the correlation between transformed 

BFI values. The linear sums of covariates in a linear mixed model are referred to as the fixed effects and the residual term as 

the random effects.  

In this paper, the model parameters 𝛽 = (𝛽1, … , 𝛽𝑝)
′
 are estimated using the generalized least squares estimator 255 

(Dobson, 2002): 

𝛽 = (𝑋′𝑅−1𝑋)−1𝑋′𝑅−1𝑌            (3) 

These parameter values maximise the likelihood or probability that the data would have arisen from the estimated model. 

Standard linear regression requires the assumption that the residuals are independent and identically distributed (iid) and that 
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the correlation matrix is equal to the identity matrix, 𝐼. Such an assumption can be inappropriate for landscape measurements, 260 

as they are not selected according to a randomised design, and are often correlated in space as a result of the underlying 

geology, climate, etc. In particular, the BFI measurements made from locations closer to each other are more likely to share 

some similarity than those a long distance apart. If this correlation is ignored then the significance of some model terms could 

be exaggerated.   

A further issue is deciding which of the available covariates should be included. If too few covariates are included 265 

then some of the key drivers of BFI variation might be missed and the predictions that result might be imprecise. If too many 

covariates are included then the model might be overfitted. Some of the terms in an overfitted model replicate the random 

variation of the BFI values within the calibration data rather than generally applicable relationships between BFI and the 

covariates. Such a model can accurately predict the BFI for the sites used in calibration but performs less well on other data. 

The addition of a covariate to a model generally increases the maximised likelihood even in the absence of a true relationship 270 

between that covariate and the property of interest.  The addition cannot decrease this likelihood because the original model 

can be achieved if 𝛽𝑝+1 = 0. A statistical criterion must be used to decide whether the increase in likelihood upon the addition 

of a parameter is sufficient to justify the inclusion of that term. 

The modelling procedure consists of three steps. In the first step, given the candidate covariates, variable selection is 

carried out using the stepwise selection routine based on the Akaike Information Criterion (AIC; Akaike, 1973). The AIC, 275 

which is twice the negative log-likelihood of the model minus 2 times the number of model parameters, 

𝐴𝐼𝐶 =  −2 log{ℒ(𝛽, 𝜎2; 𝑌)} − 2(𝑝 + 1)           (4) 

The model with the lowest AIC is considered to be the best compromise between accuracy and complexity. The forwards 

selection routine starts with a model containing no covariates. Each candidate covariate is considered in turn and the AIC that 

results from its addition to the model is recorded. The covariate which leads to the largest decrease in AIC is added to the 280 

model. The iterative procedure continues until none of the remaining covariates lead to a decrease in AIC. This procedure is 

initially conducted assuming independent residuals (i.e., 𝑅 = 𝐼) and is implemented using the “step” function from R package 

“stats”.  In the second step, spatial correlation is assessed by calculating empirical variograms (Cressie, 1993) of the model 

residuals using the “variogram” function from R package “gstat”. The variogram indicates how the expected squared difference 

between a pair of residuals varies according to their distance apart. Finally, a model including spatial correlation in the residuals 285 

is estimated when inspection of the variogram indicates that this is necessary. Specifically, the spatial correlation is reflected 

by the non-zero off-diagonal elements in the correlation matrix, 𝑅  which correspond to the values from an exponential 

correlation function (i.e., 𝑟(𝑑𝑖𝑗) = exp(−𝑑𝑖𝑗/𝜑), where 𝑑𝑖𝑗  is the Euclidean distance between two catchments 𝑖 and 𝑗 and 𝜑 

is an estimated model parameter). The model with spatial correlation can be estimated by residual maximum likelihood 

(REML; Lark et al., 2006) using the “gls” function from R package “nlme”. The statistical significance of each covariate 290 

included in the model (i.e. whether the corresponding regression coefficient is significantly different to zero) is recorded for p 

values of 0.1, 0.05 and 0.001. 
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3.2 Machine learning 

 LR models require assumptions about the nature of baseflow variation that can restrict the patterns of variation which the 

model can represent. In the past few decades, machine learning (ML) methodologies have become increasingly popular for 295 

representing complex environmental variation (e.g. Hengl et al., 2018; Lange and Sippel, 2020; Nearing et al 2020). ML 

algorithms lead to considerably more flexible relationships between environmental variables. For example, regression trees 

recursively partition observation locations according to a series of binary tests on their covariate values. Each location enters 

the tree at the initial decision node and then follows one of two branches according to the result of the initial test. Each branch 

leads to a network of further decision nodes and tests until the location is allocated to a terminal node. The predicted value of 300 

the environmental variable at an unobserved location is equal to the average of the training data that are allocated to the same 

terminal node. The tests at each node are optimised so that the total squared errors for a tree of a specified degree of complexity 

is minimised.  

Regression trees can replicate complex nonlinear relationships that include interactions between different covariates 

but they are prone to overfitting. A regression tree can perfectly predict the variable of interest for some training data if the 305 

number of terminal nodes is equal to the number of training observations but it cannot be expected to perform exactly when 

predictions are made at other locations. Overfitting can be reduced by introducing stopping criteria to the trees (e.g. each 

terminal node must contain a specified proportion of the training data) or by using cross-validation to decide whether a 

particular decision node should be included in the tree. Overfitting might be further reduced by combining an ensemble of 

regression trees to form a random forest (Breiman, 2001). The trees within the ensemble differ because they are estimated for 310 

a different bootstrap sample of the available data and a different subset of the candidate covariates is considered at each 

decision node. The prediction of the variable of interest at a particular location is equal to the average prediction across all the 

trees. Addor et al. (2018) found that the inclusion of 500 trees in a random forest considerably stabilised predictions and 

smoothed relationships between their covariates and BFI measurements.  

The random forest interprets the available data as if they were a random sample of the population of interest and does 315 

not account for spatial correlation amongst the observations. Also, the relationships implied by a random forest model cannot 

be stated in a simple parametric form such as Eq. (1) meaning that it can be a challenge to determine the drivers of variation. 

It is possible to assess the importance of each covariate by shuffling the values of that covariate amongst the observation 

locations and calculating the reduction in prediction accuracy. However, Schmidt et al. (2020) and Wadoux et al. (2020) advise 

caution when inferring causal relationships from random forest models. Wadoux et al. (2020) demonstrate that photographs of 320 

soil scientists projected across their study area can be utilised by a random forest to accurately map the soil carbon content. 

They suggest that knowledge discovery from ML models requires more than the recognition of patterns and successful 

prediction. Instead they recommend the pre-selection of relevant environmental covariates and the posterior interpretation and 

evaluation of the recognised patterns: this is the approach taken here with the selection of 21 covariates representative of the 

conceptual framework being analysed (Fig. 4). 325 
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Random forests are calibrated using the Matlab ‘Treebagger’ function with each forest containing 500 trees 

(consistent with Addor et al., 2018), the with-replacement bootstrap sample for each tree being of the same size as the set of 

available data and one third of the covariates are considered at each decision node. The ‘Treebagger’ function defines the 

importance of a covariate in a random forest to be equal to the increase in the mean squared error of all predictions averaged 

over all trees in the ensemble upon shuffling of the covariate values divided by the standard deviation of the predictions taken 330 

over the trees. 

4. Results 

4.1 Linear regression model structures 

Regression models were developed for both BFI_LH and BFI_CEH, with covariates from Set A (Models 1 and 2) and from 

Set B (Models 5 and 6). For all four models the variograms of the residuals indicated substantial spatial correlation. Therefore, 335 

the models were re-estimated by REML and included spatial correlation parameterised by an exponential function. Note that 

although the inclusion of the residual correlation structure does not alter signs of the estimated coefficients, the significance 

of the model covariates changed. Some covariates were no longer significant after accounting for the spatial correlations. This 

could imply that part of the variation in BFI that was previously explained by certain covariates in the iid model may have 

been a result of spatial correlation. The full LR models are listed in Table A2 and the distribution of residuals for the LR 340 

models are illustrated in Fig. A1. 

Figure 5 shows the covariates identified as significant as well as the sign of the covariates. In this analysis, topography 

(“dpsbar”), climate (“aridity”), the spatial coverage of fractured aquifers (“frac_high_perc”), of crop coverage (“crop_perc”) 

and of clay soils (“clay_perc”) are highly significant in all four LR models, and the spatial coverage of areas with no active 

groundwater systems (“no_gw_perc”) is also a significant covariate in all four models to different levels of significance (Fig. 345 

5). In the LR models using Set B (Models 5 and 6), surface and groundwater abstractions and effluent discharges are all highly 

significant in explaining the variations in the BFI_LH and BFI_CEH although the number (“num_reservoirs”) and capacity of 

reservoirs (“reservoir_cap”) are not significant covariates. Urban land cover (“urban_perc”), previously noted as potentially 

influencing BFI in the Thames Basin in southern England (Bloomfield et al., 2009), is not a significant covariate in the LR 

models using covariate Set A once spatial correlation in the covariates has been accounted for, and is not significant at all 350 

when WRM covariates are include in the LR models. 

In the LR models, the signs of the significant natural covariates in Fig. 5 (Models 1 and 2) are consistent with current 

process-based understanding of the generation of baseflow (Price et al., 2011; Gnann et al., 2019; Yao et al., 2021) as 

represented in the revised conceptual model (Fig. 4) and with previous regression models of BFI in the study area (Bloomfield 

et al., 2009). For example, there is a significant inverse relationship between BFI and the fraction of clay soils within 355 

catchments, the fraction of catchments underlain by rocks with essentially no groundwater, and the aridity of catchments. 
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Conversely, all LR models indicate a significant positive correlation between BFI and the fraction of catchments underlain by 

fractured aquifers.  

In all four LR models, the Lin’s concordance coefficients between the fixed effects predictions and the observed BFI 

are similar upon training and validation indicating that the models are not overfitted (Table 1). The coefficients for the models 360 

using Set A (Models 1 and 2) to predict BFI_LH and BFI_CEH are 0.75 and 0.81 respectively. There are moderate negative 

correlations between the residuals from these models and the surface water and groundwater abstractions and effluent 

discharges from Set B covariates (Table 2). There are negligible correlations between the residuals and the number and capacity 

of reservoirs covariates. When the WRM covariates are added to the model (Models 5 and 6) the Lin’s concordance coefficients 

increase to 0.82 and 0.85 for BFI_LH and BFI_CEH respectively (Table 1). 365 

 

Figure 5. Signs and significance levels of the covariates in the LR models and the relative importance of covariates in the RF 

models. The signs of the significant covariates in the LR models are indicated using colour (pink for positive, blue for negative) 

and the corresponding significance levels of the covariates are indicated on the x-axis with asterisks (* for significance level 

between 0.05 and 0.1, ** for significance level between 0.01 and 0.05, *** for significance level below 0.001). Some covariates 370 

were only significant prior to accounting for the spatial correlations. These are marked with asterisks only in the figure at their 

respective level of significance. Table A1 gives full details of the regression coefficients. Relative RF importance ranges from 

zero to 2. Table 3 gives the scores for the relative importance of covariates in the four RF models.   
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 375 

Table 1. Lin’s concordance coefficients between LR model predictions and the data. 

Model Model 1 Model 2 Model 5 Model 6 Model 3 Model 4 Model 7 Model 8 

Scheme LR LR LR LR RF RF RF RF 

 Set A Set A Set B Set B Set A Set A Set B Set B 

BFI data BFI_LH BFI_CEH BFI_LH BFI_CEH BFI_LH BFI_CEH BFI_LH BFI_CEH 

Training 0.75 0.81 0.82 0.85 0.95 0.96 0.97 0.97 

Validation 0.75 0.80 0.82 0.84 0.80 0.82 0.81 0.84 

 

Table 2. Pearson correlation between Set A model residuals and Set B model covariates 

Model Scheme LR LR RF RF 

BFI data BFI_LH BFI_CEH BFI_LH BFI_CEH 

surfacewater_abs -0.16 -0.17 -0.21 -0.19 

groundwater_abs -0.36 -0.31 -0.27 -0.27 

discharges -0.27 -0.23 -0.16 -0.13 

num_reservoirs -0.02 -0.02 -0.03 -0.02 

reservoir_cap -0.01 -0.02 -0.04 -0.03 

 

In summary, when spatial correlation effects are taken into account, the LR models do not appear to be overfitted, show a 380 

consistent though moderate improvement in explanatory power with the addition of the WRM covariates, and indicate that 

groundwater and surface water abstraction, and effluent discharges are all significant in explaining the variations in both the 

estimates of BFI.  

4.2 Machine learning model structures 

The relative importance of the covariates with respect to estimates of BFI are listed in Table 3 and illustrated in Fig. 5 for the 385 

RF Set A models (Models 3 and 4) and Set B models (Models 7 and 8). Lin’s concordance coefficients on training data are 

larger for the RF predictions than for the LR models (Table 1). However, upon cross-validation the RF coefficients decrease 

and are comparable to the LR model values. This could be an indication of overfitted RFs, perhaps because the spatial 

correlation previously identified amongst the data (see LR results above) has not been accounted for in the RF models. The 

most important covariates in the RF models using Set A covariates (Models 3 and 4) are consistent for both BFI_LH and 390 

BFI_CEH and are in descending order of importance: the fraction of catchments underlain by fractured aquifers 

(“frac_high_perc”), clay soils (“clay_perc”), extent of catchments underlain by rocks with essentially no groundwater 

(“no_gw_perc”), and crop and grass coverage (“crop_perc”, “grass_perc”) (Table 3 and Fig. 5). 
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The residuals from the RF models are moderately and negatively correlated for the surface water and groundwater 

abstraction covariates (Table 2). The groundwater abstraction covariate has high importance in both RF models of Set B 395 

covariates (Models 7 and 8, Table 3 and Fig. 5). The discharges covariate has a moderate importance in the RF models, but 

the relative importance of the surface water abstraction covariate and the covariates for the number of reservoirs and for their 

total capacity is low (Table 3 and Fig. 5). 

 

Table 3. Score of the relative importance of covariates in RF model 400 

Covariate Model 3 Model 4 Model 7 Model 8 

area 0.36 0.43 0.28 0.18 

dpsbar 0.59 0.58 0.54 0.62 

aridity 0.63 0.64 0.55 0.57 

frac_snow 0.20 0.28 0.21 0.22 

inter_high_perc 0.43 0.52 0.39 0.44 

frac_high_perc 1.81 1.82 1.59 1.62 

no_gw_perc 1.14 1.3 1.09 1.16 

dwood_perc 0.69 0.59 0.6 0.55 

ewood_perc 0.39 0.30 0.34 0.31 

grass_perc 0.76 0.67 0.70 0.64 

shrub_perc 0.33 0.39 0.30 0.34 

crop_perc 1.05 1.07 0.88 1.00 

urban_perc 0.63 0.59 0.46 0.58 

inwater_perc 0.34 0.27 0.27 0.26 

cbares_perc 0.17 0.14 0.12 0.14 

clay_perc 1.59 1.53 1.41 1.34 

surfacewater_abs 0 0 0.24 0.28 

groundwater_abs 0 0 0.96 0.96 

discharges 0 0 0.55 0.45 

num_reservoirs 0 0 0.15 0.10 

reservoir_cap 0 0 0.19 0.21 

 

In summary, RF models show that the majority of the power to explain variations in BFI is due to the natural covariates 

and when WRM covariates are included in the models, groundwater abstraction is the most important and effluent discharges 

of moderate importance in explaining both estimates of BFI. 
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4.3 Consistency between model structures 405 

The results of the models are subject to standard caveats for such types of analysis. Inclusion of spatial correlation in the LR 

models was necessary and led to some otherwise significant covariates being removed, and the LR models were unable to 

represent non-linear relationships between the covariates. The RF models did not take into account spatial correlation identified 

in the LR analysis and there was some evidence of overfitting of the RF models, but they are able to represent any non-

linearities that are present between the covariates that could not be included in the LR models. Notwithstanding these 410 

observations, the two contrasting modelling approaches, one relatively simple and tractable (LR modelling) and the other 

considerably more flexible but potentially harder to interpret (RF modelling), have resulted in remarkably similar model 

structures with high levels of consistency between both natural and WRM covariates being identified as either significant (LR 

models) or important (RF models).  

The structures of the LR and RF models (Fig. 5) are broadly insensitive to the BFI being modelled. Although this is 415 

reasonable given the correlation between BFI_LH and BFI_CEH (Fig. 3), this observation supports the inference that the 

models are robust. Importantly for the purposes of the present study, significant covariates in the LR models and covariates 

with relatively large importance in the RF models are consistent regardless of whether the models are developed using BFI_LH 

or BFI_CEH (Fig. 5).  

There is a high level of agreement between the two modelling approaches regarding the significance or importance 420 

of the natural covariates in Set A. Both the LR and RF models indicate the primary importance of the presence of fractured 

aquifers in controlling BFI. This is consistent with the observation of Bloomfield et al (2009) where the percentage coverage 

of fractured aquifers in the Thames catchment in southern GB was found to be an important term in LR models of BFI. In the 

present study, in Models 1 to 4 the catchment fraction underlain by fractured aquifers is either a significant covariate or the 

covariate with the largest importance (Fig. 5), and catchment fraction of clay soils, those underlain by rocks with essentially 425 

no groundwater, and crop coverage are all significant in the LR models or have large importance in the RF models (Fig. 5). 

The two other catchment covariates identified as significant in the LR models (topography and aridity) also have moderate 

importance in the RF models.  

The same natural covariates that are identified as significant or of high importance in the LR and RF models in Set A 

(Models 1 to 4) are also significant or important in models using the Set B covariates (Models 5 to 8) (Fig. 5) and the majority 430 

of the variation in BFI is described by the natural covariates (Table A2). From these observations, it is taken that WRM 

practices, rather than being the principle explanatory factor of variance in BFI, act to modify BFI controlled primarily by 

natural catchment processes. There are also similarities in the significant or importance of WRM covariates between the Set 

B models (Models 5 to 8). In both cases groundwater abstraction is significant or important, effluent discharges are significant 

or of moderate importance, and both reservoir numbers and capacities are either not significant or are of low importance. There 435 

is however a notable dissimilarity between the model structures with regard to surface water abstraction: it is a significant 
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covariate in the LR models (Fig. 5, see Models 5 and 6) but is not important in the RF model (Table 3 and Fig. 5, see Models 

7 and 8).  

4.4 Evidence for the impact of water resources management practices 

The observations relating to the effect of WRM on BFI have been investigated further by considering the extent to which 440 

particular catchment context and management settings influence the respective model performance. Figure 6 shows that, 

particularly for a number of relatively high BFI catchments in central England and SE England to the north of London (Fig. 

6a), the LR model of BFI_LH using only natural covariates appears to underestimate BFI. Similar observations can be made 

with respect to estimates of BFI_CEH (Fig. A2a), with the additional observation that there are a few catchments in eastern 

England where the model appears to overestimate BFI. Inclusion of WRM covariates leads to some improvements in LR model 445 

estimates of BFI, with the largest improvements being in the high BFI catchments (Fig. 7a and A3a). These improvements are 

particularly seen in the relatively high BFI catchments immediately to the north of London (Fig. 6b). Note, however, that 

addition of WRM covariates to the models does not appear to improve the estimates of BFI_CEH in the catchments in eastern 

England, where the model still appears to overestimate BFI (Fig. A2b).   

 450 

 

Figure 6. Maps of difference between modelled and observed BFI_LH (a to d) and corresponding scatter plots of BFI_LH 

against fitted BFI (e to h) for covariate Sets A and B for LR and RF models (Models 1, 5, 3 and 7 respectively)  
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To explore further which WRM covariates (groundwater abstraction, surface water abstraction, and effluent 455 

discharges) may be contributing to the improvement of the LR models, the distribution of differences between model estimates 

and observed BFI as a function of the magnitude of the three WRM covariates have been plotted for BFI_LH (Fig. 8) and for 

BFI_CEH (Fig. A4). Figure 8 shows that for LR models using natural covariates Set A (Model 1), underestimation of BFI is 

greater in catchments with higher levels of groundwater abstraction and, to a lesser extent, with higher effluent discharges. 

Whereas, there is no apparent systematic association between under- or overestimation of BFI_LH and levels of surface water 460 

abstraction. When the WRM covariates are included in the models (Set B, Model 5), estimates of BFI_LH are noticeably 

improved in catchments with high levels of groundwater abstraction and to a lesser extent moderate to high effluent discharges. 

Similar patterns are seen for models of BFI_CEH (Fig. A4). From this it is inferred that most of the improvement in the LR 

model performance when WRM covariates are included in the models is due to the groundwater abstraction covariate and, to 

a lesser extent, to the discharge covariate. Inclusion of the surface water abstraction covariate appears to have a negligible 465 

influence on estimates of BFI using LR models.  

Compared with the LR models, differences between estimates of BFI from the RF models and observed values of 

BFI_LH and BFI_CEH using Set A covariates (Models 3 and 4) are small and there are no clear regional patterns in model 

performance across the study area (Fig. 6 and A2). Figure 8 shows that RF models of BFI_LH using Set A (Model 3) covariates 

underestimate BFI in catchments with the highest levels of groundwater abstraction but there is no clear association between 470 

the performance of these models and levels of surface water abstraction or effluent discharges. Inclusion of WRM covariates 

in the RF model of BFI_LH (Set B, Model 7) does not appear to improve the model (Fig. 7 and A3) or change these 

relationships: BFI is still underestimated in catchments with the highest levels of groundwater abstraction and there is still no 

clear association between model performance and levels of surface water abstraction or effluent discharges. Similar 

relationships also hold for the RF models of BFI_CEH (Fig. A4). There is no noticeable improvement in the performance of 475 

the RF models with the inclusion of WRM covariates. 
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Figure 7. Scatter plots of improvement in modelled BFI as a function of observed BFI_LH for a) LR and b) RF models 

 480 
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Figure 8. Comparison of observed and modelled BFI_LH for covariate Sets A and B, for LR and RF models and as a function 

of different human management categories. 
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5. Discussion 485 

5.1 Impacts of WRM practices on BFI 

Both modelling approaches are broadly consistent in identifying the most influential WRM covariates, namely: the importance 

of groundwater abstraction; the modest effect of effluent discharges to streams; and, the unimportance of reservoirs in 

influencing BFI. While surface water abstraction was identified as significant in the LR model but unimportant in the RF 

model (Fig. 5). In addition, the LR models identified positive correlations between BFI and groundwater abstraction, surface 490 

water abstraction and effluent discharges (Fig. 5), and the influence of groundwater abstraction on BFI increases with increased 

abstraction (Figs. 7 and 8). It is evident from previous studies (Wittenburg, 2003; Webber and Perry, 2006; Wang and Cai, 

2009, Thomas et al. 2013) that there is no universal relationship between WRM practices and baseflow, and the influence of 

WRM practices on baseflow is sensitive to climate, the location of abstraction in a catchment and on the details of abstraction 

and that in the context of the present study, the relationship between WRM practices and BFI is only partly explained in terms 495 

of the conceptual model in Fig. 4. 

Assuming the principal uses for abstracted groundwater in the UK are for public supply (UK Government, 2020) 

where losses to evaporation are limited, abstracted groundwater from up-catchment sites should have a broadly neutral effect 

on baseflow. In contrast, groundwater abstracted from down-catchment or in the immediate vicinity of streams may be 

expected to reduce baseflow. However, neither of these simple conceptualisations of groundwater abstraction explain the 500 

positive correlation between groundwater abstraction and increased baseflow in the CAMELS-GB data (Figs. 5, 7 and 8).  

Water resources in England have been well-regulated within the context of the European Water Framework Directive and 

daughter Directives (European Commission, 2000), and a wide range of sophisticated schemes and measures are used to 

manage low flow and drought including: conjunctive use schemes, low flow alleviation schemes, and hands-off flow measures 

(Clayton et al., 2008; Shepley et al., 2009; Agnew et al., 2000; Hutchinson et al., 2012; Wendt et al., 2021). Conjunctive use 505 

schemes use combined management of groundwater and surface water abstractions to maintain ecological flows while low 

flow alleviation schemes and hands-off flow measures are used in England to constrain the amount of water that is abstracted 

from groundwater and rivers, with abstractions being reduced or stopped at a given low flow trigger levels. Unfortunately, the 

CAMELS-GB data does not capture the details of any of these schemes or measures, and the conceptualisation of baseflow 

generation in Fig. 4 dose not capture the temporally and spatially linked changes in flows associated with these schemes and 510 

measures. In addition, although the analysis presented here uses BFI data for the period 1970 to 2015, the schemes and 

measures have evolved significantly over this period and so are both temporally and spatially variable. Consequently, although 

the cumulative, spatio-temporally varying effects of these schemes and measures may influence the relationship between WRM 

terms in the models, because there is no information on the dynamic management of water resources in the CAMELS-GB data 

in response to hydro-meteorological events (beyond the average terms used in the study, Table A1) the effects of the schemes 515 
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and measures on BFI cannot be constrained by the present study.  The positive correlation between effluent discharges and 

BFI is consistent with the conceptualisation of baseflow generation in Fig. 4 while the lack of any significant or important 

correlation between the terms associated with reservoirs and BFI (Fig. 5) is consistent with the conceptualisation of these as 

stores of water that do not contribute to baseflow (Fig. 4). 

5.2 Impacts of climate and landscape characteristics on BFI 520 

Both modelling approaches point to the same natural covariates (Models 1 to 4) contributing to the majority of 

variation in BFI (Figure 5). These include a climate covariate (aridity), a number of catchment characteristics including 

topography (catchment mean drainage path slope, dpsbar), fractional area of highly productive fractured aquifer 

(frac_high_perc), non-aquifer (no_gw), and the clay fraction in soils (clay_perc), and a land cover characteristic (fractional 

area of crop cover, crop_perc). Qualitatively there is consistency between these covariates and similar covariates identified in 525 

previous studies. For example, Mazvimavi et al (2005) also found slope to be a significant term in a regression model of BFI 

for 52 basins in Zimbabwe, and Addor et al (2018) found slope to be an important covariate in an analysis of the CAMELS 

data for the USA. Note the observation in Table A1 that when topographic relief appears to be more important with respect to 

mean residence and transit times, catchment area appears less important. This is consistent with the results in both Fig. 5 and 

Addor et al., (2018). Beck et al (2013) demonstrated that PET (a climate covariate related to aridity) was a significant covariate 530 

in a regression model of BFI based on 3394 global catchments consistent with the results in Fig. 5. Bloomfield et al (2009) 

previously identified the importance of the fractional area of high productivity fractured aquifers and non-aquifers in 

controlling BFI in the Thames Basin, a basin within the current study area, again consistent with the results in Fig. 5. Similarly, 

Addor et al (2018) and Huang et al (2021) both found clay fraction in soils to be important in predicting BFI when ML 

techniques were applied to the CAMELS data for the USA.  535 

However, there are challenges in making direct comparisons between different models of BFI. Firstly, there is no 

commonly accepted approach to defining covariates used in such models. Although many of the climate and topographic 

catchment characteristics may have common definitions, other important or significant catchment factors, such soil and aquifer 

characteristics may be quantified quite differently between studies. The CAMELS family of hydrological large-sample datasets 

seek to address the issue of consistency between hydrological datasets by attempting to published hydrological data in 540 

standardised formats (Addor et al., 2020). However, even between the different national CAMELS datasets there are 

differences in how (hydro)geological attributes are characterised (Addor et al., 2017; 2020; Alvarez-Garreton et al., 2018; 

Chagas et al., 2020; Coxon et al., 2020a, 2020b). A second challenge when attempting to compare between studies of the 

natural controls on BFI is that studies typically investigate different combinations of covariates. Regardless of the modelling 

approach used, for example step-wise multiple LR (e.g. Mazvimavi et al., 2005; Bloomfield et al., 2009; Zhang et al., 2013; 545 

Aboelnour et al., 2021) or ML models (Mazvimavi et al., 2005; Addor et al., 2018; Huang et al., 2021), the resulting significant 

or important covariates reflect the composition of the original pool of covariates under consideration.  
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5.3 Implications for future research   

There are a couple of implications that arise from this study. Although the dominant controls on baseflow across the 550 

study area are climate and catchment covariates, there is evidence that WRM practices, particularly groundwater abstraction, 

influence baseflow but the manner in which they effect baseflow is inferred to be a function of the specific climate and 

catchment settings and WRM practices. Consequently, as this analysis and the CAMELS-GB data reflect the dominant WRM 

practices for GB, it is recommended that the present study should be extended to test additional WRM attributes and the 

applicability of the findings in other settings and WRM regimes. For example, CAMELS-GB does not explicitly include 555 

information about WRM practices associated with hydropower schemes or seasonal changes in abstraction (e.g. for irrigation), 

so the effect of such WRM practices on BFI has not been assessed. In addition, CAMELS-GB does not include any information 

on within and between catchment water transfers (note the absence of these WRM terms from the conceptual model, Fig. 4). 

In addition, the approach to assessing the effect of WRM practices on BFI could also be applied and tested for relevance in 

other climate settings such semi-arid environments (Mwakalila et al., 2002), or where snowmelt is an important component of 560 

baseflow generation (Miller et al., 2014; Barnhart et al., 2016; Huang et al., 2021) once systematic information on WRM 

practices is available in those settings. 

More broadly, it is important to make data related to WRM practices much more widely available and for that data to 

be included in future large-catchment datasets (Addor et al., 2020). It is already challenging to develop common approaches 

to characterise some important catchment covariates related to soils and (hydro)geology for inclusion in large-catchment 565 

datasets. It is likely to be even more difficult to provide a consistent approach to capturing WRM practice data. However, a 

starting point would be to systematically conceptualise the major WRM practices across a wide range of regulatory 

(unregulated to highly regulated), catchment, and climatic settings that may influence baseflow and other hydrological 

signatures (McMillan, 2021) in order to establish broad classes of WRM practices against which data can be reported.       

Finally, there is an active debate on the comparative merits of process-based hydrological modelling and ML in 570 

hydrological forecasting. Specifically, questions have been asked related to the extent to which hydrological processes and our 

understanding of the uniqueness of place, as encapsulated in our conceptual models of the terrestrial water cycle (Wagener et 

al., 2021), has a role in hydrological prediction in the ‘age of machine learning’ (Bevan 2020; Nearing et al 2020). For example, 

in a recent comparative study of the predictive accuracy of ML and LR models of flooding events in Germany, Schmidt et al., 

(2020) demonstrated that although ML methods had higher predictive accuracy than the LR models they were still shown to 575 

be susceptible to the problem of equifinality and that this severely restricted their potential for inference. Schmidt et al., (2020) 

concluded with the observation that multiple algorithms and multiple methods should ideally be employed within a framework 

of model cross-validation when using ML for inference. Although the purpose of the present modelling was not to develop 

models capable of predicting BFI, it is interesting to note that there have been clear benefits in applying both simple statistical 

models (LR models) and more flexible ML approaches (RF models) to the same parameter space to explore common model 580 

structures and covariates of interest, and the results have provided evidence to extend current process understanding of 
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baseflow based beyond individual LR (Bloomfield at al., 2009; Carlier et al., 2018; Zhang et al 2020) and RF (Mazvimavi et 

al., 2005; Addor, et al., 2018; Huang et al., 2021) studies. Now that the correlations between WRM covariates and BFI have 

been identified, future predictive models of BFI that take account of WRM practices could be developed using a refinement 

of the conceptual model (Fig. 4) to constrain a combination of multiple targeted statistical (LR) and multiple knowledge-585 

guided ML models (Shen et al., 2021) deployed with appropriate cross-validation schemes. 

6. Conclusions 

Variation in BFI is predominantly explained by natural (climatic and catchment) characteristics, with the most important being 

the extent of high productivity fractured aquifers within catchments. This latter observation being consistent with previous 

analyses of BFI within the study area. Although not the major control on variation in BFI, there is evidence that WRM practices 590 

systematically modify BFI in the study area. 

Groundwater abstraction is the most influential of these practices with a positive correlation between abstraction and 

baseflow and is consistent with the observation that the effect of groundwater abstraction on BFI is most evident in 

groundwater-dominated catchments where there are the highest levels of abstraction. However, a variety of schemes and 

measures are used to manage water resources in the UK and systematic information on such schemes is currently lacking in 595 

the CAMELS-GB large sample dataset so their specific effects on BFI cannot be constrained by the current study. Information 

regarding WRM practices, their temporally and spatially linked associations and changes in flows associated with these 

schemes and measures, should be incorporated in future conceptual models of BFI. 

 Large-sample datasets are increasingly being used to understand and predict the functioning of hydrological systems 

at scales above the individual catchment (Addor et al., 2020). Given the importance of understanding the effects of WRM 600 

practices on baseflow and a range of other hydrological signatures there is need to incorporate information about such practices 

in large-sample datasets. If such datasets are to be comparable, there is also the need to systematise how WRM practices, in 

all their diversity, are described and recorded.        

7. Data availability 

The CAMELS-GB dataset used in this study is available from the Environmental Information Data Centre (EIDC) at 605 

https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9 and the supporting paper describing the data (Coxon et al., 

2020b) is available from Earth System Science Data at https://essd.copernicus.org/articles/12/2459/2020/  
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12. Appendix 

Table A1. Description of the CAMESL-GB covariates used in the modelling and analysis. 

Covariate 

class 

CAMELS-GB 

covariate 

Details of CAMELS-GB covariate Context 

Catchment 

physiography 

area Catchment area (km2) based on date 

from UKCEH’s Integrated Hydrological 

DTM (Morris and 

Flavin, 1990). 

Catchment area is commonly identified 

as an important factor in explaining 

variability in low flows (Price et al., 

2011). However, it less important with 

respect to mean residence and transit 

times where topographic relief appears 

to be more important (McGlynn et al, 

2003; Asano and Uchida, 2012; Munoz-

Villiers et al., 2016). 

dpsbar Catchment mean drainage slope path (m 

km-1).  

Mean drainage path slope (Bayliss, 

1999) is an index of catchment 
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steepness and is estimated as the mean 

of all inter-nodal slopes from UKCEH’s 

Integrated Hydrological DTM for a 

given catchment (Morris and Flavin, 

1990). 

Climate 

indices 

aridity Aridity (-). Aridity in CAMELS-GB, as 

with the other CAMELS data sets, is 

calculated as the ratio of mean daily 

potential evapotranspiration to mean 

daily precipitation (Addor et al., 2017, 

Coxon et al., 2020b). In the present study 

it has been reformulated as usually 

estimated (Joint Research Centre, 2019). 

The primary input to the catchment 

water balance and hence to baseflow 

generation is precipitation minus 

evapotranspiration (Price  2011, Fig.1). 

 

 

 

frac_snow Fraction of precipitation falling as snow 

(for days colder than 0°C) was estimated 

by Coxon et al., (2020b). 

Barnhart et al (2016) demonstrated a 

strong correlation between snowmelt 

rate and baseflow efficiency for 

catchments from western USA. 

Hydrogeology 

classes  

 

 

inter_high_perc Percentage of catchment designated as 

being underlain by rock with 

intergranular flow & high productivity 

(%) (Hydrogeological attributes for each 

catchment were derived from the UK 

bedrock hydrogeological maps, British 

Geological Survey, 2019). 

As Price (2011) notes, catchment 

geology is a primary control on 

baseflow-generating process. Three of 

the nine CAMELS-GB hydrogeological 

attributes have been selected as 

covariates, these include the two high 

groundwater productivity attributes and 

the attribute that denotes essentially no 

groundwater. Bloomfield et al., (2009) 

had previously explained 97% of the 

variance in BFI for 44 catchments in the 

Thames Basin, UK, using a model that 

regressed four hydrogeological classes 

including two high productivity and two 

low productivity classes on BFI.    

fract_high_perc Percentage of catchment designated as 

being underlain by rock with flow 

through fractures & high productivity 

(%). 

no_gw_perc Percentage of catchment designated as 

being underlain by rocks with essentially 

no groundwater (%). 

Land cover 

 

 

dwood_perc Percentage of catchment designated as 

deciduous woodland coverage (%) 

(Attributes for each catchment were 

derived from the UK Land Cover Map 

Processes associated with the 

transformation of the hydrological 

inputs, in forests and shrubby 

vegetation, such as interception, 
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2015 produced by UKCEH, Rowland et 

al., 2017). 

throughflow and stem flow, at the 

ground surface, such as ponding and 

infiltration, and in the soil, such as deep 

drainage and recharge (Price, 2011) 

depend on the nature of land use and 

land cover.   

 

 

 

 

 

 

 

 

 

 

 

ewood_perc Percentage of catchment designated as 

evergreen woodland coverage (%). 

grass_perc Percentage of catchment designated as 

grass and pasture coverage (%). 

shrub_perc Percentage of catchment designated as 

medium scale vegetation (shrubs) 

coverage (%). 

crop_perc Percentage of catchment designated as 

crops coverage (%). 

urban_perc Percentage of catchment designated as 

suburban and urban coverage (%). 

interwater_perc Percentage of catchment designated as 

inland water coverage (%). 

bares_perc Percentage of catchment designated as 

bare soil and rocks coverage (%). 

Soil clay_perc Percentage clay content of soil (%). Soil 

attributes for each catchment were based 

on the European Soil Database Derived 

Data product (Hiederer, 2013). 

Using data from over 600 catchments in 

the CAMELS-US dataset, Addor et al., 

(2018) used ML to compare the 

influence of catchment attributes on a 

variety of hydraulic signatures 

including BFI_LH. Soil clay fraction 

was the most negatively correlated 

attribute with BFI_LH (Addor et al., 

2012, Fig. 4). 

Water 

resource 

management 

surfacewater_abs Mean surface water abstraction (mm 

day-1). Mean surface water and 

groundwater abstraction and discharge 

data were estimated by Coxon et al., 

(2020) based on monthly actual 

abstractions and returns for the period 

January 1999 – December 2014. 

 

Wittenburg (2003), Wang and Cai 

(2009), Webber and Perry (2006) and 

Tomas et al. (2013) have all previously 

identified changes in features of 

baseflow in catchments subject to 

groundwater abstraction or due to 

returns flows. 

groundwater_abs Mean groundwater abstraction (mm day-

1). 
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discharges Mean discharges (mm day-1). Discharge 

data consists of daily discharges into 

water courses from water companies and 

other discharge permit holders reported 

to the Environment Agency from 1 

January 2005 to 31 December 2015. 

num_reservoirs Number of reservoirs in the Catchment 

(-). Reservoir attributes were taken from 

an open source UK reservoir inventory 

(Durant and Counsell, 2018). 

reservoir_cap Total storage capacity of reservoirs in 

the catchment (ML). 
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Table A2. Coefficients of the four LR models, and associated spatial structural parameters and summary statistics for the 

models 

 Model 1 Model 2 Model 3 Model 4 

 Set A Set B Set A Set B 

 BFI_LH BFI_CEH BFI_LH BFI_CEH 

intercept 1.3652 1.4068 1.1372 1.2137 

dpsbar 0.0029** 0.0056*** 0.0034*** 0.0063*** 

aridity -0.2182*** -0.3220*** 0.238*** -0.4002 

inter_high_perc    (-0.0031***) 

frac_high_perc 0.0107*** 0.0194*** 0.0105*** 0.0031*** 

no_gw_perc -0.0028** -0.0035* -0.0018* -0.0021*** 

crop_perc 0.0096*** 0.0157*** 0.0089*** 0.0149*** 

urban_perc (0.0027***) (0.0032***)   

inwater_perc (0.0850***)    

clay_perc -0.0412*** -0.0538*** -0.0350*** -0.0476*** 

surfacewater_abs   0.3278*** 0.5239*** 

groundwater_abs   1.3861*** 1.8737*** 

discharges   0.7099*** 0.7285*** 

Spatial structure parameters 
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Range 0.504 0.446 0.473 0.426 

Nugget 0.408 0.383 0.496 0.387 

Summary of models 

MSPE 0.117 0.360 0.138 0.289 

Residual std. 0.435 0.642 0.388 0.581 

R^2 (iid model) 0.627 0.669 0.703 0.732 
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Figure A1. Distribution of residuals for LR models (Models 1 to 4) 

 

 900 

Figure A2. Maps of difference between modelled and observed BFI_CEH (a to d) and corresponding scatter plots of BFI_CEH 

against modelled BFI (e to h) for covariate Sets A and B for LR and RF models (Models 2, 4, 6 and 8) [Note this is the same 

as Fig. 6, but for BFI_CEH]. 
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Figure A3. Scatter plots of improvement in modelled BFI as a function of observed BFI_CEH for a) LR and b) RF models. 

[Note this is the same as Fig. 7, but for BFI_CEH]. 
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Figure A4. Comparison of observed and modelled BFI_CEH for covariate Sets A and B, for LR and RF models and as a 

function of different human management categories. [Note this is the same as Fig. 8, but for BFI_CEH]. 

 


