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Dear Referee,

we would like to thank you very much for your positive comments and constructive suggestions to our
manuscript. We very much appreciate the time and effort that you have invested in your report.

Please find below our detailed responses to all the issues you have raised in your report. Note that this
response addresses both of your reports, part 1 and part 2, in one single document.

We are confident that the manuscript will improve as a consequence to addressing these issues. Yet, the
final implementation of changes will also depend on another referee report that is still to be submitted in the
interactive discussion.

Kind regards,
Maik Heistermann
(on behalf of the author team)

Sensitivity factor

Sensitivity factor was assumed to be a constant for each sensor, which seems intuitively reasonable but
needs scrutiny. Since these factors are essential to the uniform calibration, it at least requires some
citations and/or explanation.

The detector-specific sensitivity or efficiency is a result of manufacturer-level variation of detector gas density,
geometrical variation, and configuration parameters related to electricity. All of those were fixed once during
manufacturing and cannot change over time. [Schron et al., 2018] have shown that the resulting count rate
efficiency is different from sensor to sensor, while significant variation in time is not evident. This is also
known from experience with long running sensors of the COSMOS network in periods of more than a decade,
where the duration of our 2-month campaign is negligible. On the basis of these explanations, we think that
the application of constant, sensor-specific efficiency values is sufficient.

We will add a brief corresponding statement and citation in section 4.1.1 of the manuscript ( Standardization
of sensitivity).
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Local uncertainty

Please define/specify "local uncertainty'. I think the "local' refers to the parameter space, not the
spatial-temporal space. If I am correct, it creates some ambiguity in the text since the discussions are
always related to space/time in this paper. (Line 271, 415, 665, etc.)

We apologize for the ambiguity, and we fully agree that the term "local uncertainty" requires a clear definition.
In fact, we refer to "local uncertainty" as the uncertainty of our soil moisture estimate for a specific sensor
footprint i, i.e. as the uncertainty of §(N;) and 69, expressed as the width of the interval between two
quantiles. It should also be clear that this uncertainty only refers to the point in time at which the manual soil
moisture measurement campaign took place which was the basis of the IV calibration.

In the revised version of the manuscript, we will explain the term "local uncertainty" in section 5.2 where the
actual results are discussed. In section 4.3, 1. 271 of the original manuscript, we will avoid the use of the term
instead of already defining it. That is because we think that the meaning of the term becomes more tangible
for the reader in the context of the presentation of the actual results, hence we should not introduce it before.

Monte-Carlo simulation

Please briefly explain the choice of ''200 times'' of the Monte-Carlo simulation on the sensitivity of NO. To
my understanding, the number of simulations depends on the dimensions of the parameter space. Why
are 200 times good enough to quantify the uncertainty of Ny concerning these many parameters and
disturbances.

The referee is correct that it would be good to have a formal justification of the number of runs that
constitute our Monte-Carlo analysis. However, the parameters, their assumed probability distributions, and
the corresponding stochastic disturbances are very different from each other. That makes it difficult to apply
formal frameworks to assess the required numbers of runs. For example, some disturbances are rather a
sub-sampling (e.g. the determination of the time interval over which the neutron count rates are averaged, or
the selection of soil profiles that are included in the interpolation); for other input parameters, the definition
of the underlying distribution and its parameters is necessarily arbitrary (e.g. the Kriging range, or the water
equivalent from soil organic carbon and lattice water). Given these difficulties, we have addressed the issue
rather pragmatically: we found that the results of the Monte-Carlo simulations with using 200 runs are robust,
meaning that they do not vary substantially from simulation to simulation with regard to the output we were
looking at (which is specifically the interquartile range, while the range between the 5th to the 95th percentile
is purely for illustrative purposes). We also found that the results did not substantially change when we
increased the number of runs per Monte-Carlo simulation.

We would like to emphasize that the Monte-Carlo-analysis is, in the context of this study, of rather qualitative
relevance: its main purpose is to demonstrate that the disagreements that we observe in Fig. 4 can mostly be
explained by the local uncertainties of #(N;) and 62, while location 7 is clearly different.

In our view, arbitrary decisions in the design of the Monte-Carlo cannot be avoided at this point, and we have
also been open with that in the conclusions. Yet, we fully understand and appreciate the referee’s concern
in this context. As a response, we suggest to very briefly mention, in section 4.3, the level of arbitrariness
involved in this analysis, and the corresponding limitations in the interpretation of the results. Still, we could
further increase the number of Monte Carlo runs if desired.

2.4 Models

Line 88 References for the concept of geophysical inversion are needed.
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We suggest to cite [Zhdanov, 2015] in this context as a reference to the fundamental idea of geophysical
inversion.

Line 329 There are three parameters for a variogram model, nugget, sill, and range. The paper only
emphasized the range but did not mention the other two. Please specify the parameter selections.

We apologize for the incomplete documentation. We did not specify nugget and sill, as these do not affect the
result of the predicted variable, but only the Kriging variance. Since we do not use the latter, nugget and sill
can be chosen arbitrarily (in our case: nugget=0, sill=1). Nugget and sill become important when a theoretical
variogram model is fitted to an empirical semi-variogram, as the choice of nugget and sill might affect the
range, when the three parameters are fitted together. In our case, we did not fit a variogram model. Instead,
the choice of the range of 300 m was rather a preference to express the scale at which we are interested in
representing soil moisture heterogeneity.

Altogether, we will clarify these aspects in the revised version of the manuscript, and also state the values of
nugget and sill used for our calculations.

Line 297 The Kriging ranges for soil moisture and bulk density are quite different. Please justify this
selection.

We agree that this should be explained better. The sampling intervals for the Kriging ranges in the Monte Carlo
analysis (section 4.3) were based on the Kriging range values used for the interpolation of the soil variables
as outlined in section 4.1.4, which were 50 m for all soil variables except soil moisture (150 m). These values
were not obtained from fitting a variogram model, but rather heuristically: we chose a higher range value for
soil moisture because the resulting estimates of °** were more consistent with #( ), although a systematic
optimisation was not carried out. We addressed the apparent arbitrariness of this procedure by defining a
sufficiently large interval around these range values from which we would sample in the Monte-Carlo analysis.
We will point out, in the revised manuscript, that the selection of the Kriging range values could, in future
studies, be subject to further systematic optimisation.

Footprint, model parameters, and scaling

One of the unique features of CRNS is its large footprint, which could directly influence data visualization,
model selection, and interpolation. The grid size for the interpolation process is 10 m * 10 m (Line 311),
which is much smaller than the footprint. This implies that the modeling is not just an interpolation
but also involves a downscaling process for the CRNS measurements. It is of great interest in terms
of the CRNS studies. However, it also requires more clarification and cautiousness. For example, is it
reasonable to use observed soil moisture, 0( Ny, ), to do Ordinary Kriging with a resolution much smaller
than its footprint? Does it implicitly assume that observed soil moisture values are also representative at
a smaller scale?

We thank the referee for this comment. Obviously, he or she is entirely right to demand that cautiousness. We
hoped to express that caution with our statement from 11. 311-314 of the original manuscript:

[1. 311-314] The grid resolution is arbitrarily selected, and does not necessarily reflect the resolution
at which the grid effectively conveys information of spatial heterogeneity; in other words, the product
should not be interpreted at the scale of 10m. Still, we require this comparatively fine horizontal
resolution since some of the following steps require to re-aggregate (i.e. to average) the spatial soil
moisture estimates inside a CRNS footprint.
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Accordingly, we do not actually aim to represent soil moisture variation between 10 m grid tiles, but we
require that resolution in order to reasonably apply the forward operator in order to obtain neutron intensity
from a spatial soil moisture grid. In addition, one could see this sub-footprint resolution as a tool to represent
gradients in the footprint, rather than values of the single cells. In the revised manuscript, we will attempt to
clarify this more.

Furthermore, we emphasize in 11. 328-332 that Kriging is used as a "model" to represent our notion how soil
moisture varies at a specific scale:

[11. 328-332] In this study, let us assume that the spatial distribution of soil moisture in the study
area is smooth and continuous, and that this spatial pattern could be represented by a model m that
corresponds to Ordinary Kriging with an exponential variogram model and a range parameter of, say,
300 m, using the CRNS sensor locations as points of support. We hope it is clear to the reader that the
choice of such a model is arbitrary and subjective, although it should be based on our "expert" notion
of how soil moisture varies at a specific scale.

Again, we will attempt, in the revised version, to emphasize that the use of Kriging with a grid resolution of
10 m does not mean that we should interpret variability at that scale.

Finally, the referee wonders whether we "implicitly assume that [#(N) is] representative at a smaller scale".
Our answer would be no, although it is true that the unconstrained model, technically, reproduces 6(V;) at
the sensor location 7. However, that is rather a side effect and not a necessary requirement. The key property
of our model m is that it represents soil moisture variation at a scale that is given by our (arbitrary) choice
of the variogram (exponential with a range of 300 m). Please note that other models might well be able to
represent soil moisture heterogeneity at an even finer effective resolution. Such a model could be a statistical
relationship between surface properties (soil, terrain, vegetation) and soil moisture, or a physically-based
model (see 1. 319-324). The effective resolution would be subject to their validity at a finer scale as well as
the accuracy of their input data (please also refer to our response to next comment).

[11. 319-324] What we refer to as the "unconstrained" approach could imply any kind of (geostatistical)
model or assumption m that represents the spatial distribution of soil moisture, 6, on the basis of any
parameter set p. For example, m(p) could be the nearest neighbour algorithm. In that case, p would
be the soil moisture values at a set of sampling points. As another example, m(p) could be a statistical
relationship between landscape attributes and soil moisture, hence p would comprise the parameters of
that statistical model. Or, m(p) could be a physical model of water movement in soils, with p being
the entirety of (potentially spatially distributed) model parameters.

The design of the forward operator and the optimization argument is innovative since it provides a way of
downscaling CRNS measurement to almost any arbitrary scale/resolution, which may be only limited by
computational capacity.

The design of the dense network made the footprints of CRNS largely overlapped, which provides extra
information about soil moisture spatial patterns. This may also make it logically possible and reasonable
to do the downscaling and to improve the interpolation. Can the overlaps be used for results validation?

We agree, in general, with the referee’s view that the use of the forward operator allows for a certain level
of downscaling (see our response to comment 2.5), and it certainly is one of the specific aims of this study
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to demonstrate that potential. However, we do not think that the achievable resolution is purely a matter
of computational resources. In our view, it is rather a matter of how well our model m is able to represent
patterns at high resolution. Example: We could enhance, in our setup, the spatial resolution of our target
grid from 10 m to let’s say 10 cm. That would involve a substantial increase in computational costs for the
interpolation and the application of the forward operator, yet the effective/meaningful resolution of the results
will not be higher than before.

Somewhat related to that point is the aspect of overlap: in general, we would expect that a large overlap from
multiple sensors would help to better constrain the inverse problem, yet it does not, in our view, provide
"extra information" for an independent validation. Even with a strong overlap, we still need a model of spatial
soil moisture variation to make the problem solvable. The advantage of the overlap is particularly that the
parameters of that model will probably be constrained better because changes of soil moisture in the region of
overlap will affect multiple footprints and hence multiple values of N ™,

While this discussion is certainly interesting, we would prefer not to extend it further in the context of this
manuscript. We see the present study as a proof-of-concept, and both practical and theoretical aspects should
be explored in future studies, as also outlined in 1l. 722-730 of the original manuscript.

Technical Comments

Line 26 '"'small spatial measurement support'' and Line 330 ''points of support''. Support is an important
concept in defining spatial scales of soil sampling and measurements. I recommend adding a definition
and citations here. This would also help to present the results on soil moisture spatial patterns in the
following sections.

In the revised version of the manuscript, we will refer, in section 1.1., to [Bloschl and Grayson, 2000] as
the key reference with regard to the concept of spatial support in the observation and interpolation of
spatial variables. We will also better explain, around 1. 330 of the original manuscript, the meaning of
"points of support", as this term does not refer to the concept of "measurement support” in the sense of
[Bloschl and Grayson, 2000], but to the "nodes" of the interpolation, i.e. the locations at which an observation
is assumed to be available. Alternatively, we could replace "points of support" by "node".

Line 259 "assuming a spatially uniform value of N..." Modification required. Since Ny mainly depends
on the sensor itself after correcting all factors (air pressure, vegetation, lattice water, etc.), it is not a
spatial variable.

We agree that this is misleading. We dropped "spatially" so statement becomes "[...] assuming a uniform
value of Ny [...]".

Line 262 Eq. 1 - recommendation: replace comma with semicolon, i.e. 9(N;; Ny). To my understanding,
N, is a variable, and N is a parameter in Eq. 1.

We thank the referee for the suggestion, but we would prefer to keep the notation as it is: while in the context
of Eq. 2, Ny is the parameter (which is optimized), the constrained interpolation treats all V; as parameters.

Line 350 delete extra ''suitable'’
Thanks, will be deleted.
Line 622 reliably -> reliability

Will be corrected.
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