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Abstract 15 

Issues related to large uncertainty and parameter equifinality have posed big challenges 16 

for hydrological modeling in cold regions where runoff generation processes are particularly 17 

complicated. Tracer-aided hydrological models that integrate transportation and fractionation 18 

processes of water stable isotope are increasingly used to constrain parameter uncertainty and 19 

refine the parameterizations of specific hydrological processes in cold regions. However, 20 

commonly unavailability of site sampling of spatially distributed precipitation isotope hampers 21 

the practical applications of tracer-aided models in large scale catchments. This study, taken the 22 

precipitation isotope data (isoGSM) derived from the Isotopic General Circulation Models 23 

(iGCM) as an example, explored its utility in driving a tracer-aided hydrological model in the 24 

Yarlung Tsangpo River basin (YTR, around 2×105 km2 with mean elevation of 4875 m) on the 25 

Tibetan Plateau (TP). The isoGSM product was firstly corrected based on the biases between 26 

gridded precipitation isotope estimates and limited site sampling measurements. Model 27 

simulations driven by the corrected isoGSM data were then compared with those forced by 28 

spatially interpolated precipitation isotope from site sampling measurements. Our results 29 

indicated that: (1) spatial precipitation isotope derived from the isoGSM data helped to reduce 30 

modeling uncertainty and improve parameter identifiability in a large mountainous catchment 31 

on the TP, in comparison to a calibration method using discharge and snow cover area fraction 32 

without any information of water isotope; (2) model parameters estimated by the corrected 33 

isoGSM data presented higher transferability to nested sub-basins and produced higher model 34 

performance in the validation period than that estimated by the interpolated precipitation 35 

isotope data from site sampling measurements; (3) model calibration forced by the corrected 36 

isoGSM data successfully rejected parameter sets that overestimated glacier melt contribution 37 

and gave more reliable contributions of runoff components, indicating the corrected isoGSM 38 

data served as a better choice to provide informative spatial precipitation isotope than the 39 

interpolated data from site sampling measurements at macro scale. This work suggested 40 

plausible utility of combining isoGSM data with measurements even from a sparse sampling 41 

network in improving hydrological modeling in large high mountain basins. 42 

Key word 43 

Tracer-aided hydrological modeling; Large basins on the Tibetan Plateau; Isotopic General 44 

Circulation Models (iGCM) product; iGCM correction with sparse measurements. 45 

  46 



3 

 

1. Introduction 47 

Large uncertainty and strong equifinality of parameter calibration are the widely 48 

recognized issues in hydrological modelling (Gupta et al., 2008), especially in cold regions 49 

where hydrological complexity is highly enhanced by the competitions of multiple water inputs 50 

and the strong spatio-temporal variabilities of runoff generation processes (Li et al., 2019). 51 

Tracer-aided hydrological models integrating a water or environmental tracer (e.g., stable 52 

oxygen isotope, δ18O) module into the runoff generation architecture have been proved as 53 

highly valuable in improving parameter calibration and diagnosing model uncertainty (Son and 54 

Sivapalan, 2007; Birkel et al., 2011; Capell et al., 2012; He et al., 2019). Multiple-objective 55 

calibration of tracer-aided model towards both runoff and isotope simulation allows for 56 

rejection of parameters based on runoff observation alone, consequently makes the model 57 

satisfy multiple objectives and reduces the model uncertainty (McGuire et al., 2007). However, 58 

practical applications of tracer-aided hydrological modeling are mainly limited in only small to 59 

meso scales. The largest basin area where previous tracer-aided modelling has been 60 

implemented is around 103 km2 (i.e., Delavau et al., 2017; Campell et al., 2012; Stadnyk et al., 61 

2013). Reasons fall in either the lumped conceptual model structures due to the complicated 62 

tracer processes difficult to be coupled with distributed model (Birkel and Soulsby, 2015), or 63 

the low availability of tracer data in large basins due to difficulties in the long-term, continuous 64 

and high-frequency field sampling works (e.g., Ala-aho et al., 2017; He et al., 2019). The 65 

structure and data issues make the model not suitable for capturing the strong spatial variability 66 

of hydrological behaviors in large scale basins. 67 

The Tibetan Plateau (TP) is the source region of many large rivers (e.g., Brahmaputra, 68 

Ganges, Indus, Mekong, among others), which sustain the ecosystems and provide a great 69 

proportion of water source for downstream livelihoods and agricultural irrigation (Zhang et al., 70 

2013; Schaner et al., 2012). Decision making of water resource management over TP and its 71 

downstream area relies heavily on river runoff in the large basins. Meanwhile, melting water 72 

from snow and ice contributes a significant proportion to river runoff in the large basins on TP 73 

due to the cold climate and glacier coverage in head watersheds (Li et al., 2019). Runoff in this 74 

region is thus highly vulnerable to climate warming. Robust quantification of the contribution 75 

of meltwater to river runoff is critical in understanding water resources dynamics on TP 76 

(Immerzeel et al., 2013). Although great efforts have been conducted to quantify the 77 

contributions of runoff components and their future trends under climate changes on TP (e.g., 78 

Immerzeel et al., 2010; Lutz et al., 2014; Su et al., 2016; Masood et al., 2015), results reported 79 

in the wide range of studies show substantial differences (Xu et al., 2019; Tian et al., 2020). 80 

The disagreement among studies indicates big challenges on quantifying contributions of runoff 81 
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components and predicting their future trend in the large basins on TP. The difficulty of this 82 

task is mainly related to the large uncertainty of hydrological modelling and parameter 83 

calibration in the TP, because of the complex hydrological processes (He et al., 2018) and the 84 

commonly inaccurate estimation of precipitation (Xu et al., 2017; He et al. 2017). The strong 85 

inter-competitions of runoff processes induced by meltwater versus rainwater and surface water 86 

versus subsurface water are inadequately constrained in hydrological models by the commonly 87 

used hydrological observation of streamflow (Duethmann et al., 2015), and even additional data 88 

of snow/ice coverage (He et al. 2019). Reducing the modelling uncertainty originated from 89 

parameter calibration is essential for proper understanding of runoff regimes and robust 90 

prediction of future hydrological change. 91 

Tracer-aided hydrological models that additionally involve water stable isotope data for 92 

parameter calibration have been proved highly capable for constraining the inter-competitions 93 

of runoff processes induced by meltwater and rainwater in high mountains (He et al. 2019; Nan 94 

et al. 2021), which, however, have not been tested in large basins yet due to the unavailability 95 

of precipitation isotope data. Global gridded isotope product potentially serves as an alternative 96 

forcing of precipitation isotope data for tracer-aided hydrological models in large basins where 97 

high-frequency sampling work in a large region is not feasible. One of these options comes to 98 

outputs of the isotopic General or Regional Circulation Models (iGCM and iRCM, Noone and 99 

Sturm, 2010; Xi, 2014; Sturm et al., 2005, 2007), which has been proved to have high 100 

performance on simulating the seasonal and spatial variations of isotopic signature of 101 

precipitation on regional and global scales (Wang et al., 2017; Yao et al., 2013). However, very 102 

few works have been conducted to test the behavior of such products on forcing hydrological 103 

models. To the best of our knowledge, the only one work was conducted by Delavau et al. 104 

(2017), who examined the performance of an iRCM product REMOiso on forcing tracer-aided 105 

model in a regional catchment of around 103 km2 in Canada. Their results indicated that 106 

hydrological simulations driven by the iRCM product reproduced the variations of isotopic 107 

signature (δ18O) of river water comparably to the simulations driven by δ18O measurements 108 

from sampling sites and improved the representations of internal hydrological processes in the 109 

model. Those attempts provide sound confidences for exploring the utility of global and 110 

regional gridded isotope data products in aiding hydrological modeling in large basins on TP. 111 

Motivated by the mentioned backgrounds, we adopted a tracer-aided hydrological model 112 

developed by Nan et al. (2021) to simulate runoff processes and the contributions of runoff 113 

components to streamflow in a large basin extending around 2×105 km2 on the TP. The isotope 114 

module was driven by two kinds of precipitation isotope data including site measurements from 115 

water samples and outputs of iGCM. Scientific questions addressed in this study are two-fold: 116 

(1) what are the benefits of involving water isotope data for hydrological modeling in larger 117 

catchments? (2) how does the gridded precipitation isotope data of iGCM products perform on 118 
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forcing tracer-aided hydrological model in large basins? 119 

2. Materials and methodology 120 

2.1 Study area 121 

The Yarlung Tsangpo River (YTR) located in the southern TP on the north of Himalaya 122 

Mountain (Fig. 1) is one of the longest rivers (longer than 2000 km) originating from TP. The 123 

YTR basin is located in the range of 27-32°N and 82-97°E, with an elevation range of 2900-124 

6900 m a. s. l. The mean annual precipitation in YTR basin is around 470 mm, which is 125 

dominated by South Asian Monsoon in the Indian Ocean hydrosphere-atmosphere system, 126 

resulting in obvious wet season from June to September (Dong et al., 2016). Contributing area 127 

to the Nuxia hydrological station extends approximately 2×105 km2, around 2% of which is 128 

covered by glacier. Plenty of previous works have shown the great contribution of snow and 129 

glacier melting to the runoff in YTR (e.g., Chen et al., 2017; Tian et al., 2020). 130 

The Karuxung River (KR) catchment is located in the upper region of YTR basin, on the 131 

northern slope of the Himalayan Mountains, which is used for model evaluation in sub-basin 132 

because of its high glacierized area proportion (around 20%). The KR originates from the Lejin 133 

Jangsan Peak of the Karola Mountain at 7206 m above sea level (a.s.l.), and flows into the 134 

Yamdrok Lake at 4550m a.s.l. (Zhang et al., 2006a). The KR catchment covers an area of 286 135 

km2. Runoff in KR catchment is strongly influenced by the headwater glaciers which cover an 136 

area of around 58 km2. 137 

[Figure 1] 138 

2.2 Hydro-meteorological data and site water sampling for isotope analysis 139 

Digital elevation model (DEM) data in the YTR catchment with a spatial resolution of 30-140 

m was extracted from the Geospatial Data Cloud (http://www.gscloud.cn). The 3-hour 0.1°×0.1° 141 

China Meteorological Forcing Dataset (CMFD) which combined multiple datasets (e.g., 142 

GLDAS and TRMM) with the national meteorological station data (Yang et al., 2010) provided 143 

meteorological inputs including precipitation, temperature and potential evapotranspiration. 144 

Glacier coverages were extracted from the Second Glacier Inventory Dataset of China (Liu, 145 

2012). The Tibetan Plateau Snow Cover Extent product (TPSCE, 5km×5km, Chen et al., 2018) 146 

were used to denote the fluctuations of daily snow cover area (SCA) in the basins, which also 147 

included the glacier cover area. The 8-day Leaf Area Index (LAI) and the monthly normalized 148 

difference vegetation index (NDVI) data were downloaded from MODIS products of 149 

MOD15A2H (500m×500m, Myneni et al., 2015) and MOD13A3 (1km×1km, Didan, 2015), 150 

respectively. Soil parameters were estimated based on the soil properties extracted from the 151 

1km × 1km Harmonized World Soil Database (HWSD, http://www.fao.org/geonetwork). 152 

Daily streamflow during 2000-2010 for hydrological calibration were observed at the 153 
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Nuxia, Yangcun and Nugesha hydrological stations. Grab samples of precipitation and stream 154 

water were collected in 2005 at four stations along the main stream of YTR, i.e., Lazi (4889 m 155 

a.s.l.), Nugesha (4715 m a.s.l.), Yangcun (4541 m a.s.l.) and Nuxia (3691 m a.s.l.), from the 156 

upstream to the downstream (Fig. 1). Precipitation water were sampled as immediately as 157 

possible after the precipitation events, and stream water samples were collected weekly every 158 

Monday from the river. Considering the continental effect and elevation effect on precipitation 159 

isotope, the measured isotopic composition of precipitation from site sampling was interpolated 160 

by longitude and altitude (similar with Zhao et al. 2012, Liu et al. 2014) using Eq. 1 to provide 161 

spatial precipitation isotope for model input, in which the coefficients x, y and z were estimated 162 

by least squares fitting the average precipitation δ18O and corresponding altitude/longitude at 163 

the four measuring stations. The coefficient x reflected the altitudinal lapse of precipitation 164 

isotope, thus was expected to be lower than zero. Longitude reflected the distance from the 165 

station to the mainland border, thus the coefficient y was expected to be larger than 0. The term 166 

latitude was not chosen as a regression variable, because of the similar latitude of the 167 

measurement stations and the relatively narrow north-south range of the basin (Fig. 1). Isotopic 168 

composition of glacier meltwater was assumed to be constant during the entire study period, 169 

and lower than the amount weighted average isotopic composition of precipitation (Boral and 170 

Sen, 2020). 171 

𝛿18𝑂𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛(‰) = 𝑥 ∗ 𝐴𝐿𝑇(𝑚) + 𝑦 ∗ 𝐿𝑂𝑁(°𝐸) + 𝑧                             (1) 172 

Daily temperature and precipitation in the KR catchment during 2006-2012 were collected 173 

at the Langkazi meteorological Station. Altitudinal distributions of temperature and 174 

precipitation across the catchment were estimated by the lapse rates reported in Zhang et al. 175 

(2015). Daily streamflow during 2006-2012 for hydrological calibration and evaluation were 176 

measured at the Wengguo hydrological station. Grab samples of precipitation and stream water 177 

at the Wengguo Station in 2006-2007 and 2010-2012 were collected for isotope analysis. 178 

Isotopic composition of precipitation over elevation bands was calculated from the sampling 179 

site of Wengguo Station using an altitudinal lapse of -0.34‰/100m reported in Liu et al. (2007). 180 

Isotopic composition of glacier meltwater in this catchment was assumed to be -18.9‰, 181 

constantly throughout the entire study period, adopting from the value reported in Gao et al. 182 

2009). Details of water samples in YTR and KR catchments are summarized in Table 1. 183 

[Table 1] 184 

2.3 Isotopic General Circulation Model isoGSM and bias correction 185 

Precipitation δ18O of the Scripps global spectral model with water isotopes-incorporated 186 

(isoGSM) developed by Yoshimura et al. (2008) was extracted to drive the tracer-aided model. 187 

IsoGSM was developed from the Scripps Experimental Climate Prediction Center’s GSM, 188 

which was based on the medium range forecast model for making operational analysis and 189 
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predictions (Kanamitsu et al., 2002). Wang et al. (2017) evaluated the performance of ten iGCM 190 

datasets in five aspects of average isotope simulation, seasonal difference, temperature effect, 191 

precipitation effect and the global meteoric water line, ranking isoGSM as 1, 2, 1, 2 and 2 192 

respectively, indicating a relatively best performance of isoGSM among the iGCMs. The spatial 193 

and temporal resolutions of isoGSM dataset are 1.875°×1.875° and 6 hours, respectively. 194 

The precipitation δ18O estimated by isoGSM was corrected by site sampling measurements 195 

in Eqs. 2-4 before being used for hydrological model input. Biases between the amount 196 

weighted averages of isoGSM isotope and sampling measurement at the four sampling sites in 197 

YTR basin were calculated in Eq. 2 first. Spatial distribution of bias between isoGSM isotope 198 

and sampling measurement was then assumed as linearly related to altitude in Eq. 3, in which 199 

the coefficients of a and b were estimated by least squares fitting the site biases calculated in 200 

Eq. 2 and corresponding site altitudes. Daily isoGSM isotope data in hydrological model units 201 

over the study catchment were finally corrected in Eq. 4 using the unit altitudes. 202 

𝑏𝑖𝑎𝑠𝑖 = 𝛿18𝑂𝑖,𝑚 − 𝛿18𝑂𝑖,𝐺      𝑖 = 1,2,3,4                                            (2) 203 

𝑏𝑖𝑎𝑠_𝑟 = 𝑎 ∗ 𝐴𝐿𝑇 + 𝑏                                                            (3) 204 

{
𝑏𝑖𝑎𝑠_𝑟𝑘 = 𝑎 ∗ 𝐴𝐿𝑇𝑘 + 𝑏

𝛿18𝑂𝑘,𝑗,𝐶𝑜𝑟𝑟 = 𝛿18𝑂𝑘,𝑗,𝐺 + 𝑏𝑖𝑎𝑠_𝑟𝑘
                                              (4) 205 

where, 𝛿18𝑂𝑖,𝑚 is the amount weighted average of measured precipitation isotope over the 206 

sampling period in sampling site i (i=1-4), and 𝛿18𝑂𝑖,𝐺 is the amount weighted average of 207 

isoGSM precipitation isotope over the study period in pixel that contains the sampling site i. 208 

ALT is altitude of the sampling site or hydrological model unit. Parameters a and b are the linear 209 

regression coefficients. 𝛿18𝑂𝑘,𝑗,𝐶𝑜𝑟𝑟  and 𝛿18𝑂𝑘,𝑗,𝐺  are the corrected and original isoGSM 210 

precipitation isotope at all the hydrological model unit k (k=1-63) on the jth day, respectively. 211 

Performance of the correction method of isoGSM data was evaluated by sampling measurement 212 

of precipitation isotope at the Wengguo station in the KR sub-basin, which was not involved in 213 

the estimation of coefficients a and b in Eq. 3. Spatial precipitation isotope of the isoGSM data 214 

in the KR sub-basin for hydrological modeling was estimated using the same altitudinal lapse 215 

that was used to interpolate the sampling data in Section 2.2, because the KR catchment only 216 

encompasses one pixel of the isoGSM data. 217 

2.4 Tracer-aided hydrological model 218 

A distributed tracer-aided hydrological model THREW-t (Tian et al., 2006; Nan et al., 2021) 219 

was adopted in this study for streamflow and isotope simulations. This model uses the 220 

Representative Elementary Watershed (REW) method for the spatial discretization of 221 

catchment, in which the study catchment is first divided into REWs based on the catchment 222 

DEM. Each REW is further divided into two vertical distributed layers (surface and subsurface 223 
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layers), including eight hydrological sub-zones according to land covers and soil properties 224 

within the REW. Hydrological processes including canopy interception, infiltration, 225 

infiltration-excess runoff, saturation-excess runoff and groundwater outflow were simulated in 226 

each REW. REW is based on the self-similar characteristics of a watershed and its sub-227 

watersheds (Reggiani et al., 1999), and is regarded as the fundamental component of 228 

hydrological processes and modelling, in which series of balance equations are established. The 229 

principle of REW division is based on the scale of interest, modelling purpose, and the data 230 

availability (Tian et al., 2006, 2008). In total, 63 and 41 REWs were extracted in YTR and KR, 231 

respectively, which were adopted in two previous studies (Tian et al., 2020; Nan et al., 2021). 232 

Areal averages of the gridded estimates of CMFD meteorological variables and precipitation 233 

δ18O were used in each of the REWs to drive the hydrological model. For application in cold 234 

and high regions, a module representing the glacier melting and snowpack evolution was 235 

incorporated into the original model in Tian et al. (2006), which has been proved as successful 236 

in previous modelling works (e.g., He et al., 2015; Xu et al., 2019; Tian et al., 2020). The semi-237 

distributed REW-based structure made the model concise enough to couple the tracer module 238 

easily. The tracer module was developed by Nan et al. (2021) which performed quite well on 239 

reproducing the isotopic signature of stream water in the KR catchment. The isotope mixing 240 

and fractionation processes were simulated based on the completely mixing assumption and the 241 

Rayleigh fractionation method (Hindshaw et al., 2011; Wolfe et al., 2007). Forced by the input 242 

data of precipitation isotope composition, the model can simulate the isotopic evolution all the 243 

water bodies in the watershed, including soil water, snowpack, stream water, etc. The THREW-244 

t model considered the runoff components to stream water based on two aspects (Nan et al., 245 

2021). First is based on the individual water sources in the total water input forcing runoff 246 

processes including rainfall, snowmelt and glacier melt. Second is based on the runoff-247 

generation processes including surface runoff and subsurface runoff (baseflow). The THREW-248 

t model mainly described the rainfall-runoff processes, thus only the role of shallow 249 

groundwater which can be recharged by the rainfall was considered, but the contribution from 250 

deep groundwater storage was not simulated. More details of model description and set up are 251 

given in Tian et al. (2006) and Nan et al. (2021). 252 

The physical basis and value ranges of the calibrated parameters in the THREW-t model 253 

are described in Table 2. In both modeling catchments of YTR and KR, the parameter values 254 

were optimized using three calibration variants: (1) a dual-objective calibration using observed 255 

discharge and MODIS snow covered area fraction (SCA), (2) a triple-objective calibration 256 

using observed discharge, MODIS SCA and δ18O measurements of stream water forced by 257 

linearly interpolated measurements of site sampling precipitation isotope, and (3) a triple-258 

objective calibration using observed discharge, MODIS SCA and δ18O measurements of stream 259 

water but forced by the isoGSM precipitation isotope data. Metrics used to evaluate the 260 
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simulations of discharge, SCA and isotope are list in Eqs. 5-7. 261 

𝑁𝑆𝐸𝑑𝑖𝑠 = 1 −
∑ (𝑄𝑜,𝑖−𝑄𝑠,𝑖)2𝑛

𝑖=1

∑ (𝑄𝑜,𝑖−𝑄𝑜)2𝑛
𝑖=1

                           (5) 262 

𝑅𝑀𝑆𝐸𝑆𝐶𝐴 = √
∑ (𝑆𝐶𝐴𝑜,𝑖−𝑆𝐶𝐴𝑠,𝑖)2𝑛

𝑖=1

𝑛
                        (6) 263 

𝑀𝐴𝐸𝑖𝑠𝑜 =
∑ |𝛿18𝑂𝑜,𝑖−𝛿18𝑂𝑠,𝑖|𝑛

𝑖=1

𝑛
                         (7) 264 

where, n is the total number of observations. Subscripts of o and s refer to observed and 265 

simulated variables, respectively. 𝑄𝑜 is the average value of observed streamflow during the 266 

assessing period. 267 

[Table 2] 268 

An automatic procedure based on the pySOT optimization algorithm developed by 269 

Eriksson et al. (2015) was implemented for all the three calibration variants to identify the 270 

behavioral parameters. The pySOT used surrogate model to guide the search for improved 271 

solutions, with the advantage of needing few function evaluations to find a good solution. An 272 

event-driven framework POAP were used for building and combining asynchronous 273 

optimization strategies. The optimization was stopped if a maximum number of allowed 274 

function evaluations was reached, which was set as 3000 in this study. For both modeling 275 

catchments, the pySOT algorithm was repeated 150 times for each calibration variant. Although 276 

the measurement unit of NSEdis is different from RMSESCA and MAEiso, their values are in the 277 

same order of magnitude (0-1) when the model performances were acceptable (Ala-aho et al., 278 

2017; Nan et al., 2021). Consequently, they were combined with equal weights for 279 

simplification to represent the simultaneous performance on multiple objectives. For the dual- 280 

and triple-objective calibration variants, NSEdis - RMSESCA, NSEdis - RMSESCA - MAEiso were 281 

chosen as combined optimization objectives, respectively. Among the 150 final parameter sets 282 

produced by the pySOT runs, the behavioral parameter sets were selected by NSEdis thresholds, 283 

i.e., only the parameter sets producing NSEdis higher than an assumed threshold were regarded 284 

as behavioral parameter sets. Considering the model behaviors in the two catchments, the NSEdis 285 

threshold was chosen as 0.85 for the YTR basin, and was chosen as 0.75 and 0.70 for dual- and 286 

triple-objective calibration variants in KR catchment, respectively. Focusing on the utility of 287 

isoGSM on forcing tracer-aided model, the influence of calibration objective function and 288 

weight of each objective were not assessed in this study. 289 

Considering the data availability, the calibration and validation periods for KR catchment 290 

were set as 2006-2010 and 2011-2012, respectively. For YTR basin, discharge measured at the 291 

outlet station Nuxia, the MODIS SCA fraction over the basin area upper the Nuxia station, and 292 

the stream water δ18O measured at the Nuxia station were used for calibration. Calibration and 293 

validation periods of 2001-2005 and 2006-2010 were selected to test the model performance 294 

for simulations of discharge and SCA at the Nuxia station. In addition, discharge measured at 295 
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the internal hydrological stations of Yangcun and Nugesha during 2001-2010 were used to 296 

validate the spatial consistency of the calibrated model parameters. Model performance on 297 

simulating stream water isotope at the Nuxia station in a validation period was not assessed as 298 

stream water isotope measurements were available only during 2005. However, stream water 299 

δ18O measured during 2005 at the internal hydrological stations of Yangcun, Nugesha and Lazi 300 

were adopted to validate the model performance on simulating spatial stream water δ18O within 301 

YTR basin. 302 

3. Results 303 

3.1 Comparison between isoGSM and measured precipitation δ18O 304 

Figs. 2a and 3a show the comparison between isoGSM and measured precipitation δ18O at 305 

four sampling sites in the YTR basin. The isoGSM data presented similar fluctuations of 306 

seasonal precipitation δ18O to the sampling measurements (Fig. 3a). In particular, both isoGSM 307 

and sampling measurement showed high precipitation δ18O in May, and reached relatively low 308 

values in the wet season during August and September. However, the original isoGSM data 309 

tended to overestimate the measured precipitation δ18O in the sampling periods (Fig. 2a). From 310 

downstream to upstream, the amount weighted average precipitation δ18O of samples collected 311 

at the four stations (Nuxia, Yangcun, Nugesha and Lazi) were -9.58‰, -14.01‰, -14.80‰ and 312 

-17.86‰, respectively, while the corresponding weighted average values of isoGSM pixels 313 

containing the sampling stations during the same period were -7.53‰, -8.38‰, -9.22‰ and -314 

9.61%, respectively. Bias between isoGSM data and sampling measurement tended to be larger 315 

at upstream stations with higher elevations, partly due to the coarse spatial resolution of GCM 316 

which cannot reproduce the effect of regional topography well. In contrast, the corrected 317 

isoGSM data (black lines in Fig. 3a) captured the relatively low values in the late wet season 318 

better than the original data (grey lines in Fig. 3a), and the scatter points fall closer to the 1:1 319 

line (Fig. 2b). The MAE of isoGSM precipitation δ18O in the YTR reduced from 6.65‰ to 4.91‰ 320 

after correction. Similarly, the original isoGSM data presented comparable seasonal 321 

fluctuations of precipitation isotope to the sampling measurement at the Wengguo station in the 322 

KR catchment (Fig. 3b), but the amount weighted average of precipitation δ18O in the original 323 

isoGSM data (-10.95‰) is much higher than that in the sampling measurement (-15.97‰, Fig. 324 

2c and 3b). After bias correction, the overestimation was much reduced (Fig. 2d), indicated by 325 

a reduced MAE value from 6.24‰ to 4.47‰. Underestimation of precipitation δ18O by the 326 

original isoGSM data in springs of 2011 and 2012, however, was not improved by the bias 327 

correction. 328 

[Figure 2] 329 

[Figure 3] 330 
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Based on the multiple linear regression, the coefficients x, y and z in Eq. 1 were estimated 331 

as -0.003, 0.574 and -52.6, respectively, with a R2 value of 0.98, to interpolate the measured 332 

isotope data to estimate spatial precipitation isotope over the YTR basin. The negative x and 333 

positive y values were consistent with their physical meanings. Parameters a and b in Eq. 3 334 

were estimated as -0.0046 and 14.96 based on the biases between isoGSM data and sampling 335 

measurements on the four sampling sites in YTR. Fig. 4 and Fig.5 show the comparison of the 336 

amount weighted averages of precipitation δ18O on 63 REWs derived from the corrected 337 

isoGSM data and interpolated sampling measurement. It is shown that the distributions of 338 

precipitation isotope with altitude were rather similar in the two datasets (Fig. 4b). However, 339 

distributions across the longitudes show visible differences. The largest differences between the 340 

two datasets were located in the west upstream region (longitude < 86°) and the source region 341 

of tributary Lhasa River (93° > longitude > 86°, latitude > 30°) (Fig. 4a and 5). In comparison 342 

to the corrected isoGSM data, the interpolated sampling measurement estimated much lower 343 

isotope signature in the upstream region, while presenting higher isotope signature in the upper 344 

Lhasa River. As site sampling data of precipitation was insufficient to test which of the two 345 

datasets captured the west-east distribution of precipitation isotope better, model performance 346 

on simulating isotope signatures of stream water measured at hydrological stations from west 347 

to east forced by the two datasets provide a perspective to assess the precipitation isotope 348 

estimations. 349 

[Figure 4] 350 

[Figure 5] 351 

3.2 Model performance for the simulations of discharge and stream water isotope  352 

Fig. 6-7 and Table 3 show the model performance of different calibration variants in the 353 

YTR basin produced by the behavioral parameter sets. The three calibration variants produced 354 

similar simulations of discharge and SCA (Fig. 6), in spite of the slightly higher NSEdis and 355 

lower RMSESCA estimated by the dual-objective calibration (Table 3). For the simulation of 356 

stream water δ18O, the dual-objective calibration produced the worst MAEiso values in three out 357 

of the four testing stations with the largest uncertainty ranges (Fig. 7a), which can be expected 358 

as isotope data was not involved in this calibration. The two triple-objective calibration variants 359 

produced good simulation for the stream water isotope at the Nuxia station in the calibration 360 

year of 2005 (Fig. 7b and 7c). However, the triple-objective calibration variant forced by 361 

isoGSM data estimated worse performance (i.e., higher MAEiso values) for stream water δ18O 362 

at the stations of Yangcun and Nugesha than the calibration forced by interpolated sampling 363 

measurement showing significant underestimations for peak isotope values in June at Yangcun 364 

station, and higher overestimations for isotope values after August at Nugesha. This was due to 365 

the poor performance of isoGSM on capturing the isotope signature of individual precipitation 366 
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events during a specific period (see Fig. 3a), although being corrected already. For example, 367 

the amount weighted average of measured precipitation δ18O in June at the Yangcun station was 368 

-5.87‰, while the average of corrected isoGSM data showed a value of -10.09‰, leading to 369 

an underestimated peak value. Similarly, the amount weighted average of measured 370 

precipitation δ18O at Nugesha during August was -16.34‰, while the corrected isoGSM data 371 

estimated an average of -11.47‰, leading to an overestimated stream δ18O in the late wet season. 372 

In spite of that, the performance of simulated stream water δ18O at Nuxia, Yangcun and Nugesha 373 

stations forced by corrected isoGSM data can still be considered as acceptable, given the 374 

MAEiso values were generally around 1 (Fig. 7c). For the most upstream station Lazi, however, 375 

the triple-objective variant forced by measured precipitation δ18O produced significantly 376 

underestimated δ18O of stream water, likely due to the underestimated precipitation δ18O in the 377 

upstream high altitudes produced by the interpolated measurement data (Fig. 4a and 5). The 378 

good performance of simulated stream water δ18O at the Lazi station driven by the corrected 379 

isoGSM data demonstrated that the corrected isoGSM estimated a better precipitation isoscape 380 

in high altitudes of the study catchment than the linearly interpolated measurement data, partly 381 

benefiting from the information of spatial precipitation isotope implied in the gridded values. 382 

It is worth noting that the model simulations forced by corrected isoGSM estimated narrower 383 

uncertainty bands for stream water δ18O at Nuxia, Yangcun and Nugesha, and smaller value 384 

ranges of the MAEiso metric at all the four stations, in comparison to the simulations driven by 385 

the interpolated precipitation δ18O. Compared to the simulations yielded by the dual-objective 386 

calibration, the triple-objective calibration variants simulated smaller uncertainty ranges for 387 

stream water δ18O and slightly narrowed value ranges of objective metrics for the simulations 388 

of discharge and SCA with the lower behavioral ratios of calibrated parameter sets in Table 3, 389 

indicating good potential of isotope data on reducing modeling uncertainty and improving 390 

parameter identifiability. 391 

[Figure 6] 392 

[Figure 7] 393 

[Table 3] 394 

The simulated hydrographs at two internal hydrological stations of Yangcun and Nugesha 395 

were compared in Fig. 8 to assess the spatial consistency of model parameters calibrated by the 396 

different variants. The isoGSM-forced triple-objective calibration produced the highest 397 

performance for discharge simulation at the two internal stations (Fig. 8e and 8f) indicated by 398 

the highest averages (0.82 and 0.74 for Yangcun and Nugesha) and minimal values (0.72 and 399 

0.53 for Yangcun and Nugesha) of NSE, as well as the smallest values ranges of NSE. The dual-400 

objective calibration produced lower performance for discharge simulation than the isoGSM-401 

forced triple-objective calibration (with average NSE as 0.8 and 0.67 at Yangcun and Nugesha) 402 

with a much larger uncertainty of the baseflow simulation (Fig. 8a and Fig. 8b). The 403 
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interpolation-forced triple-objective calibration produced higher mean NSE (0.81 and 0.74 for 404 

Yangcun and Nugesha) but smaller minimal NSE (0.62 and 0.31 for Yangcun and Nugesha) 405 

than the dual-objective calibration with the largest values ranges of NSE at the two stations. 406 

Moreover, the isoGSM-forced triple-objective calibration performed best on capturing the peak 407 

flows in summer at both stations. 408 

[Figure 8] 409 

The model performances produced by the behavioral parameter sets of different calibration 410 

variants in the KR catchment were shown in Figs. 9-10 and Table 4. All the three calibration 411 

variants presented similar performances on simulating streamflow, while the two triple-412 

objective calibrations resulted in narrower uncertainty ranges, especially for the baseflow (Fig. 413 

9c and e). The declining SCA in spring-summer was captured well in all the calibration variants 414 

(Figs. 9b, d and f). Triple-objective calibrations driven by the two isotope datasets performed 415 

comparably well on simulating the isotopic composition of stream water in the calibration 416 

period (Fig. 10b and 10c) indicated by the low average values of MAEiso (0.68 and 0.69) and 417 

the well captured seasonal fluctuations of stream water δ18O. The peak isotopic values in around 418 

June of 2007 were not captured well by the isoGSM-driven model (Fig. 10c), resulting in a 419 

relatively larger minimal MAEiso (0.57) than the interpolated measurement-driven result (0.48). 420 

This was due to the underestimations of isoGSM on estimating the isotope signatures of 421 

individual extreme precipitation events in June (see Fig. 3b). Specifically, there was a 422 

precipitation event larger than 20mm/day in June of 2007, of which the corrected isoGSM 423 

produced significantly lower δ18O (-21.55‰) than the sampling measurement (-9.83‰) at the 424 

Wengguo station. Despite that, the isoGSM-forced triple-objective calibration estimated much 425 

better performance than the interpolated measurement-driven calibration for stream water δ18O 426 

in the validation period (Figs. 10b and c). Similar to YTR, the triple-objective calibrations got 427 

much smaller behavioral parameter sets (19 and 18 for measurement- and isoGSM-forced 428 

calibration variants) than the dual-objective calibration (117) through 150 runs of the automatic 429 

calibration program, indicating strongly increased identifiability of model parameters and 430 

reduced uncertainty by the using of isotope data. 431 

[Figure 9] 432 

[Figure 10] 433 

[Table 4] 434 

3.3 Contributions of runoff components 435 

Fig. 11 and Tables 5-6 compare the proportions of water sources in the annual water input 436 

for runoff generation simulated by the behavioral parameter sets identified by the three 437 

calibration variants. In the KR sub-basin (Fig. 11b and Table 6), rainfall provided the largest 438 

volume of water source for runoff generation simulated by the three calibration variants 439 
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(44.2%-47.4%), followed by glacier meltwater (29.2%-33.8%). Snowmelt contributed the 440 

lowest proportion of 22.0%-23.4% in the total water input. The two triple-objective calibrations 441 

estimated very similar contributions of runoff component, and consistently estimated lower 442 

proportions of glacier melt than the dual-objective calibration, which can be attributed to the 443 

role of isotope data in regulating the contribution of strong-evaporated surface runoff 444 

component fed by glacier melt to streamflow (Nan et al., 2021) by rejecting parameter sets that 445 

estimated small proportions of rainfall but large proportions of glacier melt (as shown by the 446 

error bar in Fig. 11b). Meanwhile, uncertainties of the estimated contributions were 447 

significantly reduced (from 9.4% to 6.2% and 4.7%, Table 6) by integrating isotope data into 448 

the model. Regarding the contributions of water sources to seasonal water input, snowmelt and 449 

rainfall were the dominant water sources in spring and summer. Three water sources had similar 450 

contributions during autumn. Glacier melt produced a relatively steady contribution of around 451 

30%-35% throughout the year. Similar to the annual contributions, seasonal contributions of 452 

snowmelt and rainfall estimated by the two triple-objective calibrations were larger than those 453 

estimated by the dual-objective calibration, while the opposite holds true for the seasonal 454 

contributions of glacier melt. The largest differences of the contributions estimated by the 455 

different calibration variants go to the winter season (Table 6), which however had negligible 456 

effect on the annual runoff regime because of the extremely low contribution of water input in 457 

this season (<1%). Uncertainties of the runoff component contributions were reduced by 458 

involving isotope calibration most significantly during summer, because the isotope data 459 

brought more constraint on the rainfall-runoff processes, which played dominant role in summer. 460 

The uncertainties of annual contributions were close to those of summer contributions because 461 

of the large proportion of water input to annual runoff in summer (>60%). In contrast, 462 

uncertainties of winter contributions estimated by the triple-objective calibration variants 463 

tended to be larger than that estimated by the dual-objective calibration, due to the smaller 464 

amount of total water input in winter as a result of lower contribution of meltwater estimated 465 

by triple-objective variants. 466 

In the YTR catchment, rainfall showed larger dominance on annual runoff than glacier and 467 

snow meltwater with the mean contributions of 61.4%-69.6% (Fig. 11a and Table 5). The dual-468 

objective calibration and triple-objective calibration forced by measured isotope data estimated 469 

similar annual contributions of rainfall (~62%), snowmelt (~11%) and glacier melt (~27%). 470 

Nonetheless, the isoGSM-forced triple-objective calibration estimated significantly higher 471 

mean proportion of rainfall (70%) but lower mean proportion of glacier melt (18%) by rejecting 472 

the parameter sets that estimated rainfall contributions less than 60% and glacier melt 473 

contributions more than 30%, which however were identified to be acceptable in the other two 474 

calibration variants (as shown by the error bar in Fig. 11a). Difference of the glacier melt 475 

contributions estimated by the two triple-objective calibration variants mainly resulted from the 476 
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difference of precipitation δ18O inputs from the two datasets. The interpolated measurement 477 

data tended to produce higher precipitation δ18O in the middle and downstream regions of YTR 478 

basin but lower values in the upstream region, compared to the corrected isoGSM data (Fig. 479 

4b). Meanwhile, the precipitation input in the downstream region was higher than that occurred 480 

in the upstream (Xu et al., 2017), thus resulting in higher average precipitation δ18O over the 481 

entire YTR of the interpolated measurement data. Consequently, larger contribution of glacier 482 

melt with low isotope composition was estimated in the interpolated interpolation-forced triple-483 

objective calibration to counteract the effect of precipitation input with high isotopic 484 

composition for matching the measured stream water δ18O. By involving isotope simulation, 485 

both triple-objective variants significantly reduced the uncertainties of the estimated 486 

contributions (from 11.9% to 8.6% and 8.9%, Table 5). Similar to the estimated annual 487 

contributions, the isoGSM-forced triple-objective calibration estimated higher mean proportion 488 

of rainfall, lower mean proportion of glacier melt and comparable mean proportion of snowmelt 489 

in the four seasons, compared to the dual-objective calibration and triple-objective calibration 490 

forced by measured isotope data. In general, rainfall was the dominant water input source in 491 

summer and autumn, and snowmelt dominated the runoff in winter. The contributions of rainfall 492 

and snowmelt to total water input were close in spring. Similar to KR catchment, uncertainty 493 

of runoff component contribution was reduced by the isotope-involved calibrations more 494 

significantly in seasons when rainfall played dominant roles. 495 

[Figure 11] 496 

[Table 5] 497 

[Table 6] 498 

4. Discussion 499 

4.1 Uncertainties and limitations of the tracer-aided hydrological model 500 

Integrating the simulations of water isotope signatures into the hydrological model 501 

structure could help to make use of hydrological information additionally implied in the water 502 

isotope data without introducing new model parameters for the runoff processes. However, 503 

uncertainty of the simulation of water isotope in the tracer-aided hydrological model can be 504 

caused by the following sources. First, the isotopic compositions of meltwater sources were 505 

determined based on simplified assumptions, which however were hard to verify in a large 506 

basin due to the limited field sampling work. The isotopic compositions of glacier melt were 507 

assumed as constant throughout the modeling period due to the unavailability of glacier melting 508 

water samples. Large number of studies reported that the isotope composition of glacier melt 509 

had very small variability, and the value were much lower than that of precipitation (e.g., Boral 510 

& Sen, 2020; Cable et al., 2011; He et al., 2019; Rai et al., 2019; Wang et al., 2016). Considering 511 
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that the changes of glacier elevation during the 10-year modeling period were small, indicating 512 

that ice melt on the glacier surface in each of the summer seasons occurred very likely from the 513 

same elevation bands with similar isotopic compositions, the assumption on glacier melt 514 

isotope adopted in this study was reasonable. However, the assumed isotope composition of 515 

glacier melt will no doubt influence the modelling result, especially the estimated contribution 516 

of water sources. Specifically, a lower assumed value of glacier melt isotope composition led 517 

to a lower contribution of isotopic depleted glacier melt runoff component. As for the snow 518 

meltwater, the isotopic evolution was simulated according to the mass balance of snowpack 519 

similarly with other water storages. The isotope fractionation effect caused by the melt 520 

processes was inadequately characterized in our model, which could lead to uncertainty in the 521 

simulation of snowmelt isotope (Pu et al., 2020). 522 

Second, the uncertainty of the precipitation isotope input data served as another uncertainty 523 

source of the isotope simulation in the model. Although the isotope data itself had no influences 524 

on the hydrological processes, the calibration procedure to fit the simulated stream isotope 525 

signature with observation indeed affected the model simulations of runoff processes (Delavau 526 

et al., 2017). For the sampling measurement-based forcing data, the uncertainty came from the 527 

interpolation procedure. We used a linear interpolation method based on longitude and altitude 528 

to estimate the precipitation isoscape. This could be reasonable in our study catchment because 529 

these two factors characterize the major spatial pattern and altitude effect of precipitation 530 

isotope in similar large-scale regions on TP (Liu et al., 2014). However, low availability of site 531 

measurement data derived from the sparse water sampling network leaded to large uncertainty 532 

of the interpolated result. All the four sampling stations were located at around the same latitude, 533 

and cannot reflect latitude effect on precipitation isotope (Dansgaard, 1964). Measurements 534 

from more water sampling sites are required in the future for the improvement of the 535 

interpolation method. For the isoGSM data, uncertainty came from its coarse spatial resolution. 536 

Although the isoGSM data bears the potential to capture spatial patterns of precipitation isotope 537 

in large basins, the effect of regional topography on isotope was not reflected well in the current 538 

product due to its rather coarse pixel size (~200km×200km). Consequently, developing 539 

downscale methods that are applicable to mountainous catchments to extract regional isotope 540 

estimates from iGCM products (such as iRCM in Sturm et al., 2007) might be helpful for the 541 

tracer-aided hydrological modelling on the TP. Moreover, the bias-correction procedure based 542 

on measurements from a sparse water sampling network inevitably brought uncertainty to the 543 

corrected isoGSM data. The current sampling sites of precipitation are located along the river 544 

channel with elevations lower than the contributing mountains, thus failing to involve isoGSM 545 

estimates at high mountainous terrains into the correction procedure. The terms used in Eq. 3 546 

(only elevation) to correct isoGSM were different from that in Eq. 1 (elevation and longitude) 547 

to interpolate the measurement data. The error of isoGSM tended to be larger in higher elevation 548 
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regions, because of the complex regional topography which cannot be captured well by the 549 

coarse spatial resolution of isoGSM, but there was no mechanism making the error of isoGSM 550 

change with longitude. Consequently, the term longitude was deprecated in Eq. 3 rather than 551 

the interpolation equation. However, the choice of regression terms in interpolation and bias 552 

correction undoubtably had significant influence on the modelling result, which could be 553 

another important source of uncertainty. 554 

The modelling uncertainty is highly related to the model structure and parameters, and our 555 

results indicated that the additional information from isotope data reduced uncertainty of 556 

parameters. However, global climate changes are changing streamflow regimes on the TP (e.g., 557 

Xu et al., 2019; Lin et al., 2020; Yong et al., 2021), which may request a changing model 558 

structure as well. In this study, the model structure was not modified, thus the changing 559 

conditions were far less than adequately represented in the current model, due to lack of 560 

adequate understanding of the influence of changing condition on runoff generation mechanism. 561 

However, some of the changing underlying conditions can also be reflected by the parameters. 562 

For example, frozen ground degradation can lead to a larger water storage capacity and higher 563 

hydraulic conductivity, which can be reflected by the parameters WM, KKA and KKD in our 564 

model. Meanwhile, the tracer-aided hydrological modelling method can also help diagnose the 565 

model structure (e.g., Birkel et al., 2011), but such work has been only conducted in small 566 

catchments due to the limited precipitation isotope input data in large scale. This study mainly 567 

explored the utility of iGCM data on forcing tracer-aided model in large basins, thus provided 568 

the potential to conduct the works improving model structure in large basin scale. For the 569 

simulation in YTR basin in this study, the model was applied at a relatively short time scale 570 

(less than one decade), during which the change condition was not an important issue. To 571 

expand the result to a longer time scale and to predict the future streamflow trend, more work 572 

is needed to consider the variation of model structures and parameters. 573 

4.2 The value of spatial precipitation isotope data derived from iGCM for aiding 574 

hydrological modeling in large basins 575 

Comparisons with the dual-objective calibration without isotope data indicated high value 576 

of spatial precipitation isotope data for reducing modeling uncertainty. To better understand the 577 

role of isotope data, we analyzed the relationship between the behaviors of discharge and 578 

isotope simulations obtained by the calibration without isotope (dual-objective calibration). 579 

There was a trade-off between the two objectives (Fig. 12a). The highest NSEdis can reach 580 

around 0.93, but the MAEiso was not good at the same time. When MAEiso reach relative best 581 

values, the NSEdis was around 0.9, which exhibited a high-level performance as well. The 582 

relationship between model performance and estimated glacier melt contribution was further 583 

explored, and it was found that when the highest NSEdis was obtained, the contribution of 584 
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glacier melt was estimated as around 0.35~0.4, which was however estimated as around 0.2 585 

when best MAEiso was obtained (Fig. 12b and c). The isotope composition of glacier melt was 586 

assumed to be lower than the precipitation, thus an overestimated contribution of glacier melt 587 

can lead to lower simulated river isotope than measurement. Consequently, calibration focusing 588 

only on discharge may result in overestimated glacier melt, which can be rejected by the 589 

behavior of isotope simulation. It is notable that the performance of isotope simulation is more 590 

sensitive than discharge simulation to the runoff component and internal processes. When the 591 

contribution of glacier melt is in a large range of 10-40%, the NSEdis can all be calibrated to a 592 

high value (>0.9) by adjusting other parameters, whereas the MAEiso gets worse significantly 593 

when the proper contribution of water source is deviated. 594 

[Figure 12] 595 

Model simulations forced by the two precipitation isotope datasets produced similar total 596 

streamflow simulation in the YTR basin, but resulted in certain difference in the simulated 597 

stream water isotopic composition and water source apportionments, which was consistent with 598 

the findings in Delavau et al. (2017). The choice of precipitation isotope input data was 599 

demonstrated to have large influence on the model performance. In this study, model 600 

simulations forced by the corrected isoGSM data performed better than that driven by the 601 

interpolated data of sampling measurement with respect to discharge and stream water isotope 602 

simulations at internal hydrological stations. The fact that model can simultaneously satisfy 603 

multiple calibration objectives gave confidence in the model realization and robustness 604 

(McDonnell and Beven, 2014), consequently resulting in the consistent model behavioral 605 

performances in both outlet and internal stations.  606 

Beyond the model performance on discharge and isotope simulation, three aspects of 607 

evidences indicated the results of model forced by isoGSM data to be more likely reasonable. 608 

Firstly, the runoff component contributions estimated by the isoGSM-forced triple-objective 609 

calibration were likely more reliable than those estimated by the dual-objective and the 610 

interpolation-forced triple-objective calibrations. Contribution of glacier melt to annual water 611 

input in the YTR basin was estimated as around 27% in the dual-objective and the interpolation-612 

forced triple-objective calibrations, which was more unlike to be true considering the small 613 

glacier covered area ratio (2%). Glacier melt contribution estimated by the isoGSM-forced 614 

triple-objective calibration was lower than 20%, within the ranges reported by some previous 615 

studies (Immerzeel et al., 2010; Bookhagen and Burbank, 2010; Zhang et al., 2013). Secondly, 616 

the average calibrated melting threshold temperature (T0) and glacier degree-day factor (DDFG) 617 

of YTR basin obtained by the isoGSM-forced triple-objective calibration were 0.75℃ and 618 

7.43mm/d/℃. This was consistent with the reported results estimated in a manner by glacier 619 

mass balance measurements, that the YTR basin was in the region with DDFG ranging from 6-620 

9 mm/d/℃ estimated by the T0 of 0℃ (Zhang et al., 2006). On the contrary, although the 621 
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calibrated DDFG obtained by dual-objective and interpolation-forced triple-objective 622 

calibration were still within the range of 6-9 (7.98 and 8.37 mm/ d/℃, respectively), the T0 623 

values were calibrated as -1.41 and -1.49℃, respectively, much lower than the value adopted 624 

in Zhang et al. (2006), resulting in overestimated glacier melt runoff. Thirdly, the THREW-t 625 

model also quantified the runoff component in terms of runoff generation pathway, and divided 626 

the runoff into surface runoff and baseflow. The contribution of baseflow was estimated as 627 

29.26 km3/yr by the isoGSM-forced triple-objective calibration, which was very close to the 628 

result (30km3/yr) estimated by the groundwater model MODFLOW-NWT independently from 629 

hydrological modeling approach reported in Yao et al. (2021), whereas the baseflow estimated 630 

by dual-objective and interpolation-forced triple-objective were much lower (24.04 and 22.47 631 

km3/yr, respectively). A more reliable baseflow estimation likely helped improve the 632 

reasonability of modelling result, and reduce equifinality by constraining the parameters related 633 

to groundwater. 634 

Above results indicated that the corrected isoGSM product served as a better choice to 635 

force the tracer-aided hydrological model than the interpolated data of sampling measurement. 636 

It is commonly difficult to estimate the precipitation isoscapes in large mountainous catchments 637 

according to limited available site sampling data. Relatively, the iGCM data has the advantage 638 

of presenting more spatial information of precipitation isotope via physically simulating the 639 

processes of vapor transfer, condensation and supersaturation in the atmosphere and their 640 

effects on precipitation isotope (Xi, 2014). Our results indicated that even precipitation isotope 641 

measurements at only four sampling sites provided sounds good ground data basis to correct 642 

the isoGSM isotope product in the study basin with a size of 2×105 km2. The condition was 643 

different in the KR sub-catchment, where the triple-objective variants forced by two isotope 644 

datasets performed similarly with respect to discharge and isotope simulation and runoff 645 

component contribution estimation. This is due to the much smaller catchment area than the 646 

pixel size, thus the advantage of the spatial information provided by isoGSM was not taken 647 

adequately. To develop a general strategy for establishing tracer-aided in large basin, especially 648 

in the regions where limited measured precipitation isotope data is available, as less information 649 

from measurement data as possible was used to correct the isoGSM data. Consequently, only 650 

the average value of measured isotope data was used to correct the isoGSM (Eq. 2), and the 651 

seasonal characteristic of the bias was not considered (such as in Delavau et al., 2017). Our 652 

results indicated that even being corrected by only four average values, isoGSM can perform 653 

well on capturing seasonal fluctuation of precipitation isotope and forcing tracer-aided model 654 

in YTR basin, thus bears the potential to serve as input isotope data in data sparse regions. The 655 

influence of iGCM/iRCM product and bias correction method was not discussed in detail in 656 

this study, which is however an important issue and need further exploration. 657 
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5. Conclusions 658 

The utility of precipitation isotope input derived from the Isotopic General Circulation 659 

Models (iGCM) product isoGSM in forcing the distributed tracer-aided hydrological model 660 

THREW-t in a large basin of 2×105km2 on the Tibetan Plateau (TP) was investigated in this 661 

study. Model performance driven by the isoGSM data was evaluated by comparing with 662 

simulations driven by precipitation isotope measurements from a sparse sampling network. Our 663 

main findings are: 664 

(1) Spatial precipitation isotope data derived from the Isotopic General Circulation Models 665 

helped to reduce modeling uncertainty and improve parameter identifiability, in comparison to 666 

a calibration method using discharge and snow cover area fraction without any information of 667 

water isotope. The developed tracer-aided hydrological model forced by the isoGSM data 668 

showed high values for robustly representing runoff processes in large mountainous catchments. 669 

(2) Model parameters estimated by the isoGSM data corrected using site sampling 670 

measurements of precipitation isotope presented higher transferability to nested sub-basins and 671 

produced higher model performance in the validation period than that estimated by the 672 

interpolated isotope data from site sampling measurement. The smaller uncertainty ranges of 673 

model simulations in nested sub-basins forced by the corrected isoGSM data further indicated 674 

that the corrected isoGSM data served as a better choice to provide informative spatial 675 

precipitation isotope in large basins than the interpolated data from site sampling measurements. 676 

(3) Using the corrected isoGSM data improved the quantification of contributions of runoff 677 

components to streamflow on both annual and seasonal scales. Model calibration procedure 678 

forced by the corrected isoGSM data successfully rejected parameter sets that estimated 679 

overestimation of glacier melt contribution, indicating that precipitation isotope measurements 680 

at only four sampling sites along the river channel provided a good ground data basis to correct 681 

the isoGSM product in the study catchment. 682 
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Figure 1. Location and topography of (a) Tibetan Plateau, (b) Yarlung Tsangpo River basin and 944 

(c) Karuxung catchment 945 
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Figure 2. The scatter diagrams between original/corrected isoGSM and measured isotope data 948 

in YTR basin (subfigures a and b) and KR catchment (subfigures c and d). 949 
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Figure 3. Temporal variations of precipitation δ18O derived from measured and isoGSM data 952 

in YTR basin (subfigure a) and KR catchment (subfigure b). 953 
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Figure 4. Comparisons of the amount weighted averages of precipitation δ18O on 63 REWs in 956 

the YTR basin by longitude (a) and elevation (b). 957 
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Figure 5. Spatial distribution of average precipitation isotope composition obtained by (a) 960 

interpolated measurement data and (b) corrected isoGSM. 961 
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Figure 6. Uncertainty ranges of discharge (Nuxia station) and SCA simulations in YTR basin 966 

during calibration and validation periods produced by the behavioral parameter sets of the dual-967 

objective (subfigure a and b), interpolation-forced triple-objective (subfigure c and d), and 968 

isoGSM-forced triple-objective (subfigure e and f) calibration variants. The scale of discharge 969 

axis is hidden due to data security policy. 970 
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Figure 7. Uncertainty ranges of stream water δ18O simulations at four stations in 2005 produced 974 

by the behavioral parameter sets of the dual-objective (a), interpolation-forced triple-objective 975 

(b), and isoGSM-forced triple-objective (c) calibration variants. 976 
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Figure 8. Uncertainty ranges of discharge simulations at Yangcun and Nugesha stations 980 

produced by the behavioral parameter sets of the dual-objective (subfigure a and b), 981 

interpolation-forced triple-objective (subfigure c and d), and isoGSM-forced triple-objective 982 

(subfigure e and f) calibration variants. 983 
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Figure 9. Uncertainty ranges of discharge and SCA simulations in KR catchment during 987 

calibration and validation periods produced by the behavioral parameter sets of the dual-988 

objective (subfigure a and b), interpolation-forced triple-objective (subfigure c and d), and 989 

isoGSM-forced triple-objective (subfigure e and f) calibration variants. 990 
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 993 

Figure 10. Uncertainty ranges of stream water δ18O simulations in KR catchment during 994 

calibration and validation periods produced by the behavioral parameter sets of the dual-995 

objective (a), interpolation-forced triple-objective (b), and isoGSM-forced triple-objective (c) 996 

calibration variants. 997 
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 999 

Figure 11. Average proportion and corresponding uncertainty ranges of different water sources 1000 

in the annual water input for runoff generation estimated by different calibration variants in (a) 1001 

YTR and (b) KR catchments. 1002 

  1003 

(a) YTR (b) KR
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 1004 

Figure 12. The relationships between (a) MAEiso and NSEdis, (b) NSEdis and glacier melt 1005 

contribution and (c) MAEiso and glacier melt contribution. 1006 

 1007 
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Table 1. Characteristics of precipitation and stream water samples in YTR and KR catchments. 1023 

Catchment 

(Station) 

Year Period 

Dd/mm to dd/mm 

Precipitation sample 

number 

Stream sample 

number 

YTR (Nuxia) 

2005 

14/03 to 23/10 86 34 

YTR (Yangcun) 17/03 to 05/10 59 30 

YTR (Nugesha) 14/05 to 22/10 45 25 

YTR (Lazi) 06/06 to 22/09 42 22 

KR (Wengguo) 

2006 04/06 to 11/11 24 31 

2007 23/04 to 09/10  39 25 

2010 05/05 to 18/10 63 23 

2011 28/03 to 06/11 69 32 

2012 16/06 to 22/09 42 14 
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Table 2. Calibrated parameters of the THREW-t model 1025 

Symbol  Unit Physical descriptions Range 

nt  - Manning roughness coefficient for hillslope 0-0.2 

WM  cm Tension water storage capacity, used in Xinanjiang 

model (Zhao, 1992) to calculate saturation area 

0-10 

B  - Shape coefficient used in Xinanjiang model to calculate 

saturation area 

0-1 

KKA  - Coefficient to calculate subsurface runoff in Rg=KKD⋅

S⋅KS
S⋅(yS/Z)KKA, where S is the topographic slope, KS

S is 

the saturated hydraulic conductivity, ys is the depth of 

saturated groundwater, Z is the total soil depth 

0-6 

KKD  - See description for KKA 0-0.5 

T0  ℃ Temperature threshold above which snow and glacier 

melt 

-5-5 

DDFN  mm/℃/day Degree day factor for snow 0-10 

DDFG  mm/℃/day Degree day factor for glacier 0-10 

C1  - Coefficient to calculate the runoff concentration process 

using Muskingum method: O2=C1 ⋅ I1+C2 ⋅ I2+C3 ⋅

O1+C4⋅Qlat, where I1 and O1 is the inflow and outflow at 

prior step, I2 and O2 is the inflow and outflow at current 

step, Qlat is lateral flow of the river channel, C3=1-C1-

C2, C4=C1+C2 

0-1 

C2  - See description for C1 0-1 
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Table 3. Comparisons of the model performance in YTR basin produced by different calibration 1027 

variants. 1028 

calibration variant behavioral ratio a period 

/station b 

NSEdis 
c,d RMSESCA MAEiso 

Dual-objective 0.98 calibration 0.91 

(0.86-0.93) 

0.07 

(0.07-0.10) 

1.24 

(0.90-1.99) 

validation 0.86 

(0.77-0.92) 

0.07 

(0.06-0.09) 

0.96 

(0.75~1.97) 

Triple-objective 

(measurement) 

0.64 calibration 0.89 

(0.85-0.92) 

0.08 

(0.07-0.10) 

0.64 

(0.47-0.86) 

validation 0.82 

(0.75-0.89) 

0.07 

(0.07-0.09) 

1.46 

(1.17-1.93) 

Triple-objective 

(isoGSM) 

0.82 calibration 0.89 

(0.85-0.93) 

0.08 

(0.07-0.10) 

0.76 

(0.70-0.84) 

validation 0.85 

(0.76-0.91) 

0.07 

(0.07-0.09) 

0.87 

(0.76-1.04) 

a: Behavioral ratio represents the ratio of behavioral parameter set number to the run time of pySOT 1029 

program. 1030 

b: “Period” for discharge and SCA simulation, and “station” for isotope simulation. 1031 

c: Bracketed values represent the minimal and maximal values produced by the behavioral parameter 1032 

sets. 1033 

d: NSEdis is calculated based on the simulated and observed streamflow at Nuxia station 1034 
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Table 4. Comparisons of the model performance in KR catchment produced by different 1036 

calibration variants. 1037 

calibration variant behavioral ratio period NSEdis
 RMSESCA MAEiso 

Dual-objective 0.78 calibration 0.79 

(0.75-0.85) 

0.10 

(0.08-0.18) 

2.18 

(0.73-4.71) 

validation 0.80 

(0.73-0.84) 

0.08 

(0.06-0.19) 

2.38 

(0.84-4.96) 

Triple-objective 

(measurement) 

0.13 calibration 0.74 

(0.70-0.81) 

0.13 

(0.08-0.18) 

0.68 

(0.48-0.83) 

validation 0.79 

(0.73-0.84) 

0.11 

(0.06-0.18) 

0.93 

(0.72-1.19) 

Triple-objective 

(isoGSM) 

0.12 calibration 0.74 

(0.70-0.77) 

0.12 

(0.08-0.19) 

0.69 

(0.57-0.81) 

validation 0.79 

(0.76-0.82) 

0.10 

(0.06-0.19) 

0.77 

(0.69-0.87) 
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Table 5. Average proportions of water sources in the annual and seasonal water inputs for 1039 

runoff generation in YTR basin. 1040 

Season Water source a Dual-objective 
Triple-objective 

(measurement) 

Triple-objective 

(isoGSM) 

Annual Rainfall 62.2 61.4 69.6 

Snow melt 10.7 10.6 12.0 

Glacier melt 27.1 28.0 18.4 

Uncertainty  11.4 8.6 8.9 

Spring Rainfall 35.4 36.8 44.2 

Snow melt 42.9 39.7 43.8 

Glacier melt 21.7 23.5 12.0 

Uncertainty 13.4 12.8 11.8 

Summer Rainfall 69.8 68.2 74.5 

Snow melt 3.4 4.4 6.4 

Glacier melt 26.8 27.4 19.1 

Uncertainty 10.2 7.9 8.7 

Autumn Rainfall 63.1 61.9 76.1 

Snow melt 3.5 3.5 2.7 

Glacier melt 33.5 34.7 22.0 

Uncertainty 16.1 12.8 13.3 

Winter Rainfall 11.9 12.8 30.8 

Snow melt 70.1 65.8 61.7 

Glacier melt 18.0 21.4 7.5 

Uncertainty 19.7 20.6 30.8 

a: The uncertainty of the contribution is defined as 𝐸 = √𝐸𝑅
2 + 𝐸𝑁

2 + 𝐸𝐺
2 , where ER, EN and EG 1041 

represent the standard deviations of the contributions of the water sources produced by the corresponding 1042 

behavioral parameter sets. Subscripts of R, N and G represent rainfall, snow meltwater and glacier 1043 

meltwater, respectively. 1044 
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Table 6. Average proportions of water sources in the annual and seasonal water inputs for 1046 

runoff generation in KR catchment. 1047 

Season Water source Dual-objective 
Triple-objective 

(measurement) 

Triple-objective 

(isoGSM) 

Annual Rainfall 44.2 47.4 47.4 

Snow melt 22.0 23.4 23.4 

Glacier melt 33.8 29.2 29.2 

Uncertainty  9.4 6.2 4.7 

Spring Rainfall 4.1 4.5 4.5 

Snow melt 56.3 61.6 60.9 

Glacier melt 39.5 33.9 34.6 

Uncertainty 13.7 14.2 12.0 

Summer Rainfall 53.5 56.6 56.9 

Snow melt 14.0 15.2 15.1 

Glacier melt 32.4 28.2 28.0 

Uncertainty 9.7 5.1 3.9 

Autumn Rainfall 30.9 35.0 34.3 

Snow melt 33.9 35.3 35.5 

Glacier melt 35.1 29.7 30.3 

Uncertainty 11.2 11.0 9.6 

Winter Rainfall 0 0 0 

Snow melt 55.3 63.3 58.9 

Glacier melt 44.7 36.7 41.1 

Uncertainty 22.3 31.5 29.2 
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