Karst spring recession and classification: efficient, automated methods for both fast and slow flow components

Tunde Olarinoye¹, Tom Gleeson², Andreas Hartmann¹,³

¹Chair of Hydrological Modeling and Water Resource, University of Freiburg, Germany
²Department of Civil Engineering, University of Victoria, BC, Canada
³Department of Civil Engineering, Bristol University, UK

Correspondence to: Tunde Olarinoye (tunde.olarinoye@hydmod.uni-freiburg.de)

Abstract.
Analysis of karst spring recession hydrographs is essential for determining hydraulic parameters, geometric characteristics and transfer mechanisms that describe the dynamic nature of karst aquifer systems. The extraction and separation of different fast and slow flow components constituting karst spring recession hydrograph typically involve manual and subjective procedures. This subjectivity introduces bias, while manual procedures can introduce errors to the derived parameters representing the system. To provide an alternative recession extraction procedure that is automated, fully objective and easy to apply, we modified traditional streamflow extraction methods to identify components relevant for karst spring recession analysis. Mangin’s karst-specific recession analysis model was fitted to individual extracted recession segments to determine matrix and conduit recession parameters. We introduced different parameters optimisation approaches of the Mangin’s model to increase degree of freedom thereby allowing for more parameters interaction. The modified recession extraction and parameters optimisation approaches were tested on 3 karst springs in different climate conditions. The results show that the modified extraction methods are capable of distinguishing different recession components and derived parameters that reasonably represent the analysed karst systems. We record an average KGE >0.85 among all recession events simulated by the recession parameters derived from all combinations of recession extraction methods and parameters optimisation approaches. While there are variabilities among parameters estimated by different combinations of extraction methods, optimisation approaches and seasons, we find even much higher variability among individual recession events. We provide suggestions to reduce the uncertainty among individual recession events and raise questions on how to improve confidence in system’s attributes derived from recession parameters.

1 Introduction

Groundwater from karst aquifers are essential water sources globally (Stevanović 2018; Goldscheider et al. 2020). Karst aquifers are characterized by high degree of heterogeneity and complex flow dynamics resulting from the interplay of conduit and matrix drainage systems (Kiraly 2003; Goldscheider and Drew 2007). Groundwater flow is rapid in the highly-conductive
conduit system whereas it is several order of magnitude slower in the less-conductive matrix system (Goldscheider 2015). While both systems have significant storage capacities, groundwater residence time is longer in the matrix than the conduit system (Kovács et al. 2005).

Several methods including detailed site-specific speleological investigation (Ford and Williams 2007), tracer tests (Goldscheider and Drew 2007; Goldscheider and Neukum 2010), hydrograph analysis (Kovács et al. 2005; Fiorillo 2014) and model ensembles (Fandel et al. 2020) are used to characterize groundwater flow dynamics in karst systems. Aside from hydrograph analysis which usually requires only spring discharge time series data, other methods are either expensive to apply, time consuming or require more input. This therefore makes time series analysis a commonly applied method for karst aquifer flow analyses and modelling (Ford and Williams 2007).

Quantitative time series analysis provides a lumped attributes of karst aquifer system that are rather difficult to directly measure (Kovács et al. 2005). Karst spring recession analysis still remains a vital quantitative time series analysis tool for estimating aquifer parameters and geometric properties (Fiorillo 2011). Discharge from karst springs reflects the complex interplay of conduit and matrix systems, and provides insight about the characteristics of the aquifer which sustains the spring (Kovács et al. 2005; Fiorillo 2014). This also provide essential information for flow prediction as the shape of spring hydrograph reflects variable aquifer responses to different recharge pathways (Ford and Williams 2007). Since the shape of the spring hydrograph describes in an integrated manner how different aquifer storages and processes control the spring flow (Jeannin and Sauter 1998; WMO 2008a), analyzing individual recession limbs of spring hydrograph therefore offers extensive understanding into the structural, storage and behavioral dynamics of the karst system’s drainage (Bonacci 1993).

Numerous studies have employed recession analyses of karst spring hydrograph to characterize karst aquifers, evaluate aquifer properties, manage groundwater resources, predict low flow and estimate baseflow parameters (Padilla et al. 1994a; Dewandel et al. 2003; Kovács et al. 2005; Fiorillo 2014). Derived or estimated recession coefficients are also important parameters in karst models for simulating rainfall-discharge (Fleury et al. 2007; Mazzilli et al. 2019) and other process-based modelling (Hartmann et al. 2013, 2014). Unlike porous media, karst systems cannot be represented by one single storage-discharge function (Ford and Williams 2007). They comprise of multiple subsystems of interconnected conduit and matrix reservoirs, each with their own storage-discharge characteristics (Jeannin and Sauter 1998). Recession analysis models specifically developed for karst spring analysis usually comprised of two (Mangin 1975) or more (Fiorillo 2011; Xu et al. 2018) independent storage-discharge transfer functions to describe drainage characteristics of different reservoirs and simulate recession flows. Dewandel et al. (2003) provide general overview and main characteristics of commonly used recession models and those specifically applied to karst systems.
Even though recession analysis of spring hydrographs is cheaper in terms of resources requirement to explore the flow dynamics and geometry of the karst aquifer system, a major challenge in its application is the separation of the slowflow (matrix-dominated) and quickflow (conduit-dominated) components. The most commonly used karst spring hydrograph separation technique is the semi-logarithmic plot that usually reveals two or more segments. At least one of these segments, which is typically the last, represents linear reservoir drainage and it is attributed to the slowflow (matrix) component (Bonacci 1993; Ford and Williams 2007). The other segment represents the quickflow (conduit) component – atimes, a third segment representing the mixed component is also identified. However, this approach is visually supervised and subjectively applied thereby resulting in imprecise and inconsistent estimations. The amount of time required for the visual supervision exercise also makes it impractical to apply this approach to large number of hydrographs or multiple recession curves, especially if individual recession segment analysis is to be considered for parameters estimation.

However, in other fields of hydrology, there are a handful of automated recession extraction methods that have been developed for extracting streamflow recessions (Arciniega-Esparza et al. 2017). These traditional extraction methods aimed to explicitly identify baseflow recession periods by using different statistical indices to detect less variable flow conditions. During baseflow, streamflow is essentially supported by groundwater storage which provides a less variable flow condition. Contributions from runoff and other unregulated sources that produce high variable flow during quick flow recession are discarded by these extraction routines (Vogel and Kroll 1996; Brutsaert 2008). Although, these methods were developed to extract baseflow recession from stream hydrographs, yet there is possibility to adapt them for extracting matrix and conduit flow recessions of karst springs. In addition to identifying the slow flow recession component, such adaptation will focus on recognizing the quick flow component instead of discarding it. But as these methods are based on different statistical indices for identifying the baseflow regime, they perform differently and produce differing recession parameters (Stoelzle et al. 2013; Santos et al. 2019). Therefore, while attempting to modify these routines, it is also important to explore and compare the differences in the estimated recession parameters that would result from adapting these commonly used traditional recession extraction methods.

Following the extraction of recession events, the estimation of recession parameters is then done either by analysing the individual recession segment (IRS) or constructing a master recession curve (MRC) from all events. The MRC approach is commonly used in karst hydrology studies to estimate spring recession parameters, though this approach is also considered to be very biased towards long recession events (Jachens et al. 2020). Also, the single parameters’ value derived from this approach does not represent the actual dynamic nature and implicit heterogeneity of karst systems. However, parameters derived from IRS analysis better describe the range of the aquifer system dynamics as well as understanding the seasonal
controls on recession behaviour (WMO 2008b). While seasonal control on recession has been widely studied in porous media, studies assessing seasonal effects on karst spring recession are still rare. An advantage of the modified extraction methods herein presented in study is that, it allowed us to employ the IRS analysis for parameter estimation, as well as projecting the analysis along seasonal dimensions.

Hence, this study aims to develop and test a robust and objective method for extracting karst spring recession components as well as determining the parameters associated with the different components of karst drainage systems. Therefore, in this study we develop an automated karst recession extraction methods that can identify matrix and conduit components of karst spring recession hydrograph by modifying the traditional streamflow recession extraction routines. We then estimate conduit and matrix recession parameters of the IRS by using the combination of different modified recession extraction methods and parameters optimisation approaches of karst recession model. We explore the effect of seasonal influences on the karst conduit and matrix recession parameters as well as the aquifer system classification. Finally, the performances of the different combinations of modified extraction methods and karst recession model parameters optimisation approaches were evaluated.

2 Data and Methods

To develop an automatic karst-specific recession extraction and analysis procedure that is objective and applicable to large hydrograph samples, we first explore the applicability of traditional recession extraction procedures originally developed for non-karst streamflow recessions (Vogel and Kroll 1992; Brutsaert 2008; Aksoy and Wittenberg 2011). Then we analyse karst recession parameters using a two-reservoirs parallel drainage recession model (Mangin 1975). In the following subsections, we described the recession extraction and analysis model, parameters optimisation approaches, as well as the various adaptations and modifications implemented. For consistency, we use the terms ‘quickflow’ for the turbulent flow from highly conductive karst drainage pathways (synonymous with conduit and storm flow) and ‘slowflow’ for the laminar flow contribution from less conductive fissures and pores (synonymous with matrix, diffuse and base flow) (Atkinson 1977; Larson and Mylroie 2018).

2.1 Adapting streamflow methods to extract matrix and conduit recession components

We adapt three different streamflow recession methods (Vogel and Kroll 1992; Brutsaert 2008; Aksoy and Wittenberg 2011) to extract matrix and conduit recession components (Table 1), herein called recession extraction methods (REMs). To develop an automated base flow recession extraction routine, Vogel and Kroll (1992) firstly smoothened the stream hydrograph using a 3-day moving average. Thereafter, the decreasing segments of the 3-day moving average are selected as the recession hydrographs. Only segments with 10 or more consecutive days are recognised as recession candidates. To exclude surface and
In order to objectively determine streamflow recession that is derived purely from a dry or low flow period, Brutsaert (2008) introduced a more strict recession extraction method. For streamflow Q, during time t, the Brutsaert method eliminates data point with increased or zero values of dQ/dt, as well as points with abrupt dQ/dt values. To exclude data points that might be influenced by storm runoff, three data points after a positive or zero dQ/dt are removed - in major events, an additional fourth data point is removed. While Brutsaert (2008) did not provide a description for a major event, Stoelzle et al. (2013) applied the Brutsaert method in their study and defined major event as streamflow values exceeding 30% streamflow frequency. Therefore, our study uses this definition of major event from Stoelzle et al. (2013). Furthermore, the Brutsaert method also excludes last two data points before a positive or zero dQ/dt and spurious data points with larger -dQ/dt values.

Aksoy & Wittenberg (2011) extracted the baseflow component from daily streamflow hydrograph during recession by comparing the coefficient of variation (CV) of the recession segment. All days with decreasing or equal observed flowrate observations are considered as part of the recession curve. Subsequently, a non-linear reservoir model (Eq. 1) is iteratively fitted to the recession curve until the CV is ≤ 0.1. The CV is defined as the ratio of standard deviation between observed flowrates measurements (Q_s) and calculated flowrate (Q_{calc}) to the mean of the observed flowrates as expressed by Eq. 2. Segment of the recession curve with the CV ≤ 0.1 is selected as the real baseflow recession, otherwise excluded. Only recession curves with 5-day periods or longer are considered. If the number of days becomes less than 5 during iterative curve fitting and CV ≤ 0.1 is not achieved, such recession event is discarded (Aksoy and Wittenberg 2011). To ensure consistency between the extraction method and Mangin recession model used in this study (see Section 2.2), the value of b in Eq. 1 is set to 1, thereby making it a linear model.

$$Q_t = Q_0 \left[1 + \frac{(1-b)Q_0^{1-b}}{ab} \right]^{b-1}$$ \hspace{1cm} (1)

$$CV = \sqrt{\frac{\sum (Q - Q_{calc})^2}{\sum Q^2}} \frac{\sum (Q_{calc})^2}{\sum (Q)^2}$$ \hspace{1cm} (2)
The three recession extraction approaches (Vogel and Kroll 1992; Brutsaert 2008; Aksoy and Wittenberg 2011) were specifically developed to extract streamflow recessions that are mainly from slow flow contribution. Thus, rules and exclusion criteria specified by each method aim at eliminating the quickflow influences from the extracted recession segments. In karst systems, concentrated rapid flow through the conduit networks constitutes the quickflow, while the contribution from slow-velocity drains through the matrix pores constitutes the slowflow. The quick and slow flow represents flows from two different drainage structures and both contribute to karst spring recession (Fiorillo, 2014; Ford & Williams, 2007; Padilla et al., 1994).

Adapting the streamflow methods for karst spring recession analysis requires both slow and quick flow components to model matrix and conduit spring discharges. So, to adapt the traditional REMs, we (i) extract spring flow recession curve based on the specific method approach, (ii) attribute part of the recession curve that satisfies the specified method’s exclusion criteria as slowflow (matrix) component, and (iii) assign the remaining part that is excluded as quickflow (conduit) component. Table 1 provides an overview of the rule-based baseflow recession extraction methods and changes made in adapting them to include quickflow component of recession.

Table 1: Criteria for recession extraction methods (REMs)

<table>
<thead>
<tr>
<th>Recession extraction method</th>
<th>General Criteria</th>
<th>Filter</th>
<th>Slow flow selection</th>
<th>Adaptation for quick flow selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vogel</td>
<td>Decreasing 3-day moving day average</td>
<td>First 30% days</td>
<td>$Q_t \geq 0.7Q_{t-1}$</td>
<td>First 30% days, $Q_t < 0.7Q_{t-1}$</td>
</tr>
<tr>
<td>Brutsaert</td>
<td>$\frac{dQ}{dt} < 0$</td>
<td>First 3 – 4, and last 2 days</td>
<td>$dQ_t/dt < dQ_{t-1}/dt$</td>
<td>First 3 or 4 days, $dQ_t/dt > dQ_{t-1}/dt$</td>
</tr>
<tr>
<td>Aksoy</td>
<td>$\frac{dQ}{dt} \leq 0$</td>
<td>-</td>
<td>CV ≤ 0.10</td>
<td>CV > 0.10</td>
</tr>
</tbody>
</table>

2.2 Karst spring recession analysis

2.2.1 Mangin model

After extraction, we apply Mangin’s (1975) recession analysis model which has been widely used for estimating drainage characteristics and aquifer dynamics in fractured non-homogeneous media (Fleury et al. 2007; Liu et al. 2010; Xu et al. 2018; Schuler et al. 2020; Sivelle 2020). To analyse the extracted recessions, we use this method which considers a two-component recession curve by distinguishing between quick flow (mostly through karstic conduits) and slow flow (mostly through the fissure matrix of the carbonate rock) recessions (Figure 1). Mangin presented two equations: Eq.3 describes the linear storage-discharge relationship from the saturated zone during slowflow condition represent by the Maillet (1905) equation.
\[\Phi_t = Q_{r0} e^{-\alpha t} \] \hspace{1cm} (3)

where \(Q_{r0} \) is the baseflow contribution at the beginning of recession when \(t = 0 \), \(\alpha \) is the recession coefficient with a unit of T\(^{-1} \) and \(t \) is the lapsed time between discharge at any time \(t \), \(Q_t \) and initial discharge at \(t = 0 \), \(Q_0 \); and Eq. 4 describes the non-linear relationship during quickflow recession from the unsaturated zone.

\[\Psi_t = q_0 \frac{1-\eta t}{1+\varepsilon t} \] \hspace{1cm} (4)

where \(q_0 \) is the difference between \(Q_0 \) and \(Q_{r0} \), parameter \(\eta \) describes the infiltration rate through the unsaturated zone. The parameter is defined as \(1/t_i \) for the duration of quickflow recession between \(t = 0 \) and \(t_i = 1/\eta \). \(\varepsilon \) in T\(^{-1} \) unit describes the regulating capacity of the unsaturated zone during infiltration and characterises importance of concavity of quickflow recession (Padilla et al. 1994). The algebraic sum of Eq. 3 and 4 gives Eq. 5, which defines the discharge at time \(t \) during the recession period.

\[Q_t = \Phi_t + \Psi_t \] \hspace{1cm} (5)

Since \(t_i \) is the point of intersection of slowflow and quickflow component of the recession curve and infiltration stopped when \(t > t_i \) \((t > 1/\eta)\), so the quickflow component \(\psi_t \) in Eq. 5 is essentially assumed to be zero at that point \((\psi t = 0)\) (Ford and Williams 2007; Civita and Civita 2008). Therefore, the application of the Mangin’s model require, firstly fitting the slowflow component \(\phi_t \) to the slowflow segment of recession curve using Eq. 3 to determine the recession coefficient \(\alpha \). Afterwards, Eq. 5 is then fitted to determine the \(\eta \) and \(\varepsilon \) parameters of the quickflow segment. However, the accuracies of \(Q_{r0} \), \(t_i \) and the linear representativeness of the slowflow component of the recession curve is critical for the reliable estimation of recession coefficients (Ford and Williams 2007).

2.2.2 Mangin classification framework

Following the estimation of recession parameters \(\alpha \), \(\eta \) and \(\varepsilon \) using Eqs 3 – 5 above, Mangin proposed a classification scheme for karst systems based on two additional parameters: (1) aquifer regulation capacity, \(K \), and (2) infiltration delay, \(i \). To determine \(K \), the dynamic volume, \(V_{dyn} \), which is defined as the volume of water stored in the phreatic zone at the peak discharge time \(t_0 \) is calculated using Eq. 6. The average volume of water, \(V_{ann} \), discharged through the spring’s outlet over one hydrological year is also calculated. The regulation capacity \(K \), is therefore given by the ratio of \(V_{dyn} \) and \(V_{ann} \) as expressed with Eq. 7. This parameter represents the extent of the phreatic zone and its ability to regulate groundwater release from
storage. While porous aquifers can have values of $K > 0.5$, a typical karst system is expected to have $K < 0.5$ (Marsaud 1997; Dubois et al. 2020).

$$V_{\text{dyn}} = \frac{Q_{ro}}{\alpha} \quad (6)$$

$$K = \frac{V_{\text{dyn}}}{V_{\text{ann}}} \quad (7)$$

The infiltration delay, i, which represents the retardation between infiltration through the unsaturated zone and spring’s outlet. It is calculated as the value of the quickflow component at the second day ($t=2$) of recession (Eq. 8). The value of i ranges between 0 and 1, where a system characterized by fast infiltration would have a value close to zero and slow infiltrating system tends towards 1.

$$i = \frac{1-n^2}{1+\varepsilon^2} \quad (8)$$

With the parameters K and i, five classes of karst systems are defined (also see Fig A1): (1) Well developed system (2) Well developed speleological network with large downstream flood plains (3) Upstream karstification with retarded infiltration (4) Complex system and (5) Poorly developed system. Ford and Williams (2007) provided a detailed review of karst aquifer recession analysis and application of the Mangin model.
2.3 Estimation of recession parameters

For this study, the parameters are estimated for individual, automatically extracted recession events. That way, we capture variability of spring discharge across individual recharge events (Jachens et al. 2020). To assess the effects of seasonal variation on the karst spring recession parameters, we separated the extracted events to summer and winter events. For simplicity, events that occurred between April and September of the hydrological year are considered as summer events while those from October to March are recognised as winter events. As mentioned in subsection 2.2, in the standard Mangin’s approach, the slowflow component of the recession curve (Eq. 3) is fitted first to determine α. Also, the η parameter of the quickflow component (Eq. 4) which is equivalent to $1/t_i$ is predetermined, meaning that quick flow abruptly ends at t_i days, which cannot be considered optimal. Hence, reliable determination of t_i through the extraction routines (REMs) is vital for estimation of recession parameters. These standard procedures involve with the application of Mangin’s model result in less degree of freedom for parameter interaction and unrealistic abrupt ending of quick flow after t_i days. To increase the degree of freedom and assess the importance of t_i and the effect of a priori estimated η ($1/t_i$) on the Mangin’s recession model, we introduced three optimization approaches which are referred to as three different parameters optimisation approaches (POAs) used in this study.

M1: This follows the standard approach for applying the Mangin model as described by Padilla et al (1994) and Ford and Williams (2007). The slowflow component of the recession curve is fitted first with Eq. 3 for $t_i \leq t \leq t_n$ to determine α value while the quickflow component is assumed to be zero during this period. Afterwards, the second parameter...
is optimised by fitting the quickflow component with Eq. 5 using the REM predefined values of η parameter ($\eta = 1/\eta_i$) for the event duration between $t_0 \leq t < t_i$.

- **M2**: The conventional approach for fitting the Mangin model (M1) does not provide for independent or flexible estimation of η. The prior definition of η as $1/\tau_i$ rely on the accuracy of the extraction method to detect the point of inflexion τ_i. This however does not give the flexibility to optimised η to a value that could provide better fit for the model. To provide for more flexible estimation of η, a parameter is determined as in M1, then Eq. 5 is fitted to the complete segment of recession curve for $t_0 \leq t \leq \tau_n$ to determine best values of ε and η parameters.

- **M3**: This is a very flexible approach that allows for α, ε, η and Q_{ro} values to be fitted numerically. The determination of τ_i and Q_{ro} does not depend on the extraction method, rather the best fit for the parameters are obtained from optimisation process. The Mangin model (Eq. 5) is fitted to entire recession curve, which allows for absolute flexibility of τ_i and robust parameters interaction during optimisation. With the model calibrated $\tau_i (1/\eta)$, separating the quick- and slowflow segments now entirely rely on the optimisation exercise rather than extraction techniques.

For the optimisation exercise, a non-linear least squares procedure with spring discharge records was used. To avoid having negative value of conduit drainage contribution when the optimised $\tau_i (1/\eta)$ is greater than the elapsing τ value, the quick flow component, ψ_t (Eq. 4), is constrained to a minimum value of zero. Table 2 provides summary of the different optimisation approaches, parameters that were optimised as well as duration of the optimised corresponding flow component.

Table 2: Optimised recession parameters for the three different parameters optimisation approaches (POAs) of the Mangin recession analysis model.

<table>
<thead>
<tr>
<th>Optim. approach</th>
<th>Optimized parameters</th>
<th>Condition</th>
<th>Slowflow component</th>
<th>Quickflow component</th>
<th>Degree of freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>α, ε</td>
<td>$\eta = 1/\tau_i$</td>
<td>$t_1 \leq t \leq \tau_n$</td>
<td>$t_0 \leq t \leq \tau_i$</td>
<td>Less flexible</td>
</tr>
<tr>
<td>M2</td>
<td>α, ε, η</td>
<td>$\eta \neq 1/\tau_i$</td>
<td>$t_1 \leq t \leq \tau_n$</td>
<td>$t_0 \leq t \leq \tau_n$</td>
<td>Intermediate</td>
</tr>
<tr>
<td>M3</td>
<td>α, ε, η, Q_{ro}</td>
<td>$\eta \neq 1/\tau_i$</td>
<td>$t_0 \leq t \leq \tau_n$</td>
<td>$t_0 \leq t \leq \tau_n$</td>
<td>Very flexible</td>
</tr>
</tbody>
</table>

2.4 **Comparison and evaluation of REMs and POAs**

The three REMs (Vogel, Brutsaert and Aksoy) are combined with the three POAs (M1, M2 and M3) of the recession model to derive slow and quick flow recession parameters of selected karst springs for a total of nine possible methods. The recession
parameters are derived separately for both summer and winter recession events. The overall performance of the different REM and POA combination is determined by calculating the goodness of fit between observed spring recession discharges and ones simulated with the derived parameters using Kling Gupta Efficiency (KGE) measures (Gupta et al. 2009). We use KGE because it considers the common model error types - the mean error, variability and the dynamics. The mean and interquartile ranges of the derived parameters are compared among different method pairs and seasons. The estimated recession parameters were used to identify the dynamic of the systems according to Mangin’s karst system classification described in subsection 2.2.2. The Mangin classification scheme describes the aquifer drainage characteristics, conduit development and speleological network (Mangin 1975; El-Hakim and Bakalowicz 2007). Therefore, this is used to evaluate the representativeness of recession parameters estimated for the selected karst springs aquifer systems.

3 Test springs and data

The REMs and POAs were tested using three karst springs; Lehnbachquellen, Saivu and Qachquoch located in Austria, Switzerland and Lebanon respectively (Figure 2). The selection of these springs were based on geographical spread which covers different climate and hydrological settings, availability of discharge hydrograph in high resolution as well as literature reference on hydrological characterisation of aquifer systems drained by the spring. Daily and sub-daily spring discharge time series of the selected springs were obtained from WoKaS database (Olarinoye et al. 2020). Important characteristics of the spring hydrographs as well as the catchments in which they are sited are presented in (Table 3). The springs are sited in catchments distinguished by different climate conditions according to the Köppen-Gieger classification (Beck et al. 2018). Lehnbachquellen is sited in snow-dominated, Saivu in humid and Qachquoch is in the Mediterranean catchment. It should be noted that in snow catchment, recession behaviour will be externally influenced by snow storage. However, we have included snow-dominated catchment in this study to access this impact of this external influence. The spring discharge time series measured at a uniform time-step for each spring span between 3 and 13 years. All discharge time series were aggregated to daily temporal resolution, and missing data values which were only found (<0.01%) in Lehnbachquellen spring discharge data were excluded.
Figure 2. Map showing locations of the three test springs obtained from the WoKaS database and different Köppen-Geiger hydroclimatic classes.

Table 3. Summary of test springs site properties and characteristics of spring discharge hydrographs.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Lehnbachquellen</th>
<th>Saivu</th>
<th>Qachquoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate description</td>
<td>Snow-dominated</td>
<td>Humid</td>
<td>Mediterranean</td>
</tr>
<tr>
<td>Spring elevation (masl)</td>
<td>1293</td>
<td>371</td>
<td>65</td>
</tr>
<tr>
<td>Köppen-Geiger</td>
<td>Cold and no dry season</td>
<td>Cold and humid</td>
<td>Mediterranean, hot summer</td>
</tr>
<tr>
<td>Temporal res.</td>
<td>Daily</td>
<td>Hourly</td>
<td>Sub-hourly</td>
</tr>
<tr>
<td>Missing data</td>
<td><0.01%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mean discharge (m^3/s)</td>
<td>0.06</td>
<td>0.29</td>
<td>1.08</td>
</tr>
<tr>
<td>Mean precipitation (mm/y)</td>
<td>1396</td>
<td>1201</td>
<td>523</td>
</tr>
</tbody>
</table>

4 Results

4.1 Extracted recessions and performance of POAs

The adapted recession extraction methods adequately identified karst spring conduit and matrix flow components. The parameters obtained with the different REM-POA pairs also produced a satisfactory simulations of recession events. Only complete recession events >= 7 days period were considered for analysis. Here, complete recession referred to events that featured both conduit and matrix components. For each spring hydrograph, a different number of recession events are identified by the REMs. As shown on Table 4, Vogel method captured the highest number of recession events across all springs, followed by Brutsaert (except for Lehnbachquellen spring) and Aksoy showed the least ability to capture recession periods from the observed spring discharges. However, the average length of the recession events varied among the different REMs in no
particular order (see Fig. A2 in appendices). Based on the number of recognizable recession events, the REMs were defined as permissive (Vogel), less permissive (Brutsaert) and restrictive (Aksoy).

Table 4: Recession events period extracted by the REMs for the three spring discharge hydrographs

<table>
<thead>
<tr>
<th>REM</th>
<th>Lehnbacquellen</th>
<th>Saivu</th>
<th>Qachquoch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Summer (%)</td>
<td>Winter (%)</td>
</tr>
<tr>
<td>Vogel</td>
<td>157</td>
<td>0.53</td>
<td>0.47</td>
</tr>
<tr>
<td>Brutsaert</td>
<td>122</td>
<td>0.39</td>
<td>0.61</td>
</tr>
<tr>
<td>Aksoy</td>
<td>146</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Figure 3 shows how the parameters derived from the different REMs and POAs combinations performed in simulating recession events using the KGE measures. With exclusion of the outliers, a high KGE value were achieved across all combinations, ranging between 0.70 and 1.0. More than half of all simulated events across the three springs produce a KGE >0.9 for all REM-POA pairs. However, the lowest performance in all three springs is related to POAs combined with Vogel extraction method. While there was no vivid observable pattern among the extraction methods (REMs) and recession model performance, the parameters optimisation approaches (POAs) showed otherwise. A clear systematic order for the KGE median is found within the POAs: M1 < M2 < M3. This is more noticeable in the humid and Mediterranean springs, except for the Vogel-M2 combination in the humid spring that is not in the systematic order.

Figure 3: Boxplot of KGE measures between observed and simulated recession events based on parameters derived from the different REMs and POAs. The boxplots represent the interquartile ranges of KGE with the median shown in white lines and outliers marked in coloured points.

4.2 Variability of recession parameters among the different REMs-POAs and seasons

Figure 4 Figure 5 respectively shows the results of the optimised slowflow and quickflow recession parameters for both summer and winter periods. These parameter sets are combinations of α, η and ε that produces the best simulation fit (i.e.
highest KGE value) with the different REM-POA pairs. Recession curve fitting based on the individual segment led to a large number of parameter combinations with the nine possible REM-POA pairs. The modification of REMs and POAs produces complex parameter interactions, for simplification, we explore the results along two dimensions: (1) variability among the methods and (2) variability within seasons.

The results from Figure 4 show that REMs and POAs only have marginal effects on the estimation of recession coefficient, α, when compared to the seasonality effect. Also, there are differences on how the REMs and POAs impact the estimated values of α among the three karst spring catchments. Although, the values of the mean, median and interquartile ranges of α estimated by all the REMs for the snow-dominated catchment seems to be similar, but slight differences can still be observed. The slowflow recession parameters estimated by the permissive REM (Vogel) are within a slightly higher ranges. On the other hand, the estimation of α in the humid and Mediterranean catchments seems to be more impacted by the POAs. By increasing the degree of freedom of the POAs, higher values of α are estimated, most noticeably with the M3 parameter optimization approach.

While the impacts of methodological approaches (i.e., REMs and POAs) are marginal on the estimated values of α, seasonal impacts on the values and variabilities of the parameter are more evident. The Saivu and Qachquoch springs in humid and Mediterranean catchments respectively shows similar dynamics in terms of seasonal variability of α, while Lehnbacquellen spring located in snow-dominated catchment shows a different seasonal dynamic. For Lehnbacquellen spring, the values of the estimated α parameter are higher for summer recession events, noticeably with Vogel and Aksoy extraction techniques (Figure 4). During summer period, estimated α values also show less variability with Vogel and Brutsaert REMs, while Aksoy give a more varied results for the same season. Meanwhile, an opposite situation is seen with the Saivu and Qachquoch springs. The median values and interquartile ranges of α are higher in winter for estimations done with Vogel and Brutsaert extraction methods. For these springs, estimations associated with Aksoy extraction method occasionally give slightly lower α values during winter and less parameter variability. For all the spring systems, the seasonal variability of α is more observable with analysis associated with Vogel, which is the most permissive REM.
Figure 4. Distribution and variability of slowflow recession parameter, α, obtained by the combination of REM (Vogel, Brutsaert and Aksoy) and POA (M1, M2 and M3) for summer and winter periods: (a) Lehnbcquellen spring in snow-dominated catchment, (b) Saivu spring located in humid catchment and (c) Qachquoch spring in the Mediterranean catchment. The boxplots represent the interquartile range, whisker lines correspond to the most extreme parameter values and outliers marked as circle with corresponding box colour.

Both the recession analysis methodology (REMs and POAs) as well as seasons have significant impacts on the estimated values of infiltration rate, η, and curve concavity, ε, parameters. The most visible pattern from Figure 5 is that the increasing degree of freedom during optimisation usually results to higher estimates ($M3 > M2 > M1$) and larger variability of η. However, this pattern may slightly varies among the different spring systems. The values of η parameter span one order of magnitude for REMs and POAs combinations across all spring locations. The springs in snow-dominated (Lehnbcquellen) and mediterranean (Qachquoch) catchments show similar dynamic in terms of seasonal variation of η. The estimated median and mean values of η are higher in winter for both springs. While parameter variability between seasons is relatively comparable in the snow-dominated catchment, larger variability is seen during winter in the mediterranean catchment. In the humid catchment, the spring (Saivu) shows an opposite seasonal pattern, summer events have higher η values as well as larger variability.

Estimation of curve concavity parameter, ε, also reflects the influence of recession analysis methods and seasonal variations. The values of ε extend over three order of magnitude across the three spring locations. In a differing pattern from η, increasing the flexibility of the parametrisation approach (POA) leads to low and more consistent ε values. We observe a decreasing order of $M1 < M2 < M3$ in the estimated values of ε parameter for both summer and winter period. Although, combinations of
Brutsaert and Aksoy REMs with most flexible POA (M3) slightly contradict this order at times, particularly for the humid and Mediterranean springs. Although the mean and median values show a slightly higher winter parameter estimations, however, the parameter ranges are similar for both summer and winter periods in the snow-dominated catchment. There is no consistent seasonal pattern in the dynamics of ε estimated for the humid and Mediterranean springs. But an understated pattern seen is higher (Saivu spring - humid) or lower (Qachquoch spring – Mediterranean) estimations of ε in summer, especially with M1 parameterisation approach.

In general, for the respective seasons, there is relatively better consistency among REM-POA pairs in estimating both slow and quick flow recession parameters as shown by the results in Figure 4 and Figure 5. In fact, there is much higher parameters variability among recession events than the different REM-POA combinations and seasons.

Figure 5. Distribution and variability of the quickflow recession parameters, η and ε, (y-axis of ε in log scale) obtained by the combination of REM (Vogel, Brutsaert and Aksoy) and POA (M1, M2 and M3) for summer and winter periods: (a and d) Lehnbacquellen spring in snow-dominated catchment, (b and e) Saivu spring located in humid catchment and (c and f) Qachquoch spring in the Mediterranean catchment. The boxplots represent the interquartile range, whisker lines correspond to the most extreme parameter values and outliers marked as circle with corresponding box colour.

4.3 Aquifer characterization

To evaluate the overall representativeness of estimated recession parameters based on the modified REMs and different POAs for the selected karst spring systems, we determine the drainage properties of the spring’s aquifer using the parameters derived from the individual recession event. As described in subsection 2.2.2, retardation between infiltration and output defined by
infiltration delay parameter, \(i \), and aquifer regulation power, \(K \), were calculated for individual recession event. Figure 6 shows the mean aquifer classifications as well as their standard deviations based on per event estimated \(K \) and \(i \) values. The values of \(K \) and \(i \) are calculated for individual recession event with the recession parameters derived from the nine REM-POA combinations. As shown by the standard deviation bounds of the drainage properties derived from individual recession segments in Figure 6, there is an overlapping of calculated drainage properties and aquifer classes between the seasons. The methodological differences in the selected REM and POA result in large variations in the calculated mean values of infiltration delay, \(i \), among the springs. The estimated mean values \(i \) for the three spring systems used in this study cover similar ranges (0.20 to 0.65). With the exemption of Lehnbacquellen spring, there is a good coherency in the mean \(K \) values determined from all combinations of REM and POA for each spring. In addition, the systems are more distinguishable by their ability to store and regulate groundwater outflow through the springs.

Among the three karst springs, only the Qachquoch spring showed a clear impact of seasonality in the system’s classification. In summer, the estimated mean \(K \) values are <0.1 year which is unanimous between the REM-POA combinations. Whereas mean \(K \) values up to 0.45 and standard deviations of 1.75 years are estimated for the winter recessions. This results in a system classification extending from of class I (well-developed system) and class IV (complex system) in summer; and a system characterize as predominately class III (fairly karstified system) in winter. Groundwater has very short residence time in the Saivu spring system for both summer and winter periods. The mean regulation capacity of the system is <0.1 years, although a slightly higher value (ca. 0.15 years) is derived during the winter season. Due to this low regulation power, \(K \), of the Saivu spring system, it is characterized predominately as class I in both summer and winter period. Only a handful of method combinations place the system in class III.

While the other two springs (Qachquoch and Saivu) show either clear or slight seasonal influence in the karst systems characterization, Lehnbachquellen spring do not show a systematic seasonal impact in its characterisation. Both the estimated mean infiltration delay \(i \), and regulation power \(K \), shows high inconsistent pattern for Lehnbachquellen spring. The mean \(K \) values rang between 0.25 and 0.80 years with standard deviation values >3 years for both summer and winter recessions events. With these high \(K \) values, the Lehnbachquellen system has the highest capacity to withhold groundwater among the three karst springs used in this study. The wide dispersion of both \(K \) and \(i \) makes it impossible to confine the system’s into a specific class. The Lehnbachquellen system therefore falls within three classes; class II (well-developed system with large downstream flood plains), class III and class V (poorly developed system).
Figure 6. Karst aquifer type classification based on mean values of K and i calculated with recession parameters estimated by the different combinations of REM and POA for both summer (full-shaded colour) and winter (light-shaded colour) periods. Distributions of the per event mean K and i derived from all method combinations for each spring are represented by coloured points; areas covered by unfilled boxes are the standard deviations.

5 Discussion

5.1 Quality of extracted recessions

With the modification of the traditional REMs, we were able to establish a completely objective approach to distinguish between slow and quick flow recession components. Furthermore, optimisation approaches (POAs) with more flexibility showed better improvement over the conventional parametrisation procedure. The REMs tested use different statistical indices to scrutinise genuine baseflow records, hence they have different level of tolerance. The ability of the extraction methods to identify recession periods from hydrograph time series depend on the level of their restrictiveness. Vogel extraction method defined by a 3-day moving average to smoothen the hydrograph and also allows for 30% increase in subsequent flowrates is more permissive than Brutsaert and Aksoy methods that strictly enforce $dQ/dt < 0$. Hence, more recession events were extracted by Vogel method. Study by Stoelzle et al. (2013) also showed the Vogel procedure to be more permissive, as it was able to extract almost 50% more events than Brutsaert. Although main recession selection condition for Brutsaert and Aksoy method is determined by decreasing dQ/dt, constraining real baseflow recessions to discharge data points with less than 10% ($CV \leq 0.1$) deviations makes the Aksoy more restrictive than Brutsaert method.
Generally, all combinations of REM-POA performed acceptably well, increasing restrictiveness of extraction method gave improved model performance. Even though restrictiveness led to better performance, this should not be a basis to out-rightly accept restrictive REM over less-restrictive one. For instance, standard removal of 3 or 4 days by Brutsaert method as stormflow-influenced period is speculative and could led to unrealistic estimation of conduit flow duration, t_i ($t_i = 1/\eta$), yet it performed better than permissive Vogel method. Although, such problem of unrealistic t_i estimation inherent from Brutsaert was eliminated and general improvement in models performances were achieved by increasing parameters flexibility during optimisation. Overall, the adapted REMs and the introduced three POAs provided range of results that adequately represented the karst systems. However, there are still aspects of automated recession extraction that could benefit from further improvement for their general application in karst hydrology. For instance, the heterogeneous nature of karst system results in very dynamic spring discharge dynamic, by introducing more tolerance to the REMs to accommodate usual karst spring discharge anomaly, longer recession events could be extracted. In addition, while all REM-POA pairs are good from the model performance perspective, it will be misleading to define best pair of REM-POA base on this, without first evaluating if the estimated parameters are realistic.

5.2 Effects of recession analysis methods and seasonality on extracted recession parameters

5.2.1 Effects of REM-POA combinations on extracted recession parameters

Methodological choices of REMs and POAs combinations have impacts on the estimated recession parameters. The extent to which the parameters are influenced by the methods largely varies between the slowflow and quickflow recession parameters. There was relatively higher consistency and better stability among all REM-POA pairs in estimating slow flow recession parameter that describe the drainage characteristics of the matrix block within the phreatic zone. Depending on the catchment’s hydroclimatic settings, both REM s and POAs shown to have marginal impacts on the estimation of slowflow recession parameter. Though, this is slightly contrary to other studies who found that slowflow recession coefficients are majorly influenced by the extraction method used, while the parameterization approach only have a marginally impact (e.g. Stoelzle et al. 2013; Santos et al. 2019).

Although the combination of REM and POA affects the estimation of conduit drainage characteristics, the effect of the POA tends to be more pronounced. Increasing degree of parameter freedom during optimisation with the different POAs formulations often resulted to significant reduction in parameters variability. This was also accompanied by either low- or high-estimation of conduit drainage parameters. The more flexible parameterisation approaches (M2 and M3) generally led to higher infiltration rates through the unsaturated zone. Infiltration rate is predetermined ($\eta = 1/t_i$) in the original parameterisation procedure of Mangin’s model (M1), therefore restricted the fitting the quickflow recession curve only to the optimisation of parameter ε, which regulates infiltration through the unsaturated zone. The values of ε smaller than 0.01 have been reported to indicate very slow infiltration and values between 1 and 10 show a domination of fast infiltration (Ford and Williams, 2007;
El-Hakim and Bakalowicz, 2007). To compensate the inflexibility due to predetermined infiltration rate, the regulation effect of the unsaturated zone was amplified, which was evident in the higher and more varied values of ε estimated with M1 parameterisation procedure. By means of excluding a fixed number of days (3–4) as influenced stage of recession, Brutsaert paired with M1 also led to similar values of η estimated for all springs. This makes it an unsuitable combination, especially with long recession period. In their study, Santos et al. (2019) found analysis with Brutsaert method to be more robust and appropriate for short recession samples.

Despite the impacts of methodological choices on the uncertainty of estimated recession parameters, variability among events exceeded the variability among methods. These high variabilities are attributed to different lengths of extracted recession events, differences in karstic processes such as recharge, infiltration as well as conduit pathways that are activated within the unsaturated and saturated zones for each event. Even though karst systems are very heterogeneous and it is important to capture the impacts of the variable karstic processes through the analysis of individual recession segment, the high uncertainty among events make it difficult to define a set of representative recession parameters.

Per event recession analysis is very useful to better understand the karst system dynamic compared to master recession analysis which is unable to depict the hydrodynamic behaviour of karst. However, the high uncertainty found with this approach is still a challenge and a bit difficult to cope with. We believe there are still possibility for improvement with this approach, for example defining a systematic approach to quantify parameters uncertainties will help to increase the confidence of the individual recession segment analysis.

5.2.2 Seasonal influences on recession parameters

The seasonal variability of slowflow recession parameter is inter-connected with the choice of REM. Among the three different REMs used in this study, a clear seasonal variability of α was more noticeable with Vogel, which is the most permissive REM. However, the observed seasonal variability diminished with increasing restrictiveness of the REM. Also, the pattern of the seasonal variability of α was not the same for all three catchments and this emphasized the influence of climatic controls on karst aquifer drainage. For instance, humid and dry regions are usually characterized by long recession and perhaps significant drop in groundwater table during summer. From the results presented in previous section, we identified lower values of α in summer compared to winter. As the parameter α signifies the slope of slowflow recession, a higher value means steeper slope and faster emptying of the aquifer. The lower α values seen during summer emphasized the drought resistance of the system due decreased in the aquifers hydraulic head. Meanwhile the snow-dominated catchment showed an opposite behaviour with higher values of α in summer. This occurred due the accumulation and melting of snow. The snow melting process during the summer period would result in higher hydraulic head while frozen ice packs in winter translate to lesser hydraulic gradient.
As previously mentioned, higher hydraulic head would promote faster drainage of the aquifer resulting in higher values of α parameter.

For quickflow recession parameters, seasonal variability is independent of the REM. The three springs showed different seasonal patterns which could be directly linked to their hydroclimatic settings. Seasonal influence on quickflow recession parameters was not clearly seen in the snow-dominated catchment. This could be attributed to the snow melting process discussed above. Since snow melt compensates hydrologic flow during warmer period, there would be constant influx from the surface throughout the year, also soil wetness conditions do not change significantly. This explains the lack of any evident seasonal differences between parameters η and ε estimated for in Lehnbachquellen spring in the snow-dominated catchment. But the Saivu spring in the humid and Qachquoch spring in the mediterranean catchment showed clear seasonal influences. Estimated values of infiltration rates η for Saivu were higher in summer (lower in winter) and lower in summer (higher in winter) for the Qachquoch spring. This pattern is believed to be controlled by the peculiarity of the different geographic and climatic settings. In humid catchment, higher temperature in summer would result in dryer soil conditions which would consequently facilitate faster infiltration. However, for the mediterranean settings, soil conditions are dry due to relatively warmer temperature all year round. This makes precipitation a limiting factor, and with more precipitation in winter, faster infiltration through the unsaturated zone would occur.

5.3 How realistic are adapted REM-POA for karst system analysis?

Karst system classification proposed by Mangin (1975) is based on two parameters K and i (see subsection 2.2.2). These two parameters were derived from the estimated recession parameters (α, η and ε), thus the variability found in the recession parameters is expected to be propagated to K and i. Although, if the derived mean values of K were considered, some level of coherency was found among all REM-POA combinations and between the seasons. But looking at the estimated standard deviations, a large intra-event and seasonal variation can be found. In a study by Grasso & Jeannin (1994), the authors found regulation power, K, to be more stable for various years and events. These findings did not agree with our analysis, the outcomes of which showed a large variability among K for different events, most significantly in the snow-dominated catchment. Regulation power is analogous to memory effect, and the periodic water release from an external snow storage that is not captured within the saturated zone in real time makes K to fluctuate more in snow-dominated catchment. Considering the standard deviations from the mean, in fact the values of K exceeded the maximum value of 1 originally proposed in Mangin karst classification scheme. Mangin (1975) set a maximum value of one for K, with assumptions that real karst systems would not have a storage memory beyond one year. However, karst system in a snow catchment could have K values greater than one due to snow accumulation and melting as found in Lehnbachquellen spring. Also, complex aquifer systems, as in the case of Qachquoch spring could also have higher K values.
Infiltration delay, \(i \), is strongly dependent on recharge type contribution as well as catchment size (Jeannin and Sauter 1998). Recharge is control by climatic input (rainfall) which varies between seasons. However, the derived values of \(i \) were hardly separated by season, but more varied among individual recession events. The complex interplay of REM and POA resulted in a compensation phenomenon; whereby infiltration rate, \(\eta \), was compensated by recession concavity parameter, \(\epsilon \). Since the infiltration delay is defined by these parameters, it is difficult to explicitly infer the specific effects of REM and POA on infiltration delay.

The northern Alps karst system where the Lehnbachquellen spring is located has been defined as well karstified highly permeable unit interlayered with less permeable Flysch formation (Goldscheider 2005; Chen et al. 2018). Our analysis partly placed the karst system in class II and III thereby showing some consistency with literature evidence. Perrin, Jeannin, & Zwahlen (2003) described Saivu spring system as a well-developed karstic network, majority of the methods pair used in this study place this spring in class 1, therefore coherently agreeing with the authors description. Taking in account the standard deviations, the classification of Qachquoch spring ranged between medium to poorly karstified system. This is similar to a recent study by Dubois et al. (2020) that categorises the system as poorly karstified with a very large regulation capacity.

Given that existing common karst spring recession extraction method involves visually supervised procedure and subjectively determined duration of conduit infiltration, alternative faster, automated and objective approach is very useful. From our analysis, resulting parameters of extracted recession segments are within reasonable ranges and derived systems classification correspond to those found in literatures. The good performance recorded between simulated and observed flowrates during recession events attests to the potential transferability of traditional extraction methods to karst systems. However, this good performance does not necessarily translate to reliable parameter estimates. It is therefore important to choose REM methods that gives reasonable parameters especially when paired with a less flexible optimisation approach. Furthermore, with prior knowledge of the spring system, parameters ranges can be reasonably constrained during optimisation to achieve more representative optimum parameters.

6 Conclusions

The application of karst spring hydrographs recession analysis is very broad, including estimation of storage capacity (Fleury et al. 2007), describing discharge of unsaturated zone (Amit et al. 2002; Mudarra and Andreo 2011) as well as systems classification (El-Hakim and Bakalowicz 2007). Most often manual recession extraction is used and the high subjectivity of the approach introduces bias to estimated parameters. For the first time in literatures, this study explores the applicability of
automated traditional recession extraction methods (REMs) originally developed for slow flow (baseflow) recession by adapting them to also identify quick flow flow recessions. We fit individual extracted recession segments with Mangin’s recession model to determine the conduit and matrix drainages recession characteristics. We introduce new parameters optimisation approaches (POAs) different from the conventional procedure to increase degree of freedom of parameter interaction.

While we found that there were uncertainties in the estimated recession parameters resulting from the methodological choices (REM and POA combinations) and seasonal influences, the uncertainties among individual recession events were much larger. The large variability among individual event actually reflected the dynamic and heterogenous nature of the karst system. The combination of this with REMs, POAs and seasons resulted in a more complex interplay and only amplified the uncertainties. These uncertainties is actually useful to understand the dynamic nature karst system, but it is difficult to cope with and also need to be systematically quantified. To avoid these large uncertainties, master recession analysis approach has being a popular alternative for karst spring hydrograph analysis. But a single recession parameters’ values derive from the master recession approach does not reflect the highly dynamic nature of karst system. The uncertainty of karst recession parameters derived from either single or master recession approach is presently not a discussion in karst hydrology. Maybe such discussion needs to start to address the limitations and difficulties encountered in this study. Herein, we pose two major issues that need to be addressed as seen from this study: (1) how can we do recession analysis more objectively with a single REM and separation technique that accounts for all ranges and possible instances of slow and quick flow? and (2) how can we incorporate a more robust parameters estimation and uncertainty quantification approach into individual recession analysis? Answering these questions will help to expand confidence in the system’s drainage characteristics that are derived from recession parameters.

Finally, this study has shown that there are a lot of potentials for extracting and separating karst spring recession components by adapting the traditional REMs and introducing flexible parameter optimization approaches. The adaptation of the REMs in combination with the different parameters estimation flexibility (POAs) provides a suit of automated tools that can be used for karst recession study. This automated and multi approach for parameters optimization is essential to cope with the known biases of single and visually supervised recession analysis methods. Different REMs has their specific advantages and there are still room for improvement. For example, other extraction can could be tested and non-linear reservoir model can also be considered for fitting the matrix model.

Acknowledgements. Support to T.O. and A.H was provided by the Emmy Noether Programme of the German Research Foundation (DFG; grant no. HA 8113/1-1; project “Global Assessment of Water Stress in Karst Regions in a Changing World”).
The R codes for the different REMs and POAs used for the recession analysis can be accessed through our GitHub repository here https://github.com/KarstHub/Karst-recession

References

El-Hakim M, Bakalowicz M (2007) Significance and origin of very large regulating power of some karst aquifers in the Middle

Kresic N, Bonacci O (2010) Spring discharge hydrograph

Maillet E (1905) Essais d'hydraulique souterraine et fluviale. Hermann

Marsaud B (1997) Structure et fonctionnement de la zone noyée des karsts a partir des résultats experimentaux

Sivelle V (2020) A methodology for the assessment of groundwater resource variability in karst catchments with sparse
temporal measurements

WMO (2008b) Guide to Meteorological Instruments and Methods of Observation

Appendix

Figure A1. The Mangin (1975) karst system classification scheme based on K and i.

27
Figure A2. Characteristics of extracted recession events by REMs for both winter and summer periods in the three study sites: (a) number of identified complete recession events, and (b) the average number of days complete recession occurred.

Figure A3. Lehnbachquellen spring discharge hydrograph and extracted recession events recognised by the three REMs: (A) Vogel, (B) Brutseart and (C) Aksoy.
Figure A4. Saivu spring discharge hydrograph and extracted recession events recognised by the three REMs: (A) Vogel, (B) Brutseart and (C) Aksoy.
Figure A5. Qachquoch spring discharge hydrograph and extracted recession events recognised by the three REMs: (A) Vogel, (B) Brutseart and (C) Aksoy.