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Abstract.

The nowcast of rainfall storms at fine temporal and spatial resolutions is quite challenging due to the erratic
nature of rainfall at such scales. Typically, rainfall storms are recognized by weather radar-data, and extrapolated in the
future by the Lagrangian persistence. However, storm evolution is much more dynamic and complex than the Lagrangian
persistence, leading to short forecast horizons especially for convective events. Thus, the aim of this paper is to investigate
the improvement that past similar storms can introduce to the object-oriented radar based nowcast. Here we propose a
nearest neighbour approach that measures first the similarity between the “to-be-nowcasted” storm and past observed
storms, and later uses the behaviour of the past most similar storms to issue either a single nowcast (by averaging the 4
most similar storm-responses) or an ensemble nowcast (by considering 30 most similar storm-responses). Three questions
are tackled here: i) what features should be used to describe storms in order to check for similarity? ii) how to measure
similarity between past storms? and iii) is this similarity useful for sterm—erienteobject-orientedd nowcast? For this
purpose, individual storms from 110 events in the period 2000-2018 recognized within the Hannover Radar Range
(R~115km?), Germany, were-are used as a basis for investigation. A “leave-one-event-out” cross-validation is employed
to train-and-validatetest the nearest neighbour approach for the prediction of the area, mean intensity, the x and y velocity

components, and the total lifetime of the “to-be-nowcasted” storm for lead times from +5min up to + 3 hours. Prior to the

trainingapplication, two importance analyses methods (Pearson correlation and partial information correlation) are
employed to identify the most important predictors. The results indicate that most of storms behave similarly, and the

knowledge obtained from such similar past storms ean-helps to impreve-capture eonsiderably-better the storm neweast

dissipation, and improves the nowcast compared to the Lagrangian persistence especially for convective events (storms

shorter than 3 hours) and longer lead times (from 1 to 3 hours). The main advantage of the nearest neighbour approach is

seen when applied in a probabilistic way (with the 30 closest neighbours as ensembles) rather than in a deterministic way

(averaging the response from 4 closest neighbours). The nearest-neighbeurprobabilistic approach seems_-promising,
especially for convective storms, nevertheless-and there-isstill room-for-improvement-it can be further improvement by

either increasing the sample size, —er-employing more suitable methods for the predictor identification, or selecting

physical predictors.
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1. Introduction

Urban pluvial floods are caused by short, local and intense rainfall convective storms, that overcome rapidly the< 4[ Formatted: Space After: 0 pt

drainage capacity of the sewer network and lead to surface inundations. These types of floods are becoming more relevant

with time due to the expansion of urban areas worldwide (Jacobson, 2011; United, 2018), and the potential of such storms

getting more extreme under the changing global climate (Van Dijk et al., 2014). Because of the high economical, and

even human losses associated with these floods, modelling and forecasting becomes crucial for impact-based early

warnings (i.e. July 2008 in Dortmund Griinewald (2009), August 2008 in Tokyo, Kato & Maki (2009)). However, one of

the main challenges in the urban pluvial flood forecasting, remains the accurate estimation of rainfall intensities at very

fine scales. Since the urban area responds fast and locally to the rainfall (due to the sealed surfaces and the artificial

deviation of watercourse), the Quantitative Precipitation Forecasts (QPFs) fed into the urban models should be provided

at very fine temporal (1-5min) and spatial (100m? — 1km?) scales (Berne et al., 2004). The Numerical Weather Prediction

Models (NWP) are typically used in hydrology for weather forecast at several days ahead, nevertheless they are not

suitable for urban modelling as they still cannot produce reliable and accurate intensities for spatial scales smaller than

(rain-gauges) are considered the true observation of rainfall but they are as well not adequate for QPFs because they

cannot capture the spatial structure of rainfall. Therefore, the only product useful in providing QPFs for urban pluvial

floods remains the weather radar. The weather radar can measure indirectly the rainfall intensities at high spatial (~1km?)

and temporal (~5min) scales by capturing the reflected energy from the water droplets in the atmosphere. The rainfall

structures and their evolution in time and space can be easily identified by the radar and hence serve as a basis for issuing

QPFs at different forecast horizons. One of the main drawbacks of radar-based forecast, is that a rainfall structure has to

be first identified in order to be extrapolated in the future. In other words, rainfall cannot be predicted before it has started
anywhere in the region, only the movement can be predicted. As already discussed in Bowler et al., (2006) and Jensen et

al. (2015), these initialization errors cause the radar forecast to be used only for short forecast horizons (up to 3 hours)

and that is why are typically referred to as nowcasts. For longer lead times a blending between NWP and radar based

nowcast should be used instead (Codo & Rico-Ramirez, 2018; Foresti et al., 2016; Jasper-Tonnies et al., 2018).

Nonetheless, for short forecast horizons up to 2-3h , the radar nowcast remains the best product for pluvial flood simula-

tions as it outperforms the NWP one (Berenguer et al., 2012; Jensen et al., 2015; Lin et al., 2005; Zahraei et al., 2012).,

Two approaches can be distinguished on the radar based QPFs depending on how the rainfall structures are

identified, tracked and extrapolated into the future: object-oriented nowcast (herein as object-based to avoid the confusion

with the programming term) and field-based nowcast. The object-based nowcast treats rainfall structures as objects, each

object is regarded as a storm and is defined as a set of radar grid cells that moves together as a unit (Dixon & Wiener.

1993). The field-based approach considers the rainfall as an intermittent field inside a given domain, and through methods

like optical flow, tracks and extrapolates how the intensity is moving from one pixel to the other inside this domain

(Ruzanski et al., 2011; Zahraei et al., 2012). Convective storms have been proven to have an unique movement from

nearby storms (Moseley et al., 2013), thus are thought to be better nowcasted with object-based approach (Kyznarova &

Novak, 2009). On the other hand, the field-based approach with an optical flow solution, tracks and extrapolates rainfall

structures inside a region of size W together as a unit with a constant velocity (Lucas & Kanade, 1981) and are considered

more suitable for major scale events, i.e. stratiform storms, as they are widespread in the radar image and exhibit more

uniform movements (Han et al., 2009). Even though the field-based approached has gained popularity recently (Ayzel et

al., 2020; Imhoff et al., 2020) the focus in this study is on object-based nowcast as they are more convenient for convective

storms that typically cause urban pluvial floods.
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group of grid cells with intensity higher than a threshold is recognized in the radar image at time to, b) the storm identified ) [ Formatted: Font: Not Bold

is then tracked for the time to+At (where At is the temporal resolution of the radar data) and velocities are assigned, and

finally c) the storm as lastly observed at time t (when the nowcast is issued) is extrapolated at a specific lead time (the

time in the future when the forecast is needed) t.ir, with the last observed velocity vector. This is a linear extrapolation

of the storm structure in the future, considering the spatial structure and the movement of the storm as constant in time -

also referred to as Lagrangian Persistence (Germann et al., 2006). Applications of such storm-based nowcast are common

in literature like TITAN, HyRaTrac, Konrad etc. (Han et al., 2009; Hand, 1996; Krémer, 2008; Lang, 2001; C. E. Pierce

et al., 2004).

1:+.'1\.t

a) Step1-Storm Identification

1:+ LT

b) Step2- Storm Tracking
Step3- Storm Extrapolation

o

Figure 1 The main steps of an object-based radar nowcast. Blue indicates the current state of the storm at any time t,

grey indicates the past states of the storm (at t-At), and green indicates the future states of the storm (t+r7) (Shehu, 2020)
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109 Apart from the initialization errors mentioned before, other error sources in the object-based nowcast can be

110 attributed to storm identification, storm tracking and Lagrangian extrapolation (L. Foresti & Seed, 2015; C. Pierce et al.

111 2012; Rossi et al., 2015). Many works have been already conducted to investigate the role that-of different intensity

112 thresholds fer-on the storm identification, or that-of different storm tracking algorithms have-on the nowcasting results

113 (Goudenhoofdt & Delobbe, 2013; Han et al., 2009; Hou & Wang, 2017; Jung & Lee, 2015; Kober & Tafferner, 2009).
114 Very high intensity thresholds may be suitable for convective storms, however can cause false splitting of the storms and
115 which can affect negatively the tracking algorithm. Thus, one has to be careful in adjusting the intensity threshold
116 dynamically over the radar field and type of storm. Storm tracking algorithm can be improved if certain relationships are
117 learned from past observed dataset (like a Fuzzy approach in Jung & Lee (2015) or a tree-based structure in Hou & Wang
118 (2017)), but there is still a limit that the tracking improvement cannot surpass due to the implementation of the Lagrangian

19  persistence (Hou & Wang, 2017).

20 These errors due to the Lagrangian persistence are particularly high for convective events at longer lead times (past 1+« { Formatted: Indent: First line: 0 cm

21 hour) as the majority of convective storms last-netongerthandissipate within 60 minutes (Goudenhoofdt & Delobbe,

22 2013; Wilson et al., 1998). At these lead times, the persistence fails to predict mainty-the death-dissipation of these storm
123 cells, while for shorter lead times it fails to represent the growing/decaying rate and the changing movement of a storm
124 cell (Germann et al., 2006). For stratiform events, since they are more persistent in nature, Lagrangian persistence can
|125 potentially-give reliable results up to 2 or 3 hours lead time (Krédmer, 2008). Nevertheless studies have found that for fine
126 spatial (1km?) and temporal (5min) scales, the Lagrangian Persistence can yield reliable results up to 20-30 min lead time,
27 which is also known in the literature as the predictability limit of rainfall at such scales (Grecu & Krajewski, 2000; Kato
128 et al, 2017; Ruzanski et al., 2011). Eor-In object-eriented-based radar based-nowcast, this predictability limit can be
129 extended up to 1 hour for stratiform events and up to 30-45min for convective events if a better radar product (merged
130 with rain gauge data) is fed into the nowcast model (Shehu & Haberlandt, 2021). Past these lead times, the errors due to
131  the growth/decay and death-dissipation of the storms govern.

138 characteristics-of storm-behavioureanbe analysed from the-past observations (Goudenhoofdt & Delobbe, 2013; Zawadzki Formatted: Not Highlight

139 1973). For instance, Kyznarova and Novak (2009) used the CellTrack algorithm to derive life cycle characteristics of Formatted: Not Highlight
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140 convective storms and observed that there is a dependency between storm area, maximum intensity, life phase and height Formatted: Not Highlight
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141 of 0°C isotherm level. Similar results were also found by (Moseley et al., 2013)_which concluded that convective storms

142 show a clear life cycle with the peak occurring at 1/3 of total storm duration, a strong dependency on the temperature and

143 increasing average intensity with longer durations. In case of extreme convective storms, earlier peaks are more obvious

144 causing a steeper increase to maximum intensity. A later study by (Moseley et al., 2019)_found that the longest and most
145 intense storms were expected in the late afternoon hours in Germany. Thus, it is to be expected that an extensive
4
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observation of past storm behaviours can be very useful in creating and establishing new nowcasting rules (Wilson et al.

2010) that can outperform the Lagrangian persistence.-
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An implementation of such learning from previous observed storms (with focus only on the object-based nowcast+—
and not the field-based one) is for instance shown by —fer-instanee-Hou & Wang (2017) where a Fuzzy classification
scheme was implemented to improve the tracking and matching of storms which resulted in an improved nowcast, and
Zahraei et al. (2013) where a Self-Organizing-Maps (SOM) algorithm was used to predict the initialization birth-and
deeay-dissipation of storms on coarse scales extending the predictability of storms by 20-%. These studies suggest that

past observed relationships may be useful in extending the predictability limit of the convective storms. Fhesestudies

Under this context, a nearest neighbour
method (k-NN) is-may be developed at the storm scale;whieh+s and used to first recognize similar storms in the past, and
then assign their behaviours to the “te-be-neweasted™ ‘to-be-nowcasted” -storm.

The nearest neighbour method -has been used in the field of hydrology mainly for classification , regression or
resampling purposes (e.g. Lall & Sharma (1996)) but there are some examples of prediction as well (Galeati, 1990). The
assumption of this method is that similar events are described by similar predictors, and thus-if one identifies the predictors
successfully, similar events that behave similarly can be identified. For a new event, the respective response is then
obtained by averaging the responses of past k — most similar storms. The k-value can be optimized by minimizing a given
cost function. Because of the averaging, the response obtained, will be a new one, satisfying thus the condition that nature
doesn’t repeat itself, but nevertheless it is confined within the limits of the observed events (therefore is unable to predict
extreme behaviours outside of the observed range).

Similar approaches are implemented in field-based nowcast (referred to as analogue events), where past similar

radar fields are selected based on weather conditions and radar characteristics i.e. in NORA nowcast by (Panziera et al.,

2011) mainly for orographic rainfall , or in the multi-scaled analogues nowcast model by (Zou et al., 2020). Panziera et

al. 2011 showed that there is a strong dependency between air-mass stability, wind speed and direction and the rainfall

patterns observed from the radar data, and that the NORA nowcast can improve the hourly nowcasts of orographic rain

up to 1 hour when compared to Eulerian Persistence and up to 4 hours when compared with the COSMO2 NWP.

Improvement of predictability through a multi-scaled analogues nowcast was also reported by (Zou et al., 2020), which

identified neighbours first by accounting similar meteorological conditions and then the spatial information from radar
data. However, both of these studies show the applicability of the method on rainfall types that tend to repeat the rainfall
patterns; i.e. the orographic forcing in the case of Panziera et al. (2011) and winter stratiform events in the case of Zou et

al. (2020). So far, to the authors knowledge, such application of the k-NN has not been applied for convective events.
This application e-application-of-the- k-NN-seems reasonable as an extension of the object-eriented-based radar

based-nowcast, in order to treat each convective storm independently. It can be used instead of the Lagrangian persistence

in step 3 in Figure 1-c, for the extrapolation of rainfall storms into the future. Moreover, the benefit of the k-NN application

is that one can either give a single or an ensemble nowcast; since k-neighbours can be selected as similar to a storm at

hand, a probability based on the similarity rank, can be issued at each of the past storm, providing so an ensemble of

responses, which are more preferred compared to the deterministic nowcast due to the high uncertainty associated with
5
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rainfall predictions at such fine scales (Germann & Zawadzki, 2004). Thus, it is the aim of this study to investigate the

suitability of the k-NN application to substitute the Lagrangian Persistence in the nowcasting of mainly convective events

that have the potential to cause urban pluvial floods,

like Area, Intensity, Movement and Total Lifetime at different life cycles and lead times. Based on the observed

dependency of the storm characteristics on the life cycle, it would be interesting to see if the morphological features are

enough to describe the evolution of the convective storms. Therefore, the focus is here only of the features recognized by

the radar data, and further works will include as well the use of meteorological factors. To reach our aim, the suitability

of the k-NN approach is studied as an extension of the existing object-based nowcast algorithm HyRaTrac developed
from Kréamer (2008).

B

Before apphying-akNN-for-the-storm-neweassuch an applicationt, questions that arise are I) what features are
more important when describing a storm, II) how to evaluate similarity between storms and III) how to use their
information for the-nowcasting ef-the storm at hand. Te-answerthese-questions-and-to-achieve-the-aim-of this-studythe
he paper is organized as follows:: fFirst in Section 2 the study area is described, following with the structure of the k-NN
method in Section 3.1 where: the generation of the storm database is discussed in Section 3.1.1, the predictors selected
and target variables are given in in Section 3.1.2, the methods used for predictor identification in Section 3.1.3, and
different application of the k-NN in Section 3.1.4. The training-optimization and the performance criteria are shown in
Section 3.2 followed by the results in Section 4 separated into predictors influence (Section 4.1), single-deterministic k-
NN (Section 4.2), -and-ensemble-probabilistic k-NN performance (Section 4.3), and the nowcasting of unmatched storms
(Section 4.4).- Finally, the study is closed by derived conclusions and outlook in Section 5.

2. Study Area and Data
The study area is located in northern Germany, and lies within the Hannover Radar Range as illustrated in Figure

2. The radar station is situated at the Hannover Airport, and it covers an area with a radius of 115 km. The Hannover radar
Legend
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Figure 2 The location of the study area left) within Germany and right) with the corresponding elevation and
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data are C-band data (single-pol) provided by German Weather Service (DWD), and measure the reflectivity at an azimuth
angle of 1° and at 5 min scans (Winterrath et al., 2012). The reflectivity measurements—areis converted to intensity
according to Marshall-Palmer relationship with the coefficients a=256 and b=1.42 (Bartels et al., 2004). The radar data
svere-are corrected from the static clutters and erroneous beams and then converted to Cartesian Coordinate system (1
km? and 5 min) as described in (Berndt et al., 2014). Additionally, following the results from Shehu & Haberlandt (2021),
a conditional merging between the radar data and 100 gauge recording (see Figure 2 -right) with the radar range at 5 min

time steps was-is performed. The conditional merging aims to improve the kriging interpolation of the gauge recordings

by adding the spatial variability and maintaining the storm structures as recognized by the radar data. In case a radar

image is missing, the kriging interpolation of the gauge recordings is taken instead.
The period from 2000 to 2018 was-is used as a basis for this investigation, from which 110 events with different<«—
characteristics were extracted (see Shehu & Haberlandt (2021) or Shehu (2020)). These events were selected for urban

flood purposes, and thus-contain mainly convective events and few stratiform eventsones. Here, rainfall events are referred

to a time period when rainfall has been observed inside the radar range and at least at one rain gauge has registered an

extreme rainfall volume (return period higher than 5 years) for durations varying from 5 min to 1 day. The start and the

end of the rainfall event is determined when areal mean radar intensity is lower than 0.05Smm for more than 4 hours.

Within a rainfall event many rainfall storms, at different times and locations, can be recognized. Figure 3-a shows a simple

illustration to distinguish between the rainfall event and rainfall storm concepts employed in this study,
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Figure 3, Illustration of concepts and workflows in this study a) an event contains many rainfall storms inside the radar+ -

range which are tracked and nowcasted: the dashed grey lines indicate the movements of storms in space-time within the

radar event and the event time span. b) The “leave-one-out-event cross-validation” — the storms of the event of interest

are removed from the past database, and the nowcast of these storms is issued based on the past database. This process

is repeated 110 times (once for each event). ¢) the workflow implemented here for the optimization and gpplication of the

k-NN,approach.
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236 Each of the selected events contains many storms, whose identification and tracking was performed on the basis

237 of the HyRaTrac algorithm in the hindcast mode (Krdmer, 2008; Schellart et al., 2014). A storm is initialized if a group [ Field Code Changed

238 of radar grid cells (> 64) has a reflectivity higher than Z=20dBz, while storms are recognized as convective — if a group
239 bigger than 16 radar grid cells has an intensity higher than 25 dBz, and as stratiform — if a group bigger than 128 radar

40 grid cells has an intensity higher than 20 dBz, Typically, higher values (40dBz) are used to identify the core of convective [ Formatted: Not Highlight

41 storms (as in E-Titan), but to avoid false splitting of convective storms and to test the methodology on all types of storms,

42 these identification thresholds were kept low, (following as well the studies from Moseley et al. 2013), The Fhe-tracking [ Formatted: Font color: Text 1, Not Highlight
43 of individual storms in consecutive images is done by the eptimization-ofthe-cross-correlation optimization between the { Formatted: Font color: Text 1

244 last 2 images (t=0 and t-5 min), and local displacement vectors for each storm are calculated. In case a storm is just

245  recognized, then global displacement vectors based on cross-correlation of the entire radar image are assigned to them.

246 Thus, a dataset with several types of storms is built and saved. The storms are saved with an ID based on the

P47  starting time and location, and for each time step of the storm evolution the spatial information is saved. Here_the spatial { Formatted: Font: (Default) Times New Roman, 10 pt
P48  structure of the rainfall inside the storm boundaries,at a given the spatial-rainfall intensities-of a-storm-ata-particulartime [ Formatted: Font: (Default) Times New Roman, 10 pt
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P50  consists of three “states” each occurring at a 5 min time step. For each of the storm states an ellipsoid is ﬁtted to the
P51  intensities in order to calculate the major and minor axis and the orientation angle of the major axis. This storm database
P52 s the basis for developing the k-NN method and for investigating the similarity between storms. Some characteristics of

P53  the identified storms like duration_(or also total lifetime of the storm), mean area, maximum intensity, number of

P54 splits/merges, local velocity components, and ellipsoidal features, are shown in the Figure 43. These storms characteristics

P55  were obtained by an hindcast analysis run of all 110 events with the HyRaTrac algorithm which resulted in around 5200

P56 storms. The local velocities in x and y direction are obtained by a cross-correlation optimization within the storm boundary.

P57  For more information about the tracking identification and algorithm. reader is directed to Krimer (2008). Formatted: Caption, Justified, Line spacing: 1.5 lines,
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As seen from the number of storms for each duration in Figure 34, the unmatched storm cells make the majority
of the storms recognized. These are storms that last just 5 min (one-time step) as the algorithm fails to track them at
consecutive time steps. These “storms” can either be dynamic clutters from the radar measurement, as they are
characterized by small area, circular shapes (small ratio of minor and major axis) and by very high velocities, or artefacts
created by low intensity thresholds used for the storm identification, or finally produced by the unrepresentativeness of

the volume captured by the radar station. Another thing to keep in mind, is that merged radar are fed to the algorithm for

storm recognition, and this affect the storm structures particularly when the radar data is missing. In such case, the ordinary

kriging interpolation of rain gauges is given as input, which is well known to smoothen the spatial distribution of rainfall

and hence resulting in a short storm characterized by a very large area. Since the “not” matched storms can either be

dynamic clutter or artefacts, they are left outside of the k-NN application. Nonetheless, they are treated shortly in section

4.5.

Apart from the unmatched storms, the majority of the remaining storms are of convective nature: storms with
short duration (shorter than 6 hours), high intensity and low areal coverage.
Here two types of convective storms are distinguished: local convective with very low coverage (on average<

lower than 1000 km?) and low intensity (on average ~ 5 mm/h), and mesoscale convective which are responsible for

floods (very-with high-intensity up to,100 mm/h, or more) and have a larger coverage (on average lower than 5000 km?).

The stratiform storms characterized by large area, long duration and low intensities, as well as meso- y scale convective
events with duration up to 6 hours, are not very well represented by the dataset as only a few of them are present in the
selected events (respectively circa 20 and 50 storms). Therefore, it is to be expected that-for the k-NN approach may-not
to yield very good results for such storms due to the low representativeness. From the characteristics of the storms
illustrated in Figure 34, it can be seen that for stratiform storms that live longer than twelve hours the variance of the
characteristics is quite low (when compared to the rest of the storms) which can either be attributed to the persistence of
such storms or to the low representativeness in the database. -Fhus;—eEven though the data size for stratiform is quite

small, the k-NN may still deliver good results as characteristics of such storms are more similar. Nevertheless. the

stratiform storms are typically nowcasted well by the Lagrangian persistence (specially by a field-oriented approach) as

they are wide-spread and persistent. Hence the value of the k-NN is primarily seen for convective storms and not for

stratiform ones.

3.1.2 Selecting features for similarity and target variables

At first storms are treated like objects that manifest certain features (predictors) like area, intensity, lifetime etc.,
at each state of the storms’ life until the storm dies-dissipates (and the predictors are all set to zero). The features of the
objects are categorized into present and past features, as illustrated in Figure 4-5 (shown respectively in blue and grey).
The present features describe the current state of the storm at the time of nowcast (denoted with to in Figure 45), and are
calculated from one state of the storm. To compute certain features, an ellipsoid is fitted to each state of the storm. The
past features, on the other hand, describe the predictors of the past storm states (denoted with t.1, t; in Figure 45) and
their change over the past life of the storm. For example, the average area from time t., to t.; is a past feature. A pre-
analysis of important predictors showed that the average features over the last 30 minutes are more suitable as past
predictors than the averages over last 15 or 60 min or than the calculation of past changing rates. Therefore, averages over

past 30 minutes are computed here:

Py = Zf;tz(?min P,/67, )
where P; is the predictors value at time 7, and P3 the average value of the predictor over last 30min. In case of missing
values, the remaining time steps are used for averaging.- The selected features (both present and past) that are used here
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99  to describe storms as objects, and hence tested as predictors, are shown in Table 1. The present features help to recognize
00 storms that are similar at the given state when the nowcast is issued (blue storm in Figure 45) and the past ones give
01 additional information about the past evolution of the storm (average of grey storms in Figure 45).

02 _The aim of these features is to recognize the states of previously observed storms that are most similar to the current one

03 (shown in blue in Figure 45) of the “to-be-nowcasted” storm. Once the most similar past storm states are recognized,

Figure 5 The features describing the past (grey) and present (blue) states of the storm used as predictors to nowcast the

future states of the storm (green) at a specific lead time (T+r1) that isare described by 4 target variables (in red). The

nowcast is issued time t. A full description of these predictors and target variables is given in Tablel. { Formatted: Font: Bold

04 their respective future states at different lead times can be assigned as the future behaviour (shown in green in Figure 45)
305 of the current state of the “to-be-nowcasted” storms. Since the storms are regarded as objects with specific features, future
306 behaviours at different lead times are determined by four target variables: area (A.rr), mean intensity (I-rt) and velocity
307 in X (Vx:rr) and Y (Vy:rr) direction. Additionally, the total lifetime of the storm is considered as a fifth target (Lio).
308 Theoretically, the total lifetime is predicted indirectly when any of the first four targets is set to zero, however here it is

09  considered as an independent variable in order to investigate if similar storms have similar lifetime durations.

10 e Formatted: Indent: Left: 0 cm, First line: 0 cm, Space
Before: 2.85 pt, After: 2.85 pt

311 For each state of each observed storm in the database, the past and present features of that state with its’ respective
312 future states of the five target variables from +5min to +180min (every 5 min) lead times are saved together and form the
313 predictor-target database that is used for the development of the k-NN nowcast model. A summary of the predictors and
14 target variables calculated per state is given in Table 1. Before training-optimizing and validating the k-NN method
15 (advise Figure 3- ¢), an importance analysis is performed for each of the target variables in order to recognize the most
316 important predictors. As the predictors have different ranges, prior to the importance analysis and the k-NN application,
317 they are normalized according to their median and range between the 0.05 and 0.95 quantiles:

Pi—QUS

318 normP; = —gas—tie,

Qp;  —Qp;i

319  where P is the actual value, normP the normalized value, and Q2°, 95, Q2:%° the quantiles 0.5, 0.05 and 0.95 of the i*#
320 predictors’ vector. The reason why these quantiles were used for the normalization instead of the typical mean and
321 maximum to minimum range, is that some outliers are present in the data. For instance, very high and unrealistic velocities
322 are present in some convective storms where the tracking algorithm fails to capture adequate velocities (Han et al., 2009).

323  Thus, to avoid the influence of these outliers, the given range is employed.
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3.1.3 Selection of most relevant predictors

The application of the k-NN method can be relevant if there is a clear connection between the target variable and
the features describing this target variable. For instance, in the case of Galeati (1990), a physical background backed up
the connection between target variable (discharge) and the features (daily rainfall volume and mean temperature). In the
case of the storms at such fine temporal and spatial scales, due to the erratic nature of the rainfall itself, there are no
physical related information that can be extracted from radar data. Different features of the storm itself can be investigated
for their importance to the target variable. Nevertheless, the identification of such features (referred here as predictors) is
difficult because it is bounded to the set of the available data and the relationships considered. Commonly a strong Pearson

correlation between the predictors selected and the target variable is used as an indicator of a strong_linear relationship

between them. However, the relationship between predictors and target variables may still be of non-linear nature, thus
another predictor impertant-importance analysis should be advised when selecting the predictors. Sharma & Mehrotra
(2014) proposed a new methodology, designed specifically for the k-NN approach, where no prior assumption about the
system type is required. The method is based on a metric called the Partial Information Correlation and is computed from

the Partial Information as:

PIC = \/(1 —exp(—2PI) with PI = [ fypz(x,pl|2)log M} dxdpdz_ A

Fx1z(X12) fpiz(P|2)
where PIC is the Partial Information Correlation, —and-the-PI is the Partial Information_which represents the partial

dependence of conditioned to the presence of a predictor Z. The Partial Information itself is a modification of the

Mutual Information in order to measure partial statistical dependency between the predictors (P) and the target variable

(X), by adding predictors one at a time (Z) -(step-wise procedure). The evaluation of PIC needs a pre-existing identified

predictor from which the computation can start. If the pre-defined predictor is correctly selected, then through the Equation
(3), the method is able to recognize and leave out the new predictors which are not related to the response and which don’t
bring additional value to the existing relationship between the current predictors and target variable. Relative weights for
the k-NN regression application can be derived for each predictor, as a relationship between the PIC metric and the
associated partial correlation:

Sx¥|zx(-j) )

where X is the predietortarget response, Zj is the added predictor from the step-wise procedure, ¥-the-targetresponse;Z(-
1) previous predictor vector excluding the predictor Zj, Sxyzx. the scaled conditional standard deviations between thefirst
predictor-and-the-target (x) and predictor vector Z(-j), Sxzzx.) the scaled conditional standard deviations between the

additional predictor (Zj) and the first enepredictor vector Z(-j), and the o; denotes the predictors weight. The R package

NPRED was used for the investigation of the PIC derived importance weights (Sharma et al., 2016).
Table 1 List of all the past and present features of the storms ebject-that are investigated for their importance as

predictors, and the respective target variables calculated for different lead times.

N Features Symbol
number of storm cells within the storm region Cells [-]
current storm lifetime at time of nowcast Lnow [min]
area of the storm A [km?]
Present Features mean spatial intensity Tave [mm/h]
maximum spatial intensity Imax [mm/h]
standard deviation of the spatial intensities Isar [-]
standard deviation of intensities groups inside the storm Tsaz [-]
global velocity of the entire radar image V¢ [m/s]
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354
355
356
357
F’58
359
360
361

62

63
364
365
366
P67
368
]369
370
371
372
373
374

]375

x and y component of the local velocity of the storm region Vx, Vy [m/s]
major and minor axis of the ellipsoid and their ratio Jmax, Jmin[km]y, |
I [-]
orientation angle of the major axis of the ellipsoid D[]
average area over the last 30 min of storm existence Azo [km?]
average mean intensity over the last 30 min of storm existence Taveso [mm/h]
average maximum intensity over the last 30 min of storm existence Imax3o [mm/h]
average standard deviation of intensity over the last 30 min of storm existence Isd130[-]
average standard deviation of intensity groups over the last 30 min of storm Isd230[-]
Past Features existence
average global velocity over the last 30 min of storm existence Vgso [m/s]
average x and y component of the local velocity over the last 30 min of storm Vx30, Vyso [m/s]
existence
average value of the major and minor axis of the ellipsoid and their ratio over Jmaxso, Jminzo [km]
the last 30 min of storm existence Jrso[-]
average major axis orientation of the ellipsoid over the last 30 min of storm D30[°]
existence
Total lifetime of the storm Ltot [min]
Predieted-Estimated Area and Intensity at LT from +5min to +180min Asrr [km?],
Target Variables Tave+Lr [mm/h]
Predieted-Estimated Velocity X and Y at LT from +5min to +180min Vx+rt, Vy<Lr [m/s]

Here in this study, these two importance analyses are used to determine the most important predictors and their
respective weights in the k-NN similarity calculation. For each target variable the most important predictor identified from
Pearson Correlation, is given to the PIC metric as the first predictor. The analysis is complex due to the presence of several
predictors, 38 states of future behaviour for each target variable (for each Smin between +5min to +180 min lead times),
and different tirmes-ef noweastnowcast times; the weights were calculated first for three lead times +15min, +60min and
+180 min, and for three storm groups separated according to their duration <60min, 60min-180min, and > 3 hours. Here
the averages weights over these groups and lead times are calculated and used as a reference for each importance analysis.

The k-NN errors with these average weights are compared in Section 4.1.

3-1.4 Developing the k-NN structure

The structure of the proposed k-NN approach at the storm scale is illustrated at Figure 56 - left) the current
“to-be-nowcasted” storm is shown, while at — right) the past observed storms. First in Step 1, the Euclidean distance
between the most important predictors (either present or past predictors), of past storm states and the current one is
calculated to identify the most-similar states of the past storms (distance between the blue shapes at left and right side of
Figure 65):

Eq = JEL wi- (X —Y)?, )

where w is the weight of the respective i” predictor as dictated by the importance analysis (results are shown in Table 2)

X the predictor of the “to-be-nowcasted” storm, Y the predictor of a past observed storm, N the total number of predictors
used and E, the Euclidian distance between the “to-be-nowcasted” and a past observed storm. The assumption made here
is that the smaller the distance, the higher the similarity of future behaviour between the selected storms and the “to-be-
nowcasted” storm. Therefore, in Step 2 these distances are ranked in an ascending order and 30 past storm states with the
smallest distance are selected (Step 3). Once the similar past storm states have been recognized (the blue-shape in Figure

65 - right), the future states of these storms (the green-shapes in Figure 65 - right, each for a specific lead time from the
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occurrence of the selected similar blue-state), are treated as future states (the green-shape in Figure 65 - left) of the “to-

be-nowcasted” storm. In Step 4, either a single (deterministic) or an ensemble (probabilistic) nowcast is issued. If a single

nowcast is selected, then the green-instances of the k-neighbours are averaged with weights for each lead time:

Rpow = o1 Pri - Ry ()
where £ is the number of neighbours obtained from optimization, R and Pr are respectively the response and weight of
the i neighbour and the R,.., the response of the “to-be-nowcasted” storm as averaged from k neighbours. The response

R refers to each of the 5 target variables: Area, Intensity, Velocity in X and Y direction, and Total Lifetime. Contrary, if a

probabilistic nowcast is selected, 30-ensemble_memberss ensembles are issued—selected from the closest 30

stormsindependently;-to-each-neighbeur where each member is assigned a probability is-assigned-according to their-the
rank of the respective neighbour stormwith-the-“to-be-noweasted”storm:
Pr; = RakD) 7)

SE1 A/ Rank)”
where £ is the selected number of neighbours and Rank and Pr are respectively the rank and the probability weights of

the i neighbour/ensemble member. An ensemble member is then selected randomly based on the given probability

weights. These probability weights calculated here are as well used for computation of the single nowcast in Equation (6).

Since the performance of the single k-NN nowcast is highly dependent on the number of k — neighbours used for
the averaging, a prior training-is-teoptimization should be done in order to select the right k-neighbours that yield the best

performance (as illustrated in Figure 3-c). The application of the k-NN (and-consequently-its-training)-can either be done

per each target variable independently, or for all target variables grouped together. In the first approach, the dependency
of the target variables between one another is not assured, they are predicted independently from one another. This is
referred here as the target-based k-NN and is denoted in the results as VS1. The main advantage of this application is that,
since the relationship between the target variables are not kept, new storms can be generated. Theoretically, the predicted
variables should have a lower error since the training-application is done specifically per each variable, nevertheless this
approach doesn’t say much if similar storms behave similarly. Therefore, it is used here as a benchmark for best possible
training-optimization that can be reached by the k-NN with the current selected predictor set. In the second approach, the
relationships between target variables as exhibited by previous storms are kept. The storm structure and the relationship
between features are maintained as observed and thus the question if similar storms behave similarly can be answered.
This is referred here as the storm-based k-NN and is denoted in the results as VS2. In this study the two approaches are
used (respectively called VS1 and VS2) to understand the potential and the actual improvement that the k-NN can bring

to the storm nowcast.
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“to-be-nowcasted” Storm Past Storms
Step1:
Measuring Similarity
Euclidean Distance
(Eq. 5)
Voo Step2:
N Ranking in
Vv\"U d‘ d r B =
BRI @l Storm 1 Storm 2 Storm 3|
Step3:
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Step 4: Single Nowcast Step 4: Ensemble Nowcast
(Eq. 6) (Eq.7)
O past state of the storm . future state of the storm
at lead time +LT
. present state of storm r T Ellipsoid fitted at each
when nowcast is issued ~.__.  state of the storm

Figure 6 The main steps involved in the k-NN based nowcast with the estimation of similar storms (Step 1 to 3) and
assigning the future responses of past storm as the new response of the “to-be-nowcasted” storm either in a single

deterministic nowcast (Step4-lefi) or in a_probabilistic #ensenblte-nowcast (Step4-right).

2 ining-Application of the k-NN and performance t

-Optimizing the single-deterministic k-NN nowcast

The training-optimization of the k-NN is done based on the 5189 storms extracted from 110 events on a “leave-
one-out” cross-validation. Since the “not” matched storms can either be dynamic clutter or artefacts of the tracking
algorithm, they are left outside of the k-NN training—optimization and validation. The assumption is here that an
improvement of the radar data or tracking algorithm would eliminate the “not” matched storms, hence we-the focus_is
enly-only on the improvement that the k-NN can introduce to the matched storms. “Leave-one-event-out” cross-validation
means here that the storms of each event have to be nowcasted by considering as a past database the storms from the
remaining 109 events (a detailed visualization is given in Figure 3-b). The objective function is the minimization of the
mean absolute error between predicted and observed target variables at lead times from +5min to +180 min:

ErrorMAE qrger = Iiv=1 (|Pred; pr| — |0bsi,+LT|)/Ni (8))

where the Pred is the predicted response, and-Obs the observed response for the i storm, -and-+LT the lead time and N

the number of storms considered inside an event. The results of the storms’ nowcast are also dependent on the time-of
neweastnowcast time in respect to the storms’ life (time step of the storm existence when the nowcast is issued — refer to

Figure 3-a). If the time-efnoweastnowcast time is Smin, only the present predictors are used for the calculation of storm

similarity, and as higher the the time-efneweastnowcast time, as more predictors are available for the similarity calculation.

It is expected for the nowcast to perform worse at the first 5min of the storm existence, as the velocities are not assigned
properly to the storm region and the past predictors are not yet calculated. Therefore, the training-optimization is done
separately for three different groups of nowcast times, in order to achieve a proper raining-application of the k-NN model:

Group 1 — Nowcast issued at 15 timestep of storm recognition, Group 2 — Nowcast issued between 30min to 1 hour of
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storm evolution, and Group 3 — Nowcast issued between 2 and 3 hours of storm evolution. The k-number with the lowest

absolute error averaged over all the events for most of the lead times (as_median of MAE-per from Equation (8) over all

events) is selected as a representative for the single-deterministic nowcast. For-the-training; the mean-instead-of the-median

Once the important predictors are identified and the k-NN has been trainedoptimized, the performance of both
stngle-deterministic and ensemble-probabilistic k-NN is assessed also in a “leave-one-event-out” cross-validation mode.
Two performance criteria are used to assess the performance: i) absolute error per lead time and target variable (as in the
training-optimization of the k-NN in Equation (8), and ii) the improvement (%) per each lead time and target variable that
the k-NN approach introduces to the nowcast when compared to the Lagrangian persistence in object-based approach;

([Errorres|-IErrornewl) (9))

”

Errotyn,,y [%] = 100 -

|E7'rorre f|

where the Errore, is the_event error manifested by the k-NN, the Error,cthe event error manifested by the Lagrangian

persistence and the Erroriy, the improvement in reducing the error per each lead time. For improvements higher than

100% or lower than -100%, the values are reassigned to the limits respectively 100% and -100%. -Here the Lagrangian

persistence refers to as persistence of the storm characteristics (Area, Intensity, Velocity in X and Y Direction) as last
observed and constant for all lead times. For the ensemble-probabilistic application-approachef-the- k-NN-methed-, the
Continuous Rank Probability Score (CRPS) as shown in Equation (10) is computedadditional-eriteria-were-employed.

*© 1
CRPS(E,y) = [ (FG) =10y < 0)%dx = Bl =yl = ElY — ] (10)

Where [/ is a probabilistic forecast. ), the observed value. Y, the independent random variable with CDF of /, and /', the

finite first moment (Gneiting and Katzfuss, 2014). The CRPS is a generalization of the mean absolute error, thus if a

single nowcast is given, it is reduced to the mean absolute error (Eguation 8). This enambles a direct comparison between

As stated earlier the results depend on the time-ef neweastnowcast time and also storm duration (in regard to available

storms). Therefore, the performance criteria for both single-and-ensemblek-NN nowcasts were computed separately for
different storm durations and time-of neweastsnowcast times as illustrated in Table 2. It is important to mention as well,
that since one event may contain many storms of similar nature, when leaving one event out for the cross-validation, the
number of available storms is actually lower than the numbers given in Table 2. This is particularly affecting the
performance of the storms longer than 6 hours, as the “leave-one-event-out” cross-validation eauses-leaves fewer available
storms for the similarity computation.

Table 2 The selected storm durations and tine-ofroweastnowcast times for the performance calculation of the single
deterministic and ensemble-probabilistic nowcast and the respective number of storms for each case.

Storm living sherter-less than 30 | Storms living within 0.5 - 3 hours Storms living longer than 3 hours
min
Nowcast No. Storms Fime ol No. Storms Fimeof No. Storms
TimeFime—eof NeweastNowcast NeweastNowcast
Noweast Time Time
5 min 4106 5 min 994 Smin 89

15

Y Y Y 2 Y Y R | S T
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15 min 2265 1h 370 2h 89
30 min 271 3h 6 6h 33

4. Results:

4.1 Predictors Importance Analysis

Figure-6Table 3 illustrates the results of the two important analysis methods (Pearson correlation and partial
information correlations - PIC) for each of the target variable and their average over the 5 variables. The stronger the
shade of the green colour, the more important is the predictor for the target variable. The weights given here are averaged

from the weights calculated at three different lead times and storm durations_(see Appendix 8.1 and 8.2 for more detailed

information about the calculated weights). First the Pearson Correlation weights were-are advised for the identification

of the most important predictors. From the results it is clear that the autocorrelation has a higher influence, as the target
variables are mostly correlated with their respective past and present values. This influence logically is higher for the
shorter lead times and smaller for the longer lead times. For longer lead times the importance of other predictors, that are
not related directly with the target variable, increases. Similar patterns can be observed among the Area, Intensity and
Total Lifetime target variables, indicating that these three variables may be dependent on each other, and on similar
predictors like: current lifetime, area, standard deviation of intensity, the major and minor ellipsoidal axis and the global

velocity._This conclusion agrees well with the life cycle characteristics of convective storms reported in the literature

review. On the other hand, are the velocity components, which seem to be highly dependent on the autocorrelation and
slightly correlated to area and ellipsoidal axes. It has to be mentioned that apart for the standard deviation intensities also
the mean, median, and maximum spatial intensities were investigated. Nevertheless, it was found that the I and L, had
the higher correlation weights, and since there is a high collinearity between these intensity predictors, they were left out

of the predictor’s importance analysis.

Table 3,Strength of relationship between the selected predictors and the target variables averaged for three lead times <.

and storm duration groups (original weights can be seen in the Appendix 8.1 and 8.2) based on two predictors

identification methods: upper —correlation, and lower —PIC weights. The green shade indicates the strength of the

relationship: with 0 for no relationship at all, and 1 for highest dependency.,

Present Predictors Past Predictors - averaged from last 30 min

Method | Target
Cells Low A Plg Plap Vi Vi Vy g Jon b O | A Pl Plp Vg Vi Vi Jnae Jun L @
A 0.09 0.18- 0.15 0.48 0.05 0.00 0.00/0.50 0.49 0.09 0.00 0.17 0.00 0.07 0.00 0.05- 0.49 0.12 0.00
c 6 | 0.00 0.07 0.11 0.36 0.14 0.04 0.00 0.00 0.12 0.12 0.00 0.04(0.10 0.33 0.13 0.00 0.00 0.05 0.12 0.11 0.05 0.04
g K Vx ]0.00 0.00 0.10 0.02 0.04 0.16 0.21 0.00 0.08 0.00 0.00 0.03|0.09 0.00 0.00 0.18 0.28 0.00 0.09 0.00 0.00 0.00
E g Vy |0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.15 0.04 0.00 0.00 0.00/0.00 0.00 0.05 0.00 0.04 0.22 0.05 0.04 0.00 0.00
8 Lot [0.00 0.11 0.36 0.10 0.22 0.09 0.00 0.00 0.22 0.20 0.05 0.05(0.34 0.00 0.21 0.10 0.00 0.00 0.22 0.20 0.08 0.07
Average[0.00 0.08 0.25 0.13 0.18 0.07 0.10 0.10 0.19 0.16 0.05 0.04(0.24 0.10 0.08 0.07 0.10 0.10 0.19 0.17 0.05 0.02
A 0.00 0.08 0.15 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00({0.01 0.00 0.00 0.33 0.00 0.07 0.00 0.00 0.33 0.00
E 5 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00- 0.00 0.00 0.00{0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TE‘E E g Vx 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00(0.00 0.00 0.00 U.UG- 0.00 0.00 0.00 0.00 0.00
g .:é g Vy 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00{0.00 0.00 0.00 0.00 0.00 0.00- 0.00 0.00 0.00
£ 0 Li: [0.00 0.15 0.13 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00(0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.11 0.33 0.00
Average[0.00 0.05 0.06 0.00 0.00 0.09 0.00 0.00 0.20 0.00 0.00 0.00{0.00 0.00 0.00 0.13 0.20 0.01 0.20 0.02 0.13 0.00

The application of the PIC analyses requires that the most important predictors should be introduced to the
analysis first. Hence based on the Pearson correlation values the following most important predictors were selected: Area
—A, Intensity —PLai, - Velocity X — V3o, Velocity Y —Vyso, Total Lifetime — A. The results of the PIC analysis are shown

in the lower row of Figure-6Table 3 and Appendix 8.2. For storm duration lower than 3 hours, where a lot of zeros are

present, the PIC methods seems to be unable to converge to stable results or to identify important predictors. For the

intensity and velocity components, the PIC identifies only 1 important predictor which, in the case of the Intensity and
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Velocity in the Y direction, does not correspond with the most important predictor fed first in the analysis. Contrary for
Total Lifetime and Area, only for storms that last longer than 3 hours, the method is able to converge and give the most
important predictors; for Area - A, Vg, past Vys and the Lyow, while for Total Lifetime - A, Velg, Luow and Jminso. At the
moment it is unclear why the PIC method is unable to perform well for all of the target variables and storm groups. One
reason might be that only the Area and Total Lifetime are dependent on the chosen target variables. Another most probable
reason might be that for the other target variables the heavy-tail of the probability distribution and the high zero sample
size may influence the calculation of the joint and mutual probability distribution. The reason why thise method is
performing poorly for the application at hand, even though developed specifically for the k-NN application, is not
completely understood and is not investigated further on for the time being since it is outside the scope of this paper.
Opverall, the results from the Pearson correlation seem more robust and stable (throughout the lead times and

storm groups) than the PIC method (refer to Appendix 8.1 and 8.2); the importance weights increase with the lifetime of

the storm and decrease with higher lead time. These behaviours are expected as with increasing lead time the uncertainty
becomes bigger and with increasing lifetime the storm dynamic becomes more persistent (due to the large scales and the
stratiform movements involved). Moreover, the important predictors do not change drastically from one lead time or
storm group to the other, as seen in the PIC. Therefore, the predictors estimated from the correlation with the given weights
in Figure-6Table 3 are used as input to the k-NN application. In order to make sure that the predictor set from the Pearson
correlation was the right one, the improvement in the single k-NN training error of using these predictors instead of the
ones from PIC are shown in Figure 7. The results shown in this figure are computed according to the Equation (9) (where
“new” is k-NN with correlation weights, and “ref” is the k-NN with PIC weights) for the target-based k-NN approach
(solid lines) and storm-based k-NN approach (dashed lines) and are averaged for three groups of nowcast times as

indicated in the training-optimization of k-NN (Section 3.2.3) and as well in the legend of Figure 7.

The results from Figure 7 indicate that for the Area, Intensity, and Velocity components, the Pearson correlation
weights improve the performance of target-based k-NN from 5 up toup-te 1030% compared to the PIC weights. This
happens mainly for the short lead times (LT<+60min) throughout the three groups of nowcast times. For longer lead times

there seems to be no significant difference between the predictors sets. Nevertheless;-here-the-mean-over-the grouped

Area Intensity

Impt. 1o PIC [%]
Impr. o PIC[%]

Trmestep of Noweast

e — V81 .= VvS2 a sm @ 30m-1h @ 2-3n
—— . . T .
s e 5 s a = 8
Lesa Ters i) Lesa T i)
Velocity X Velocity Y Total Lifetime
g4 LR R
L) S a N - E/ ?z;%i; %i
superiority-compared-to-the PICpredietors—set: The same cannot be said for the Total Lifetime as a target variable, here

not-always-the Pearson correlation weights do not give the best results for all the nowcast times. In fact, here the k-NNs

based on the PIC weights seem to be more appropriate and yielded better results. However, as the other 4 target variables
are better for the Pearson correlation, this predictor set was selected for all applications of the k-NN (with different weights

according to- Table 3Figure-6) to keep the results consistent with one another. A further analysis was done that proved
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that the application of the correlation weights produces lower errors than the non-weighted k-NN application (all weights
are assigned to 1 to the most important predictors from Pearson correlation).

Lastly, it should be emphasized that for the computation of predictors weights, all the events were grouped

together, and thus when applying the k-NN nowcast in the cross-validation mode, there is a potential that the information

performance of the k-NN will be better, because the weights were derived from all the events grouped together. Typically,

in modelling applications, the optimization dataset should be clearly separated by the validating one, in order to remove

the effect of such information leakage. For this purpose, the correlation weights were computed 110 times, on a “leave-
one-event-out” cross-sampling, in order to investigate their dependence on the event database. The results of such cross-

sampling are visualized in Appendix 8.3 and indicate a very low deviation of the predictors weights (lower than 0.01)

over all the target variables. The shown low variability of the Pearson Correlation weights justifies the decision to estimate

the weights from the whole database, as the potential information leakage is not likely affecting the results of the k-NN

performance. This is another reason favouring the calculation of the predictor’s weights based on the Pearson Correlation.

On the other hand, the weights from the PIC analysis are changing very drastically depending on the dataset and hence

the effect of the information leakage would be much larger in the k-NN developed from PIC weights, Moreover, a
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Once the most important predictors and their weights are determined, the training-optimization of the single k-
NN nowcast for the two k-NN applications (storm-based and target-based) was performed. The optimal k-value obtained
from minimizing the mean absolute error (MAE) produced by k-NN are shown in Figure 8-upper row. The results are
averaged-computed for the given nowcast timess—{see—legend), each-lead times and target variables for both k-NN
applications (VSI target-based and VS2 storm-based). For the 4 target variables Area, Intensity and Velocity in X/Y

direction, the number of optimal values decreases quasi exponentially for lead time up to 1 hour. After these lead time

Area Intensity Velocity X Velosity Y. 8 Total Lifetime.
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is enough to predict the dissipation of the storms. Contrary, for the very short lead times, the closest identified neighbour

is unable to capture the growth/decay processes of the storms, thus the response has to be average from k-neighbours

with k depending strongly on target variable, nowcast time, lead time, and total lifetime. This seems to be the case also

for the Total Lifetime, where averages between 3-15 neighbours are computed as K;nin. Overall the k=1 seems to yield the

lowest MAE for the majority of the lead time, nowcast times and target variables, and therefore, is selected to continue

further on with the analyses. However, selecting the first neighbour does not satisfy the requirement that the nature doesn’t

repeat itself, and jdeally a k>1 should be achieved such that the responses from similar neighbour can be averaged to

create a new response. For this purpose, the optimal K were additionally obtained by minimizing the mean error (ME)

and are shown in Figure 8 -lower row, Here the overestimation and underestimation of different storms balance one

another, and the results seem to converge when averaging 3-5 neighbours. A direct comparison of the MAE for k~2-5 and

k=1 was performed in order to understand if a higher k will benefit the application of both k-NN versions. The median
improvements of using neighbours from 2-5 instead of 1 (over the selected groups of nowcast times) are shown only for

all the lead times are very close to zero, as the dissipation of storms is captured well by all the 5 closest neighbours. From

the results of the Table 4 it is visible that k=4 brings the most advantages and hence was selected for both applications as

a better compromise. The selection of k=4 is not an optimization per se, as it was not learned with artificial intelligence

instead was selected based on human jntuition, and it does not represent the best possible training of the Kuin. For a more
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training and validation should be done in order to avoid, information being leaked from the optimization to the validation
of the k-NN. In our case, the effect of the information leakage at this stage (also illustrated in Figure 3-c) is minimized

by obtaining the K;uin on a cross-sampling of the events, and averaged over the events, lead times and nowcast times.

Table 4, The median improvement of the total lifetime MAE when using k= 2-,5 instead of k=1 over the three selected </

groups of nowcast times,

X 2 k3 k=4 k=5
Stormgbased 9.09% 10.74% 11.94%
JTargetbased 3.40% 5.89% 6.02%
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4.3 Results of the single-deterministic 4-NN nowcast

The abselute-median errors- MAE of the 4-NN determinist nowcast over all the events, run for both target- and

storm-based approaches are shown in Figure 9 for each lead time and target variable. The results are grouped according
to the storm duration; i) upper row — for storms that lived 30min, ii) middle row — for storms that lived up to 3 hours and

iii) lower row — for storms that lived longer than 3 hours, and are averaged per nowcast times given in Table 2. To-getter

well in the training-optimization of the 4-NN, the target-based k-NN exhibits lower Area, Intensity and Velocity errors
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P76  than the stormevent-based 4-NN. Table 5-a illustrates the median deterioration (-) or improvement (+) in percent (%) ( Formatted: Font: Bold

b77 over all lead times that the storm-based 4-NN can reach when compared to the target-based one.

b78 For storm living less than 30 minutes, the error-MAE is decreasing with the lead time and past LT+30 minis <« [ Formatted: Left

b79  mostly zero, as the deaths-dissipations of the storms have been captured successfully. The Total Lifetime of the majority
Hb80  of the storms can be captured with ealy-5~ 15 min over-/underestimation regardless of the nowcast time. The errors for

h81 the 4 target variables (except Total Lifetime) are lower for the earlierlater nowcast times than for the later-carlier ones

h82 (as expected). The difference between the storm- and target-based 4-NN is very small for Area, Intensity and Total

b83 Lifetime, but much higher for the velocity components (with storm-based exhibiting up to 40% higher errors than the

b84  target-based). The biggest difference seems to be for shorter lead times (LT < +1h). - This-is-explained-by-the sample
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h92 For the storms living up to three hours, the same behaviour is, more or less, observed. The only difference is for
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to the number of available storms with duration of 3 hours (median over 6 storms available). Since the Area, Intensity and
Total Lifetime are overestimated and not converging to zero for high lead times, it is clear that the nearest neighbours are
being selected from the longer storms that do not dissipate within the next 3 hours. The differences between the two 4-
NN approaches are visible_mainly for lead times up to 2-30 minkeuss (except the nowcast at 36*-time-step-o£3;¢ hour of

the storms life), afterwards the errors are relatively converging to —zere-for-the-4-target-variableseach other. The storm-
based 4-NN produces circa 10-20% lewer-higher errors than the target-based one for the nowcast times lower than

30min3hours, while for laternowcast time_of 3 hours.s the errors are up to elearky-100% higher than the target-t based

one-(up-to-100%-higher)-—. At these storms as well, the higher discrepancy between the two versions of 4-NN is seen at
the Velocity components. As-the-sample-size-is-the-samefor both-approaches; it seemslike-storm-based-may-be-me

For the storms that live longer than 3 hours (under 100 storms available) the same problem, as in the nowcast
issaed-time of 3 hours at-the-36*-time-step-ofthe-previous-stormsseen before, is present. The Total Lifetime is clearly

underestimated (up to 100min) as due to database the information is taken from shorter storms. It is important to notice

here, that although 70 storms are present, because of the “leave-one-event-out” validation, the storm database is actually
smaller. Nevertheless, the error is manifested here differently: as the long storms are more persistent in their features:
tFhe Area, Intensity and Velocity components are captured better for the short lead times with the error increasing at
higher lead times. Here as well the nowcast issued at the earlier stages of the storm’s life exhibit higher errors than in the
later stages. Especially for the nowcast at the 6™ hour of the stermsstorm’s existence, the errors are quite low for all 5
target variables due to the persistence of the stratiform storms. For this group of long storms, the storm-based nowcast
yields errers-from-0-up to mere-than10010% higher errors than the target-based one, with only few exceptions depending

on the time of nowcast and variable. It is clear that the storm-based 4-NN is more influenced by the number of available

storms than the target-based approach.

Table 5, Median, Deterioration (-) or Improvement (+),0f kNN storm-pased (VS2) compared to targetzbased (VSI1) over

all lead times according to the storm duration and nowcast times, (shown in %). Equation 9 is used here, where “ref” —

is the target-based and “new” is the storm-based k-NN.
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Figure 10 shows the improvement that the 4-NN introduces to the nowcast when compared to the<
Lagrangian persistence (either target- or storm-based) and are averaged per lead time for each of the three group of storms
and the respective times of nowcast. Since the Lagrangian Persistence doesn’t issue a Total Lifetime nowcast, only the
four target variables (Area, Intensity and Velocity components) are considered. The green area indicates the percent of
improvement from the application of the 4-NN approach, and the red area indicates the percent of deterioration from the

4-NN application (Lagrangian persistence is better). Additionally, median improvements (+) or deterioration (-) over all

lead times of the storm-based compared to target-based 4-NN approach in respect to the Lagrangian Persistence are

illustrated in Table 5-c.

For the 30min storms, the 4-NN approach (both target- and storm-based) are considerably better than the Lagrangian<+—

persistence: improvement is higher than 50% from the LT+15min and up to 100% from LT+630min. The improvement

is greater for nowcast at the 15" minat- 3*-timestep-of storm existence (when the persistence predictors are considered).

It is clear than due to the autocorrelation, the Lagrangian persistence is more reliable for the short lead times and for
earlier times-of-noweastnowcast times. However, after +5-minlead-timesLT+15min-a and for times-ofneweastnowcast
times near to the dissipation of the storms, where the non-linear relationships govern, and-henee-the improvements from
the nearest neighbour are more significant. The target-based 4-NN results in slightly higher improvements than the storm-
based one only for lead time up to 30min, wi

these-this lead time the improvements are-for-both-+00%-from both versions are converging.
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For the storms that live between 30 min to 3 hours, the improvements are introduced first after LT+15 or +30 min

depending on the time-of neweastnowcast time: with increasing time-ofneweastnowcast time increases the improvement
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as well. The only exception is for the nowcast of Area and Intensity on the 36%-timestep3[¢ hour of the storm existence,

where no clear improvement of the 4-NN approaches could be seen before LT+30min or LT+12h. This low improvement
for the nowcast issued-time of at-the-36%-timestep-of storms-tife-3 hours was expected following the poor performance of
the 4-NN shown in Figure 9. It seems like the Lagrangian persistence is particularly good for predicting the Area and

Intensity at very short lead times (up to LT+20min). Here, for nowcast times of Smin, the Lagrangian Persistence is 100%

better than any of the 4-NN approaches. But not the same is true for the Velocity Components, with the Lagrangian

Persistence exhibiting very low advantages against the 4-NN for the short lead times. Regarding the difference of the two
xhibits

than-as the target-based. Another exception is the nowcast at-the-36%-time-steptime of 3 hours, where the storm-based

ssimilar improvements

4-NN approaches, with few exceptions, the storm-based nowcast introduces
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;mprovements are clearly lower, especially for the higher lead times, than the target-based (up to 40%). -(up-te+00%-ox
mere):

For storms living longer than 3 hours, the improvements are present for lead times higher than 2 hours. Since the features
of the long storms (mostly of stratiform nature) are persistentee in time, is understandable for the Lagrangian Persistence
to deliver better nowcast up to LT+2h. Past this lead time non-linear transformations should be considered. Here, even
though the storm database is small, the non-linear predictions based on the 4-NN capture better these transformations

improvements introduced from the target based.
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56 To conclude, the 4-NN single-deterministic nowcast brings up to 100% improvements for lead times higher than
657  the predictability limit of the Lagrangian persistence and are dependent mainly on the storm type and the size of database.
658 Overall, for all ef the-storms the improvement is mainly at the high lead times and later times of nowcast, as the 4k-NN
659 is capturing particularly well the death-dissipation of the storms. The results from the long events are suffering the most
660 from the small size of the database. -This was anticipated, as the events were mainly selected from convective and
H61 mesosecale-conveetive-eventsevents that have the potential to cause urban floods. A bigger database, with more stratiform
662 events included, will-can introduce a higher improvement to the Lagrangian persistence. These improvements are
663 expected to be higher for lead times longer than 2 hours, but is yet to be seen if a larger database can as well behave better
664 than the persistence even for lead times shorter than the predictability limit. Regarding the two different 4-NN approaches,
665 the storm-based performs areund—200-40% worse than the target-based nowcast, introducing generally 40% lower
grangian persistence. These values are valid mostly for the first 4 target vartables and not for the

666  improvements to the La

668 stmilar-storms-have similarlife-times—The main differences between these two approaches lie between the growth/decay

669 processes, which the target-based 4-NN can capture better. Also, these differences are particularly larger for the Velocity

670 Components and for the Total Lifetime, than in the Area and Intensity as target variables. Furthermore, it seems that the
671 storm-based 4-NN is more susceptible to the size of the database than the target-based one.- Nevertheless, there are some

672 cases where the storm-based behaves better than the target-based nowcast (as illustrated with green in Table 5 -a) even [ Formatted: Font: Bold
673 though theit-hasto-be-mentioned-that-the target-based approach is-prefitingshould be profiting more from the selected
674  predictors and their respective weights. A mere-better suitable—optimized Ky, for each lead time and nowcast [Formatted: Subscript

675 timepredictor—set-and—weights, may actually improve_further on the results of both the-sterm-based-4-NN_versions
676 censiderably, and give the advantages mainly to target-based nowcast. -

677 4.4 Results of the ble 30-NN nowcast Formatted: Font: Bold, Italic

Formatted: Font: (Default) Liberation Serif, 12 pt

679 Figure H-illustrates-the minimum-error-achieved from-the best bl ber-of 30-most-simil

Formatted: Normal, Line spacing: single

680  stormsforthe“to-be-noweasted storm;The median CRPS over all the events for the probabilistic 30NNs (in solid lines) Formatted: Font: Not Bold

681 together with the median MAE for the deterministic 4-NN (in dashed lines), are illustrated respectively for storm-based ‘ Formatted: Font: Not Bold

Formatted: Font: Not Bold

682 approach in Figure 11 and for farget-based approach, approaches in Figure 12. The results are shown as in the previous
\

684 depending on the time of nowcast. Additionally, the median improvements (+) or deterioration (-) of storm-based CRPS

| Formatted: Font: Bold

685 values in comparison with the target-based are given in Table 5-b. For the 30min long storms, the errors of the best Formatted: Font: Not Bold

686 ensembleprobabilistic nowcast are typically lower than the single 4-NN nowcast for all the variables, lead times and time Formatted: Font: Not Bold

687 of neweastsnowcast times, independent of the 30NNs approach (either storm- or target-based). In contrast to the Formatted: Font: Not Bold

683 Figures per each lead time and target variable, for storms divided into 3 groups according to their duration and averaged | { Formatted: Font: Not Bold

688 deterministic 4-NN, the probabilistic 30NNs performance is very little dependent on the nowcast time (mainly for Area Formatted: Font: Bold

o 0 G A L A I A JC )

689 Intensity and Total Lifetime). The storm-based 30NNs has up to 50% higher errors than the target-based, but on the other
690  side can have up to 40% lower errors than the target-based for nowcast times of 30min. Here-onky-the nowcasts-issued-at

691 the1*-timestep-of storm-existenee have-erro ichthy higher than zero for short lead times (up to min), apart from

~This suggests ence-again-that storms in this duration behave
693 similarly and their respense-dissipation can be predicted adequately by the storm-based approach with more than 4 similar

694  neighbours.
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695  For storms that live shorter than 3 hours, the erre

* [ Formatted: Indent: First line: 0 cm

696 and-timestep-of neweast—same performance is as well exhibited: the probabilistic 30NNs has_lower errors than the
697 deterministic 4-NN. The difference between the target- and storm-based nowcasts is within the range of the single 4-NN

698 nowcast for the first 4 target variables, with storm-based ensemble-30NNs having $6%-3615% higher errors in the first
699 30 min of the nowcast than the target-based. For theIntensity and the Total Lifetime, both of the ensembles-30NNs exhibit

700 very similar errors for most of the nowcast times. It is worth mentioning here, that for the nowcast at the 36*-time-step/d [ Formatted: Superscript

ro1 hour of storms’ existence the errors are much lower than the single 4-NN nowcast. This proves that the most similar

702 storms is-are within the 30 members, but not within the first 4 neighbours selected in the case of the single 4-NN nowcast.

703 Due to the unrepresentativeness in the database, the errors of the longer storms are considerably higher than the
704 other storm groups, and the errors of the first 4 target variables are increasing with the lead time and decreasing with the

705 nowcast time, as in the case of the deterministic 4-NN nowcasts. Fheserestults-correspond-to-the-onesfrom-the-single 4-
V06 NN-neweast—However here unlike the other storm groups, the differences between the storm-based and target-based
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Opverall the ensemble results are clearly better than the single 4-NN nowcast, suggesting that the best responses

are obtained by singular neighbours (either the closest one or within the 30 neighbours) and not by averaging. Thus, there

is still room for improving the single 4-NN nowcast by selecting better the important predictors and their weights or

averaging differently the nearest neighbours. Nevertheless, the results from Figure H-11 and Figure 12 emphasize that
similar storms do behave similarly, as-the-error-is-almestzere;-and that the developed k-NN on the given database with

30 ensembles gives satisfactory results. Compared to the deterministic 4NNs it has the advantage that no k-optimization

is needed, and the two approaches (storm- and target-based) have less discrepancies with one another.
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Figure 1313 demonstrates the number-ofensemblesthat-yvieldeda-better noweast-thanimprovement of the probabilistic+ 4[ Formatted: Indent: First line: 0 cm
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}742

30NNs when compared to the Lagrangian persistence (better-ensembles)-storm-based in dashed line, and target-based in
solid line). Fhis-pereent-of ensemblesAs before the median improvement over the events is computed and shown for each

storm duration group, time-ofnoweastnowcast time,-and lead time_and target variables (expect for the Total Lifetime).
For all the three groups it is visible that the-number-of-better-ensemblesperformance increases considerably with the lead

time — suggesting that the ensemble predictions are particularly useful for the longer lead times where the single nowcast

is not able to capture the storm evolution. For short storms (duration shorter than 30min) the rumberofensemblesislow
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persistence is only better for the Area and Intensity at Smin nowcast time and for very short lead times (up to 10min).

However, past this lead time,

the probabilistic 30NNs
has the clear advantage with improvements up to 100%. Past LT+30min.-with-ne-clear difference between-differenttimes
of neweast—This-eei which coincides with the predictability limit of the Lagrangian persistence at such scales, there is no
difference between the nowcast time and 30NNs approach-Fhus;-itmakessense-that the-ensemble noweasts-behave better

of 30-NN-is-insignifieant (less than 1% for all target variables and nowcast timestimes-of noweasts).

For storms that live shorter than 3 hours, the results are slightly worse than the very short storms., but still exhibit the

same patterns. Here as well the number-of better-ensembles—inereases—drastieally-main improvements of the 30NNs
probabilistic approach is seen for-all-the-target-variables-between LT+15min to LT+30min_for all the target variables.
Interesting in this storm group are the results from the nowcast time at-the-of 3 -heurhourss that ef sterm-existence-that
exhibit different behaviours than the ether-deterministic neweast-timesapproach. This is expected as the Lagrangian
difference between the two types of 30-NN is insignificant, although a bit higher than for the very short storms (~2.5%
difference).

For the longer storms the

the probabilistic 30NNs is seen mainly for LT+4560min to LT+1260min, but still not as high as in the other storm groups.

The worse performance is at nowcast time of Smin, s-at-the*timestep-of the storm-where the-pereentof betterensembles
is—quite—towthe 30NNs fails to bring any advantage to the prediction of Area and Intensity when compared to the

Lagrangian Persistence. —(between—t—and-0—ensemble or-the 80minforall of thetarcetvariables—Wha
iInteresting from these storms, is that the-the pereent-improvement efbetterensemblesishisheris more significant at the
Velocity Ceomponents than in the Area and Intensity predictions. This suggest the velocity components are more

persistent (see Figure 43) and easier to be predicted from similar storms. -Still-it-is-werth-mentioning that the percent-of

As a conclusion the probabilistic nowcasts are better than the Lagrangian Persistence mainly for convective

storms that last shorter than 3 hours and lead times higher than LT+15min. Of course, there is still room for improving

the 30NNs application by increasing the size of the past database. Overall, it seems that the velocity components can be

captured much better by the 30NNs application than the Lagrangian Persistence, while the Lagrangian Persistence is more

suitable for long persistent storms and for nowcast times of Smin where not enough information is available to select

similar storms. An increase in the database, with more stratiform storms, may improve the performance of the 30NNs and

its advantage towards the Lagrangian Persistence. However, the value of the probabilistic 30NN relies mainly in the

nowcasting of convective events. Moreover, the possibility of merging Lagrangian Persistence with a probabilistic 30NNs

approach should be explored and further investigated; the Lagrangian Persistence should be implemented for very short

lead times (up to 30min) and for the first nowcast times where the predictors are not enough to select similar past storms.

Improving the nowcasting of storm characteristics is the first step in improving rainfall nowcasting at fine

temporal and spatial scales. On a second step, the knowledge about the storm characteristics (as nowcasted by the 30NNs)
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the life cycle characteristics of convective storms), and the target-based approach, for the nowcasting of the velocity

components. The suitability of the proposed combinations and the merging of the 30NNs with the Lagrangian persistence

for nowcasting rainfall intensities at fine scales, is currently under investigation and will be discussed in a follow up paper.

4.5 Nowcasting the unmatched storms

For the optimization and testing of the k-NN approaches, the unmatched storms from the tracking algorithm were

left outside of the database. Nevertheless, in an online application (operational nowcast), when the storm is recognized

for the first time, one can not predict if the storm is an artefact, or it will not be matched by the tracking algorithm.

Therefore, it is important to investigate how the developed k-NN deals with these unmatched storms. Figure 14 illustrates

the median performance over the 110 events of the developed target-based (upper row) and storm-based (lower row) k-

NN when predicting the target variables of the unmatched storms from a past database of only matched storms (storms

with duration equal or longer than 10min). As in the previous results, the 30NNs probabilistic application yields better

errors than the deterministic one, causing an overestimation of these storms for the first 10-20min for the target-based

approach and 15-30min for the storm-based one. A direct comparison of these errors with the Lagrangian Persistence is

shown in Figure 15, with the deterministic 4-NN in the upper row and the probabilistic 30NNs in the lower row. As

expected the probabilistic 30NNs brings the most improvement when compared to the Lagrangian Persistence for all lead

times and target variables. Thus, even though, most of these unmatched storms will be overestimated in their duration

the 30NNs will capture their dissipation much better than either the deterministic 4-NN or the Lagrangian Persistence.
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Figure 154, Median CRPS error,over the 110 events for each of the target variables nowcasted from 4-NN deterministic <
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Figure 15 Median performance improvement over the 110 events for each of the target variables nowcasted from 4-NN <

deterministic (upper row) and 30NNs probabilistic (lower row) applications when compared to the Lagrangian

Persistence, for both target- (upper row) and storm-based (lower row) approaches. The results shown here are from the

)

“unmatched storms” when nowcast time is Smin.

55. Conclusions

Accurate predictions of rainfall storms at fine temporal and spatial scales (Smin. 1km?) based on radar data are

quite challenging to achieve. The errors associated with the radar measurements, identification and tracking of the storms,
and more importantly the extrapolation of the storms in the future based on the Lagrangian persistence, are limiting the
forecast horizons of such radar based nowcasts to 30-45 min for convective storms and to 1 hour for stratiform events.
The focus of this paper was the improvement of the storm-oriented radar based nowcasts by considering other non-linear
behaviours for future extrapolation instead of the Lagrangian persistence. For this purpose, a nearest neighbour approach
was proposed that predicts future behaviours based on past observed behaviours of similar storms. The method was
developed and validated for the Hannover Radar Range where storms from 110 events were pooled together and used in
a “leave-one-event-out” cross-validation. From 110 events a total of around 5200 storms with different morphology were
identified and tracked with HyRaTrac in order to build up the database for the k-NN implementation. The storms were
treated as ellipses and for each state of the storms’ evolution different features (describing both present and past states)
were computed. The k-NN approach was developed on these features to predict the behaviour of the storms in the future
(for lead times up to 3 hours) through 5 target variables (Area, Intensity, Velocity in X and Y direction and Total Lifetime).

First an importance analysis was performed in order to recognize the most important predictors for each of the
target variable. Two different approaches were employed for this purpose: Pearson correlation, and Partial Information
Correlation (PIC). A comparison of these two methods revealed that for the application at hand the Pearson Correlation
is more reliable at determining important predictors, and delivers 5%-30% better results than the PIC method. However,
the PIC seems promising mainly for determining the most important predictors of the Area and Total Lifetime for storms
longer than 3 hours, and is still recommended te-investigateforfurther-werksfor investigation in the future. The Area,

Intensity and Total Lifetime of the storms seem to be co-dependent on one another and on the features that describe their

evolution. In particularly the variance of the spatial intensity is an important predictor for the three of them. On the other

hand, the velocity components are dependent as well more on features that describe their evolution. Nevertheless, there
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is still a dependency of the area and velocity components, and should be included when predicting each other mainly for
high lead times.

The weights derived from the Pearson correlation were used for the similarity estimation of different storms
based on the Euclidian distance. Two k-NN approaches were developed on two measurements of similarity: a) target-
based approach — similarity was computed for each target independently and indicates the best performance possible by
the given predictors and weights, and b) storm-based approach — similarity was computed for each storm keeping the
relationship between the target variables. For the two approaches a single—deterministic (averaging the 4 closest
neighbours) and a easemble-probabilistic (with 30 nearest neighbours) nowcast were issued for all of the storms in “leave-
one-event-out” cross-validation mode. In the single-deterministic nowcast the difference between the two lied-remains
mainly at short lead times (up to 30 min) and at the Velocity Components, with the eventstorm-based results yielding +6-
30up to 40% higher errors than the target-based ones.-Exeeption-was-the Total Lifetime where the storm-based predietion
was-almest the same-as-the-tarset-based-approach- However, at higher lead times the difference between the two became
insignificant, as the death-dissipation preeesseprocessess wereas captured well for the majority of the storms. The same
behaviours were observed as well in the ensemble nowcast, with target-based ensembles being slightly better than the

storm-based nowcast. Overall the storm-based approach seems reasonable for Area-Intensity and Total Lifetime, as they

are co-dependent and their relationship should be maintained for each storm, while target-based approach captures better

the velocity components. A combination of the both approaches, may results in better nowcasting of storms’ characteristics.

To investigate what value each of the two k-NN approaches introduces to the nowcast, their errors (for both
single-deterministic and easemble-probabilistic nowcast) were compared to the errors produced by the Lagrangian
persistence. For both of the approaches the improvement was ap-te-+06%more than 50% -for convective storms for lead
times higher than 15 min, and up-te-56%-for mesoscale storms for lead times higher than 2 hours. The results were
particularly good for the small convective storms due to the high number of storms available in the database. For the
mesoscale storms (with duration longer than 3 hours) the improvements were not satisfactory due to the small sample
size of such long storms. An-inerementinlncreasing the sample size is expected to improve the performance of the k-NN
for these storms as well. However, when consulting the easemble-probabilistic k-NN application it seems that, even for
these storms and the given database, there are atleast-5-10-ensembleenough similar members in the 30 neighbours that

are better than the Lagrangian persistence. This emphasizes_that the probabilistic nowcast is less affected by the sample

size than the deterministic 4-NN. Moreover, the differences between the storm-based and target-based approaches

become smaller in the probabilistic approach than the deterministic ones. Lastly, the optimization of the adequate

neighbours for the deterministic approach is far more complex than implemented here, but when issuing the probabilistic

nowcast there is no need to optimize the k — number. It is clear that the probabilistic application of the k-NN outperforms

the deterministic ones, and has more potential for future works. -net-enly-the-impertance-of the-ensemblenoweastin

Overall the results suggest that if the database is big enough, storms that behave similarly can be recognized by
their features, and their responses are useful in improving the nowcast up to 3 hours lead times. We recommend the use

of the nearest neighbour in a probabilistic application (30NN5) to capture better the storm characteristics at different lead

times. A merging with the Lagrangian Persistence for short lead times (up to 15min) and early nowcast times can be as

well implemented. Further improvements can be achieved if the predictors importance is estimated better (i.e. Monte

Carlo approach, or neural networks) or if additional predictors are included from other data sources like: cloud information

from satellite data, temperature, convective available potential energy (CAPE) and convective inhibition (CIN) from

Numerical Weather Prediction Models, lightening flash activity, additional measurements from Doppler or dual polarized
radar data (like phase shift, doppler velocity, vertical profile at different elevation angels), various geographical
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information (as distance from heavy urbanized areas, mountains or water bodies) and so on. The main benefit of the

probabilistic 30NN is mainly seen for convective events and creating new nowcasting rules based on the predicted storm

characteristics. Future works include the integration of the developed 30NNs application in the object-oriented radar

based nowcast to extend the rainfall predictability limit at fine spatial and temporal scales (1km? and Smin). Further

A-b hi dif th dictors—t a1 1 timated—better—(4 Monte—Carl h rreural
tter{t-e—viont arto-approacn;—or-heurat

mprovements-can-be-achicved-ifthe pr importatee-is-estimat d

conclusion, the results seem promising at the storms scale, nevertheless is still to be seen if the methodology applied here

can introduce improvements as well at the local scale, i.e. validation with the measurements from the rain gauge
observations.
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8. Appendix

8.1 Obtained predictors weights from the Pearson correlation importance analysis:
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8.3 The standard deviation of the Pearson Correlation Weights from a cross-sampling of the events
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