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Abstract. To date, most regional and global hydrological models either ignore the representation of cropland or consider crop 

cultivation in a simplistic way or in abstract terms without any management practices. Yet, the water balance of cultivated 

areas is strongly influenced by applied management practices (e.g. planting, irrigation, fertilization, harvesting). The SWAT+ 

model represents agricultural land by default in a generic way where the start of the cropping season is driven by accumulated 15 

heat units. However, this approach does not work for tropical and sub-tropical regions such as the sub-Saharan Africa, where 

crop growth dynamics are mainly controlled by rainfall rather than temperature. In this study, we present an approach on how 

to incorporate crop phenology using decision tables and global datasets of rainfed and irrigated croplands with the associated 

cropping calendar and fertilizer applications in a regional SWAT+ model for Northeast Africa.  

We evaluate the influence of the crop phenology representation on simulations of Leaf Area Index (LAI) and 20 

Evapotranspiration (ET) using LAI remote sensing data from Copernicus Global Land Service (CGLS) and WaPOR ET data 

respectively. Results show that a representation of crop phenology using global datasets leads to improved temporal patterns 

of LAI and ET simulations, especially for regions with a single cropping cycle.  However, for regions with multiple cropping 

seasons, global phenology datasets need to be complemented with local data or remote sensing data to capture additional 

cropping seasons. In addition, the improvement of the cropping season also helps improve soil erosion estimates, as the timing 25 

of crop cover controls erosion rates in the model. With more realistic growing seasons, soil erosion is largely reduced for most 

agricultural Hydrologic Response Units (HRUs) which can be considered as a move towards substantial improvements over 

previous estimates. We conclude that regional and global hydrological models can benefit from improved representations of 

crop phenology and the associated management practices. Future work regarding incorporating multiple cropping seasons in 

global phenology data is needed to better represent cropping cycles in regional to global hydrological models. 30 
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1 Introduction 

Even though cropland cultivation covers over 40 % of the planet’s ice-free land surface, most regional and global hydrological 

models either ignore the representation of cropland or consider crop cultivation in a simplistic way or in abstract terms without 

any management practices (Sood and Smakhtin, 2015; Srivastava et al., 2020). In most cases, the models neither address crop 35 

phenological development nor distinguish between different crops and the associated management practices (e.g. planting, 

irrigation, fertilization, harvesting) (Chen and Xie, 2012; Srivastava et al., 2020). Yet, the water balance of cultivated areas is 

strongly influenced by applied management practices and their precise timing (Twine et al., 2004). In the context of global 

change studies, realistic representation of agricultural systems is a major concern as changes in climatic factors affect crop 

growth and productivity of agricultural systems (Makowski et al., 2014). Therefore, hydrological models that simulate 40 

cropland ecosystems should have a reasonable representation of crop phenology and the associated management practices of 

these ecosystems (Lokupitiya et al., 2009). 

The SWAT+ model (Bieger et al., 2017; Arnold et al., 2018) which is a restructured version of SWAT (Soil and Water 

Assessment Tool; Arnold et al., 1998) utilizes the principles of the EPIC crop growth model (Williams and Singh, 1995) to 

simulate agricultural land by default in a generic way where the phenological development of crops from planting is driven by 45 

accumulated heat units (Arnold et al., 1998). However, the primary controlling factor for the start of the growing season in 

tropical and sub-tropical regions such as the sub-Saharan Africa is rainfall (Lotsch et al., 2003; Alemayehu et al., 2017). Waha 

et al., (2013) describes the crop growing season in sub-Saharan Africa as the period in which temperature and moisture are 

suitable for growth determined by the start and end of the main rainy season. Zhang et al., (2005) showed that the onset of 

seasonal vegetation green-up across Africa can be directly linked to rainfall seasonality. Studies (e.g. Msigwa et al., 2019, 50 

Nkwasa et al., 2020) have further pointed out how the existing multiple cropping seasons in tropical and subtropical climates 

within an agricultural year coincide with the rainfall and irrigation patterns. Therefore, the use of heat units to trigger the start 

of the cropping seasons could lead to inconsistencies in crop phenology simulations for tropical and sub-tropical regions.  

Croplands include various types with associated differences in crop physiology and management practices (Lokupitiya et al., 

2009; Yin and Struik, 2009). The phenological change during the vegetation cycle of crop types actively controls the ET 55 

process through internal physiology by increasing the amount of leaf stomata with canopy growth (Gong et al., 2014). In the 

SWAT+ model, plant transpiration is simulated as a linear function of Leaf Area Index (LAI) and Potential Evapotranspiration 

(PET) (Neitsch et al., 2005). Thus, inconsistences in crop simulations could lead to inaccurately estimating canopy properties 

such as LAI and canopy height resulting in uncertain estimates of ET (Alemayehu et al., 2016). Accurate estimations of ET in 

a hydrological model are important because ET is the central flux that defines land-atmosphere interactions (Mueller et al., 60 

2011; Fisher et al., 2017).  

Additionally, changes in cropland use and crop management have received little attention in hydrological impact assessments 

yet these may have more significant impacts on model outputs such as soil erosion and sediment yield than rainfall and 

temperature (O’Neal et al., 2005). Abaci and Papanicolaou, (2009) further stated that cropland management practices can 
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significantly affect the impact of precipitation on soil erosion. Cropland practices cause great variations in the erodibility of 65 

cropland since soil erosion depends on what crop is grown and the crop cover density (Sundborg and White, 1982). The crop 

cover is crucial in the estimation of the C (crop management) factor in erosion models such as the Modified Universal Soil 

Loss Equation (MUSLE) used by SWAT+ (Lin et al., 2014). Other crop management practices such as amounts of fertilizer, 

alters soil ability to produce biomass and thus alters soil resistance to erosion (Souza et al., 2017). The timing and duration of 

soil cover on cropland are affected by the planting and maturity dates of the crop. 70 

Previous studies have applied the SWAT model at a regional scale within and including sub-Saharan Africa (Schuol and 

Abbaspour, 2006; Schuol et al., 2008). However, these studies utilized the default generic way of representing agricultural 

land use without any management practices. Yet, Arnold et al., (2012) emphasized the need for realistic representation of local 

and regional crop processes to reliably simulate the water balance, erosion and nutrient yields in a SWAT model. One wonders 

whether these regional studies consider an accurate representation of the internal catchment processes of crop phenology and 75 

vegetation dynamics. Chawanda et al., (2020) describes one of the few regional applications of the latest SWAT+ version in a 

tropical region. The study highlighted that the inclusion of irrigation and reservoirs in model set up using decision tables 

(Arnold et al., 2018) led to an improvement on the simulations of discharge and ET.  

Regional cropping phenology datasets and management practices have been developed using remote sensing approaches (Li 

et al., 2014; Estel et al., 2016; Xiong et al., 2017) and non-remote sensing approaches, including observational census data 80 

(Potter et al., 2010; Portmann et al., 2010; Lu and Tian, 2017; Iizumi et al., 2019; Hurtt et al., 2020; Jägermeyr et al., in 

revision), to integrate into regional agricultural and hydrologic modelling frameworks.  However, remote sensing approaches 

have been criticized as not being able to detect crop types and cropping sequences without local knowledge or ground truth 

data (Bégué et al., 2018). Nevertheless, these spatially explicit global cropping phenology data sets have not been utilized in 

regional hydrological models to improve the land use and crop representation.  85 

The novelty of this study is in improving land use and crop process representation for large scale hydrological modelling using 

SWAT+ by (1) proposing an approach that reasonably incorporates crop phenology using decision tables and global datasets 

of rainfed and irrigated croplands with the associated management practices in a regional SWAT+ model for Northeast Africa, 

(2) evaluating model improvements of crop representation by using the remote sensing LAI from Copernicus Global Land 

Service (CGLS) and ET derived from WaPOR (Water Productivity through Open access of Remotely sensed derived data, 90 

FAO, 2018),  (3) evaluating how the consideration of crop phenology and the associated management practices affects long 

term water-driven soil erosion estimates.  We do not intend to fully model soil erosion but show how improvements in crop 

representation can impact soil erosion estimates.  

 

 95 
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2 Material and Methods 

2.1 Study area 

Our study area in Figure 1 is the North-eastern part of Africa that covers 4,489,000 km2. This area includes wholly or partially 

countries of the Nile basin including Uganda, Kenya, Tanzania, Rwanda, Burundi, Sudan, South Sudan, Ethiopia, Egypt. The 

area includes the main Nile basin with sub basins such as, Victoria Nile, Blue Nile, White Nile, Atbara, Baro-Akobo-Sobat, 100 

Bahr El jebel and Bahr El Ghazal. The agricultural sector is responsible for nearly 75 % of the water withdraw within the 

basins (Swain, 2011). A strong latitudinal wetness gradient characterizes the climate of the region. The areas north of 18oN 

remain dry mostly of the year while there is a gradual increase of monsoon precipitation amounts in the south (Camberlin, 

2009).  

 105 

Figure 1: Study area - Northeast Africa (Nile basin) 
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2.2 Modelling approach using SWAT+ 

SWAT+ is a revised version of SWAT that offers greater flexibility in connecting spatial units in the representation of 

management operations (Bieger et al., 2017; Arnold et al., 2018). This is a semi-distributed river basin scale model that relies 

on the physical characteristics of a catchment. It divides a basin into sub basins connected by a stream network, which are 110 

further divided into Hydrologic Response Units (HRUs). HRUs represent areas within the sub basin that comprise of the same 

land use, soil, slope and management practices (Neitsch et al., 2005). SWAT+ also introduces landscape units (LSU) to allow 

separation of lowland (wetland) processes from upland process (Bieger et al., 2017). SWAT+ applies the hydrological water 

balance concept, Eq. (1) as the basic driver of all hydrological processes. 

𝑊𝐵𝑓 =  𝑊𝐵𝑖 + ∑(𝑃𝑗 − 𝑅𝑗 − 𝐸𝑗 −  𝐷𝑗 − 𝑅𝐹𝑗) ∗ Δt                                                                                                               (1) 115 

Where; 𝑊𝐵𝑓 and 𝑊𝐵𝑖 are the final and initial soil water content respectively (mm d-1), 𝑃𝑗 is the amount of rainfall (mm d-1), 

𝑅𝑗 is the amount of surface runoff (mm d-1), 𝐸𝑗is the ET amount (mm d-1), 𝐷𝑗  is the percolation amount (mm d-1), 𝑅𝐹𝑗 is the 

return flow amount (mm d-1), Δt is the change in time (day) and j is the index. The model estimates erosion and sediment yield 

for each HRU using the Modified Universal Soil Loss Equation (MUSLE) (Williams and Berndt, 1977), Eq. (2). The MUSLE 

uses runoff energy rather than rainfall to estimate sediment yields, making it suitable at daily time scale. 120 

𝑆𝑒𝑑 = 11.8 (𝑄𝑠𝑢𝑟𝑓𝑞𝑝𝑒𝑎𝑘𝐴𝑟𝑒𝑎ℎ𝑟𝑢)0.56 𝑥 𝐾𝑈𝑆𝐿𝐸  𝑥 𝐶𝑈𝑆𝐿𝐸  𝑥 𝑃𝑈𝑆𝐿𝐸𝑥 𝐿𝑆𝑈𝑆𝐿𝐸  𝑥 𝐶𝐹𝑅𝐺                                                                  (2) 

where; Sed is the sediment yield (tones/day), Qsurf is the surface runoff volume (mm/day), qpeak is the peak runoff rate (m3/s), 

Areahru is the area of the HRU (ha), KUSLE is the USLE soil erodibility factor, CUSLE is the USLE crop management factor, 

PUSLE is the USLE support practice factor, 𝐿𝑆𝑈𝑆𝐿𝐸  is the USLE topographic factor and CFRG is the coarse fragment factor.  

Land use and management operations in SWAT+ can be scheduled using either or both decision tables and management 125 

schedules. However, decision tables enable the user to model intricate sets of rules and their subsequent actions by allowing 

them to add conditions for scheduling management (Arnold et al., 2018). Nkwasa et al., (2020) compared the use of decision 

tables to management schedules and concluded that decision tables provided higher flexibility in representing agricultural 

practices.  

2.3 Crop growth cycle with heat unit scheduling 130 

SWAT+ uses the simplified version of the EPIC growth model to simulate plant growth (Neitsch et al., 2005). As in the EPIC 

model, phenological plant development is based on the daily accumulated heat units or by calendar dates, while plant growth 

can be inhibited by temperature, water, nitrogen and phosphorus nutrients (Neitsch et al., 2005; Arnold et al., 2012).  The heat 

unit theory assumes that plants have requirements that can be quantified and linked to maturity. The total number of heat units 

required by the plant to start growing or to reach maturity is calculated as in Eq. (2). 135 

𝑃𝐻𝑈 =  ∑ (𝑇𝑎𝑣 − 𝑇𝑏𝑎𝑠𝑒)  𝑛
𝑑=1 when  𝑇𝑎𝑣 >  𝑇𝑏𝑎𝑠𝑒                                                                                                                        (2) 

where; PHU is the total heat units required to plant maturity, Tav  is the mean daily temperature (oC), Tbase  is the plant’s 

minimum temperature for growth (oC), d = 1 is the day of planting and 𝑛 is the number of days required for a plant to reach 
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maturity. Planting is scheduled by a second heat index where heat units are summed over the entire year using Tbase = 0oC. 

This heat index is solely a function of climate calculated by SWAT+ using the provided long-term weather data (Neitsch et 140 

al., 2005).  

While scheduling by heat units is convenient for temperate regions that are mainly driven by temperature, users need to 

consider that cropping seasons in tropical and sub-tropical regions are primarily driven by water availability (Alemayehu et 

al., 2017).  Hence, the use of heat units causes incorrect cropping seasons for these regions.  

2.4 Default Model set up 145 

The SWAT+ model was set up with the QGIS interface using the data in Table 1. An approached suggested by Chawanda et 

al., (2020) was used in the model set up since the state-of-the-knowledge harmonized land use product that is formatted in 

NetCDF was adapted in this study. By default, the cropland was represented in a generic way using heat units to trigger the 

cropping seasons. The study area was discretized into 768 landscape units and 12526 unsplit HRUs. The USDA Soil 

Conservation Service (SCS) curve number method was used to estimate surface runoff, variable storage method selected for 150 

flow routing and the Penman-Monteith method (Monteith, 1965) used to calculate the potential evapotranspiration. 

Table 1: Global datasets used for model setup and crop management 

Global Datasets  Resolution Source 

Digital Elevation Model 

(DEM) 

90 m resampled 

to 250 m 

Shutter Radar Topography Mission (SRTM; Farr et al., 

2007) 

Land use 0.25o Harmonized land use (LUH2; Hurtt et al., 2020) 

Soil 250 m Africa Soil information Service (AFSIS; Hengl et al., 2015) 

Climate 0.5o EartH2Obseve, WFDEI and ERA-Interim data Merged and 

Bias corrected for ISIMIP (EWEMBI; Lange, 2016) 

Irrigated areas 0.083o Food and Agriculture Organization (FAO; Siebert et al., 

2013) 

Plant and harvest dates 0.5o Global Gridded Crop Model Intercomparison (GGCMI; 

Jägermeyr et al., in revision) 

Fertilizer – Nitrogen(N) 0.5o (Hurtt et al., 2020) 

Fertilizer – Phosphorus(P) 0.5o (Lu and Tian, 2017) 

2.5 Proposed scheduling - Crop growth cycle with global phenology datasets 

The land use map (LUH2; Hurtt et al., 2020) is a composite of land use layers with each layer representing a fraction of a given 

land use. The fraction layers representing cropland include; C3 annual crops (C3ann), C3 perennial crops (C3per), C4 annual 155 

crops (C4ann), C4 perennial crops (C4per) and C3 nitrogen-fixing crops (C3nfx). These layers were extracted and comparison 

https://doi.org/10.5194/hess-2021-247
Preprint. Discussion started: 25 May 2021
c© Author(s) 2021. CC BY 4.0 License.



7 

 

was made on a pixel by pixel basis. Whatever crop layer fraction occupied a larger percentage for the rainfed and irrigated 

agricultural areas within a pixel was selected to represent cropland for irrigated and rainfed areas in that pixel. For example in 

Figure 2; if the C4ann and C3nfx crop occupied a larger fraction within a pixel compared to other cropland use fraction layers 

for irrigated and rainfed cropland respectively, they were selected to represent cropland use in that pixel. A crop map was 160 

developed from this pixel by pixel analysis and a representative crop selected for each cropland use fraction based on literature 

(Leff et al., 2004) as shown in Table 2. 

Table 2: Representative crop for LUH2 cropland used in SWAT+ 

cropland (LUH2) Representative crop (SWAT+) 

C3 annual wheat 

C3 perennial banana 

C4 annual maize 

C4 perennial sugarcane 

C3 nitrogen-fixing soybean 

For both rainfed and irrigated areas, the representative crops with the corresponding crop phenology (plant and harvest dates) 

and crop management practices (irrigation, N-fertilizer and P-fertilizer) were extracted from the respective global datasets 165 

(Table 1). The extracted data was written in a decision table for each cropland HRU using a python code. The default model 

was re-run with the modified crop scheduling with data from global datasets and referred to as ‘revised SWAT+’ model from 

here on.  
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Figure 2: Workflow for incorporating crop phenology and crop management data from global datasets into the model 170 

2.6 Validation of model results 

Our study focused on improved cropland use representation. We evaluated our simulations for LAI and ET for a period of 7 

years (2009 – 2015) using remote sensing products from CGLS (https://land.copernicus.vgt.vito.be/) and WaPOR respectively. 

Studies (e.g., Alemayehu et al., 2017; Ha et al., 2018; Nkwasa et al., 2020) have demonstrated the capability of using remote 

sensing products to evaluate hydrological model outputs. Representative basins in the model as shown in Figure 3 were selected 175 

to highlight the importance of incorporating global phenology datasets on LAI simulations in regional hydrological modelling. 

The selected basins were based on the reported cropping patterns that start with the rainy season (Waha et al., 2013) i.e Upper 

Blue Nile basin with a predominantly single cropping season, Victoria basin with a double cropping season and the Nile delta 

with mainly a double irrigated cropping season (Sugita et al., 2017; M. El-Marsafawy et al., 2018). Crop HRUs within the 

selected sub-basins, that occupied the largest areas were selected to reduce the effect of mixed LAI from different land cover 180 

classes when comparing with the remote sensing LAI.  
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Figure 3: Crop area percentage and selected basins for LAI evaluation 

Additionally, the correlation coefficient matrix, Eq. (3) was used for model evaluation of LAI. 

r =  
Σi−1

n (Ymi−Y̅m)(Yoi−Y̅o)

√Σi−1
n (Ymi−Y̅m)√Σi−1

n (Yoi−Y̅o)
                                                                                                                                                   (3) 185 

where; Where; 𝑌𝑚𝑖
 and 𝑌𝑜𝑖

 are the simulated and observed values at every time step, with 𝑌̅𝑚 and 𝑌̅𝑜 being the respective mean 

values.  

To illustrate the impact of revised cropland use representation on model outputs, we compare the differences in soil erosion 

simulations between the default and the revised SWAT+ models. However, due to the sparse and poor quality records of 

erosion and sediment yield in this region (Haregeweyn et al., 2017), it was not possible to quantitatively validate erosion model 190 

results. Instead, we adopted a ‘scientific validation’ approach that is suitable for cases when observations for comparison with 

model outputs are limited and when the model is utilized to advance the knowledge of physical processes (Biondi et al., 2012). 

We compared our erosion estimates for some catchments e.g. Upper Blue Nile with those from a few previous studies (Hurni, 
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1985; Betrie et al., 2011; Haregeweyn et al., 2017). Moreover, the improvement in the representation of crop phenology and 

crop management practices was intended to minimize errors associated with estimating soil erosion, specifically the crop 195 

management factor in the MUSLE.  

Both model setups were uncalibrated but checked for the water balance because even with the best possible model calibration 

for both model setups, model discrepancies due to crop representation could not have been isolated. This approach could not 

only isolate the uncertainty in the model due to crop representation but also allow the model results be compared in default 

parameter conditions, considering parameter calibrations vary with different catchments.  Nkwasa et al., (2020) also suggested 200 

that improved representation of crop and agricultural land use processes should precede any model calibration efforts.  Besides, 

SWAT was developed with the objective of predicting the impact of management on water, sediment and agricultural yields 

in large ‘ungauged’ basins (Arnold et al., 1998; Srinivasan et al., 2010). 

In addition, the uncalibrated models already had good water balance estimates (0.5% and 0.4% for the default and revised 

models respectively) calculated using Eq. (1) for the simulated period. We assume that the differences seen in the model setups 205 

originate primarily from the crop representation and management practices. Hence, we do not address issues concerning the 

SWAT+ model calibration and validation in this paper. 

3. Results and discussion 

3.1 LAI simulations 

The simulated LAI from both the default and revised SWAT+ models was compared with the remote sensing LAI extracted 210 

for the maize, wheat and soy HRUs in the 3 selected sub-basins (Upper Blue Nile, Lake Victoria and Nile Delta). In the Upper 

Blue basin, Figure 4(a) and Figure 4(c), there is an improved LAI simulation in the revised SWAT+ model with the 

phenological development being captured in the correct major cropping season within the rainy season for both the rainfed and 

irrigated maize HRUs. Additionally, the revised SWAT+ model LAI strongly correlates (rd > 0.5) with the remote sensing 

(RS) LAI. Figure A1(a) and Figure A1(c) in the Appendix A,  also shows the improvement in LAI simulations for rainfed and 215 

irrigated wheat HRUs in the Upper blue Nile basin.  

In the Victoria basin, (Figure 5(a) and Figure 5(c)), the revised SWAT+ model captures only one cropping season in 

comparison to the RS LAI that shows a double seasonal pattern agreeing with the rainfall. This is because the global data set 

utilized captures only the main cropping season per pixel per crop and hence the model misses the additional cropping seasons 

(Jägermeyr et al., in revision).  220 
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Figure 4: (a) LAI comparison for rainfed maize, (b) Erosion estimates for rainfed maize, (c) LAI comparison for irrigated 

maize (d) Erosion estimates for irrigated maize in the Upper Blue Nile basin. The LAI correlation coefficients (𝒓𝒅 for the 

default SWAT+ model and 𝒓𝒓 for the revised SWAT+ model) 225 

 

Figure 5: (a) LAI comparison for rainfed wheat, (b) Erosion estimates for rainfed wheat, (c) LAI comparison for irrigated 

wheat (d) Erosion estimates for irrigated wheat in the Victoria basin. The LAI correlation coefficients (𝒓𝒅 for the default 

SWAT+ model and 𝒓𝒓 for the revised SWAT+ model) 
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Additionally, Figure A2(a) and Figure A2(c) in the Appendix A also show a single cropping season captured in the Victoria 230 

basin for irrigated maize HRUs with some HRUs having a cropping season from April to November while others have a 

cropping season from September to January. There is also a slight improvement in the LAI correlations for the default and 

revised SWAT+ models with RS LAI in the Victoria basin as the LAI simulated by the revised SWAT+ model are indicative 

of the representative crops planted in the basin as compared the generalized crop representation in the default model.   

For the Nile delta that is predominantly irrigated, the revised SWAT+ model improves the LAI simulations (from 𝑟𝑑  = -0.53 235 

to 0.48) as compared to the default SWAT+ model that simulates a negligible LAI, Figure 6(a). However, it still captures only 

one cropping season as compared to the RS LAI that shows two cropping seasons that are also highlighted in previous studies 

(M. El-Marsafawy et al., 2018).  

 

Figure 6: (a) LAI comparison for irrigated wheat, (b) Erosion estimates for irrigated wheat in the Nile delta. The LAI 240 

correlation coefficients (𝒓𝒅 for the default SWAT+ model and 𝒓𝒓 for the revised SWAT+ model) 

From all the basins, we see an improved seasonal temporal crop-growth phenological development pattern with the revised 

model  as compared to the default model for both the rainfed and irrigated regions. However, in the Victoria basin and the Nile 

delta where we have two dominant cropping seasons, the global datasets still capture one cropping season. Additionally, some 

regions in East Africa have been reported to have up to 3 cropping seasons (Waha et al., 2013; Msigwa et al., 2019) which 245 

causes some errors in the model outputs. The global crop calendars also lack a temporal time series dimension which could be 

a substantial source of uncertainties in predicting phenological events of croplands. Another source of uncertainties could be 

the use of remote sensing LAI data (1km resolution) in evaluation that does not represent a pure signal of a crop but rather 

vegetation with in the pixel. Nkwasa et al., (2020) highlighted these scaling issues when using remote sensing products in 

model evaluation. Nevertheless, the remote sensing data still provides insights on the temporal vegetation growth relationship 250 

with seasonal weather patterns. 

3.2 ET simulations 

The annual average simulated agricultural ET from the revised SWAT+ model improves the default agricultural ET simulation 

from 732 mm y-1 to 837 mm y-1 as compared to the WaPOR agricultural ET of 936 mm y-1. Figure 7 shows the improvement 
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in the spatial distribution of the agricultural ET with the revised SWAT+ model, Figure 7(b) as compared to the default model, 255 

Figure 7(a).  

The inclusion of the global phenology and management practices shows that ET is one of the major components of a basin 

water balance that is greatly influenced by the seasonal vegetation growth cycles. Although, the agricultural ET is improved 

with the incorporation of the global crop phenology, there is still an underestimation. This underestimation could be attributed 

to the missing multiple cropping seasons especially in areas that are irrigated. Additionally, automatic irrigation was specified 260 

in the model which applies water from an unlimited source to the field when the water stress is below a specified threshold 

(0.7) of the field capacity. However, this may be unrealistic in all irrigation sites causing uncertainties in irrigation applications 

which affects the ET estimates. Nevertheless, the ET estimates could be further improved by model calibrations to obtain the 

optimal possible ET. 

 265 

Figure 7: Spatial distribution of agricultural ET; a) default SWAT+ model ET, b) revised SWAT+ model ET, c) WaPOR ET 

3.3 Erosion simulations 

LAI is not only directly related to processes such as rainfall interception, evaporation, transpiration, soil evaporation, root 

depth but also to soil erosion through canopy cover which varies during the growth cycle of the plant. With a better 
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representation of the cropping season, the rainfall season also corresponds with higher LAI values which results in lower 270 

erosion yields.  

Figures; 4(b), 4(d), 1A(b), A2(b), A3(d), 4A(b) and A4(d), reveal that the soil erosion estimates are reduced in the revised 

SWAT+ model because the canopy cover grows in the correct cropping season (rainy season) reducing the effective energy of 

intercepted raindrops. However, in Figure 5(b) and Figure 5(d), even though the cropping season in the revised SWAT+ model 

captures only one cropping season as the default model, there is still a reduction in the HRU erosion estimates because the 275 

revised SWAT+ LAI, representative of an actual crop is greater than the default LAI representative of a generic crop. 

Additionally, with more biomass, more residue is generated which could be more effective in reducing soil erosion even after 

the cropping season. Residue intercepts rain droplets near the soil surface that drops regain no fall velocity (Neitsch et al., 

2011). For the Nile delta in Figure 6(b), the soil erosion estimates reduced further even though they were already insignificant.  

The soil erosion estimates are reduced by a maximum of 625 t km-2 y-1, Figure 8(a) or up to 90 %, Figure 8(b) in some areas 280 

within the region when using the revised SWAT+ model as compared to the default model. The average regional soil erosion 

yield reduced by 16 %. This reduction is attributed to the improved timing of the cropping seasons in correspondence to the 

start of the rainy season which provides more canopy cover to intercept the raindrops.  

 

Figure 8: Change in erosion estimates (revised SWAT+ model minus default SWAT+ model); (a) absolute differences, (b) 285 

percentage differences 
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However, in some isolated regions, the revised SWAT+ model simulated an increase in soil erosion estimates as compared to 

the default model. In most of those regions, the global phenology data captures the irrigated cropping season which is often 

occurring in the dry seasons( Figure A2(c) and Figure A3(a)) which causes discrepancies by not representing the major growing 

season in the rainy season. This is attributed to the fact the global phenology data provides a single cropping season per pixel 290 

per year. 

In order to validate the regional soil erosion estimates, the simulated soil loss from the revised SWAT+ model was compared 

with the spatial patterns in erosion rates from the literature. From published literature, Ethiopia is the one of the most 

documented countries in Northeast Africa with marginal information existing for other countries (Molina, 2009). The revised 

SWAT+ model shows that the regional soil erosion extent varies from zero to over 20500 t km -2 y-1, (Figure 9), revealing the 295 

severity of soil erosion in the Blue Nile basin (Ethiopian highlands) as compared to the other parts of the region. 

Comparing with estimates from the Upper Blue Nile basin, the model estimated an erosion yield extent from 0 to 13000 t km -

2 y-1 and a mean of 701 t km-2 y-1 which is slightly lower but comparable to a net soil erosion mean of 734 t km-2 y-1 reported 

by Haregeweyn et al., (2017) and soil erosion yield extents from zero to over 15000 t km-2 y-1 reported by Hurni, (1985), Betrie 

et al., (2011) and Haregeweyn et al., (2017). Tamene and Le, (2015) reported a net soil loss of 8500 t km-2 y-1 and 600 t km-2 300 

y-1 in the Blue Nile and White Nile basins respectively. These estimates should be considered as indicative as comparing these 

values with the Northeast African regional model estimates can be challenging mainly due to the differences in the sizes of 

areas involved resulting from the different delineation procedures.  
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Figure 9: Spatial distribution of predicted annual average soil erosion at HRU level in Northeast Africa (2009 – 2015) 305 

Even though the regional model underestimates the soil erosion in comparison with these localized studies, the order of 

magnitude is within the same range. The underestimation can be attributed to the finer resolution of datasets utilized by the 

local studies as compared to the coarse datasets utilized in the regional model. For example, Molnár and Julien, (1998) 

calculated soil erosion using different DEM grid sizes and concluded that the estimated slope gradients decreased as the cell 

size increased which influenced the topographic factor (LS) estimation. Additionally, the input global weather data is at a scale 310 

of 0.5o which makes it too coarse to capture the spatial variability of weather at a finer scale. This has been a challenge for 

large scale hydrological modelling (Chawanda et al., 2020), that needs to be addressed for better performance.  

With that background, it is not wise to entirely consider the soil erosion estimates in this study as exact quantification but 

rather as close approximations. It is worth noting that the focus of this study was not soil erosion estimation but to illustrate a 

concept.  315 

4. Conclusion 

In this work, an approach has been developed for an improved representation of crop phenology and management in a regional 

SWAT+ model using decision tables and global datasets. In addition, global remote sensing datasets of LAI and ET have been 
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used for model evaluation. A comparison of the simulated LAI revealed improved temporal growth patterns in agreement with 

remote sensing LAI, especially for regions with a single cropping cycle. However, for regions with multiple cropping cycles, 320 

only one cropping cycle was represented as most global phenology datasets provide a single cropping cycle per year.  

The improvements in the SWAT+ model reduced the agricultural ET deficit by 50 % in comparison with the WaPOR ET, 

showing a strong linkage between hydrological response and agricultural land use representation. Additionally, this 

improvement in ET estimates is expected to reduce any calibration efforts needed to obtain the maximum possible ET as the 

physical process representation of crops is improved. A considerable reduction of 16 % in the average regional soil erosion 325 

estimates was noticed after implementing this approach. This impact on soil erosion estimates shows the importance of proper 

representation of crop processes and an important element for minimizing errors in soil erosion estimates.  

There is a need for global phenology datasets with multiple cropping seasons for further improvements in the crop 

representation, especially for improving crop processes in irrigated areas or areas with multiple rainy seasons. The approach 

developed in this research lays a foundation for improved agricultural land use representation with associated management 330 

practices at regional and global scales which will further improve regional to large scale hydrological and water quality impact 

assessments of global change. 

Appendix A 

 

Figure A1: (a) LAI comparison for rainfed wheat, (b) Erosion estimates for rainfed wheat, (c) LAI comparison for irrigated 335 

wheat (d) Erosion estimates for irrigated wheat; in the Upper Blue Nile basin. The LAI correlation coefficients (𝒓𝒅 for the 

default SWAT+ model and 𝒓𝒓 for the revised SWAT+ model) 
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Figure A2: (a) LAI comparison for irrigated maize – case1, (b) Erosion estimates for irrigated maize – case1, (c) LAI 

comparison for irrigated maize – case2 (d) Erosion estimates for irrigated maize – case2; in the Victoria basin. The LAI 340 

correlation coefficients (𝒓𝒅 for the default SWAT+ model and 𝒓𝒓 for the revised SWAT+ model) 

 

Figure A3: (a) LAI comparison for irrigated soy - case1, (b) Erosion estimates for irrigated soy - case1, (c) LAI comparison 

for irrigated soy - case2 (d) Erosion estimates for irrigated soy - case2; in the Victoria basin. The LAI correlation coefficients 

(𝒓𝒅 for the default SWAT+ model and 𝒓𝒓 for the revised SWAT+ model) 345 

https://doi.org/10.5194/hess-2021-247
Preprint. Discussion started: 25 May 2021
c© Author(s) 2021. CC BY 4.0 License.



19 

 

 

Figure A4: (a) LAI comparison for rainfed maize, (b) Erosion estimates for rainfed maize, (c) LAI comparison for rainfed soy 

(d) Erosion estimates for rainfed soy; in the Victoria basin. The LAI correlation coefficients (𝒓𝒅 for the default SWAT+ model 

and 𝒓𝒓 for the revised SWAT+ model) 
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