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Abstract.  10 

Analysis of karst spring recession hydrographs is essential for determining hydraulic parameters, geometric characteristics and 11 

transfer mechanisms that describe the dynamic nature of karst aquifer systems. The extraction and separation of different fast 12 

and slow flow components constituting karst spring recession hydrograph typically involve manual and subjective procedures. 13 

This subjectivity introduces bias, while manual procedures can introduce errors to the derived parameters representing the 14 

system. To provide an alternative recession extraction procedure that is automated, fully objective, and easy to apply, we 15 

modified traditional streamflow extraction methods to identify components relevant for karst spring recession analysis. 16 

Mangin’s karst-specific recession analysis model was fitted to individual extracted recession segments to determine matrix 17 

and conduit recession parameters. We introduced different parameters optimisation approaches to Mangin’s model to increase 18 

the degree of freedom thereby allowing for more parameters interaction. The modified recession extraction and parameters 19 

optimisation approaches were tested on 3 karst springs in different climate conditions. Our results showed that the modified 20 

extraction methods are capable of distinguishing different recession components and derived parameters that reasonably 21 

represent the analysed karst systems. We recorded an average KGE >0.85 among all recession events simulated by the 22 

recession parameters derived from all combinations of recession extraction methods and parameters optimisation approaches. 23 

While there are variabilities among parameters estimated by different combinations of extraction methods, optimisation 24 

approaches and seasons, we found even much higher variability among individual recession events. We provided suggestions 25 

to reduce the uncertainty among individual recession events and raised questions on how to improve confidence in the system’s 26 

attributes derived from recession parameters. 27 

1 Introduction 28 

Groundwater from karst aquifers are essential water sources globally (Stevanović 2018; Goldscheider et al. 2020). Karst 29 

aquifers are characterised by a high degree of heterogeneity and complex flow dynamics resulting from the interplay of conduit 30 

and matrix drainage systems (Kiraly 2003; Goldscheider and Drew 2007). Groundwater flow is rapid in the highly-conductive 31 
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conduit system whereas is several orders of magnitude slower in the less-conductive matrix system (Goldscheider 2015). While 32 

both systems have significant storage capacities, the groundwater residence time is longer in the matrix than in the conduit 33 

system (Kovács et al. 2005). Several methods including detailed site-specific speleological investigation (Ford and Williams 34 

2007), tracer tests (Goldscheider and Drew 2007; Goldscheider and Neukum 2010), hydrograph analysis (Kovács et al. 2005; 35 

Fiorillo 2014) and model ensembles (Fandel et al. 2020) are used to characterise groundwater flow dynamics in karst systems. 36 

Aside from hydrograph analysis which usually requires only spring discharge time series data, other methods are either 37 

expensive to apply, time consuming or require more input. This, therefore, makes time series analysis a commonly applied 38 

method for karst aquifer flow analyses and modeling (Ford and Williams 2007).  39 

 40 

Quantitative time series analysis provides a lumped attributes of the karst aquifer system that are rather difficult to directly 41 

measure (Kovács et al. 2005). Karst spring recession analysis still remains a vital quantitative time series analysis tool for 42 

estimating aquifer parameters and geometric properties (Fiorillo 2011). Discharge from karst springs reflects the complex 43 

interplay of conduit and matrix systems and provides insight into the characteristics of the aquifer which sustains the spring 44 

(Kovács et al. 2005; Fiorillo 2014). This also provides essential information for flow prediction as the shape of the spring 45 

hydrograph reflects variable aquifer responses to different recharge pathways (Ford and Williams 2007). Since the shape of 46 

the spring hydrograph describes in an integrated manner how different aquifer storages and processes control the spring flow 47 

(Jeannin and Sauter 1998; WMO 2008a), analysing individual recession limbs of spring hydrograph therefore offers extensive 48 

understanding of the structural, storage, and behavioral dynamics of the karst system’s drainage (Bonacci 1993).  49 

 50 

Numerous studies have employed recession analyses of karst spring hydrograph to characterize karst aquifers, evaluate aquifer 51 

properties, manage groundwater resources, predict low flow and estimate baseflow parameters (Padilla et al. 1994a; Dewandel 52 

et al. 2003; Kovács et al. 2005; Fiorillo 2014). Derived or estimated recession coefficients are also important parameters in 53 

karst models for simulating rainfall-discharge (Fleury et al. 2007; Mazzilli et al. 2019) and other process-based modeling 54 

(Hartmann et al. 2013, 2014). Unlike porous media, karst systems cannot be represented by one single storage-discharge 55 

function (Ford and Williams 2007). They comprise of multiple subsystems of interconnected conduit and matrix reservoirs, 56 

each with its own storage-discharge characteristics (Jeannin and Sauter 1998). Recession analysis models specifically 57 

developed for karst spring analysis are usually comprised of two (Mangin 1975) or more (Fiorillo 2011; Xu et al. 2018) 58 

independent storage-discharge transfer functions to describe drainage characteristics of different reservoirs and simulate 59 

recession flows. Dewandel et al. (2003) provide a general overview and main characteristics of commonly used recession 60 

models and those specifically applied to karst systems.  61 

 62 
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Even though recession analysis of spring hydrographs is cheaper in terms of resources required to explore the flow dynamics 63 

and geometry of the karst aquifer system, a major challenge in its application is the separation of the slow flow (matrix-64 

dominated) and quick flow (conduit-dominated) components. The most commonly used karst spring hydrograph separation 65 

technique is the semi-logarithmic plot that usually reveals two or more segments. At least one of these segments, typically the 66 

last, represents linear reservoir drainage and is attributed to the slow flow (matrix) component (Bonacci 1993; Ford and 67 

Williams 2007). The other segment represents the quick flow (conduit) component – a times, a third segment representing the 68 

mixed component is also identified.  However, this approach is visually supervised and subjectively applied thereby resulting 69 

in imprecise and inconsistent estimations. The amount of time required for the visual supervision exercise also makes it 70 

impractical to apply this approach to a large number of hydrographs or multiple recession curves, especially if individual 71 

recession segment analysis is to be considered for parameters estimation. 72 

 73 

However, in other fields of hydrology, there are a handful of automated recession extraction methods that have been developed 74 

for extracting streamflow recessions (Arciniega-Esparza et al. 2017). These traditional extraction methods aimed to explicitly 75 

identify baseflow recession periods by using different statistical indices to detect less variable flow conditions. During 76 

baseflow, streamflow is essentially supported by groundwater storage which provides a less variable flow condition. 77 

Contributions from runoff and other unregulated sources that produce highly variable flow during quick flow recession are 78 

discarded by these extraction routines (Vogel and Kroll 1996; Brutsaert 2008). Although, these methods were developed to 79 

extract baseflow recession from stream hydrographs, there is the possibility to adapt them for extracting matrix and conduit 80 

flow recessions of karst springs. In addition to identifying the slow flow recession component, such adaptation will focus on 81 

recognizing the quick flow component instead of discarding it. But as these methods are based on different statistical indices 82 

for identifying the baseflow regime, they perform differently and produce differing recession parameters (Stoelzle et al. 2013; 83 

Santos et al. 2019). Therefore, while attempting to modify these routines, it is also important to explore and compare the 84 

differences in the estimated recession parameters that would result from adapting these commonly used traditional recession 85 

extraction methods. 86 

 87 

Following the extraction of recession events, the estimation of recession parameters is done either by analysing the individual 88 

recession segment (IRS) or constructing a master recession curve (MRC) from all events. The MRC approach is commonly 89 

used in karst hydrology studies to estimate spring recession parameters, though this approach is also considered to be very 90 

biased toward long recession events (Jachens et al. 2020). Also, the single parameters’ value derived from this approach does 91 

not represent the actual dynamic nature and implicit heterogeneity of karst systems. However, parameters derived from IRS 92 

analysis better describe the range of the aquifer system dynamics as well as understanding the seasonal controls on recession 93 

behaviour (WMO 2008b). While seasonal control on recession has been widely studied in porous media, studies assessing 94 
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seasonal effects on karst spring recession are still rare. An advantage of the modified extraction methods herein presented in 95 

this study is that, it allowed us to employ the IRS analysis for parameter estimation, as well as projecting the analysis along 96 

seasonal dimensions.  97 

 98 

Hence, this study aims to develop and test a robust and objective method for extracting karst spring recession components as 99 

well as determining the parameters associated with the different components of karst drainage systems. Therefore, in this 100 

study, we develop an automated karst recession extraction methods that can identify matrix and conduit components of the 101 

karst spring recession hydrograph by modifying the traditional streamflow recession extraction routines. We then estimate 102 

conduit and matrix recession parameters of the IRS by using the combination of different modified recession extraction 103 

methods and parameters optimisation approaches of the karst recession model. We explore the effect of seasonal influences 104 

on the karst conduit and matrix recession parameters as well as the aquifer system classification. Finally, the performances of 105 

the different combinations of modified extraction methods and karst recession model parameters optimisation approaches were 106 

evaluated.  107 

 108 

2 Data and Methods 109 

To develop an automatic karst-specific recession extraction and analysis procedure that is objective and applicable to large 110 

hydrograph samples, we first explored the applicability of traditional recession extraction procedures originally developed for 111 

non-karst streamflow recessions (Vogel and Kroll 1992; Brutsaert 2008; Aksoy and Wittenberg 2011). Then we analysed karst 112 

recession parameters using a two-reservoirs parallel drainage recession model (Mangin 1975). In the following subsections, 113 

the recession extraction and analysis model, parameters optimisation approaches, as well as the various adaptations and 114 

modifications implemented are described. For consistency, we used the terms ‘quick flow’ for the turbulent flow from highly 115 

conductive karst drainage pathways (synonymous with conduit and storm flow) and ‘slow flow’ for the laminar flow 116 

contribution from less conductive fissures and pores (synonymous with matrix, diffuse and base flow) (Atkinson 1977; Larson 117 

and Mylroie 2018). 118 

2.1 Adapting streamflow methods to extract matrix and conduit recession components 119 

Three streamflow recession extraction methods (Vogel and Kroll 1992; Brutsaert 2008; Aksoy and Wittenberg 2011), herein 120 

called recession extraction methods (REMs) were adapted to extract matrix and conduit recession components (Table 1). To 121 

develop an automated base flow recession extraction routine, Vogel and Kroll (1992) firstly smoothened the stream hydrograph 122 

using a 3-day moving average. Thereafter, the decreasing segments of the 3-day moving average are selected as the recession 123 

hydrographs. Only segments with 10 or more consecutive days are recognised as recession candidates. To exclude surface and 124 
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storm runoff influence at the beginning of the recession, the first 30% data points of each recession segment are deleted. 125 

Additionally, the difference between two consecutive streamflow values must be ≤ 30% for the pairs to be accepted. All 126 

recession segments that satisfied these conditions are then accepted as slow flow recessions segments. 127 

 128 

In To to objectively determine streamflow recession that is derived purely from a dry or low flow period, Brutsaert (2008) 129 

introduced a more strict recession extraction method. For streamflow Q, during time t, the Brutsaert method eliminates data 130 

points with increasing or zero values of dQ/dt, as well as points with abrupt dQ/dt values. To exclude data points that might 131 

be influenced by storm runoff, three data points after a positive or zero dQ/dt are removed - in major events, an additional 132 

fourth data point is removed. While Brutsaert (2008) did not provide a description for a major event, Stoelzle et al. (2013) 133 

applied the Brutsaert method in their study and defined the major events as streamflow values exceeding 30% frequency. 134 

Therefore, we used this definition of a major event from Stoelzle et al. (2013) in this study. Furthermore, the Brutsaert method 135 

also excludes the last two data points before a positive or zero dQ/dt and spurious data points with larger -dQ/dt values.  136 

 137 

Aksoy & Wittenberg (2011) extracted the baseflow component from the daily streamflow hydrograph during recession by 138 

comparing the coefficient of variation (CV) of the recession segment. All days with decreasing or equal observed flowrate are 139 

considered as part of the recession curve. Subsequently, a non-linear reservoir model (Eq. 1) is iteratively fitted to the recession 140 

curve until the CV is ≤ 0.1. The CV is defined as the ratio of standard deviation between observed flowrates measurements 141 

(Q) and calculated flowrate (Qcalc) to the mean of the observed flowrates as expressed by Eq. 2. Segment of the recession 142 

curve with the CV ≤ 0.1 is selected as the real baseflow recession, otherwise, the segment is excluded. Only recession curves 143 

with 5-day periods or longer are considered. If the number of days becomes less than 5 during iterative curve fitting and CV 144 

≤ 0.1 is not achieved, such a recession event is discarded (Aksoy and Wittenberg 2011). To ensure consistency between the 145 

extraction method and the Mangin recession model used in this study (see Section 2.2), the value of b in Eq. 1 is set to 1, 146 

thereby making it a linear model.  147 

 148 

 149 

𝐐𝐭 = 𝐐𝟎 [𝟏 +
(𝟏−𝐛)𝐐𝟎

𝟏−𝐛

𝐚𝐛
]

𝟏

𝐛−𝟏
    (1) 150 

 151 

 152 

𝐂𝐕 = √
𝐧𝟐

𝐧−𝟏

∑(𝐐−𝐐𝐜𝐚𝐥𝐜)𝟐

∑(𝐐)𝟐      (2) 153 

 154 
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The three recession extraction approaches (Vogel and Kroll 1992; Brutsaert 2008; Aksoy and Wittenberg 2011) were 155 

specifically developed to extract streamflow recessions that are mainly from slow flow contributions. The rules and exclusion 156 

criteria specified by each method are aimed at eliminating the quick flow influences from the extracted recession segments. In 157 

karst systems, concentrated rapid flow through the conduit networks constitutes the quick flow, while the contribution from 158 

slow-velocity drains through the matrix pores constitutes the slow flow. The quick and slow flow represents flows from two 159 

different drainage structures and both contribute to the karst spring recession (Fiorillo, 2014; Ford & Williams, 2007; Padilla 160 

et al., 1994). 161 

 162 

Adapting the streamflow methods for karst spring recession analysis means considering both the slow and quick flow 163 

components to model matrix and conduit spring discharges. So, to adapt the traditional REMs, we (i) extracted the spring flow 164 

recession curve based on the specific method approach, (ii) attributed the part of the recession curve that satisfied the specified 165 

method’s exclusion criteria as slow flow (matrix) component, and (iii) assigned the remaining part that is excluded as quick 166 

flow (conduit) component. Table 1 provides an overview of the rule-based baseflow recession extraction methods and changes 167 

made in adapting them to include the quick flow component of recession. 168 

 169 

Table 1: Criteria for recession extraction methods (REMs) 170 

  Recession  

extraction method 

  General 

Criteria 

Filter Slow flow   

selection 

Adaptation for  

quick flow selection 

  Vogel   Decreasing 3-day 

 moving day average 

First 30% days Qt ≥ 0.7Qt-1 First 30% days, 

Qt < 0.7Qt-1 

  Brutsaert   𝑑𝑄

𝑑𝑡
< 0 

First 3 – 4,  

and last 2 days 

dQt/dt < dQ(t-1)/dt First 3 or 4 days,  

dQt/dt > dQ(t-1)/dt 

  Aksoy   𝑑𝑄

𝑑𝑡
≤ 0 

- CV ≤ 0.10 CV > 0.10 

 171 

2.2 Karst spring recession analysis 172 

2.2.1 Mangin model 173 

After extraction, we applied Mangin's (1975) recession analysis model which has been widely used for estimating drainage 174 

characteristics and aquifer dynamics in fractured non-homogeneous media (Fleury et al. 2007; Liu et al. 2010; Xu et al. 2018; 175 

Schuler et al. 2020; Sivelle 2020). To analyse the extracted recessions, we used this method which considers a two-component 176 

recession curve by distinguishing between quick flow (mostly through karstic conduits) and slow flow (mostly through the 177 

fissure matrix of the carbonate rock) recessions (Figure 1). Mangin presented two equations: Eq.3 describes the linear storage-178 

discharge relationship from the saturated zone during slow flow conditions represented by the Maillet (1905) equation.  179 

 180 



7 

 

𝛟𝐭 = 𝐐𝐫𝟎
 𝐞−𝛂𝐭     (3) 181 

 182 

where Qro is the baseflow contribution at the beginning of recession when t = 0, α is the recession coefficient with a unit of T-183 

1 and t is the lapsed time between discharge at any time t, Qt and initial discharge at t = 0, Q0; and Eq. 4 describes the non-184 

linear relationship during quick flow recession from the unsaturated zone. 185 

 186 

𝚿𝐭 = 𝐪𝟎
𝟏−𝛈𝐭

𝟏+𝛆𝐭
     (4) 187 

 188 

where q0 is the difference between Q0 and Qro, parameter η describes the infiltration rate through the unsaturated zone. The 189 

parameter is defined as 1/ti for the duration of quick flow recession between t = 0 and ti = 1/η. ε in T-1 unit describes the 190 

regulating capacity of the unsaturated zone during infiltration and characterises the importance of concavity of quick flow 191 

recession (Padilla et al. 1994). The algebraic sum of Eq. 3 and 4 gives Eq. 5, which defines the discharge at time t during the 192 

recession period. 193 

 194 

𝑸𝒕 =  𝛟𝐭 + 𝚿𝐭 
    (5) 195 

 196 

Since ti is the point of intersection of the slow flow and quick flow component of the recession curve and infiltration stopped 197 

when t > ti (t > 1/η), so the quick flow component ψt in Eq. 5 is essentially assumed to be zero at that point (ψt = 0) (Ford and 198 

Williams 2007; Civita and Civita 2008). Therefore, the application of Mangin’s model requires, firstly fitting the slow flow 199 

component ϕt, to the slow flow segment of the recession curve using Eq. 3 to determine the recession coefficient α. Afterward, 200 

Eq. 5 was fitted to determine the η and ε parameters of the quick flow segment. However, the accuracies of Qro, ti, and the 201 

linear representativeness of the slow flow component of the recession curve are critical for the reliable estimation of recession 202 

coefficients (Ford and Williams 2007).  203 

2.2.2 Mangin classification framework 204 

Following the estimation of recession parameters α, η and ε using Eqs 3 – 5 above, Mangin proposed a classification scheme 205 

for karst systems based on two additional parameters: (1) aquifer regulation capacity, K, and (2) infiltration delay, i. To 206 

determine K, the dynamic volume, Vdyn, which is defined as the volume of water stored in the phreatic zone at the peak 207 

discharge time t0 is calculated using Eq. 6. The average volume of water, Vann, discharged through the spring’s outlet over one 208 

hydrological year is also calculated. The regulation capacity K, is therefore given by the ratio of Vdyn and Vann as expressed 209 

with Eq. 7. This parameter represents the extent of the phreatic zone and its ability to regulate groundwater release from 210 
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storage. While porous aquifers can have values of K > 0.5, a typical karst system is expected to have K < 0.5 (Marsaud 1997; 211 

Dubois et al. 2020). 212 

 213 

𝑉𝑑𝑦𝑛 =  
𝑄𝑟𝑜

𝛼
     (6) 214 

 215 

𝑲 =  
𝑽𝒅𝒚𝒏

𝑽𝒂𝒏𝒏
     (7) 216 

 217 

The infiltration delay, i, represents the retardation between infiltration through the unsaturated zone and the spring’s outlet. It 218 

is calculated as the value of the quick flow component on the second day (t =2) of recession (Eq. 8). The value of i ranges 219 

between 0 and 1, where a system characterised by fast infiltration would have a value close to zero and a slow infiltrating 220 

system tends towards 1.  221 

𝒊 =
1−η∗2

1+ε∗2
     (8) 222 

With the parameters K and i, five classes of karst systems are defined (also see Fig A1): (1) Well developed system (2) Well 223 

developed speleological network with large downstream flood plains (3) Upstream karstification with retarded infiltration (4) 224 

Complex system and (5) Poorly developed system. Ford and Williams (2007) provided a detailed review of karst aquifer 225 

recession analysis and application of the Mangin model. 226 

 227 

 228 

 229 
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 230 

Figure 1. An illustration of karst spring recession curve showing separation into linear and non-linear components by recession 231 

extraction method and fitting appropriate components of recession analysis model. 232 

2.3 Estimation of recession parameters  233 

For this study, the parameters were estimated for individual, automatically extracted recession events. That way, we captured 234 

the variability of spring discharge across individual recharge events (Jachens et al. 2020). To assess the effects of seasonal 235 

variation on the karst spring recession parameters, we separated the extracted events into summer and winter events. For 236 

simplicity, events that occurred between April and September of the hydrological year are considered summer events while 237 

those from October to March are recognised as winter events. As mentioned in subsection 2.2, in the standard Mangin’s 238 

approach, the slow flow component of the recession curve (Eq. 3) is fitted at first to determine α. Also, the η parameter of the 239 

quick flow component (Eq. 4) which is equivalent to 1/ti is predetermined, meaning that quick flow abruptly ends at ti days, 240 

which cannot be considered optimal. Hence, reliable determination of ti through the extraction routines (REMs) is vital for 241 

estimation of the recession parameters. These standard procedures involved with the application of Mangin’s model resulted 242 

in less degree of freedom for parameter interaction and unrealistic abrupt ending of quick flow after ti days. To increase the 243 

degree of freedom and assess the importance of ti and the effect of a priori estimated η (1/ti) on Mangin’s recession model, we 244 

introduced three optimization approaches, which are referred to as parameters optimisation approaches (POAs) in this study.  245 

 246 

 M1: This follows the standard approach for applying the Mangin model as described by Padilla et al (1994) and Ford 247 

and Williams (2007). The slow flow component of the recession curve is fitted first with Eq. 3 for ti ≤ t ≤ tn to 248 

determine the α value while the quick flow component is assumed to be zero during this period. Afterwards, the 249 

second parameter ε is optimised by fitting the quick flow component with Eq. 5 using the REM predefined values of 250 

η parameter (η =1/ti) for the event duration between t0 ≤ t < ti. 251 
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 252 

 M2: The conventional approach for fitting the Mangin model (M1) does not provide for an independent or flexible 253 

estimation of η. The prior definition of η as 1/ti relies on the accuracy of the extraction method to detect the point of 254 

inflexion ti. This however does not give the flexibility to optimise η to a value that can provide a better fit for the 255 

model. To provide for a more flexible estimation of η, α parameter is determined as in M1, then Eq. 5 is fitted to the 256 

complete segment of the recession curve for t0 ≤ t ≤ tn to determine the best values of ε and η parameters. 257 

 258 

 M3: This is a very flexible approach that allows for α, ε, η and Qro values to be fitted numerically. The determination 259 

of ti and Qro does not depend on the extraction method; rather the best fit for the parameters is obtained from 260 

optimisation process. The Mangin model (Eq. 5) is fitted to the entire recession curve, which allowed for absolute 261 

flexibility of ti and robust parameters interaction during optimisation. With the model calibrated ti (1/η), separating 262 

the quick- and slow flow segments now entirely relies on the optimisation exercise rather than extraction techniques. 263 

 264 

For the optimisation exercise, a non-linear least squares procedure with spring discharge records was used. To avoid having a 265 

negative value of conduit drainage contribution when the optimised ti (1/η) is greater than the elapsing t value, the quick flow 266 

component, ψt (Eq. 4), was constrained to a minimum value of zero. Table 2 provides summary of the different optimisation 267 

approaches, parameters that were optimised as well as the duration of the optimised corresponding flow component. 268 

 269 

Table 2: Optimised recession parameters for the three different parameters optimisation approaches (POAs) of the Mangin 270 

recession analysis model. 271 

Optim. 

approach 

Optimized 

parameters 

Condition 

Slowflow 

component 

Quickflow 

component 

Degree of  

freedom 

M1 α, ε η = 1/ti t i ≤ t ≤ t n t 0 ≤ t ≤ t i Less flexible 

M2 α, ε, η η ≠ 1/ti t i ≤ t ≤ t n t 0 ≤ t ≤ t n Intermediate 

M3 α, ε, η, Qro η ≠ 1/ti t 0 ≤ t ≤ t n t 0 ≤ t ≤ t n Very flexible 

 272 

2.4 Comparison and evaluation of REMs and POAs 273 

The three REMs (Vogel, Brutsaert and Aksoy) were combined with the three POAs (M1, M2 and M3) of the recession model 274 

to derive slow and quick flow recession parameters of selected karst springs for a total of nine possible methods. The recession 275 

parameters were derived separately for both summer and winter recession events. The overall performance of the different 276 

REM and POA combination was determined by calculating the goodness of fit between observed spring recession discharges 277 
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and ones simulated with the derived parameters using Kling Gupta Efficiency (KGE) measures (Gupta et al. 2009). We used 278 

KGE because it considers the common model error types - the mean error, variability and dynamics. The mean and interquartile 279 

ranges of the derived parameters were compared among different method pairs and seasons. The estimated recession 280 

parameters were used to identify the dynamic of the systems according to Mangin’s karst system classification described in 281 

subsection 2.2.2. The Mangin classification scheme describes the aquifer drainage characteristics, conduit development and 282 

speleological network (Mangin 1975; El-Hakim and Bakalowicz 2007). Therefore, this was used to evaluate the 283 

representativeness of recession parameters estimated for the selected karst springs aquifer systems.  284 

3 Test springs and data 285 

The REMs and POAs were tested using three karst springs; Lehnbachquellen, Saivu and Qachquoch located in Austria, 286 

Switzerland and Lebanon respectively (Figure 2). The selection of these springs is based on the geographical spread, which 287 

covers different climate and hydrological settings, availability of discharge hydrograph in high resolution as well as literature 288 

references on the hydrological characterisation of aquifer systems drained by the spring. Daily and sub-daily spring discharge 289 

time series of the selected springs were obtained from the WoKaS database (Olarinoye et al. 2020). Important characteristics 290 

of the spring hydrographs, as well as the catchments in which they are sited are presented in (Table 3). The springs are sited 291 

in catchments distinguished by different climate conditions according to the Köppen-Gieger classification (Beck et al. 2018). 292 

Lehnbachquellen is sited in snow-dominated, Saivu is in humid and Qachquoch is in the Mediterranean catchment. It should 293 

be noted that in snow catchment, recession behaviour will be externally influenced by snow storage. However, we have 294 

included snow-dominated catchment in this study to assess the impact of this external influence. The spring discharge time 295 

series was measured at a uniform time step for each spring and spanned between 3 and 13 years. All discharge time series were 296 

aggregated to daily temporal resolution, and missing data values which were only found (<0.01%) in Lehnbachquellen spring 297 

discharge data were excluded.  298 

 299 

Figure 2. Map showing locations of the three test springs obtained from the WoKaS database and different Köppen-Geiger 300 

hydroclimatic classes. 301 
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Table 3. Summary of test springs site properties and characteristics of spring discharge hydrographs. 302 

Properties Lehnbachquellen Saivu Qachquoch 

Climate description Snow-dominated Humid Mediterranean 

Spring elevation (masl) 1293 371 65 

Köppen-Geiger Cold and no dry season Cold and humid Mediterranean, hot summer 

Temporal res. Daily Hourly Sub-hourly 

Length 1999-2012 1993-1995 2014-2018 

Missing data <0.01% 0 0 

Mean discharge (m3/s) 0.06 0.29 1.08 

Mean precipitation (mm/y) 1396 1201 523 

 303 

4 Results 304 

4.1 Extracted recessions and performance of POAs 305 

The adapted recession extraction methods adequately identified karst spring conduit and matrix flow components. The 306 

parameters obtained with the different REM-POA pairs also produced satisfactory simulations of recession events. Only 307 

complete recession events >= 7 days period were considered for analysis. Here, complete recession referred to events that 308 

featured both conduit and matrix components. For each spring hydrograph, a different number of recession events were 309 

identified by the REMs. As shown in Table 4, the Vogel method captured the highest number of recession events across all 310 

springs, followed by Brutsaert (except for Lehnbacquellen spring) and Aksoy showed the least ability to capture recession 311 

periods from the observed spring discharges. However, the average length of the recession events varied among the different 312 

REMs in no particular order (see Fig. A2 in appendices). Based on the number of recognizable recession events, the REMs 313 

were defined as permissive (Vogel), less permissive (Brutsaert) and restrictive (Aksoy). 314 

 315 

Table 4: Recession events period extracted by the REMs for the three spring discharge hydrographs 316 

REM 
Lehnbacquellen Saivu Qachquoch 

Total Summer (%) Winter (%) Total Summer (%) Winter (%) Total Summer (%) Winter (%) 

Vogel  157 0.53 0.47 33 0.42 0.58 41 0.37 0.63 

Brutseart  122 0.39 0.61 25 0.48 0.52 36 0.47 0.53 

Aksoy   146 0.50 0.50 19 0.58 0.42 31 0.48 0.52 
 317 

Figure 3 shows how the parameters derived from the different REMs and POAs combinations performed in simulating 318 

recession events using the KGE measures. With the exclusion of outliers, a high KGE value is achieved across all 319 
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combinations, ranging between 0.70 and 1.0. More than half of all simulated events across the three springs produced a KGE 320 

>0.9 for all REM-POA pairs. However, the lowest performance in all three springs is related to POAs combined with the Vogel 321 

extraction method. While there was no vivid observable pattern among the extraction methods (REMs) and recession model 322 

performance, the parameters optimisation approaches (POAs) showed otherwise. A clear systematic order for the KGE median 323 

is found within the POAs: M1 < M2 < M3. This is more noticeable in the humid and Mediterranean springs, except for the 324 

Vogel-M2 combination in the humid spring, which is not in the systematic order. 325 

 326 

 327 

Figure 3: Boxplot of KGE measures between observed and simulated recession events based on parameters derived from the 328 

different REMs and POAs. The boxplots represent the interquartile ranges of KGE with the median shown in white lines and 329 

outliers marked in coloured points.  330 

4.2 Variability of recession parameters among the different REMs-POAs and seasons 331 

Figure 4 and 5 respectively show the results of the optimised slow flow and quick flow recession parameters for both summer 332 

and winter periods. These parameter sets are combinations of α, η and ε that produced the best simulation fit (i.e. highest KGE 333 

value) with the different REM-POA pairs. Recession curve fitting based on the individual segment led to a large number of 334 

parameter combinations with the nine possible REM-POA pairs. The modification of REMs and POAs produced complex 335 

parameter interactions, for simplification, we explored the results along two dimensions: (1) variability among the methods 336 

and (2) variability within seasons.  337 

 338 

The results from Figure 4 show that REMs and POAs only have marginal effects on the estimation of recession coefficient, α, 339 

when compared to the seasonality effect. Also, there are differences in how the REMs and POAs impacted the estimated values 340 

of α among the three karst spring catchments. Although, the values of the mean, median and interquartile ranges of α estimated 341 

by all the REMs for the snow-dominated catchment seem to be similar, slight differences can still be observed. The slow flow 342 

recession parameters estimated by the permissive REM (Vogel) are within slightly higher ranges. On the other hand, the 343 
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estimation of α in the humid and Mediterranean catchments seems to be more impacted by the POAs. By increasing the degree 344 

of freedom of the POAs, higher values of α are estimated, most noticeably with the M3 parameter optimization approach.  345 

 346 

While the impacts of methodological approaches (i.e., REMs and POAs) are marginal on the estimated values of α, seasonal 347 

impacts on the values and variabilities of the parameter are more evident. The Saivu and Qachquoch springs in humid and 348 

Mediterranean catchments respectively showed similar dynamics in terms of seasonal variability of α, while Lehnbacquellen 349 

spring located in a snow-dominated catchment showed a different seasonal dynamic. For Lehnbacquellen spring, the values of 350 

the estimated α parameter are higher for summer recession events, noticeably with Vogel and Aksoy extraction techniques 351 

(Figure 4). During the summer period, estimated α values also showed less variability with Vogel and Brutsaert REMs, while 352 

Aksoy gave more varied results for the same season. Meanwhile, an opposite situation is seen with the Saivu and Qachquoch 353 

springs. The median values and interquartile ranges of α are higher in winter for estimations done with Vogel and Brutsaert 354 

extraction methods. For these springs, estimations associated with the Aksoy extraction method occasionally gave slightly 355 

lower α values during winter and less parameter variability. For all the spring systems, the seasonal variability of α is more 356 

observable with analysis associated with Vogel, which is the most permissive REM.  357 

 358 

Figure 4. Distribution and variability of slow flow recession parameter, α, obtained by the combination of REM (Vogel, 359 

Brutsaert and Aksoy) and POA (M1, M2 and M3) for summer and winter periods: (a) Lehnbacquellen spring in the snow-360 

dominated catchment, (b) Saivu spring located in the humid catchment and (c) Qachquoch spring in the Mediterranean 361 

catchment. The boxplots represent the interquartile range, whisker lines correspond to the most extreme parameter values and 362 

outliers marked as circles with corresponding box colour. 363 

 364 
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Both the recession analysis methodology (REMs and POAs) as well as seasons have significant impacts on the estimated 365 

values of infiltration rate, η, and curve concavity, ε, parameters. The most visible pattern from Figure 5 is that, the increasing 366 

degree of freedom during optimisation usually results in higher estimates (M3 > M2 > M1) and larger variability of η. However, 367 

this pattern may slightly vary among the different spring systems. The values of the η parameter spanned one order of 368 

magnitude for REMs and POAs combinations across all spring locations. The springs in snow-dominated (Lehnbachquellen) 369 

and mediterranean (Qachquoch) catchments showed similar dynamics in terms of seasonal variation of η. The estimated 370 

median and mean values of η are higher in winter for both springs. While parameter variability between seasons is relatively 371 

comparable in the snow-dominated catchment, larger variability is seen during winter in mediterranean catchment. In the 372 

humid catchment, the spring (Saivu) showed an opposite seasonal pattern, summer events have higher η values as well as 373 

larger variability. 374 

 375 

Estimation of curve concavity parameter, ε, also reflected the influence of recession analysis methods and seasonal variations. 376 

The values of ε extend over three orders of magnitude across the three spring locations. In a differing pattern from η, increasing 377 

the flexibility of the parametrisation approach (POA) led to low and more consistent ε values. We observed a decreasing order 378 

of M1 < M2 < M3 in the estimated values of ε parameter for both summer and winter period. Although, combinations of 379 

Brutsaert and Aksoy REMs with most flexible POA (M3) slightly contradicted this order at times, particularly for the humid 380 

and mediterranean springs. Although the mean and median values showed slightly higher winter parameter estimations, 381 

however, the parameter ranges are similar for both summer and winter periods in the snow-dominated catchment. There is no 382 

consistent seasonal pattern in the dynamics of ε estimated for the humid and mediterranean springs. But an understated pattern 383 

seen is higher (Saivu spring - humid) or lower (Qachquoch spring – mediterranean) estimations of ε in summer, especially 384 

with M1 parameterisation approach.  385 

In general, for the respective seasons, there is relatively better consistency among REM-POA pairs in estimating both slow 386 

and quick flow recession parameters as shown by the results in Figure 4 and Figure 5. In fact, there is much higher parameters 387 

variability among recession events than the different REM-POA combinations and seasons. 388 
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 389 

Figure 5. Distribution and variability of the quick flow recession parameters, η and ε, (y-axis of ε in log scale) obtained by the 390 

combination of REM (Vogel, Brutsaert and Aksoy) and POA (M1, M2 and M3) for summer and winter periods: (a and d) 391 

Lehnbacquellen spring in the snow-dominated catchment, (b and e) Saivu spring located in the humid catchment and (c and f) 392 

Qachquoch spring in the Mediterranean catchment. The boxplots represent the interquartile range, whisker lines correspond to 393 

the most extreme parameter values and outliers marked as circles with corresponding box colour. 394 

4.3 Aquifer characterization 395 

To evaluate the overall representativeness of estimated recession parameters based on the modified REMs and different POAs 396 

for the selected karst spring systems, we determined the drainage properties of the spring’s aquifer using the parameters derived 397 

from the individual recession event. As described in subsection 2.2.2, retardation between infiltration and output defined by 398 

infiltration delay parameter, i, and aquifer regulation power, K, were calculated for individual recession event. Figure 6 shows 399 

the mean aquifer classifications, as well as their standard deviations based on per event estimated K and i values. The values 400 

of K and i were calculated for individual recession events with the recession parameters derived from the nine REM-POA 401 

combinations. As shown by the standard deviation bounds of the drainage properties derived from individual recession 402 

segments in Figure 6, there is an overlapping of calculated drainage properties and aquifer classes between the seasons. The 403 

methodological differences in the selected REM and POA resulted in large variations in the calculated mean values of 404 

infiltration delay, i, among the springs. The estimated mean values i for the three spring systems used in this study covered 405 

similar ranges (0.20 to 0.65). With the exemption of the Lehnbacquellen spring, there was a good coherency in the mean K 406 
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values determined from all combinations of REM and POA for each spring. In addition, the systems are more distinguishable 407 

by their ability to store and regulate groundwater outflow through the springs. 408 

 409 

Among the three karst springs, only the Qachquoch spring showed a clear impact of seasonality in the system’s classification. 410 

In summer, the estimated mean K values are <0.1 year which is unanimous among the REM-POA combinations. Whereas 411 

mean K values up to 0.45 and standard deviations of 1.75 years were estimated for the winter recessions. This resulted in a 412 

system classification extending from class I (well-developed system) to class IV (complex system) in summer; and a system 413 

characterised as predominately class III (fairly karstified system) in winter. Groundwater has a very short residence time in the 414 

Saivu spring system for both summer and winter periods. The mean regulation capacity of the system is <0.1 years, although 415 

a slightly higher value (ca. 0.15 years) was derived during the winter season.  Due to this low regulation power, K, of the Saivu 416 

spring system, it was characterized predominately as class I in both the summer and winter periods. Only a handful of method 417 

combinations placed the system in class III.  418 

 419 

While the other two springs (Qachquoch and Saivu) showed either clear or slight seasonal influence in the karst systems 420 

characterisation, Lehnbachquellen spring did not show a systematic seasonal impact in its characterisation. Both the estimated 421 

mean infiltration delay i, and regulation power K, showed high inconsistent pattern for Lehnbachquellen spring. The mean K 422 

values ranged between 0.25 and 0.80 years, with standard deviation values >3 years for both summer and winter recessions 423 

events. With these high K values, the Lehnbachquellen system has the highest capacity to withhold groundwater among the 424 

three karst springs used in this study. The wide dispersion of both K and i made it impossible to confine the system into a 425 

specific class. The Lehnbachquellen system therefore falls within three classes; class II (well-developed system with large 426 

downstream flood plains), class III and class V (poorly developed system).  427 

 428 

 429 
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 430 

Figure 6. Karst aquifer type classification based on mean values of K and i calculated with recession parameters estimated by 431 

the different combinations of REM and POA for both summer (full-shaded colour) and winter (light-shaded colour) periods. 432 

Distributions of the per event mean K and i derived from all method combinations for each spring are represented by 433 

coloured symbols; areas covered by unfilled boxes are the standard deviations.  434 

 435 

5 Discussion 436 

5.1 Quality of extracted recessions  437 

With the modification of the traditional REMs, we were able to establish a completely objective approach to distinguish 438 

between slow and quick flow recession components. Furthermore, optimisation approaches (POAs) with more flexibility 439 

showed better improvement over the conventional parametrisation procedure. The REMs tested use different empirical 440 

approaches to scrutinise genuine baseflow records, hence they have a different levels of tolerance. The ability of the extraction 441 

methods to identify recession periods from hydrograph time series depends on the level of their restrictiveness. Vogel 442 

extraction method defined by a 3-day moving average to smoothen the hydrograph and also allowed for a 30% increase in 443 

subsequent flowrates is more permissive than Brutsaert and Aksoy methods that strictly enforced dQ/dt < 0. Hence, more 444 

recession events were extracted by the Vogel method. A study by Stoelzle et al. (2013) also showed the Vogel procedure to be 445 

more permissive, as it was able to extract almost 50% more events than Brutsaert. Although the main recession selection 446 

condition for Brutsaert and Aksoy method is determined by decreasing dQ/dt, constraining real baseflow recessions to 447 

discharge data points with less than 10% (CV ≤ 0.1) deviations makes the Aksoy more restrictive than the Brutsaert method.  448 

 449 

Generally, all combinations of REM-POA performed acceptably well, increasing restrictiveness of the extraction method gave 450 

an improved model performance. Even though restrictiveness led to better performance, this should not be a basis to out-rightly 451 

accept restrictive REM over less-restrictive one. For instance, standard removal of 3 or 4 days by the Brutsaert method as a 452 

stormflow-influenced period is speculative and could lead to an unrealistic estimation of conduit flow duration, ti, (ti =1/η), yet 453 

it performed better than the permissive Vogel method. Although, such problem of unrealistic ti  estimation inherent in Brutsaert 454 

was eliminated and general improvement in models performances was achieved by increasing parameters flexibility during 455 

optimisation. Overall, the adapted REMs and the introduced three POAs provided a range of results that adequately represented 456 

the karst systems. However, there are still aspects of automated recession extraction that could benefit from further 457 

improvement for their general application in karst hydrology. For instance, the heterogeneous nature of the karst system results 458 

in a very dynamic spring discharge pattern, by introducing more tolerance to the REMs to accommodate the usual karst spring 459 

discharge anomaly, longer recession events can be extracted. In addition, while all REM-POA pairs are good from the model 460 
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performance perspective, it will be misleading to define best pair of REM-POA base on this, without evaluating if the estimated 461 

parameters are realistic.  462 

5.2 Effects of recession analysis methods and seasonality on extracted recession parameters 463 

 5.2.1 Effects of REM-POA combinations on extracted recession parameters  464 

Methodological choices of REMs and POAs combinations have impacts on the estimated recession parameters. The extent to 465 

which the parameters are influenced by the methods largely varied between the slow and quick flow recession parameters. 466 

There was relatively higher consistency and better stability among all REM-POA pairs in estimating slow flow recession 467 

parameters that describe the drainage characteristics of the matrix block within the phreatic zone. Depending on the 468 

catchment’s hydroclimatic settings, both REMs and POAs showed to have marginal impacts on the estimation of the slow 469 

flow recession parameters. Though, this is slightly contrary to other studies that found that slow flow recession coefficients 470 

are majorly influenced by the extraction method used, while the parameterization approach only has a marginal impact (e.g. 471 

Stoelzle et al. 2013; Santos et al. 2019). 472 

Although the combination of REM and POA affected the estimation of conduit drainage characteristics, the effect of the POA 473 

is more pronounced. Increasing the degree of parameter freedom during optimisation with the different POAs formulations 474 

often resulted in a significant reduction in the variability of the parameters. This was also accompanied by either low or high 475 

estimation of conduit drainage parameters. The more flexible parameterisation approaches (M2 and M3) generally led to higher 476 

infiltration rates through the unsaturated zone. The infiltration rate is predetermined (η = 1/ti) in the original parameterisation 477 

procedure of Mangin’s model (M1), therefore restricting the fitting of the quick flow recession curve only to the optimisation 478 

of parameter ε, which regulates infiltration through the unsaturated zone. The values of ε smaller than 0.01 have been reported 479 

to indicate very slow infiltration and values between 1 and 10 show a domination of fast infiltration (Ford and Williams, 2007; 480 

El-Hakim and Bakalowicz, 2007). To compensate for the inflexibility due to the predetermined infiltration rate, the regulation 481 

effect of the unsaturated zone was amplified, which is evident in the higher and more varied values of ε estimated with the M1 482 

parameterisation procedure. By means of excluding a fixed number of days (3-4) as the influenced stage of recession, Brutsaert 483 

paired with M1 also led to similar values of η estimated for all springs. This makes it an unsuitable combination, especially 484 

with a long recession period. In their study, Santos et al. (2019) found analysis with the Brutsaert method to be more robust 485 

and appropriate for short recession samples. 486 

Despite the impacts of methodological choices on the uncertainty of estimated recession parameters, variability among events 487 

exceeded the variability among methods. These high variabilities are attributed to different lengths of extracted recession 488 

events, differences in karstic processes such as recharge, infiltration as well as conduit pathways that are activated within the 489 

unsaturated and saturated zones for each event. Even though karst systems are very heterogeneous and it is important to capture 490 
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the impacts of the variable karstic processes through the analysis of individual recession segments, the high uncertainty among 491 

events makes it difficult to define a set of representative recession parameters.  492 

Per event recession analysis is very useful to better understand the karst system dynamics compared to master recession 493 

analysis which is unable to depict the hydrodynamic behaviour of karst. However, the high uncertainty found with this 494 

approach is still a challenge and a bit difficult to cope with. We believe there are still possibilities for improvement with this 495 

approach, for example defining a systematic approach to quantify parameters uncertainties will help to increase the confidence 496 

of the individual recession segment analysis. 497 

 498 

5.2.2 Seasonal influences on recession parameters 499 

The seasonal variability of slow flow recession parameter is inter-connected with the choice of REM. Among the three different 500 

REMs used in this study, a clear seasonal variability of α was more noticeable with Vogel, which is the most permissive REM. 501 

However, the observed seasonal variability diminished with increasing restrictiveness of the REM. Also, the pattern of the 502 

seasonal variability of α was not the same for all three catchments and this emphasized the influence of climatic controls on 503 

karst aquifer drainage. For instance, humid and dry regions are usually characterized by long recession and perhaps a 504 

significant drop in groundwater table during summer. From the results presented in the previous section, we identified lower 505 

values of α in summer compared to winter. As the parameter α signifies the slope of slow flow recession, a higher value means 506 

a steeper slope and faster emptying of the aquifer. The lower α values seen during summer emphasized the drought resistance 507 

of the system due decrease in the aquifer hydraulic head. Meanwhile, the snow-dominated catchment showed an opposite 508 

behaviour with higher values of α in summer. This occurred due to the accumulation and melting of snow. The snow melting 509 

process during the summer period would result in a higher hydraulic head while frozen ice packs in winter translate to a lesser 510 

hydraulic gradient. As previously mentioned, a higher hydraulic head would promote faster drainage of the aquifer resulting 511 

in higher values of α parameter. 512 

 513 

For quick flow recession parameters, seasonal variability is independent of the REM. The three springs showed different 514 

seasonal patterns which could be directly linked to their hydroclimatic settings. Seasonal influence on quick flow recession 515 

parameters was not clearly seen in the snow-dominated catchment. This could be attributed to the snow melting process 516 

discussed above. Since snowmelt compensates for hydrologic flow during warmer periods, there would be a constant influx 517 

from the surface throughout the year, also soil wetness conditions would not change significantly. This explains the lack of 518 

any evident seasonal differences between parameters η and ε estimated for Lehnbachquellen spring in the snow-dominated 519 

catchment.  But the Saivu spring in the humid and Qachquoch spring in the mediterranean catchment showed clear seasonal 520 

influences. Estimated values of infiltration rates η for Saivu were higher in summer (lower in winter) and lower in summer 521 
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(higher in winter) for the Qachquoch spring. This pattern is believed to be controlled by the peculiarity of the different 522 

geographic and climatic settings. In a humid catchment, higher temperatures in summer would result in dryer soil conditions, 523 

which would consequently facilitate faster infiltration. However, for the mediterranean settings, soil conditions are dry due to 524 

relatively warmer temperatures all year round. This makes precipitation a limiting factor, and with more precipitation in winter, 525 

faster infiltration through the unsaturated zone would occur. 526 

 527 

5.3 How realistic are adapted REM-POA for karst system analysis? 528 

Karst system classification proposed by Mangin (1975) is based on two parameters K and i (see subsection 2.2.2). These two 529 

parameters were derived from the estimated recession parameters (α, η and ε), thus the variability found in the recession 530 

parameters is expected to be propagated to K and i. Although, if the derived mean values of K were considered, some level of 531 

coherency was found among all REM-POA combinations and between the seasons. But looking at the estimated standard 532 

deviations, a large intra-event and seasonal variation can be found. In a study by Grasso & Jeannin (1994), the authors found 533 

regulation power, K, to be more stable for various years and events. These findings did not agree with our analysis, the 534 

outcomes of which showed a large variability among K for different events, most significantly in the snow-dominated 535 

catchment. Regulation power is analogous to memory effect, and the periodic water release from external snow storage that is 536 

not captured within the saturated zone in real-time makes K to fluctuate more in the snow-dominated catchment. Considering 537 

the standard deviations from the mean, in fact, the values of K exceeded the maximum value of 1 originally proposed in the 538 

Mangin karst classification scheme. Mangin (1975) set a maximum value of one for K, with assumptions that real karst systems 539 

would not have a storage memory beyond one year. However, karst system in a snow catchment could have K values greater 540 

than one due to snow accumulation and melting as found in Lehnbachquellen spring. Also, complex aquifer systems, as in the 541 

case of Qachquoch spring could also have higher K values.  542 

 543 

Infiltration delay, i, is strongly dependent on recharge type contribution as well as catchment size (Jeannin and Sauter 1998). 544 

Recharge is controlled by climatic input (rainfall) which varies between seasons. However, the derived values of i were hardly 545 

separated by season, but more varied among individual recession events. The complex interplay of REM and POA resulted in 546 

a compensation phenomenon; whereby infiltration rate, η, was compensated by recession concavity parameter, ε. Since the 547 

infiltration delay is defined by these parameters, it is difficult to explicitly infer the specific effects of REM and POA on 548 

infiltration delay. 549 

 550 

The northern Alps karst system where the Lehnbachquellen spring is located has been defined as well karstified highly 551 

permeable unit interlayered with less permeable Flysch formation (Goldscheider 2005; Chen et al. 2018). Our analysis partly 552 

placed the karst system in classes II and III thereby showing some consistency with literature evidences. Perrin, Jeannin, & 553 
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Zwahlen (2003) described Saivu spring system as a well-developed karstic network, the majority of the methods pair used in 554 

this study placed this spring in class 1, therefore coherently agreeing with the authors’ description. Taking into account the 555 

standard deviations, the classification of Qachquoch spring ranged between medium to poorly karstified system. This is similar 556 

to a recent study by Dubois et al. (2020) that categorised the system as poorly karstified with a very large regulation capacity.  557 

 558 

Given that the existing common karst spring recession extraction method involves a visually supervised procedure and 559 

subjectively determined duration of conduit infiltration, an alternative faster, automated and objective approach is very useful. 560 

From our analysis, the resulting parameters of extracted recession segments are within reasonable ranges and the derived 561 

systems’ classifications correspond to those found in the literature. The good performance recorded between simulated and 562 

observed flow rates during recession events attests to the potential transferability of traditional extraction methods to karst 563 

systems. However, this good performance does not necessarily translate to reliable parameter estimates. It is therefore 564 

important to choose REM methods that give reasonable parameters especially when paired with a less flexible optimisation 565 

approach. Furthermore, with prior knowledge of the spring system, parameters ranges can be reasonably constrained during 566 

optimisation to achieve more representative optimum parameters. 567 

 568 

6 Conclusions 569 

The application of karst spring hydrographs recession analysis is very broad, including estimation of storage capacity (Fleury 570 

et al. 2007), describing discharge of unsaturated zone (Amit et al. 2002; Mudarra and Andreo 2011) as well as systems 571 

classification (El-Hakim and Bakalowicz 2007). Most often manual recession extraction is used and the high subjectivity of 572 

the approach introduced bias to estimated parameters. For the first time in literature, this study explored the applicability of 573 

automated traditional recession extraction methods (REMs) originally developed for slow flow (baseflow) recession by 574 

adapting them to also identify quick flow recessions. We fitted individual extracted recession segments with Mangin's 575 

recession model to determine the conduit and matrix drainages’ recession characteristics. We introduce new parameters 576 

optimisation approaches (POAs) different from the conventional procedure to increase the degree of freedom of parameter 577 

interaction. 578 

 579 

While we found that there were uncertainties in the estimated recession parameters resulting from the methodological choices 580 

(REM and POA combinations) and seasonal influences, the uncertainties among individual recession events were much larger. 581 

The large variability among individual events actually reflected the dynamic heterogeneous nature of the karst system. The 582 

combination of this with REMs, POAs and seasons resulted in a more complex interplay and only amplified the uncertainties. 583 

These uncertainties are actually useful to understand the dynamic nature karst system, but it is difficult to cope with and also 584 
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need to be systematically quantified. To avoid these large uncertainties, master recession analysis approach has been a popular 585 

alternative for karst spring hydrograph analysis. But a single recession parameters’ values derivable from the master recession 586 

approach do not reflect the highly dynamic nature of the karst system. The uncertainty of karst recession parameters derived 587 

from the either single or master recession approach is presently not a discussion in karst hydrology. Maybe such discussion 588 

needs to start to address the limitations and difficulties encountered in this study. Herein, we pose two major issues that need 589 

to be addressed as seen in this study: (1) how can we do recession analysis more objectively with a single REM and separation 590 

technique that accounts for all ranges and possible instances of slow and quick flow? and (2) how can we incorporate a more 591 

robust parameters estimation and uncertainty quantification approach into individual recession analysis? Answering these 592 

questions will help to expand confidence in the system’s drainage characteristics that are derived from recession parameters. 593 

 594 

Finally, this study has shown that there are a lot of potential for extracting and separating karst spring recession components 595 

by adapting the traditional REMs and introducing flexible parameter optimization approaches. The adaptation of the REMs in 596 

combination with the different parameters estimation flexibility (POAs) provides a suite of automated tools that can be used 597 

for karst recession study. This automated and multi approach for parameters optimization is essential to cope with the known 598 

biases of single and visually supervised recession analysis methods. Different REM has their specific advantages and there is 599 

still room for improvement. For example, other extraction methods can be tested and non-linear reservoir model can also be 600 

considered for fitting the matrix model.  601 
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Appendix 715 

 716 

Figure A1. The Mangin (1975) karst system classification scheme based on K and i. 717 

 718 

 719 

 720 

Figure A2. Characteristics of extracted recession events by REMs for both winter and summer periods in the three study sites: (a) number 721 

of identified complete recession events, and (b) the average number of days complete recession occurred. 722 
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 724 

Figure A3. Lehnbachquellen spring discharge hydrograph and extracted recession events recognised by the three REMs: (A) Vogel, (B) 725 

Brutseart and (C) Aksoy. 726 
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 728 

Figure A4. Saivu spring discharge hydrograph and extracted recession events recognised by the three REMs: (A) Vogel, (B) Brutseart and 729 

(C) Aksoy. 730 
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 732 

Figure A5. Qachquoch spring discharge hydrograph and extracted recession events recognised by the three REMs: (A) Vogel, (B) Brutseart 733 

and (C) Aksoy. 734 
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