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Abstract 15 

Issues related to large uncertainty and parameter equifinality have posed big challenges 16 

for hydrological modeling in cold regions where runoff generation processes are particularly 17 

complex. Tracer-aided hydrological models coupling modules to simulate the transportation 18 

and fractionation of water stable isotope are increasingly used to constrain parameter 19 

uncertainty and refine the parameterizations of specific hydrological processes in cold regions. 20 

However, commonly unavailability of site sampling of spatially-distributed precipitation 21 

isotope hampers the practical applications of tracer-aided models in large scale catchments. 22 

This study, taken the precipitation isotope data (isoGSM) derived from the Isotopic General 23 

Circulation Models (iGCM) as an example, explored its utility in driving a tracer-aided 24 

hydrological model in the Yarlung Tsangpo River basin (YTR, around 2×105 km2) on the 25 

Tibetan Plateau (TP). The isoGSM product was first corrected based on the biases between 26 

gridded precipitation isotope estimates and limited site sampling measurements. Model 27 

simulations driven by the corrected isoGSM data were then compared with those forced by 28 

spatially interpolated precipitation isotope from site sampling measurements. Our results 29 

indicated that: (1) spatial precipitation isotope derived from the isoGSM data helped to reduce 30 

modeling uncertainty and improve parameter identifiability in a large mountainous catchment 31 

on the TP, in comparison to a calibration method using discharge and snow cover area fraction 32 

without any information of water isotope; (2) model parameters estimated by the corrected 33 

isoGSM data presented higher transferability to nested sub-basins and produced higher model 34 

performance in the validation period than that estimated by the interpolated precipitation 35 

isotope data from site sampling measurements; (3) model calibration procedure forced by the 36 

corrected isoGSM data successfully rejected parameter sets that overestimated glacier melt 37 

contribution and gave more reliable contributions of runoff components, indicating the 38 

corrected isoGSM data served as a better choice to provide informative spatial precipitation 39 

isotope than the interpolated data from site sampling measurements at macro scale. This work 40 

suggested plausible utility of combining isoGSM data with measurements from a sparse 41 

sampling network in improving hydrological modeling in large mountainous catchments. 42 

Key word 43 

Tracer-aided hydrological modeling; Large basins on the Tibetan Plateau; Isotopic General 44 

Circulation Models (iGCM) product; Combining isoGSM isotope data with measurements at 45 

sparse sampling sites. 46 
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1. Introduction 48 

Large uncertainty and strong equifinality of parameter calibration are the widely faced 49 

issues in hydrological modelling (Gupta et al., 2008), especially in cold regions where 50 

hydrological complexity is highly enhanced by the competitions of multiple water inputs and 51 

the strong spatio-temporal variabilities of runoff generation processes (Zongxing et al., 2019).  52 

Tracer-aided hydrological models integrating a water or environmental tracer (e.g., stable 53 

oxygen isotope, δ18O) module into the runoff generation architecture have been proved as 54 

highly valuable in improving parameter calibration and diagnosing model uncertainty (Son and 55 

Sivapalan, 2007; Birkel et al., 2011; Capell et al., 2012; He et al., 2019). However, practical 56 

applications of tracer-aided hydrological modeling are mainly limited in only small to meso 57 

scales. The largest basin area where previous tracer-aided modelling works have been 58 

successfully implemented is around 103 km2 (e.g., Delavau et al., 2017; Campell et al., 2012; 59 

Stadnyk et al., 2013). Reasons fall in either the lumped conceptual model structures (Birkel and 60 

Soulsby, 2015), which are particularly not suitable for capturing the strong spatial variability of 61 

hydrological behaviors in large scale basins, or the low availability of tracer data in large basins 62 

due to difficulties in the long-term, continuous and high-frequency field sampling works (e.g., 63 

Ala-aho et al., 2017; He et al., 2019). 64 

The Tibetan Plateau (TP) is the source region of several large rivers (e.g., Brahmaputra, 65 

Ganges), which sustain the ecosystems and provide a great proportion of water source for 66 

downstream livelihoods and agricultural irrigation (Zhang et al., 2013; Schaner et al., 2012). 67 

Decision making of water resource management over TP and its downstream area relies heavily 68 

on river runoff in the large basins. Meanwhile, melting water from snow and ice contributes a 69 

large proportion to river runoff in the large basins on TP due to the cold climate and glacier 70 

coverage in head watersheds (Zongxing et al., 2019). Runoff in this region is thus highly 71 

vulnerable to climate warming. Robust quantification of the contribution of meltwater to river 72 

runoff is critical in understanding water resources dynamics on TP (Immerzeel et al., 2013). 73 

Although great efforts have been taken to quantify the contributions of runoff components (e.g., 74 

Immerzeel et al., 2010; Lutz et al., 2014) and their future trends under climate changes on TP 75 

(e.g., Su et al., 2016; Masood et al., 2015), results reported in the wide range of studies show 76 

substantial differences (Xu et al., 2019; Tian et al., 2020), which indicate big challenges on 77 

quantifying contributions of runoff components and predicting their future trend in the large 78 

basins on TP. The difficulty of this task is mainly related to the large uncertainty of hydrological 79 

modelling and parameter calibration in the TP, because of the complex hydrological processes 80 

(He et al., 2018) and the commonly inaccurate estimation of precipitation (Xu et al., 2017; He 81 

et al. 2017). The strong inter-competitions of runoff processes induced by meltwater and 82 
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rainwater were inadequately constrained in hydrological models by the commonly used 83 

hydrological observation of streamflow (Duethmann et al., 2015),  and even additional data of 84 

snow/ice coverage (He et al. 2019) which further enhanced the equifinality issue of parameter 85 

identification in large basins on TP. Reducing the modelling uncertainty originated from 86 

parameter calibration is essential for proper understanding of runoff regimes and robust 87 

prediction of future hydrological change. 88 

Tracer-aided hydrological models that additionally involved water stable isotope data for 89 

parameter calibration have been proved as highly capable on constraining the inter-90 

competitions of runoff processes induced by meltwater and rainwater in high mountains (He et 91 

al. 2019; Nan et al. 2021), which, however, have not been tested in large basins yet due to the 92 

unavailability of precipitation isotope data. Global gridded isotope product potentially serves 93 

as an alternative forcing of precipitation isotope data for tracer-aided hydrological models in 94 

large basins where high-frequency sampling work in a large region is not feasible. One of these 95 

options comes to outputs of the isotopic General or Regional Circulation Models (iGCM and 96 

iRCM, Noone and Sturm, 2010; Xi, 2014; Sturm et al., 2005, 2007), which has been proved to 97 

have high performance on simulating the seasonal and spatial variations of isotopic signature 98 

of precipitation on regional and global scales (Wang et al., 2017; Yao et al., 2013). However, 99 

very few works have been conducted to test the behavior of such products on forcing 100 

hydrological models. To the best of our knowledge, the only one work was conducted by 101 

Delavau et al. (2017), who examined the performance of an iRCM product REMOiso on forcing 102 

tracer-aided model in a regional catchment of around 103 km2 in Canada. Their results indicated 103 

that hydrological simulations driven by the iRCM product reproduced the variations of isotopic 104 

signature (δ18O) of river water comparably to the simulations driven by δ18O measurements 105 

from sampling sites and improved the representations of internal hydrological processes in the 106 

model. Those attempts provide sound confidences for exploring the utility of global and 107 

regional gridded isotope data products in aiding hydrological modeling in large basins on TP. 108 

Motivated by the mentioned backgrounds, we adopted a tracer-aided hydrological model 109 

developed by Nan et al. (2021) to simulate runoff processes and the contributions of runoff 110 

components to streamflow in a large basin extending around 2×105 km2 on the TP. The isotope 111 

module was driven by two kinds of precipitation isotope data including site measurements from 112 

water samples and outputs of iGCM. Scientific questions addressed in this study are two-fold: 113 

(1) what are the benefits of involving water isotope data for hydrological modeling in larger 114 

catchments? (2) how does the gridded precipitation isotope data of iGCM products perform on 115 

forcing tracer-aided hydrological model in large basins? 116 
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2. Materials and methodology 117 

2.1 Study area 118 

The Yarlung Tsangpo River (YTR) located in the southern TP on the north of Himalaya 119 

Mountain (Fig. 1) is one of the longest rivers (longer than 2000 km) originating from TP. The 120 

YTR basin is located in the range of 27-32°N and 82-97°E, with an elevation range of 2900-121 

6900 m a. s. l. The mean annual precipitation in YTR basin is around 470 mm, which is 122 

dominated by South Asian Monsoon in the Indian Ocean hydrosphere-atmosphere system, 123 

resulting in obvious wet season from June to September (Dong et al., 2016). Contributing area 124 

to the Nuxia hydrological station extends approximately 2×105 km2, around 2% of which is 125 

covered by glacier. Plenty of previous works have shown the great contribution of snow and 126 

glacier melting to the runoff in YTR (e.g., Chen et al., 2017; Tian et al., 2020). 127 

The Karuxung River (KR) catchment is located in the upper region of YTR basin, on the 128 

northern slope of the Himalayan Mountains, which is used for model evaluation in sub-basin 129 

because of its high glacierized area proportion (around 20%). The KR originates from the Lejin 130 

Jangsan Peak of the Karola Mountain at 7206 m above sea level (a.s.l.), and flows into the 131 

Yamdrok Lake at 4550m a.s.l. (Zhang et al., 2006). The KR catchment covers an area of 286 132 

km2. Runoff in KR catchment is strongly influenced by the headwater glaciers which cover an 133 

area of around 58 km2. 134 

[Figure 1] 135 

2.2 Hydro-meteorological data and site water sampling for isotope analysis 136 

Digital elevation model (DEM) data in the YTR catchment with a spatial resolution of 30-137 

m was extracted from the Geospatial Data Cloud (http://www.gscloud.cn). The 3-hour 0.1°×0.1° 138 

China Meteorological Forcing Dataset (CMFD) which combined multiple datasets (e.g., 139 

GLDAS and TRMM) with the national meteorological station data (Yang et al., 2010) provided 140 

meteorological inputs including precipitation, temperature and potential evapotranspiration. 141 

Glacier coverages were extracted from the Second Glacier Inventory Dataset of China (Liu, 142 

2012). The Tibetan Plateau Snow Cover Extent product (TPSCE, 5km×5km, Chen et al., 2018) 143 

were used to denote the fluctuations of daily snow cover area (SCA) in the basins. The 8-day 144 

Leaf Area Index (LAI) and the monthly normalized difference vegetation index (NDVI) data 145 

were downloaded from MODIS products of MOD15A2H (500m×500m, Myneni et al., 2015) 146 

and MOD13A3 (1km×1km, Didan, 2015), respectively. Soil parameters were estimated based 147 

on the soil properties extracted from the 1km × 1km Harmonized World Soil Database (HWSD, 148 

http://www.fao.org/geonetwork). 149 

Daily streamflow during 2000-2010 for hydrological calibration were observed at the 150 

Nuxia, Yangcun and Nugesha hydrological stations. Grab samples of precipitation and stream 151 

water were collected in 2005 at four stations along the main stream of YTR, i.e., Lazi (4889 m 152 
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a.s.l.), Nugesha (4715 m a.s.l.), Yangcun (4541 m a.s.l.) and Nuxia (3691 m a.s.l.), from the 153 

upstream to the downstream (Fig. 1). Precipitation water were sampled as immediately as 154 

possible after the precipitation events, and stream water samples were collected weekly every 155 

Monday from the river. Considering the west-east flowing direction of the river (Fig. 1b) and 156 

the effect of altitude, the measured isotopic composition of precipitation from site sampling 157 

was interpolated by longitude and altitude (similar with Zhao et al. 2012, Liu et al. 2014) using 158 

Eq. 1 to provide spatial precipitation isotope for model input, in which the coefficients x, y and 159 

z were estimated by least squares fitting the average precipitation δ18O and corresponding 160 

altitude/longitude at the four measuring stations. Isotopic composition of glacier meltwater was 161 

assumed to be constant during the entire study period, and lower than the amount weighted 162 

average isotopic composition of precipitation. 163 

𝛿18𝑂𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛(‰) = 𝑥 ∗ 𝐴𝐿𝑇(𝑚) + 𝑦 ∗ 𝐿𝑂𝑁(°𝐸) + 𝑧                             (1) 164 

Daily temperature and precipitation in the KR catchment during 2006-2012 were collected 165 

at the Langkazi meteorological Station. Altitudinal distributions of temperature and 166 

precipitation across the catchment were estimated by the lapse rates reported in Zhang et al. 167 

(2015). Daily streamflow during 2006-2012 for hydrological calibration and evaluation were 168 

measured at the Wengguo hydrological station. Grab samples of precipitation and stream water 169 

at the Wengguo Station in 2006-2007 and 2010-2012 were collected for isotope analysis. 170 

Isotopic composition of precipitation over elevation bands was calculated from the sampling 171 

site of Wengguo Station using an altitudinal lapse of -0.34‰/100m reported in Liu et al. (2007). 172 

Isotopic composition of glacier meltwater in this catchment was assumed to be -18.9‰, 173 

constantly throughout the entire study period, adopting from the value reported in Gao et al. 174 

2009). Details of water samples in YTR and KR catchments are summarized in Table 1. 175 

[Table 1] 176 

2.3 Isotopic General Circulation Model isoGSM and bias correction 177 

Precipitation δ18O of the Scripps global spectral model with water isotopes-incorporated 178 

(isoGSM) developed by Yoshimura et al. (2008) was extracted to drive the tracer-aided model. 179 

IsoGSM was developed from the Scripps Experimental Climate Prediction Center’s GSM, 180 

which was based on the medium range forecast model for making operational analysis and 181 

predictions (Kanamitsu et al., 2002). According to a previous comparison of ten iGCMs in 182 

Wang et al. (2017), the isoGSM product showed the best performance on simulating global 183 

spatial pattern of precipitation δ18O. The spatial and temporal resolutions of isoGSM dataset 184 

are 1.875°×1.875° and 6 hours, respectively. 185 

The precipitation δ18O estimated by isoGSM was corrected by site sampling measurements 186 

in Eqs. 2-4 before used for hydrological model input. Biases between the amount weighted 187 

averages of isoGSM isotope and sampling measurement at the four sampling sites in YTR basin 188 
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were calculated in Eq. 2 first. Spatial distribution of bias between isoGSM isotope and sampling 189 

measurement was then assumed as linearly related to altitude in Eq. 3, in which the coefficients 190 

of a and b were estimated by least squares fitting the site biases calculated in Eq. 2 and 191 

corresponding site altitudes. Daily isoGSM isotope data in hydrological model units over the 192 

study catchment were finally corrected in Eq. 4 using the unit altitudes. 193 

𝑏𝑖𝑎𝑠𝑖 = 𝛿18𝑂𝑖,𝑚 − 𝛿18𝑂𝑖,𝐺      𝑖 = 1,2,3,4                                            (2) 194 

𝑏𝑖𝑎𝑠_𝑟 = 𝑎 ∗ 𝐴𝐿𝑇 + 𝑏                                                            (3) 195 

{
𝑏𝑖𝑎𝑠_𝑟𝑖 = 𝛿18𝑂𝑖,𝑗,𝐺 + 𝑎 ∗ 𝐴𝐿𝑇𝑖 + 𝑏

𝛿18𝑂𝑖,𝑗,𝐶𝑜𝑟𝑟 = 𝛿18𝑂𝑖,𝑗,𝐺 + 𝑏𝑖𝑎𝑠_𝑟
                                              (4) 196 

where, 𝛿18𝑂𝑖,𝑚 is the amount weighted average of measured precipitation isotope over the 197 

sampling period in site i (i=1-4), and 𝛿18𝑂𝑖,𝐺  is the amount weighted average of isoGSM 198 

precipitation isotope over the study period in pixel that contains the sampling site i. ALT is 199 

altitude of the sampling site or hydrological model unit. Parameters a and b are the linear 200 

regression coefficients. 𝛿18𝑂𝑖,𝑗,𝐶𝑜𝑟𝑟  and 𝛿18𝑂𝑖,𝑗,𝐺  are the corrected and original isoGSM 201 

precipitation isotope at hydrological model unit i (i=1-63) on the jth day, respectively. 202 

Performance of the correction method of isoGSM data was evaluated by sampling measurement 203 

of precipitation isotope at the Wengguo station in the KR sub-basin, which was not involved in 204 

the estimation of coefficients a and b in Eq. 3. Spatial precipitation isotope of the isoGSM data 205 

in the KR sub-basin for hydrological modeling was estimated using the same altitudinal lapse 206 

that was used to interpolate the sampling data in Section 2.2, because the KR catchment only 207 

encompasses one pixel of the isoGSM data. 208 

2.4 Tracer-aided hydrological model 209 

A distributed tracer-aided hydrological model THREW-t (Tian et al., 2006; Nan et al., 2021) 210 

was adopted in this study for streamflow and isotope simulations. This model uses the 211 

Representative Elementary Watershed (REW) method for the spatial discretization of 212 

catchment, in which the study catchment is first divided into REWs based on the catchment 213 

DEM. Each REW is further divided into hydrological sub-zones using land covers and soil 214 

properties within the REW. In total, 63 and 41 REWs were extracted in YTR and KR, 215 

respectively. Areal averages of the gridded estimates of CMFD meteorological variables and 216 

precipitation δ18O were used in each of the REWs to drive the hydrological model. For 217 

application in cold and high regions, a module representing the glacier melting and snowpack 218 

evolution was incorporated into the original model in Tian et al. (2006), which has been proved 219 

as successful in previous modelling works (e.g., He et al., 2015; Xu et al., 2019; Tian et al., 220 

2020). The tracer module was developed by Nan et al. (2021) which performed quite well on 221 

reproducing the isotopic signature of stream water in the KR catchment. The isotope mixing 222 
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and fractionation processes were simulated based on the completely mixing assumption and the 223 

Rayleigh fractionation method (Hindshaw et al., 2011; Wolfe et al., 2007). More details of 224 

model description and set up are given in Tian et al. (2006) and Nan et al. (2021). 225 

The physical basis and value ranges of the calibrated parameters in the THREW-t model 226 

are described in Table 2. In both modeling catchments of YTR and KR, the parameter values 227 

were optimized using three calibration variants: (1) a dual-objective calibration using observed 228 

discharge and MODIS snow covered area fraction (SCA), (2) a triple-objective calibration 229 

using observed discharge, MODIS SCA and δ18O measurements of stream water forced by 230 

linearly interpolated measurements of site sampling precipitation isotope, and (3) a triple-231 

objective calibration using observed discharge, MODIS SCA and δ18O measurements of stream 232 

water but forced by the isoGSM precipitation isotope data. Metrics used to evaluate the 233 

simulations of discharge, SCA and isotope are list in Eqs. 5-7. 234 

𝑁𝑆𝐸𝑑𝑖𝑠 = 1 −
∑ (𝑄𝑜,𝑖−𝑄𝑠,𝑖)2𝑛

𝑖=1

∑ (𝑄𝑜,𝑖−𝑄𝑜)2𝑛
𝑖=1

                           (5) 235 

𝑅𝑀𝑆𝐸𝑆𝐶𝐴 = √
∑ (𝑆𝐶𝐴𝑜,𝑖−𝑆𝐶𝐴𝑠,𝑖)2𝑛

𝑖=1

𝑛
                        (6) 236 

𝑀𝐴𝐸𝑖𝑠𝑜 =
∑ |𝛿18𝑂𝑜,𝑖−𝛿18𝑂𝑠,𝑖|𝑛

𝑖=1

𝑛
                         (7) 237 

where, n is the total number of observations. Subscripts of o and s refer to observed and 238 

simulated variables, respectively. 𝑄𝑜 is the average value of observed streamflow during the 239 

assessing period. 240 

[Table 2] 241 

An automatic procedure based on the pySOT optimization algorithm developed by 242 

Eriksson et al. (2015) was implemented for all the three calibration variants to identify the 243 

behavioral parameters. The pySOT used surrogate model to guide the search for improved 244 

solutions, with the advantage of needing few function evaluations to find a good solution. An 245 

event-driven framework POAP were used for building and combining asynchronous 246 

optimization strategies. The optimization was stopped if a maximum number of allowed 247 

function evaluations was reached, which was set as 3000 in this study. For both modeling 248 

catchments, the pySOT algorithm was repeated 150 times for each calibration variant. Although 249 

the measurement unit of NSEdis is different from RMSESCA and MAEiso, their values are in the 250 

same order of magnitude when the model performances were acceptable (Ala-aho et al., 2017; 251 

Nan et al., 2021). Consequently, they were combined with equal weights to reflect the 252 

simultaneous performance on multiple objectives. For the dual- and triple-objective calibration 253 

variants, NSEdis - RMSESCA, NSEdis - RMSESCA - MAEiso were chosen as combined optimization 254 

objectives, respectively. Among the 150 final parameter sets produced by the pySOT runs, the 255 

behavioral parameter sets were selected by NSEdis thresholds, i.e., only the parameter sets 256 

producing NSEdis higher than an assumed threshold were regarded as behavioral parameter sets. 257 

https://doi.org/10.5194/hess-2021-244
Preprint. Discussion started: 28 May 2021
c© Author(s) 2021. CC BY 4.0 License.



9 

 

For the YTR catchment, the NSEdis threshold was chosen as 0.85. For KR catchment, the 258 

threshold was chosen as 0.75 and 0.70 for dual- and triple-objective calibration variants, 259 

respectively. 260 

Considering the data availability, the calibration and validation periods for KR catchment 261 

were set as 2006-2010 and 2011-2012, respectively. For YTR basin, discharge measured at the 262 

outlet station Nuxia, the MODIS SCA fraction over the basin area upper the Nuxia station, and 263 

the stream water δ18O measured at the Nuxia station were used for calibration. Calibration and 264 

validation periods of 2001-2005 and 2006-2010 were selected to test the model performance 265 

for simulations of discharge and SCA at the Nuxia station. In addition, discharge measured at 266 

the internal hydrological stations of Yangcun and Nugesha during 2001-2010 were used to 267 

validate the spatial consistency of the calibrated model parameters. Model performance on 268 

simulating stream water isotope at the Nuxia station in a validation period was not assessed as 269 

stream water isotope measurements were available only during 2005. However, stream water 270 

δ18O measured during 2005 at the internal hydrological stations of Yangcun, Nugesha and Lazi 271 

were adopted to validate the model performance on simulating spatial stream water δ18O within 272 

YTR basin. 273 

3. Results 274 

3.1 Comparison between isoGSM and measured precipitation δ18O 275 

Figs. 2a and 3a show the comparison between isoGSM and measured precipitation δ18O at 276 

four sampling sites in the YTR basin. The isoGSM data presented similar fluctuations of 277 

seasonal precipitation δ18O to the sampling measurements (Fig. 3a). In particular, both isoGSM 278 

and sampling measurement showed high precipitation δ18O in May, and reached relatively low 279 

values in the wet season during August and September. However, the original isoGSM data 280 

tended to overestimate the measured precipitation δ18O in the sampling periods (Fig. 2a). From 281 

downstream to upstream, the amount weighted average precipitation δ18O of samples collected 282 

at the four stations (Nuxia, Yangcun, Nugesha and Lazi) were -9.58‰, -14.01‰, -14.80‰ and 283 

-17.86‰, respectively, while the corresponding weighted average values of isoGSM pixels 284 

containing the sampling stations during the same period were -7.53‰, -8.38‰, -9.22‰ and -285 

9.61%, respectively. Bias between isoGSM data and sampling measurement tended to be larger 286 

at upstream stations with higher elevations, partly due to the coarse spatial resolution of GCM 287 

which cannot reproduce the effect of regional topography well. In contrast, the corrected 288 

isoGSM data (black lines in Fig. 3a) captured the relatively low values in the late wet season 289 

better than the original data (grey lines in Fig. 3a), and the scatter points fall closer to the 1:1 290 

line (Fig. 2b). The MAE of isoGSM precipitation δ18O in the YTR reduced from 6.65‰ to 4.91‰ 291 

after correction. Similarly, the original isoGSM data presented comparable seasonal 292 
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fluctuations of precipitation isotope to the sampling measurement at the Wengguo station in the 293 

KR catchment (Fig. 3b), but the amount weighted average of precipitation δ18O in the original 294 

isoGSM data (-10.95‰) is much higher than that in the sampling measurement (-15.97‰, Fig. 295 

2c and 3b). After bias correction, the overestimation was much reduced (Fig. 2d), indicated by 296 

a reduced MAE value from 6.24‰ to 4.47‰. Underestimation of precipitation δ18O by the 297 

original isoGSM data in springs of 2011 and 2012, however, was not improved by the bias 298 

correction. 299 

[Figure 2] 300 

[Figure 3] 301 

Based on the multiple linear regression, the coefficients x, y and z in Eq. 1 were estimated 302 

as -0.003, 0.574 and -52.6, respectively, to interpolate the measured isotope data to estimate 303 

spatial precipitation isotope over the YTR basin. Parameters a and b in Eq. 3 were estimated as 304 

-0.0046 and 14.96 based on the biases between isoGSM data and sampling measurements on 305 

the four sampling sites in YTR. Fig. 4 shows the comparison of the amount weighted averages 306 

of precipitation δ18O on 63 REWs derived from the corrected isoGSM data and interpolated 307 

sampling measurement. It is shown that the distributions of precipitation isotope with altitude 308 

were rather similar in the two datasets (Fig. 4b). However, distributions across the longitudes 309 

show visible differences (Fig. 4a). In comparison to the corrected isoGSM data, the interpolated 310 

sampling measurement estimated much lower isotope signature in the west upstream region 311 

(longitude <86 )̊, while presenting higher the isotope signature in the east middle and 312 

downstream regions (longitude falls between 91̊ and 93)̊. As site sampling data of precipitation 313 

was insufficient to test which of the two datasets captured the west-east distribution of 314 

precipitation isotope better, model performance on simulating isotope signatures of stream 315 

water measured at hydrological stations from west to east forced by the two datasets provide a 316 

perspective to assess the precipitation isotope estimations. 317 

[Figure 4] 318 

3.2 Model performance for the simulations of discharge and stream water isotope  319 

Fig. 5-6 and Table 3 show the model performance of different calibration variants in the 320 

YTR basin produced by the behavioral parameter sets. The three calibration variants produced 321 

similar simulations of discharge and SCA (Fig. 5), in spite of the slightly higher NSEdis and 322 

lower RMSESCA estimated by the dual-objective calibration (Table 3). For the simulation of 323 

stream water δ18O, the dual-objective calibration produced the worst MAEiso values in three out 324 

of the four testing stations with the largest uncertainty ranges (Fig. 6a), which can be expected 325 

as isotope data was not involved in this calibration. The two triple-objective calibration variants 326 

produced good simulation for the stream water isotope at the Nuxia station in the calibration 327 

year of 2005 (Fig. 6b and 6c). However, the triple-objective calibration variant forced by 328 
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isoGSM data estimated worse performance (i.e., higher MAEiso values) for stream water δ18O 329 

at the stations of Yangcun and Nugesha than the calibration forced by interpolated sampling 330 

measurement showing significant underestimations for peak isotope values in June at Yangcun 331 

station, and higher overestimations for isotope values after August at Nugesha. This was due to 332 

the poor performance of isoGSM on capturing the isotope signature of individual precipitation 333 

events during a specific period (see Fig. 3a), although being corrected already. For example, 334 

the amount weighted average of measured precipitation δ18O in June at the Yangcun station was 335 

-5.87‰, while the average of corrected isoGSM data showed a value of -10.09‰, leading to 336 

an underestimated peak value. Similarly, the amount weighted average of measured 337 

precipitation δ18O at Nugesha during August was -16.34‰, while the corrected isoGSM data 338 

estimated an average of -11.47‰, leading to an overestimated stream δ18O in the late wet season. 339 

In spite of that, the performance of simulated stream water δ18O at Nuxia, Yangcun and Nugesha 340 

stations forced by corrected isoGSM data can still be considered as acceptable, given the 341 

MAEiso values were generally around 1 (Fig. 6c). For the most upstream station Lazi, however, 342 

the triple-objective variant forced by measured precipitation δ18O produced significantly 343 

underestimated δ18O of stream water, likely due to the underestimated precipitation δ18O in the 344 

upstream high altitudes produced by the interpolated measurement data (Fig. 4b). The good 345 

performance of simulated stream water δ18O at the Lazi station driven by the corrected isoGSM 346 

data demonstrated that the corrected isoGSM estimated a better precipitation isoscape in high 347 

altitudes of the study catchment than the linearly interpolated measurement data, partly 348 

benefiting from the information of spatial precipitation isotope implied in the gridded values. 349 

It is worth noting that the model simulations forced by corrected isoGSM estimated narrower 350 

uncertainty bands for stream water δ18O at Nuxia, Yangcun and Nugesha, and smaller value 351 

ranges of the MAEiso metric at all the four stations, in comparison to the simulations driven by 352 

the interpolated precipitation δ18O. Compared to the simulations yielded by the dual-objective 353 

calibration, the triple-objective calibration variants simulated smaller uncertainty ranges for 354 

stream water δ18O and slightly narrowed value ranges of objective metrics for the simulations 355 

of discharge and SCA with the lower behavioral ratios of calibrated parameter sets in Table 3, 356 

indicating good potential of isotope data on reducing modeling uncertainty and improving 357 

parameter identifiability. 358 

[Figure 5] 359 

[Figure 6] 360 

[Table 3] 361 

The simulated hydrographs at two internal hydrological stations of Yangcun and Nugesha 362 

were compared in Fig. 7 to assess the spatial consistency of model parameters calibrated by the 363 

different variants. The isoGSM-forced triple-objective calibration produced the highest 364 

performance for discharge simulation at the two internal stations (Fig. 7e and 7f) indicated by 365 
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the highest averages (0.82 and 0.74 for Yangcun and Nugesha) and minimal values (0.72 and 366 

0.53 for Yangcun and Nugesha) of NSE, as well as the smallest values ranges of NSE. The dual-367 

objective calibration produced lower performance for discharge simulation than the isoGSM-368 

forced triple-objective calibration (with average NSE as 0.8 and 0.67 at Yangcun and Nugesha) 369 

with a much larger uncertainty of the baseflow simulation (Fig. 7a and Fig. 7b). The 370 

measurement-forced triple-objective calibration produced higher mean NSE (0.81 and 0.74 for 371 

Yangcun and Nugesha) but smaller minimal NSE (0.62 and 0.31 for Yangcun and Nugesha) 372 

than the dual-objective calibration with the largest values ranges of NSE at the two stations. 373 

Moreover, the isoGSM-forced triple-objective calibration performed best on capturing the peak 374 

flows in summer at both stations. 375 

[Figure 7] 376 

The model performances produced by the behavioral parameter sets of different calibration 377 

variants in the KR catchment were shown in Figs. 8-9 and Table 4. All the three calibration 378 

variants presented similar performances on simulating streamflow, while the two triple-379 

objective calibrations resulted in narrower uncertainty ranges, especially for the baseflow (Fig. 380 

8c and e). The declining SCA in spring-summer was captured well in all the calibration variants 381 

(Figs. 8b, d and f). Triple-objective calibrations driven by the two isotope datasets performed 382 

comparably well on simulating the isotopic composition of stream water in the calibration 383 

period (Fig. 9b and 9c) indicated by the low average values of MAEiso (0.68 and 0.69) and the 384 

well captured seasonal fluctuations of stream water δ18O. The peak isotopic values in around 385 

June of 2007 were not captured well by the isoGSM-driven model (Fig. 9c), resulting in a 386 

relatively larger minimal MAEiso (0.57) than the interpolated measurement-driven result (0.48). 387 

This was due to the underestimations of isoGSM on estimating the isotope signatures of 388 

individual extreme precipitation events in June (see Fig. 3b). Specifically, there was a 389 

precipitation event larger than 20mm/day in June of 2007, of which the corrected isoGSM 390 

produced significantly lower δ18O (-21.55‰) than the sampling measurement (-9.83‰) at the 391 

Wengguo station. Despite that, the isoGSM-forced triple-objective calibration estimated much 392 

better performance than the interpolated measurement-driven calibration for stream water δ18O 393 

in the validation period (Figs. 9b and c). Similar to YTR, the triple-objective calibrations got 394 

much smaller behavioral parameter sets (19 and 18 for measurement- and isoGSM-forced 395 

calibration variants) than the dual-objective calibration (117) through 150 runs of the automatic 396 

calibration program, indicating strongly increased identifiability of model parameters and 397 

reduced uncertainty by the using of isotope data. 398 

[Figure 8] 399 

[Figure 9] 400 

[Table 4] 401 
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3.3 Contributions of runoff components 402 

Fig. 10 and Tables 5-6 compare the proportions of water sources in the annual water input 403 

for runoff generation simulated by the behavioral parameter sets identified by the three 404 

calibration variants. In the KR sub-basin (Fig. 10b and Table 6), rainfall provided the largest 405 

volume of water source for runoff generation simulated by the three calibration variants 406 

(44.2%-47.4%), followed by glacier meltwater (29.2%-33.8%). Snowmelt contributed the 407 

lowest proportion of 22.0%-23.4% in the total water input. The two triple-objective calibrations 408 

estimated very similar contributions of runoff component, and consistently estimated lower 409 

proportions of glacier melt than the dual-objective calibration, which can be attributed to the 410 

role of isotope data in regulating the contribution of strong-evaporated surface runoff 411 

component fed by glacier melt to streamflow (Nan et al., 2021) by rejecting parameter sets that 412 

estimated small proportions of rainfall but large proportions of glacier melt (as shown by the 413 

error bar in Fig. 10b). Meanwhile, uncertainties of the estimated contributions were 414 

significantly reduced (from 9.4% to 6.2% and 4.7%, Table 6) by integrating isotope data into 415 

the model. Regarding the contributions of water sources to seasonal water input, snowmelt and 416 

rainfall were the dominant water sources in spring and summer. Three water sources had similar 417 

contributions during autumn. Glacier melt produced a relatively steady contribution of around 418 

30%-35% throughout the year. Similar to the annual contributions, seasonal contributions of 419 

snowmelt and rainfall estimated by the two triple-objective calibrations were larger than those 420 

estimated by the dual-objective calibration, while the opposite holds true for the seasonal 421 

contributions of glacier melt. The largest differences of the contributions estimated by the 422 

different calibration variants go to the winter season (Table 6), which however had negligible 423 

effect on the annual runoff regime because of the extremely low contribution of water input in 424 

this season (<1%). Uncertainties of the runoff component contributions were reduced by 425 

involving isotope calibration most significantly during summer, because the isotope data 426 

brought more constraint on the rainfall-runoff processes, which played dominant role in summer. 427 

The uncertainties of annual contributions were close to those of summer contributions because 428 

of the large proportion of water input to annual runoff in summer (>60%). In contrast, 429 

uncertainties of winter contributions estimated by the triple-objective calibration variants 430 

tended to be larger than that estimated by the dual-objective calibration, due to the smaller 431 

amount of total water input in winter as a result of lower contribution of meltwater estimated 432 

by triple-objective variants. 433 

In the YTR catchment, rainfall showed larger dominance on annual runoff than glacier and 434 

snow meltwater with the mean contributions of 61.4%-69.6% (Fig. 10a and Table 5). The dual-435 

objective calibration and triple-objective calibration forced by measured isotope data estimated 436 

similar annual contributions of rainfall (~62%), snowmelt (~11%) and glacier melt (~27%). 437 

Nonetheless, the isoGSM-forced triple-objective calibration estimated significantly higher 438 
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mean proportion of rainfall (70%) but lower mean proportion of glacier melt (18%) by rejecting 439 

the parameter sets that estimated rainfall contributions less than 60% and glacier melt 440 

contributions more than 30%, which however were identified to be acceptable in the other two 441 

calibration variants (as shown by the error bar in Fig. 10a). Difference of the glacier melt 442 

contributions estimated by the two triple-objective calibration variants mainly resulted from the 443 

difference of precipitation δ18O inputs from the two datasets. The interpolated measurement 444 

data tended to produce higher precipitation δ18O in the middle and downstream regions of YTR 445 

basin but lower values in the upstream region, compared to the corrected isoGSM data (Fig. 446 

4b). Meanwhile, the precipitation input in the downstream region was higher than that occurred 447 

in the upstream (Xu et al., 2017), thus resulting in higher average precipitation δ18O over the 448 

entire YTR of the interpolated measurement data. Consequently, larger contribution of glacier 449 

melt with low isotope composition was estimated in the interpolated measurement-forced 450 

triple-objective calibration to counteract the effect of precipitation input with high isotopic 451 

composition for matching the measured stream water δ18O. By involving isotope simulation, 452 

both triple-objective variants significantly reduced the uncertainties of the estimated 453 

contributions (from 11.9% to 8.6% and 8.9%, Table 5). Similar to the estimated annual 454 

contributions, the isoGSM-forced triple-objective calibration estimated higher mean proportion 455 

of rainfall, lower mean proportion of glacier melt and comparable mean proportion of snowmelt 456 

in the four seasons, compared to the dual-objective calibration and triple-objective calibration 457 

forced by measured isotope data. In general, rainfall was the dominant water input source in 458 

summer and autumn, and snowmelt dominated the runoff in winter. The contributions of rainfall 459 

and snowmelt to total water input were close in spring. Similar to KR catchment, uncertainty 460 

of runoff component contribution was reduced by the isotope-involved calibrations more 461 

significantly in seasons when rainfall played dominant roles. 462 

[Figure 10] 463 

[Table 5] 464 

[Table 6] 465 

4. Discussion 466 

4.1 Uncertainties of the simulations of water isotope signatures  467 

Integrating the simulations of water isotope signatures into the hydrological model 468 

structure could help to make use of hydrological information additionally implied in the water 469 

isotope data without introducing new model parameters for the runoff processes. However, 470 

uncertainty of the simulation of water isotope in the tracer-aided hydrological model can be 471 

caused by the following sources. First, the isotopic compositions of meltwater sources were 472 

determined based on simplified assumptions, which however were hard to verify in a large 473 
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basin due to the limited field sampling work. The isotopic compositions of glacier melt were 474 

assumed as constant throughout the modeling period due to the unavailability of glacier melting 475 

water samples. This could be reasonable because the changes of glacier elevation during the 476 

10-year modeling period were small, indicating that ice melt on the glacier surface in each of 477 

the summer seasons occurred very likely from the same elevation bands with similar isotopic 478 

compositions. The isotopic evolution of snow meltwater was simulated according to the mass 479 

balance of snowpack. The isotope fractionation effect caused by the melt processes was 480 

inadequately characterized in our model, which could lead to uncertainty in the simulation of 481 

snowmelt isotope (Pu et al., 2020). 482 

Second, the uncertainty of the precipitation isotope input data served as another uncertainty 483 

source of the isotope simulation in the model. Although the isotope data itself had no influences 484 

on the hydrological processes, the calibration procedure to fit the simulated stream isotope 485 

signature with observation indeed affected the model simulations of runoff processes (Delavau 486 

et al., 2017). For the sampling measurement-based forcing data, the uncertainty came from the 487 

interpolation procedure. We used a linear interpolation method based on longitude and altitude 488 

to estimate the precipitation isoscape. This could be reasonable in our study catchment because 489 

these two factors characterize the major spatial pattern and altitude effect of precipitation 490 

isotope in similar large-scale regions on TP (Liu et al., 2014). However, low availability of site 491 

measurement data derived from the sparse water sampling network leaded to large uncertainty 492 

of the interpolated result. Measurements from more water sampling sites are required in the 493 

future for the improvement of the interpolation method. For the isoGSM data, uncertainty came 494 

from its coarse spatial resolution. Although the isoGSM data bears the potential to capture 495 

spatial patterns of precipitation isotope in large basins, the effect of regional topography on 496 

isotope was not reflected well in the current product due to its rather coarse pixel size 497 

(~200km×200km). Consequently, developing downscale methods that are applicable to 498 

mountainous catchments to extract regional isotope estimates from iGCM products (such as 499 

iRCM in Sturm et al., 2007) might be helpful for the tracer-aided hydrological modelling on 500 

the TP. Moreover, the bias-correction procedure based on measurements from a sparse water 501 

sampling network inevitably brought uncertainty to the corrected isoGSM data. The current 502 

sampling sites of precipitation are located along the river channel with elevations lower than 503 

the contributing mountains, thus failing to involve isoGSM estimates at high mountainous 504 

terrains into the correction procedure. 505 

4.2 The value of spatial precipitation isotope data derived from iGCM for aiding 506 

hydrological modeling in large basins 507 

Comparisons with the dual-objective calibration without isotope data indicated high value 508 

of spatial precipitation isotope data for reducing modeling uncertainty. Model simulations 509 
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forced by the two precipitation isotope datasets produced similar total streamflow simulation 510 

in the YTR basin, but resulted in certain difference in the simulated stream water isotopic 511 

composition and water source apportionments, which was consistent with the findings in 512 

Delavau et al. (2017). The choice of precipitation isotope input data was demonstrated to have 513 

large influence on the model performance. In this study, model simulations forced by the 514 

corrected isoGSM data performed better than that driven by the interpolated data of sampling 515 

measurement with respect to discharge and stream water isotope simulations at internal 516 

hydrological stations. Beyond that, the runoff component contributions estimated by the 517 

isoGSM-forced triple-objective calibration were likely more reliable than those estimated by 518 

the dual-objective and the measurement-forced triple-objective calibrations. Contribution of 519 

glacier melt to annual water input in the YTR basin was estimated as around 27% in the dual-520 

objective and the measurement-forced triple-objective calibrations, which might not be 521 

reasonable, considering the small glacier covered area ratio (2%). Glacier melt contribution 522 

estimated by the isoGSM-forced triple-objective calibration was lower than 20%, similarly to 523 

estimates in some previous studies (Immerzeel et al., 2010; Bookhagen and Burbank, 2010; 524 

Zhang et al., 2013), and the finding that glacier melt contributed a bit more than snowmelt was 525 

consistent with the result of Lutz et al. (2014) during the similar period (1998-2007). 526 

This indicated that the corrected isoGSM product served as a better choice to force the 527 

tracer-aided hydrological model than the interpolated data of sampling measurement. It is 528 

commonly difficult to estimate the precipitation isoscapes in large mountainous catchments 529 

according to limited available site sampling data. Relatively, the iGCM data has the advantage 530 

of presenting more spatial information of precipitation isotope via physically simulating the 531 

processes of vapor transfer, condensation and supersaturation in the atmosphere and their 532 

effects on precipitation isotope (Xi, 2014). Our results indicated that even precipitation isotope 533 

measurements at only four sampling sites provided sounds good ground data basis to correct 534 

the isoGSM isotope product in the study basin with a size of 2×105 km2. The condition was 535 

different in the KR sub-catchment, where the triple-objective variants forced by two isotope 536 

datasets performed similarly with respect to discharge and isotope simulation and runoff 537 

component contribution estimation. This is due to the much smaller catchment area than the 538 

pixel size, thus the advantage of the spatial information provided by isoGSM was not taken 539 

adequately. 540 

5. Conclusions 541 

The utility of precipitation isotope input derived from the Isotopic General Circulation 542 

Models (iGCM) product isoGSM in forcing the distributed tracer-aided hydrological model 543 

THREW-t in a large basin of 2×105km2 on the Tibetan Plateau (TP) was investigated in this 544 

work. Model performance driven by the isoGSM data was evaluated by comparing with 545 
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simulations driven by precipitation isotope measurements from a sparse sampling network. Our 546 

main findings are: 547 

(1) Spatial precipitation isotope data derived from the Isotopic General Circulation Models 548 

helped to reduce modeling uncertainty and improve parameter identifiability, in comparison to 549 

a calibration method using discharge and snow cover area fraction without any information of 550 

water isotope. The developed tracer-aided hydrological model forced by the isoGSM data 551 

showed high values for robustly representing runoff processes in large mountainous catchments. 552 

(2) Model parameters estimated by the isoGSM data corrected using site sampling 553 

measurements of precipitation isotope presented higher transferability to nested sub-basins and 554 

produced higher model performance in the validation period than that estimated by the 555 

interpolated isotope data from site sampling measurement. The smaller uncertainty ranges of 556 

model simulations in nested sub-basins forced by the corrected isoGSM data further indicated 557 

that the corrected isoGSM data served as a better choice to provide informative spatial 558 

precipitation isotope in large basins than the interpolated data from site sampling measurements. 559 

(3) Using the corrected isoGSM data improved the quantification of contributions of runoff 560 

components to streamflow on both annual and seasonal scales. Model calibration procedure 561 

forced by the corrected isoGSM data successfully rejected parameter sets that estimated 562 

overestimation of glacier melt contribution, indicating that precipitation isotope measurements 563 

at only four sampling sites along the river channel provided a good ground data basis to correct 564 

the isoGSM product in the study catchment. 565 
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Table 1. Characteristics of precipitation and stream water samples in YTR and KR catchments. 847 

Catchment 

(Station) 

Year Period 

Dd/mm to dd/mm 

Precipitation sample 

number 

Stream sample 

number 

YTR (Nuxia) 

2005 

14/03 to 23/10 86 34 

YTR (Yangcun) 17/03 to 05/10 59 30 

YTR (Nugesha) 14/05 to 22/10 45 25 

YTR (Lazi) 06/06 to 22/09 42 22 

KR (Wengguo) 

2006 04/06 to 11/11 24 31 

2007 23/04 to 09/10  39 25 

2010 05/05 to 18/10 63 23 

2011 28/03 to 06/11 69 32 

2012 16/06 to 22/09 42 14 

  848 

https://doi.org/10.5194/hess-2021-244
Preprint. Discussion started: 28 May 2021
c© Author(s) 2021. CC BY 4.0 License.



38 

 

Table 2. Calibrated parameters of the THREW-t model 849 

Symbol  Unit Physical descriptions Range 

nt  - Manning roughness coefficient for hillslope 0-0.2 

WM  cm Tension water storage capacity, used in Xinanjiang 

model (Zhao, 1992) to calculate saturation area 

0-10 

B  - Shape coefficient used in Xinanjiang model to calculate 

saturation area 

0-1 

KKA  - Coefficient to calculate subsurface runoff in Rg=KKD⋅

S⋅KS
S⋅(yS/Z)KKA, where S is the topographic slope, KS

S is 

the saturated hydraulic conductivity, ys is the depth of 

saturated groundwater, Z is the total soil depth 

0-6 

KKD  - See description for KKA 0-0.5 

T0  ℃ Temperature threshold above which snow and glacier 

melt 

-5-5 

DDFN  mm/℃/day Degree day factor for snow 0-10 

DDFG  mm/℃/day Degree day factor for glacier 0-10 

C1  - Coefficient to calculate the runoff concentration process 

using Muskingum method: O2=C1 ⋅ I1+C2 ⋅ I2+C3 ⋅

O1+C4⋅Qlat, where I1 and O1 is the inflow and outflow at 

prior step, I2 and O2 is the inflow and outflow at current 

step, Qlat is lateral flow of the river channel, C3=1-C1-

C2, C4=C1+C2 

0-1 

C2  - See description for C1 0-1 

  850 

https://doi.org/10.5194/hess-2021-244
Preprint. Discussion started: 28 May 2021
c© Author(s) 2021. CC BY 4.0 License.



39 

 

Table 3. Comparisons of the model performance in YTR basin produced by different calibration 851 

variants. 852 

calibration variant behavioral ratio a period 

/station b 

NSEdis 
c RMSESCA MAEiso 

Dual-objective 0.98 calibration 0.91 

(0.86-0.93) 

0.07 

(0.07-0.10) 

1.24 

(0.90-1.99) 

validation 0.86 

(0.77-0.92) 

0.07 

(0.06-0.09) 

0.96 

(0.75~1.97) 

Triple-objective 

(measurement) 

0.64 calibration 0.89 

(0.85-0.92) 

0.08 

(0.07-0.10) 

0.64 

(0.47-0.86) 

validation 0.82 

(0.75-0.89) 

0.07 

(0.07-0.09) 

1.46 

(1.17-1.93) 

Triple-objective 

(isoGSM) 

0.82 calibration 0.89 

(0.85-0.93) 

0.08 

(0.07-0.10) 

0.76 

(0.70-0.84) 

validation 0.85 

(0.76-0.91) 

0.07 

(0.07-0.09) 

0.87 

(0.76-1.04) 

a: Behavioral ratio represents the ratio of behavioral parameter set number to the run time of pySOT 853 

program. 854 

b: “Period” for discharge and SCA simulation, and “station” for isotope simulation. 855 

c: Bracketed values represent the minimal and maximal values produced by the behavioral parameter 856 

sets. 857 
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Table 4. Comparisons of the model performance in KR catchment produced by different 859 

calibration variants. 860 

calibration variant behavioral ratio period NSEdis
 RMSESCA MAEiso 

Dual-objective 0.78 calibration 0.79 

(0.75-0.85) 

0.10 

(0.08-0.18) 

2.18 

(0.73-4.71) 

validation 0.80 

(0.73-0.84) 

0.08 

(0.06-0.19) 

2.38 

(0.84-4.96) 

Triple-objective 

(measurement) 

0.13 calibration 0.74 

(0.70-0.81) 

0.13 

(0.08-0.18) 

0.68 

(0.48-0.83) 

validation 0.79 

(0.73-0.84) 

0.11 

(0.06-0.18) 

0.93 

(0.72-1.19) 

Triple-objective 

(isoGSM) 

0.12 calibration 0.74 

(0.70-0.77) 

0.12 

(0.08-0.19) 

0.69 

(0.57-0.81) 

validation 0.79 

(0.76-0.82) 

0.10 

(0.06-0.19) 

0.77 

(0.69-0.87) 
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Table 5. Average proportions of water sources in the annual and seasonal water inputs for 862 

runoff generation in YTR basin. 863 

Season Water source a Dual-objective 
Triple-objective 

(measurement) 

Triple-objective 

(isoGSM) 

Annual Rainfall 62.2 61.4 69.6 

Snow melt 10.7 10.6 12.0 

Glacier melt 27.1 28.0 18.4 

Uncertainty  11.4 8.6 8.9 

Spring Rainfall 35.4 36.8 44.2 

Snow melt 42.9 39.7 43.8 

Glacier melt 21.7 23.5 12.0 

Uncertainty 13.4 12.8 11.8 

Summer Rainfall 69.8 68.2 74.5 

Snow melt 3.4 4.4 6.4 

Glacier melt 26.8 27.4 19.1 

Uncertainty 10.2 7.9 8.7 

Autumn Rainfall 63.1 61.9 76.1 

Snow melt 3.5 3.5 2.7 

Glacier melt 33.5 34.7 22.0 

Uncertainty 16.1 12.8 13.3 

Winter Rainfall 11.9 12.8 30.8 

Snow melt 70.1 65.8 61.7 

Glacier melt 18.0 21.4 7.5 

Uncertainty 19.7 20.6 30.8 

a: The uncertainty of the contribution is defined as 𝐸 = √𝐸𝑅
2 + 𝐸𝑁

2 + 𝐸𝐺
2 , where ER, EN and EG 864 

represent the standard deviations of the contributions of the water sources produced by the corresponding 865 

behavioral parameter sets. Subscripts of R, N and G represent rainfall, snow meltwater and glacier 866 

meltwater, respectively. 867 
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Table 6. Average proportions of water sources in the annual and seasonal water inputs for 869 

runoff generation in KR catchment. 870 

Season Water source Dual-objective 
Triple-objective 

(measurement) 

Triple-objective 

(isoGSM) 

Annual Rainfall 44.2 47.4 47.4 

Snow melt 22.0 23.4 23.4 

Glacier melt 33.8 29.2 29.2 

Uncertainty  9.4 6.2 4.7 

Spring Rainfall 4.1 4.5 4.5 

Snow melt 56.3 61.6 60.9 

Glacier melt 39.5 33.9 34.6 

Uncertainty 13.7 14.2 12.0 

Summer Rainfall 53.5 56.6 56.9 

Snow melt 14.0 15.2 15.1 

Glacier melt 32.4 28.2 28.0 

Uncertainty 9.7 5.1 3.9 

Autumn Rainfall 30.9 35.0 34.3 

Snow melt 33.9 35.3 35.5 

Glacier melt 35.1 29.7 30.3 

Uncertainty 11.2 11.0 9.6 

Winter Rainfall 0 0 0 

Snow melt 55.3 63.3 58.9 

Glacier melt 44.7 36.7 41.1 

Uncertainty 22.3 31.5 29.2 
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