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Abstract. Accurate weather forecast information has the potential to improve water resources management, energy, 11 

and agriculture. This study evaluates the accuracy of medium-range (1 – 15 day) precipitation forecasts from the 12 

Global Forecast System (GFS) over watersheds of eight major dams (Selingue Dam, Markala Dam, Goronyo Dam, 13 

Bakolori Dam, Kainji Dam, Jebba Dam, Dadin Kowa Dam, and Lagdo Dam) in the Niger river basin using NASA’s 14 

Integrated Multi-satellitE Retrievals (IMERG) “Final Run” satellite-gauge merged rainfall observations. The results 15 

indicate that the accuracy of GFS forecast varies depending on climatic regime, lead time, accumulation timescale, 16 

and spatial scale. The GFS forecast has large overestimation bias in the Guinea region of the basin (wet climatic 17 

regime), moderate overestimation bias in the Savannah region (moderately wet climatic regime), but has no bias in 18 

the Sahel region (dry climate). Averaging the forecasts at coarser spatial scales leads to increased forecast accuracy. 19 

For daily rainfall forecasts, the performance of GFS is very low for almost all watersheds except for Markala and 20 

Kainji dams, both of which have much larger watershed areas compared to the other watersheds. Averaging the 21 

forecasts at longer time scales also leads to increased forecast accuracy. The GFS forecasts, at 15-day accumulation 22 

timescale, have better performance, but tend to overestimate high rain rates.  Additionally, the performance assessment 23 

of two other satellite products was conducted using IMERG Final estimates as reference. The Climate Hazards Group 24 

InfraRed Precipitation with Station data (CHIRPS) satellite-gauge merged product has similar rainfall characteristics 25 

with IMERG Final, indicating the robustness of IMERG Final. The IMERG “Early Run” satellite-only rainfall product 26 

is biased in the dry Sahel region, however in the wet Guinea and Savannah regions, IMERG “Early Run” outperforms 27 

GFS in terms of bias. We recommend exploring appropriate post-processing calibration techniques that use near-real 28 

time products, such as, IMERG Early, to improve the performance of GFS in the wet regions, particularly at shorter 29 

time scales.  30 

 31 

  32 
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1. Introduction 33 

Global climate forecasts, with lead times ranging from hours to several months, are becoming increasingly available 34 

(Saha et al. 2014; Abdalla et al. 2013; NCEP 2015; JMA 2019). Significant societal benefit could be realized from 35 

research to reduce common barriers in climate forecast utilization blocking the path to improving water resources 36 

management, energy, and agriculture. One such a barrier is the lack of understanding of climate forecast accuracy in 37 

different regions of the world. This focus is timely given the recent advances in numerical atmospheric models, and 38 

in the wealth of new observing capabilities including satellite remote sensing. These combined models and 39 

observational datasets provide opportunity for researchers to quantify the accuracy of climate forecasts. 40 

 41 

The Niger River is the principal river of West Africa, and is shared among nine riparian countries (Fig. 1): Benin, 42 

Burkina Faso, Cameroon, Chad, Guinea, Ivory Coast, Mali, Niger and Nigeria. The basin is facing multiple pressures 43 

from increasing population, water abstraction for irrigation, and risk of extreme hydrological events due to climate 44 

change (Sylla et al. 2018). A number of hydropower dams exist in the region, and additional dam projects are 45 

envisaged in order to alleviate chronic power shortages in the countries of the Niger basin. Optimal management of 46 

water resources is key to maximizing benefits, such as hydropower generation, and minimize disasters, such as 47 

flooding. Climate forecast information has the potential to improve water resources management, energy, and 48 

agriculture (e.g., Patt et al. 2007; Breuer et al. 2010; Mase and Prokopy 2014; Pandya et al. 2015; Koppa et al. 2019; 49 

Alexander et al. 2020). For example, in a recent study, Koppa et al (2019) showed that the use of seasonal precipitation 50 

forecasts in reservoir planning of Omo Gibe dam in Ethiopia can increase annual hydropower generation by around 51 

40%.  52 

 53 

Several studies have investigated the accuracy of seasonal forecasts in West Africa (e.g., Bliefernicht et al. 2019; 54 

Pirret et al. 2020). Seasonal forecasts are important for water resource planning, while medium-range (1-day to 15-55 

day) forecasts are important for operational decisions, such as reservoir operations. The availability of medium-range 56 

global climate forecasts has grown in recent years. Examples of such forecast products include Global Forecast System 57 

(GFS; NCEP 2015), NCEP climate forecast system (NSF CFS, Saha et al. 2014), European Centre for Medium-Range 58 

Weather Forecasts (ECMWF; Abdalla et al. 2013), and Global Spectral Model (GSM; JMA 2019). For these 59 

precipitation forecasts to be effectively used in applications, their accuracy must be known, which is usually performed 60 
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through comparison of precipitation forecasts to observations (e.g., Tian et al. 2017; Yuan et al. 2014). Wang et al. 61 

(2019) performed numerical experiment to examine the sensitivity of GFS to inclusion or exclusion of additional 62 

observations collected over the eastern Pacific during the El Niño Rapid Response (ENRR) field campaign, type of 63 

data assimilation method to prepare the initial conditions, and inclusion or exclusion of stochastic parameterizations 64 

in the forecast model. They reported that the GFS forecast errors are only slightly sensitive to the additional ENRR 65 

observations, more sensitive to the DA methods, and most sensitive to the inclusion of stochastic parameterizations in 66 

the model. In addition, they reported that GFS forecasts have difficulty to capture the location and magnitude of heavy 67 

rain rates. Sridevi et al. (2018) evaluated the performance of GFS in India by using rain gauge and satellite rainfall 68 

product, and reported that the GFS forecast shows some skills in 1-day and 2-day lead times, but low skills from 3-69 

day onwards. Lien et al. (2016) compared the statistical properties of GFS forecasts and Tropical Rainfall Measuring 70 

Mission (TRMM) Multisatellite Precipitation Analysis (TMPA; Huffman et al. 2007, 2010) observations.  They 71 

reported that the GFS model has positive bias in precipitation amount compared to TMPA observations, and that the 72 

Figure 1. The Niger River Basin, and locations of major reservoir dams in the basin: (1) Selingue, (2) 
Markala, (3) Goronyo, (4) Bakolori, (5) Kainji, (6) Jebba, (7) Dadin Kowa, and (8) Lagdo.  
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GFS forecasts have large random errors at higher resolutions, especially for convective precipitation. According to 73 

Jiang et al. (2015) the lack of consideration of the Aerosol-Cloud Interactions (ACIs) in the GFS model leads to 74 

significant bias in the GFS precipitation forecasts.  75 

 76 

In our study region of the Niger River basin, there has not been any performance evaluation of GFS precipitation 77 

forecasts to date. The Niger basin lies in three different climate regimes (wet regime, moderately wet regime, and dry 78 

regime), and is home to nine major irrigation and hydropower dams (Selingue, Markala, Goronyo, Bakolori, Kainji, 79 

Jebba, Dadin Kowa, and Lagdo). Recent advances in satellite rainfall products, particularly following the Global 80 

Satellite Measurement satellite mission (GPM; Hou et al. 2014), and extensive evaluation of GPM rainfall products 81 

in West Africa, provides us with opportunity to use GPM rainfall products as reference for evaluation. Many studies 82 

have conducted to evaluate the accuracy of the satellite rainfall estimates in West Africa. Dezfuli et al. (2017a) 83 

evaluated the performance of NASA’s Integrated Multi-satellitE Retrievals (IMERG) “Final Run” (IMERG Final) 84 

(version 4; Huffman et al. 2019a, b) in comparison with two, high-resolution, experimental rain gauge station data 85 

provided by the Trans-African Hydro-Meteorological Observatory (TAHMO; van de Giesen et al. 2014), and reported 86 

the capability of IMERG Final to represent well the diurnal cycle of rainfall. Using the same dataset, Dezfuli et al. 87 

(2017b) showed that IMERG Final is able to capture the propagation of large Mesoscale Convective Systems (MCSs), 88 

a significant advantage over its predecessor’s (TMPA) 3-hourly temporal resolution, which misses the time evolution 89 

of most of these systems. Gossett et al. (2018) evaluated the performance of a number of satellite rainfall products 90 

(focusing only on versions that do not include rain gauge data) by comparison with rain gauge station networks in 91 

Benin and Niger, and reported that the satellite products (especially IMERG Early) exhibit high performance in Niger 92 

but relatively lower performance in Benin. Satgé et al. (2020) evaluated the accuracy of a number of gridded 93 

precipitation datasets over West Africa through comparison against rain gauge station data, and reported that CHIRPS 94 

and TMPA (the predecessor to IMERG) provided reliable estimates at both daily and monthly timescales, while the 95 

remaining satellite products considered (CMORPH, PERSIANN, GSMaP, ARC, and TAMSAT) and all atmospheric 96 

reanalysis products considered (MERRA and JRA) were deemed unreliable. Furthermore, they found out that satellite 97 

products that incorporated rain gauge information outperformed satellite-only products. Maranan et al. (2020) 98 

compared IMERG Final products against experimental rain gauge station data in the moist forest region of Ghana, 99 
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West Africa, and showed that IMERG Final datasets are able to capture monthly rainfall with a correlation coefficient 100 

close to unity.  101 

 102 

The objective of this study is to evaluate the accuracy of medium-range precipitation forecasts derived from the Global 103 

Forecast System (GFS) for the major reservoir dams of the Niger basin through comparison against IMERG Final. 104 

We chose GFS model due to its relatively high spatial (0.25° x 0.25°) and temporal resolution (3-hourly to 6-hourly) 105 

as well as free-of-charge data availability to users. The main questions addressed in this study are as follows. First, 106 

how does the accuracy of GFS forecast vary across different reservoir dams in the same basin? Second, how does the 107 

accuracy vary with lead time in the range 1- to 15-day? Third, what is the effect of spatial averaging (from 0.25° all 108 

the way to basin-scale) and temporal aggregation (from 1-day to 15-day) on the forecast accuracy? Fourth, how does 109 

the accuracy of GFS forecast compare with the accuracy of satellite-only rainfall products that are available in near-110 

real-time, as the latter may have the potential to calibrate and improve the accuracy of GFS? 111 

 112 

2. Data and Methodology 113 

2.1 Global Forecast System (GFS) Medium-Range Precipitation Forecasts 114 

 115 

The Global Forecast System (GFS) is a global numerical weather prediction system run by the U.S. National Weather 116 

Service (NWS). The GFS forecast products with a resolution of 0.25° by 0.25° are obtained from National Center for 117 

Atmospheric Research (NCAR) Research Data Archive (RDA) GFS Historical Archive (NCEP 2015). The GFS is 118 

run four times a day at UTC 00, UTC 06, UTC 12, and UTC 18 hours. One of the GFS model output variables is 119 

accumulated precipitation, where the precipitation forecasts are accumulations starting from the model run time. We 120 

obtained the 1-day lead daily rainfall forecast by subtracting the 24-hour rainfall accumulation forecast from the 48-121 

hour rainfall accumulation forecast. Similarly, in order to obtain the 5-day lead daily rainfall forecast, we subtracted 122 

the 120-hour rainfall accumulation forecast from the 144-hour rainfall forecast. We only considered the model runs at 123 

UTC 00 hour.  124 

 125 

The GFS model went through a major upgrade, and its version-15 forecasts are available since June 12, 2019. In 126 

version 15, the Finite Volume Cubed Sphere dynamical model (FV3) replaced the Global Spectral Model (GSM) as 127 
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the core model. In the GSM model, the horizontal resolutions were T1543 (12.5km) from 0 to 240 hours (0-10 days) 128 

and T574 (~34km) from 240 to 384 hours (10-16 days) (NCEP 2021a). However, in the FV3 model, the horizontal 129 

resolution of the model is about 13 km for days 0-16 (NCEP 2021b). The model runs are re-gridded to produce 130 

precipitation forecasts at 0.25° resolution (NCEP 2015). The Key FV3 model schemes include  (Putman and Lin 2007): 131 

(1) the Rapid Radiative Transfer Method for GCMs (RRTMG) scheme for shortwave/longwave radiation (Mlawer et 132 

al. 1997; Iacono et al. 2000; Clough et al. 2005), (2) the Hybrid eddy-diffusivity mass-flux (EDMF) scheme for 133 

Planetary Boundary Layer (PBL) (NCEP, 2021a), (3) the Noah Land Surface Model (LSM) scheme for land surface 134 

option (Chen et al. 1997), (4) the Simplified  Arakawa-Schubert (SAS) deep convection for cumulus parameterization 135 

(Arakawa et al. 1974; Grell 1993), and (5) an advanced GFDL microphysics scheme for microphysics (NCEP, 2021b).  136 

 137 

2.2 IMERG Final Satellite Precipitation Products  138 

IMERG Final rainfall products are used in this study as reference to evaluate the performance of GFS precipitation 139 

forecasts. IMERG Final combines all available microwave precipitation estimates, microwave-calibrated infrared 140 

estimates, and rain gauge data to provide rainfall estimates at very high resolution (30-minute, 0.10°) (Hou et al. 2014; 141 

Huffman et al. 2015). The IMERG products are categorized into three types, namely early run, late run, and final run. 142 

It is only the final run or “final” version that incorporates rain gauge data. The data latency of IMERG Final is about 143 

3.5 months. Details of IMERG algorithm developed by NASA are available at Huffman et al (2019a, b). The latest 144 

version (V6B) of IMERG datasets have been accessed from the NASA’s Earth Data Goddard Earth Sciences Data 145 

and Information Services Center (GES DISC) web portal. 146 

 147 

2.3 Other Satellite Precipitation Products  148 

In order to put the GFS forecast performance into perspective, we also evaluated two other state-of-the-art satellite 149 

rainfall products: 150 

• IMERG Early provides un-calibrated IMERG rainfall fields, which do not include correction from rain gauges. 151 

The data latency of IMERG Early is near-real-time, about 4 hours. We have used the latest version (V6B) of 152 

IMERG Early datasets. Post-processing calibration of GFS forecasts (in order to improve the accuracy of GFS 153 

forecasts) requires the use of “relatively better performing” and “available in near-real-time” independent 154 

rainfall observations to correct real-time dynamical GFS model forecasts. Comparison of the performance of 155 
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IMERG Early with the performance of GFS would indicate to what extent the IMER Early products could be 156 

used for calibration of GFS forecasts.  157 

• The Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is derived primarily from 158 

thermal infrared data using the cold cloud duration (CCD) approach, calibrated using TRMM Multi-satellite 159 

Precipitation analysis (TMPA 3B42 v7; Huffman et al. 2007) precipitation datasets by local regression, and 160 

include rain gauge station data from multiple sources (regional and national meteorological services). CHIRPS 161 

data are available at a spatial resolution of 0.05° and a temporal resolution of 1-day, with a data latency period 162 

of about 3 weeks. Details of CHIRPS algorithm are available at Funk et al. (2015).  Agreement between the 163 

reference (IMERG Final) and CHIRPS would indicate that the IMERG Final estimates are robust.  164 

 165 

2.4 Study Region  166 

The Niger river, with a drainage basin of 2,117,700 Km2, is the third longest river in Africa. The source of the main 167 

river is in the Guinea Highlands, and runs through Mali, Niger, on the border with Benin and then through Nigeria, 168 

discharging through a massive delta, known as the Niger Delta (the world’s third largest wetland), into the Atlantic 169 

Ocean. The rainfall regimes in the region follow the seasonal migration of the Inter-Tropical Convergence Zone 170 

(ITCZ), which brings rainfall primarily in the summer season (Animashaun et al. 2020; Sorí et al. 2017). 171 

Climatologically, the Niger basin  lies in three latitudinal sub-regions (Akinsanola et al. 2015, 2017): (1) the Guinea 172 

coast (latitude 4°–8°N), which borders the tropical Atlantic Ocean in the south; (2) the Savannah (latitude 8°–12°N), 173 

an intermediate sub-region; and (3) the Sahel (latitude > 12°N) to the north. The Guinea coast experiences a 174 

bimodal rainfall regime that is centered in the summer monsoon period of June–September, with August being the 175 

period of a short dry season, while the Savannah and Sahel sub-regions experience a unimodal rainfall regime, with 176 

maximum rainfall occurring in August (Akinsanola and Zhou 2018). The ranges of annual rainfall amounts are: 400–177 

600 mm in the Sahel, 900–1200 mm in the Savannah; and 1500–2000 mm in the Guinea coast (Akinsanola et al. 178 

2017).  179 

 180 

The Niger basin is home to eight major reservoir dams (see Table 1 and Fig. 1): (1) Selingue Dam in Mali: a primarily 181 

hydropower dam, (2) Markala Dam in Mali: a primarily irrigation dam, serving about 75,000 ha of farmland, (3) 182 

Goronyo Dam in Nigeria: a multi-purpose dam for flood control, provision of downstream water supply and the release 183 
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of water for irrigation in the dry season, (4) Bakolori Dam in Nigeria: a primarily irrigation dam with a command area 184 

of about 23,000 ha, (5) Kainji Dam in Nigeria: the largest Dam on the Niger supplying power for most towns in 185 

Nigeria, (6) Jebba Dam in Nigeria: a primarily hydropower dam, (7) Dadin Kowa Dam:  a multi-purpose dam for 186 

water supply, electricity and irrigation, (8) Lagdo Dam in Cameroon: a multi-purpose dam providing electricity to the 187 

northern part of the country and supplying irrigation water for 15,000 hectares of cropland. The watersheds of the 188 

dams are primarily either in the Savanna (Selingue, Markala, Jebba, Dadin Kowa, an Lagdo), or in the Sahel (Goronyo, 189 

Kainji), or partly in both (Bakolori). The watershed sizes vary over a large range, from 4,887 Km2 (Bakolori Dam) to 190 

1,464,092 Km2 (Kainji Dam). The average elevations of the watersheds are close to each other at 500 ± 50 m.a.s.l. 191 

 192 

In order to make the results of this study meaningful to reservoir managers, the Niger basin was divided into 193 

watersheds according to the locations of the dam reservoirs (see Fig. 1). Then the sub-basin of each dam was defined 194 

as the drainage between the dam itself and the upstream dam. For example, the drainage basin of the Markala Dam 195 

does not include the drainage basin of the Selingue Dam.  196 

 197 

Table 1. Selected dams and their watershed characteristics  198 

Dam Country 
Operat
ional 

since* 

Capacity 
(million 

m3)* 

Power 
(MW)* 

Primary Purpose* Area of 
Drainage 

Basin 
(km2)** 

Elevation of 
Drainage Basin 

(m)** 
Irrigation 
and Water 

Supply 

Flood 
Control 

Hydroel
ectricity 

Selingue Mali 1982 2170 44   x 32685 473 

Markala Mali 1947 175  x   102882 442 

Goronyo Nigeria 1983 942  x x  31547 446 

Bakolori Nigeria 1978 450  x   4887 519 

Kainji Nigeria 1968 15000 960   x 1464092 406 

Jebba Nigeria 1984 3600 540   x 40268 308 
Dadin 
Kowa Nigeria 1988 2855 35 x  x 32936 535 

Lagdo Camero
on 1983 7800 72  x x 31352 452 

* information obtained from the Global Reservoir and Dam Database (Lehner et al. 2011) and Food and Agriculture Organization 199 
of the United Nations (FAO)’s Global Information System on Water and Agriculture (AQUASTAT). 200 
** Calculated from HydroSEHDS (Lehner et al. 2008). 201 

 202 
 203 

2.5 Evaluation 204 

IMERG Final rainfall products are used in this study as reference to evaluate the performance of GFS precipitation 205 

forecasts. The comparison period is 15 June 2019 to 15 June 2020 to match the period for which the version-15 of 206 
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GFS model forecasts is available. The spatial resolutions of the forecast and satellite products are different: 0.25°(GFS), 207 

0.10° (IMERG Final and IMERG Early), and 0.05° (CHIRPS). The temporal resolutions of the satellite products are: 208 

30-minute (IMERG Final and IMERG Early) and daily (CHIRPS). Our comparison is mostly based on sub-basin (i.e. 209 

watershed for each dam) average values, in which case we average all the datasets to the sub-basin spatial scale. In 210 

some cases, where we compare the spatial patterns of rainfall, we resample both IMERG products and CHIRPS to 211 

0.25° using the bilinear interpolation technique to match the spatial resolution of GFS. 212 

 213 

For evaluation metrics, we used the modified Kling-Gupta Efficiency (KGE; Gupta et al. 2009; Kling et al. 2012) and 214 

its components: Bias Ratio (BR), correlation (R), and variability ratio (g).  KGE measures the goodness-of-fit between 215 

estimates of precipitation forecasts and reference observations as: 216 

𝐾𝐺𝐸 = 1 −'(𝑅 − 1)! + (𝐵𝑅 − 1)! + (𝛾 − 1)!, 217 

𝐵𝑅 =
𝜇"
𝜇#
, 218 

𝛾 =
𝐶𝑉"
𝐶𝑉#

, 219 

where R is the linear correlation coefficient between forecasted and observed precipitation, BR is the bias ratio, g is 220 

the variability ratio, µ is the mean precipitation, CV is the coefficient of variation, and the indices f and o represent 221 

forecasted and observed precipitation values, respectively. KGE values range from -¥ to 1, with values closer to 1 222 

indicating better model performance. Towner et al. (2019) suggested the following classifications: “Good” (KGE ³ 223 

0.75), “Intermediate” (0.75  ³ KGE ³ 0.5), “Poor” (0.5  ³ KGE > 0), and “Very poor” (KGE £  0). The BR values 224 

greater than 1 indicate a positive bias whereby forecasts overestimate precipitation relative to the observed data, 225 

while values less than 1 represent an underestimation. The g values greater than 1 indicate that the variability in the 226 

forecast time series is higher than that observed, and values less than 1 show the opposite effect. The R measures the 227 

strength and direction of the linear relationship between the forecast and observed values, and to what extent the 228 

temporal dynamics of observed rainfall is captured in the forecasts. The correlation values of 0.6 or more are 229 

considered to be skillful (e.g., Alfieri et al. 2013). In addition, the root mean-square-error normalized by reference 230 

precipitation mean (NRMSE) was also used.  231 

 232 
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3. Results and Discussion 233 

3.1 Annual Spatial Variability and Seasonal Characteristics 234 

The spatial map of annual (15 June 2019 – 15 June 2020) rainfall from the various rainfall products is given in Figure 235 

2. According to the reference rainfall product (i.e. IMERG Final), the Niger basin experiences average annual rainfall 236 

of 700 mm. The spatial rainfall distribution shows north-to-south increasing gradient, with the Sahel region (> 12°N) 237 

receiving on average 346 mm per year, the Savanna region (8°N – 12°N) receiving on average 1,206 mm per year, 238 

and the Guinea region (4°N – 8°N) receiving on average 1,620 mm per year. The spatial structures (climatology and 239 

north-south gradient in rainfall) of GFS, IMERG and CHIRPS rainfall fields are quite similar to those of IMERG 240 

Final. However, the 1-day GFS tends to overestimate in the wet Guinea region of the basin, whereas both IMERG 241 

Early and CHIRPS give values that are very close to IMERG Final. 242 

 243 
Figure 2. Spatial map of annual rainfall (in mm), for the period 15 June 2019 to 15 June 2020, derived from (a) 244 
IMERG Final, (b) GFS (1-day lead time), (c) IMERG Early, and (d) CHIRPS.  245 
 246 
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Figure 3 shows the seasonal rainfall pattern for each climatological region. According to the reference IMERG Final, 247 

as one goes from north to south, the rainy season expands from 3 months (June – September) in the Sahel to 6 months 248 

(March – November) in the Savanna and Guinea regions. The peak rainfall also shows north-south gradient, with peak 249 

rainfall of 130 mm in the Sahel, to 269 mm in the Savanna, and 350 mm in the Guinea. The rainfall pattern is unimodal 250 

with a peak rainfall value in August for both Sahel and Savanna, but becomes bimodal with one peak in May and the 251 

other in September for Guinea.  252 

 253 

 254 

 255 

 256 

Figure 3. Monthly precipitation regime for the three climatological zones of the Niger river Basin: (a) 
Sahel, (b) Savanna, and (c) Guinea. Analyses are based on rainfall fields derived from IMERG Final, 1-
day-lead GFS. IMERG Early, and CHIRPS. The time period covers from 15 June 2019 to 15 June 2020.  
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When validated against IMERG Final, the performance of GFS in capturing the seasonal rainfall characteristics 257 

deteriorates as one goes from north to south. GFS captures both the seasonal rainfall pattern and rainfall peak in the 258 

Sahel, and captures the seasonal rainfall pattern but tends to moderately overestimate the peak in the Savannah, while 259 

it has large overestimation (almost twice as much as the reference) in the Guinea particularly during summer. As far 260 

as the other satellite products are concerned, IMERG Early tends to slightly overestimate in the Sahel across all rainy 261 

months, but performs relatively well in the Savannah and Guinea regions. CHIRPS is very close to IMERG Final in 262 

all regions and months, with the exception of modest overestimation of the July rainfall in Guinea. 263 

 264 

3.2 How well do GFS forecasts capture annual rainfall?  265 

Here, we aggregate the 1-day lead GFS forecasts to annual time scale and compare the results against corresponding 266 

annual precipitation estimates from IMERG Final. Figure 4 presents the watershed-averaged annual rainfall for each 267 

dam watershed. According to IMERG Final, the annual rainfall varies from 434 mm (in Kainji) to 1,481 mm (in 268 

Selingue). Watersheds 1 (Selingue) and 2 (Markala), located in the western part of the Savannah, receive the largest 269 

amount of rainfall, i.e., 1481 mm and 1406 mm, respectively. Watershed 3 (Markala), located in the eastern part of 270 

the Sahel, receives 741 mm of annual rainfall. Watershed 4 (Bakolori), characterized by the smallest watershed area 271 

compared to the rest of the watersheds, lies partly in the Sahel and partly in the Savannah region and receives 921 mm 272 

of annual rainfall. Watershed 5 (Kainji), characterized by the largest watershed area of all, lies mostly in the Sahel 273 

region and receives the lowest amount of annual rainfall (434 mm). Watersheds 6 (Jebba), 7 (Dadin Kowa), and 8 274 

(Lagdo), located in the Savannah, receive annual rainfall amounts of 1190 mm, 941 mm, and 1295 mm, respectively. 275 

 276 

Validated against IMERG Final, the GFS tends to overestimate rainfall in all watersheds located in the Savannah (or 277 

watersheds that receive relatively large rainfall amounts), with an overestimation varying in the range 8% to 33%, 278 

with larger bias for watersheds receiving higher rainfall amount. For watersheds in the Sahel (watersheds receiving 279 

low rainfall amount), GFS gives less bias (-11% for the driest Kainji watershed and +10% for Bakolori). 280 

 281 

In contrast, IMERG Early tends to underestimate rainfall in all watersheds located in the Savannah (with larger 282 

negative bias in watersheds with large rainfall amount) but tends to overestimate in all watersheds located in the Sahel 283 

(with very large overestimation bias for the driest watershed) Therefore, GFS and IMERG Early have different bias 284 
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characteristics: whereas GFS outperforms IMERG Early in the Sahelian climate where well-organized convective 285 

systems dominate the monsoon, IMERG Early outperforms GFS in the Savannah and Guinea climate which are 286 

characterized by short-lasting and localized systems and wet land surface conditions. CHIRPS estimates are 287 

reasonably close to IMERG Final, indicating that the choice of reference product between CHIRPS and IMERG Final 288 

would not substantially affect the findings on the accuracy of GFS forecasts.  289 

 290 

 291 

 292 

 293 

 294 

3.3 How well is the time series of daily precipitation forecasted? 295 

Figures 5 and 6 present the time series of watershed-averaged daily rainfall, for the wet period June – October. 296 

According to IMERG Final, the temporal variability (as measured through coefficient of variation or CV) varies from 297 

1.22 to 2.60. Validated against IMERG Final, the GFS tends to underestimate the temporal variability and particularly 298 

underestimate large spikes in rainfall, at almost all sites except at Kainji. The GFS’s relatively better performance for 299 

Figure 4. Sub-basin averaged annual precipitation (mm) for the period, 15 June 2019 to 15 June 2020, for each 
of the Niger’s sub-basin, derived from the 1-day lead GFS forecast and different satellite precipitation 
products.  
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Kainji could be attributed to the watershed’s large area that results in relatively smooth temporal variability. Both 300 

IMERG Early and CHIRPS provide CV values that are very close to IMERG Final.  301 

Figure 5. Time series of sub-basin averaged precipitation total (mm) for the wet period (June – September 2019 for 302 
all sub-basins, derived from various precipitation products, for five sub-basins. The Figure also shows the 303 
coefficient of variation (CV) as a measure of temporal variation. 304 
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Figure 6. Same as in Figure 5 but for the remaining three watersheds.  305 

 306 

Figure 7 displays the performance statistics of watershed-averaged daily rainfall (validated against IMERG Final) in 307 

terms of Kling-Gupta Efficiency (KGE), Bias Ratio (BR), correlation (R), variability ratio (g), and root mean square 308 

error normalized by reference precipitation mean (NRMSE). First, the performance results for the 1-day lead GFS are 309 

considered. The KGE scores are poor (0.3 < KGE < 0.5) for half of the watersheds considered (Selingue, Goronyo, 310 

Bakolori, and Lagdo) and intermediate (0.5 < KGE < 0.75) for the remaining half watersheds (Markala, Kainji, Jebba, 311 

and Dadin Kowa). The breakdown of the KGE scores (BR, R, and g) reveals the key factors contributing to the KGE 312 

estimates. The GFS tends to overestimate daily precipitation for most sub-basins, as BR is higher than one, except for 313 

Kainji. The overestimation is particularly high for Selingue and Markala, where BR is 1.33 and 1.22, respectively. 314 

The correlation coefficient between GFS and IMERG Final is mostly low (R < 0.60), and is particularly lower for 315 

Bakolori (R=0.36) and Goronyo (R=0.43).  The variability ratio of GFS is mostly between 0.69 to 0.83 (except for 316 
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Kainji, where g is 1.09), indicating that the GFS tends to give lower temporal variability of rainfall.  The NRMSE is 317 

very high, ranging from 100% to 266%, and is particularly high for Goronyo (266%) and Bakolori (264%), which are 318 

relatively small-sized watersheds.  319 

 320 

Next, the performance of IMERG Early was examined with respect to IMERG Final, mainly to assess if it is possible 321 

to use the near-real-time IMERG Early product to calibrate and improve the accuracy of GFS forecasts. The IMERG 322 

Early performs much better with KGE values higher than 0.75 (except for Kainji where KGE is 0.69), correlation 323 

higher than 0.90, and variability ratio close to the optimum value. The high performance of IMERG Early is due to its 324 

similarity with the IMERG Final product, as the main difference between the two products is that IMERG Early, 325 

unlike IMERG Final, does not use monthly rain gauge observations for bias correction. Such monthly bias correction 326 

techniques would not alter the pattern and variability of IMERG Early compared to IMERG Final. Therefore, the 327 

performance of IMERG Early should be evaluated using bias statistics, the other statistics (correlation and variability 328 

ratio) are presented for completeness. IMERG Early overestimates rainfall in most watersheds in the range 11% 329 

(Lagdo) to 28% (Kainji) except for two watersheds, where it slightly underestimates by 14% (Selingue) and 11% 330 

(Markala). Comparison of the performance of GFS and IMERG Early indicates that both products have different bias 331 

characteristics. In some watersheds (e.g., Kainji), GFS outperforms IMERG Early in terms of bias, whereas in other 332 

watersheds (e.g., Markala), IMERG Early outperforms GFS.  333 

 334 

CHIRPS was also compared with IMERG Final to assess how the use of different reference products may affect the 335 

finding about the performance of GFS forecasts. The KGE scores of CHIRPS are higher than 0.75 in all cases, 336 

indicating that CHIRPS and IMERG Final have comparable KGE performance. Therefore, the performance of GFS 337 

is expected to be about the same even if the reference product used this in this study (IMERG Final) changes to 338 

CHIRPS.  339 

 340 

 341 

 342 

 343 

 344 
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 345 

 346 

Figure 7. Summary of performance statistics (Kling-Gupta Efficiency KGE, Bias Ratio BR, correlation R, 347 
variability ratio g, and root mean square error normalized by reference rainfall [%], for the 1-day lead time GFS 348 
forecasts and other satellite products. The time period considered was June 15, 2019 – June 15, 2020.  349 
 350 

3.4 Dependence of Forecast Performance on Precipitation Rate 351 
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Figure 8 presents the scatterplot of 1-day lead GFS forecasts and IMERG Final at daily and watershed-average scales. 352 

The performance of GFS varies between watersheds. In the Markala and Kainji watersheds, GFS forecasts agree well 353 

with IMERG Final at almost all rain rates. In the Selingue watershed, GFS agrees well with IMERG Final for rain 354 

rates under 30 mm/day, but GFS substantially underestimates all rain rates above 30 mm/day. In the remaining five 355 

watersheds, GFS has poor performance, replete with large scatter, high false alarm, and large underestimation bias of 356 

heavy rain rates.   357 

 358 

 359 

Figure 8. Scatterplot of watershed-averaged daily precipitation forecast obtained from 1-day lead GFS 
forecasts against corresponding values from IMERG Final.  
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3.5 Dependence of Daily Forecast Performance on Lead Time and Spatial Scale 360 

In order to assess the effect of various lead times and spatial scales on forecast performance, we obtained daily GFS 361 

forecasts at various lead times (1-day, 5-day, 10-day, and 15-day), and aggregated the forecasts at spatial scales from 362 

0.25° to coarser scales (0.5°, 0.75°, and 1°) by averaging grids. The purpose of degrading the resolution is to determine 363 

at which resolution the forecasts have acceptable performance. The KGE value at each spatial resolution was 364 

calculated in the following steps: (i) average the data at the required spatial resolution, (ii) extract pairs of data (one 365 

from IMERG Final, and the other from GFS), (iii) concatenate the pairs to form one large series of data, and (4) 366 

compute a single KGE from this data series. The resulting KGE values are shown in Fig. 9.  367 

 368 

With regard to the effect of spatial scales, the KGE at the GFS native resolution (i.e. 0.25°) is very low. As the spatial 369 

scale increases, KGE increases, as expected. For instance, for Markala watershed KGE increases from 0.27 (0.25°) to 370 

0.40 (1°) for a 1-day lead. This indicates that the variation in KGE values between the watersheds could be partly 371 

explained by the watershed size. For example, based on Fig. 5, the KGE for the 1-day lead daily GFS forecast was the 372 

highest for the largest Kainji watershed (watershed area of 1,464,092 Km2) and the lowest for the smallest Bakolori 373 

watershed (4,887 Km2). With regard to the effect of lead time for daily forecasts, KGE decreases significantly as lead 374 

time increases. For instance, for Markala watershed and a grid size of 1°, KGE decreases from 0.40 (1-day lead) to 375 

0.21 (15-day lead).  376 

 377 

  378 
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 379 

 380 
Figure 9. Kling-Gupta Efficiency (KGE) for daily precipitation of GFS as a function of lead time (1-day, 5-day, 10-381 
day, and 15-day) and spatial scale (0.25°, 0.50°, 0.75°, 1.0°). The dam names and corresponding watershed areas are 382 
given in the titles.  383 
 384 

3.6 Effect of Temporal Aggregation Scale on Forecast Performance 385 

To assess the effect of temporal aggregation scale, we obtained the 1-day total, 5-day total, 10-day total, and 15-day 386 

total GFS precipitation forecasts. These multi-day forecasts are constructed by combining multiple lead-time forecasts. 387 

For instance, the 5-day total forecast is obtained by adding the 1-day lead, 2-day lead, 3-day lead, 4-day lead, and 5-388 
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day lead daily forecasts. Figure 10 presents the KGE values for GFS forecasts over different temporal aggregation 389 

scales, and different grid sizes. Temporal aggregation substantially increases KGE at all spatial scales. For example, 390 

at the grid size of 1° over Markala watershed, the KGE values jump from 0.40 at daily timescale to 0.73 at 15-day 391 

total timescale.   392 

Figure 10. Kling-Gupta Efficiency (KGE) of GFS as a function of accumulation time scale (1-day, 5-day, 10-day, 393 
and 15-day) and spatial scale (0.25°, 0.50°, 0.75°, 1.0°). 394 
 395 
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In Figure 11, we show the performance statistics of GFS for 15-day accumulated watershed-averaged rainfall forecast. 396 

The KGE values are intermediate (0.5 < KGE < 0.75) for four watersheds and good (KGE > 0.75) for the remaining 397 

four watersheds. Analysis of the components of KGE reveals that the improvement of KGE at longer timescales comes 398 

as a result of improved correlation and variability ratio. At the 15-day accumulation timescale, IMERG Early estimates 399 

have less bias than GFS at all watersheds, except at Kainji watershed. Figure 12 presents the scatterplot of 15-day 400 

accumulated GFS forecast vs IMERG Final. In general, the GFS estimates perform well for low to moderate rain rates, 401 

but tend to overestimate higher rain rates. This is consistent with Wang et al. (2019) who reported the difficulty of 402 

capturing the magnitude of high rain rates in GFS model.  403 

Figure 11. Summary of performance statistics (Kling-Gupta Efficiency KGE, Bias Ratio BR, correlation R, 404 
variability ratio g, and root mean square error normalized by reference rainfall [%], for the 15-day accumulated GFS 405 
forecast and other satellite products. 406 
 407 
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 408 
Figure 12. Scatterplot of watershed-averaged 15-day accumulated precipitation forecast obtained from GFS forecast 409 
against corresponding values from IMERG Final.  410 
 411 

4. Conclusions 412 

This study has evaluated the accuracy of medium-range (1-day to 15-day lead time) forecasts available from the Global 413 

Forecast System (GFS), for the watersheds of large dams in the Niger river basin. Despite the limited temporal 414 

coverage, some consistent features emerged from this evaluation. The accuracy of GFS forecast depends on climatic 415 

regime, lead time, accumulation timescale, and spatial scale. With regard to the role of climatic regimes, the GFS 416 
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forecast has large overestimation bias in the Guinea (wet climatic regime), moderate overestimation bias in the 417 

Savannah (moderately wet climatic regime), but has no bias in the Sahel (dry climate). With regard to lead time, as 418 

the lead time increases, the forecast accuracy decreases. Averaging the forecasts at coarser spatial scales leads to 419 

increased forecast accuracy. For daily rainfall forecasts, the performance of GFS is very low (KGE < 0.32) at almost 420 

all watersheds except at Markala (KGE = 0.44) and Kainji (KGE = 0.68), both of which have much larger watershed 421 

areas compared to the other watersheds. Averaging the forecasts at longer time scales also leads to increased forecast 422 

accuracy. For 15-day rainfall accumulation timescale, the KGE values are either “intermediate” (i.e., 0.50  £ KGE £ 423 

0.75) for half of the watersheds (Selingue, Goronyo, Bakolori, and Daddin Kowa) or “good” (i.e., KGE ³ 0.75) for 424 

the remaining half (Markaa, Kainji, Jebba, and Lagdo). With regard to the effect of rainfall rate, the 15-day 425 

accumulated GFS forecasts tend to perform better for low to medium rain rates, but contain large overestimation bias 426 

at high rain rates.  427 

 428 

The performance statistics of GFS indicate the need for calibrating GFS forecasts in order to improve their accuracy. 429 

Post-processing calibration of GFS forecasts requires the use of “relatively better performing” and “available in near-430 

real-time” independent rainfall observations to correct real-time dynamical GFS model forecasts. This study has 431 

compared the performance of IMERG Early satellite rainfall products with the performance of GFS in terms of bias. 432 

In the Guinea and Savannah regions, IMERG Early outperforms GFS in terms of bias, while in the dry Sahel region, 433 

IMERG Early is outperformed by GFS. 434 

 435 

We acknowledge that the reference dataset used in our evaluation (i.e., IMERG Final) has its own estimation errors. 436 

We conducted additional assessment to evaluate the performance of IMERG Final with respect to another independent 437 

and high-quality (i.e. satellite-gauge merged) rainfall product (i.e. CHIRPS). Our results show that IMERG Final and 438 

CHIRPS have similar rainfall characteristics, indicating the robustness of IMERG Final.  439 

 440 

Overall, we conclude that the GFS forecasts, at 15-day accumulation timescale, have acceptable performance, 441 

although they tend to overestimate high rain rates. The shorter the time scale, the lower is the GFS performance. We 442 

recommend identifying suitable post-processing calibration techniques, through the use of near-real time products, 443 

such as, IMERG Early, that could improve the performance of GFS, particularly in the wet Guinea and Savannah 444 
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regions. Possible calibration methods that could be explored include: simple bias (multiplicative) correction, multi-445 

resolution bias correction through wavelet analysis wavelet analysis or empirical mode decomposition method, and 446 

Artificial-based methods such as Feed Forward Neural Network (FFNN), Support Vector Machine (SVR), and 447 

Adaptive Neural Fuzzy Inference System (ANFIS). 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 
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