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Abstract. Recent climate change and vegetation greening have important implications to Earth’s global biogeochemical cycles 

and climate, raising concerns about the water supply for large water diversion projects. To quantify the greening impacts on 

local water balance and the capacity of water supply, we built a hybrid model based on the Coupled Carbon and Water (CCW) 

and Water Supply Stress Index (WaSSI) models and conducted a case study on the Upper Han River Basin (UHRB) in central 15 

China that serves as the water source area to the middle route of the South-North Water Diversion Project (SNWDP). 

Significant vegetation greening occurred in the UHRB during 2001-2018, with the normalized difference vegetation index 

increasing at a rate of 0.5% yr-1 (p < 0.01) but no significant trends in climate during the same period (albeit with large 

interannual climate variability). Annual water yield (WY) greatly decreased during this period, and vegetation greening alone 

induced a significant WY decrease of 3.5 mm yr-1 (p < 0.01). Vegetation greening could potentially reduce the annual water 20 

supply by 7.3 km3 on average, accounting for 77% of the intended annual water diversion volume of SNWDP. Vegetation 

greening could also increase the possibility of hydrological drought and reduce about a quarter of WY on average during 

drought periods. In the future, water supply capacity is likely to decline further as vegetation greening continues along with 

increasing temperature and vapor pressure deficit. Our findings demonstrate the large effects of vegetation greening on water 

balance and hydrological drought, which have important implications for management of water resources in long-range water 25 

diversion projects. 

1 Introduction 

As the world’s population and economy expand under a changing climate, human demand for freshwater increases and water 

shortage has become a concern globally (Jackson et al., 2001). Water diversion with long-range transport is an effective way 

to alleviate regional water shortage (Emanuel et al., 2015). However, the sustainability of such projects depends on water 30 
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supply from the donor watersheds, which is uncertain due to environmental change. For example, recent the land ‘greening 

up’ that may affect the watershed balance and thus the hydrological services.  Vegetation greening has been observed 

globally as a result of the rapid changing climate and land cover (Chen et al., 2019; Guay et al., 2014; Zhang et al., 2017; 

Zhu et al., 2013), exerting great uncertainties on water availability in source regions of water diversion projects. A better 

understanding of the hydrological effects of vegetation greening on water supply of water diversion projects is critical for 35 

watershed management to mitigate the influences of climate change and human activities (van Loon et al., 2016). 

The South to North Water Diversion Project (SNWDP) is the largest hydrological engineering project (in terms of investment) 

in the world to mitigate the water shortage in North China (Zhang, 2009). The Upper Han River Basin (UHRB), a subtropical 

basin in central China, is the water source area for the middle route of the SNWDP. The planned total water diversion each 

year during Phase I of the middle route project is 9.5 km3, accounting for about one-third of the mean annual runoff of the 40 

UHRB. However, water yield in the UHRB has sharply declined since the early 1990s (Chen et al., 2007; Liu et al., 2012; She 

et al., 2017). Moreover, the UHRB is susceptible to frequent hydrological droughts (Xu et al., 2011; Zhang et al., 2018) because 

about 70% of its precipitation is recycled back to the atmosphere via evapotranspiration (ET) (China Meteorological 

Administration, 2019). The capacity of water supply to the SNWDP in drought years can be half of that of a normal year 

(Wang and Yang, 2005), exerting a large influence on the water supply capacity of the water diversion project, especially at 45 

the seasonal scale. The drought risks are likely compounded by warming-induced increases in the evaporative demand due to 

the rise of the vapor pressure deficit (Cook et al., 2014, 2020; Lesk et al., 2016; Williams et al., 2020). These conditions raised 

concerns about the extent to which water yield of the UHRB can meet expectations for the SNWDP.  

The afforestation led vegetation greening in the UHRB also exerted uncertainties on the water availability. Considering the 

importance of the UHRB for the SNWDP, China implemented large-scale afforestation and ecological restoration projects to 50 

safeguard water availability and quality from the UHRB. The afforestation-driven greening of the UHRB has been larger and 

more significant than in most other parts of the world (Chen et al., 2019). The greening of the UHRB could create a trade-off 

between ecological restoration and water availability (Jackson et al., 2005). The increased forest cover in the UHRB could 

reduce sediment in the streamflow and improve water quality (Li et al., 2008; Piégay et al., 2004; Soutar, 1989). However, this 

rapid vegetation change could exert considerable influences on the water cycle (Bai et al., 2019; Li et al., 2018), thus directly 55 

altering the capacity of water supply to the SNWDP. Specifically, greater leaf area and enhanced vegetation activity potentially 

consumes more water through transpiration, which could lead to a reduction in water yield (Bai et al., 2020; Cao et al., 2016; 

Li et al., 2018), especially during drought periods (Teuling et al., 2013; Tian et al., 2018). How this rapid and widespread 

greening has affected water yield in the UHRB, thus the water supply to the middle route SNWDP, remains largely unknown.  

Paired-watershed experiments, one of the most effective and intuitive methods to investigate the mechanisms of changes in 60 

water balance (Wei et al., 2008), is not feasible at a large spatial scale. Eco-hydrological models based on remote sensing 

inputs provide an efficient way to understand hydrological processes at a high spatial resolution over large areas and long time 

periods (Wang and Dickinson, 2012). To investigate interactions among vegetation, climate, and the water cycle in the UHRB, 
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a model simulating hydrological variables should consider the effects of both vegetation and climate change based on a 

mechanistic, process-based understanding of hydrology. While many studies have investigated hydrological processes using 65 

mechanistic land surface models (Baker and Miller, 2013; Shin et al., 2019; Xi et al., 2018), their complex model structures 

and a large number of parameters limit their applicability at a large spatial scale. Likewise, carbon and water fluxes of 

vegetation are tightly connected, but many hydrological models lack biological constraints of photosynthetic carbon uptake in 

quantifying hydrological entities.  

To navigate this trade-off between mechanistic carbon-water linkage and computational efficiency, we developed and applied 70 

a new hybrid model that integrates two existing models: the ‘water centric’ Water Supply Stress Index (WaSSI) model 

(Caldwell et al., 2012; Liu et al., 2020; Sun et al., 2016) and the ‘carbon centric’ Coupled Carbon and Water (CCW) model 

(Zhang et al., 2016, 2019b). Here, we use this coupled model to address the following questions: 1) What were the spatial and 

temporal patterns of annual and monthly water yield (WY) in the UHRB from 2001 to 2018? 2) To what extent did the rapid 

vegetation greening affect WY in the UHRB and thus water supply for the SNWDP? 3) How did vegetation greening alter 75 

hydrological drought regimes in the UHRB? Overall, our goal is to improve understanding of the effects of vegetation greening 

on the water balance and hydrological drought and to provide a scientific basis for managing watersheds that serve as critical 

water supply in inter-basin transfers projects.  

2 Methods and data 

2.1 Study area 80 

The Han River in central China covers approximately 1.59 × 105 km2 with a total length of 1,577 km (Jin and Guo, 1993; Yang 

et al., 1997), making it the longest tributary of the Yangtze River. Its mountainous upper reaches (31°20'–34°10' N, 106°–112° 

E; 210 – 3,500 m a.s.l) are 925 km long and drain an area of approximately 9.5 × 104 km2 (Yang et al., 1997). The historical 

mean annual runoff of the UHRB is 41.1 km3 (though with high interannual variability) (Yang et al., 1997). The Danjiangkou 

Reservoir, located in the easternmost tip of the UHRB, stores runoff from the UHRB and serves as the water source for the 85 

middle route of the SNWDP (Figure 1). 
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Figure 1: (a) The location of the UHRB in China and the middle route of the South-North Water Diversion Project (from the Map 

World); (b) Topography of the UHRB, where the red triangles mark the location of the major cities and the black triangles signifies 

hydrological stations, whose data will be used for our model evaluation.  90 

The SNWDP is an ambitious plan to alleviate the water shortage in North China, whose water consumption and requirements 

have increased greatly since the 1980s due to the increasing acceleration of both economic development and population growth 

(Liu and Zheng, 2002). The SNWDP serves roughly 400 million people, accounting for about one-third of China’s population. 

However, annual available water resources per capita in North China are less than one-quarter of those of South China (Zhang 

et al., 2020). Water shortages in North China, including the capital, Beijing, have become a major factor constraining economic 95 

and social development. The SNWDP consists of three routes: the eastern, the middle, and the western routes (Liu and Zheng, 

2002). The eastern route follows through the course of an ancient canal in East China to divert water from the lower Yangtze 

River, the middle route from the UHRB via aqueducts, and the western route from the upper Yangtze River (in the planning 

stage) (Liu and Zheng, 2002).  

2.2 Data Sources and Processing 100 

The land cover and vegetation index data used in this study were obtained from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) data products (Table 1). We obtained the land cover data for 2001-2018 from the MODIS annual 

500m land cover product (MCD12Q1 v006), using the International Geosphere-Biosphere Programme (IGBP) classification 

scheme (Sulla-Menashe et al., 2019). We also obtained 16-day, 250m monthly normalized difference vegetation index (NDVI) 

from the MODIS MOD13Q1 v006 product for the same period (Huete et al., 2002), which we smoothed with the adaptive 105 

Savitzky-Golay filter in the TIMESAT 3.3 software (Jönsson and Eklundh, 2004) then aggregated to monthly scale with 

temporal averaging.  
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The climate data used to drive the model included precipitation (P), air temperature (T), vapor pressure deficit (VPD, in hPa), 

and shortwave radiation (SR), which were all obtained from the monthly, ~4 km (1/24 degree) TerraClimate dataset 

(Abatzoglou et al., 2018) for 2001 to 2018 (Table 1). We estimated the mean temperature by averaging monthly maximum 110 

and minimum temperature.  

Soil attributes were derived from the SoilGrids dataset (Table 1), a system for global digital soil mapping using a state-of-the-

art machine learning method to map the spatial distribution of soil properties across the globe. SoilGrids prediction models are 

fitted using over 230,000 soil profile observations from the World Soil Information Service database and a series of 

environmental covariates. The soil data we used to drive the model included sand, silt, and clay content at six standard depth 115 

intervals at a spatial resolution of 250 meters. All spatial data were rescaled to 250m resolution based on the cubic convolution 

resampling method in ArcGIS 10.5, except the land cover data which was resampled based on the nearest neighbour. 

Table 1: The Data Sources and Intended Usage in This Study. Note: The climate data include precipitation, air temperature, vapor 

pressure deficit, and shortwave radiation at monthly time steps. 

Dataset Source Usage Spatial and 

Temporal 

Resolution 

Period 

Digital elevation 

model 

Shuttle Radar Topography Mission 

(SRTM) 

Drive CCW model & 

Extract Watersheds 

30m/~ ~ 

Land cover  MODIS, MCD12Q1 v006 Drive CCW model 500m/Yearly 2001~2018 

NDVI MODIS, MOD13Q1 v006 Drive CCW model 250m/16-day 2001~2018 

Climate TerraClimate*  Drive CCW and WaSSI 4km/Monthly 2001~2018 

Soil  SoilGrids from the International 

Soil Reference and Information 

Centre 

Drive WaSSI 250m/~ ~ 

Measured 

streamflow 

Records of the hydrological 

gauging stations 

Model evaluation ~/Monthly or 

yearly 

2009~2015 

* http://www.climatologylab.org/terraclimate.html 120 

2.3 Model development 

We integrated the WaSSI model (Sun et al. 2011) and the CCW model (Zhang et al., 2016) and called it as CCW-WaSSI 

model.  We used the remote sensing-based, data-driven ET model from CCW as input to the WY model from WaSSI (Figure 

2). The ‘water centric’ WaSSI model is an integrated ecohydrological model designed for modeling water balance and carbon 

assimilation at a broad scale. The essential components of WaSSI include an empirical ET model and a soil water routing 125 

model for estimating ET, water yield, and ecosystem productivity (Caldwell et al., 2012; Sun et al., 2011, 2015). Due to the 

lack of representation of biophysical processes in modeling ET in WaSSI, we replaced it with the carbon-centric ET model 

from CCW, which effectively couples the carbon assimilation (gross primary production, GPP) and ET processes at the 
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monthly scale (Zhang et al., 2016). As a result, the hybrid model retains mechanistic linkages between carbon and water in the 

CCW model and the simplicity and computational efficiency of both models. The original WaSSI and CCW are written in 130 

FORTRAN and Interactive Data Language, respectively. Here we re-wrote the integrated model with Python 3.8. 

CCW has a much simpler model structure than the more complex process-based models for ET while maintaining similar 

accuracy (Zhang et al., 2016, 2019b). Driven by remotely sensed data, CCW first estimates GPP based on light-use-efficiency 

(LUE) theory (Figure 2), from which ET is estimated based on underlying water-use efficiency (UWUE) theory (Zhou et al., 

2014): 135 

𝐺𝑃𝑃 = 𝐴𝑃𝐴𝑅 × 𝜀 = (𝑃𝐴𝑅 × 𝐹𝑃𝐴𝑅) × (𝜀𝑝𝑜𝑡 × 𝑅𝑠) × (𝑇𝑠 ×  𝑊𝑠),   (1) 

𝐸𝑇 =
𝐺𝑃𝑃×𝑉𝑃𝐷𝑘

𝑈𝑊𝑈𝐸
,         (2) 

where APAR is the absorbed photosynthetically active radiation (MJ m-2), which is assumed to be 45% of the total shortwave 

radiation (Running et al., 2000); FPAR is the fraction of photosynthetically active radiation (PAR) absorbed by plants; εpot 

(g·C MJ-1) is the potential LUE under optimal conditions; Rs, Ts, and Ws are, respectively, environmental scalars (in the range 140 

of [0,1]) related to diffuse radiation, temperature, and moisture stresses to primary production; UWUE represents the biome-

specific underlying water use efficiency, derived from global flux tower data (Pastorello et al., 2020), ranging from 4.5 to 8.4 

g C/kg H2O for different land cover types; and k is an empirical parameter set to 0.5. CCW was calibrated and comprehensively 

validated based on global FLUXNET data (Zhang et al., 2016, 2019b).  

Using ET estimated from CCW, we estimated WY with WaSSI (Figure 2). The Sacramento Soil Moisture Accounting Model 145 

(SAC-SMA) (Burnash, 1995; Burnash et al., 1973) was used to model WY in the WaSSI model, driven by ET, precipitation 

(P), and soil attributes. The algorithm divides the soil layer into lower and upper zones at different depths and estimates the 

distribution of moisture—including both tension water components (driven by evapotranspiration and diffusion) and free water 

components (driven by gravitational forces) in each of these two zones (Figure 2). The model then uses P, soil moisture, and 

the basin’s relative permeability to estimate total water storage and run-off (Figure 2).  150 
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Figure 2: The framework of the CCW-WaSSI hybrid ecohydrology model, CCW-WaSSI. The corner-snipped rectangles denote 

inputs of the model, the rectangles denote processes of the model, and the rounded rectangles denote outputs of the model. Arrows 

show the model process direction. 

 155 

2.4 Model Evaluation  

To evaluate the performance of the CCW-WaSSI model, we compared the estimated WY to the measured streamflow of the 

hydrological gauging stations within the UHRB. First, we used the six stations within the basin that were relatively free from 

direct human modification (e.g., hydropower plants, reservoirs, dams) (Figure 1b) to evaluate the model both at monthly and 

annual scale. Then we used the records of annual streamflow to the Danjiangkou Reservoir to evaluate the modeled WY for 160 

the overall UHRB. It should be noted that the streamflow records of Reservoir were under the influences of at least four major 

hydropower plants along the Han River mainstream and countless other hydraulic engineering within the UHRB. We used the 

Nash-Sutcliffe efficiency (NSE) and the coefficient of determination (R2) to compare modeled WY with the observed WY. 

The NSE is a widely used, reliable statistic for assessing the goodness of fit of hydrologic models, calculated as one minus the 

ratio of the error variance of the modeled time-series divided by the variance of the observed time-series (McCuen et al., 2006). 165 

2.5 Model simulations of greening effects on water yield   

To explore the relative contributions of vegetation and climate on WY, we designed three scenario experiments (Table 2). We 

first simulated the actual variation of WY based on dynamic land cover type, NDVI, and climate from 2001 to 2018 (Scenario 

S1), thus representing the combined effects from both climate and vegetation. To isolate the effect of vegetation alone on WY, 
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we designed two more simulation scenarios. In Scenario S2, we fixed land cover and NDVI in 2001, while all climatic variables 170 

were allowed to change, thus obtaining climate effects on WY without any vegetation greening. In Scenario S3, we fix land 

cover and NDVI in 2018 and allow the climatic variable to change with time, thus simulating WY after vegetation greening.   

We then estimated two types of greening effects on WY using a difference-in-difference approach: the dynamics greening 

effects (S1−S2) and potential greening effects (S3−S2). The dynamic greening effects are the dynamic WY changes caused 

by vegetation greening alone during 2001-2018. The potential greening effects are the differences in WY between S2 and S3, 175 

which is the possible changes in WY from vegetation greening during 2001-2018 if each year had the same vegetation greening 

condition in 2018. Unlike dynamic greening effects, the potential greening effects can present a range of greening effects with 

the variation of climate conditions, which is expected to continue in the future. To investigate trends in WY for each scenario, 

we used the Mann-Kendall test, a widely used test in hydrological studies for trend and change point detection (Hamed, 2008).  

To quantify changes in hydrological drought risk from vegetation greening, we calculated a hydrological drought index from 180 

WY under the three scenarios. Hydrological drought refers to a severe lack of water in the hydrological system, manifesting 

in abnormally low streamflow in rivers and abnormally low water levels in lakes, reservoirs, and groundwater (van Loon, 

2015). Here, the monthly drought index was calculated as the percentages of monthly WY to the mean WY of the same month 

during 2001-2018 (Hayes et al., 2002). We then classified drought intensities for each month based on the magnitude of the 

drought index. Specifically, months with WY within 10% above or below average were classified as “normal”; months with 185 

WY 10%-30% above or below average were classified as “moderate drought/wet”; months with WY 30%-50% above or below 

average were classified as “severe drought/wet”; and months with WY greater than 50% above or below average were 

classified as “extreme drought/wet”. 

Table 2: Variable settings and purposes of modelling scenarios. 

Scenarios 
NDVI and land 

cover 

Climate 

variables 
Purposes 

S1 Dynamic Dynamic Estimating actual dynamics of water yield 

S2 Fixed in 2001 Dynamic 
Estimating possible water yield without vegetation 

greening 

S3 Fixed in 2018 Dynamic 
Estimating possible water yield after vegetation 

greening 

 190 
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3 Results 

3.1 Vegetation and climate changes in the UHRB 

The annual mean NDVI over the UHRB showed a significant upward trend with a rate of 0.5% yr-1 (p < 0.01) (Figure 3a). 

Spatially, 97.4% of the area had increasing trends, 94.0% of which were statistically significant (p < 0.05). The few areas with 

decreasing trends were distributed around the cities and the Danjiangkou Reservoir. In total, 17.9% of the land area in the 195 

basin experienced a change in land cover between 2001 and 2018. Forest cover increased from 40.9% (38,753.6 km2) in 2001 

to 50.7% (48,012.6 km2) in 2018 (Figure 3b), and 98.8% of the new increased forests were converted from shrubland. 

Shrubland showed the largest decrease by 18.3%, from 51.8% (49,093.4 km2) in 2001 to 42.3% (40,025.5 km2) in 2018 (Figure 

3b). The area of cropland decreased by 9.9% from 5,175.1 km2 (5.5%) in 2001 to 4660.8 km2 (4.9%) in 2018. The area covered 

by open water more than doubled, from 313.1 km2 in 2001 to 746.6 km2 in 2018, likely caused by increasing water levels in 200 

the Danjiangkou Reservoir for providing water to the SNWDP.  

Due to high interannual variability and the relatively short study period (less than 20 years), none of the four climatic variables 

(i.e., P, T, VPD, SR) showed statistically significant trends at the annual scale (Figure A1 in Appendix).  

 

Figure 3: (a) The temporal variation of annual mean NDVI in the UHRB during 2001-2018; (b) The composition of the main land 205 
cover types in the UHRB in 2001 and 2018. 

3.2 Model evaluation 

The CCW-WaSSI model performed well in estimating the annual and monthly WY at six hydrological gauging stations and 

the overall UHRB. At the entire watershed scale, the CCW-WaSSI model captured 90% of annual WY variation (R2 = 0.9), 

with an NSE of 0.8, RMSE of 3.9 km3 yr-1 (Figure 4a). At the sub-watershed scale with six hydrological gauging stations, the 210 

model captured 80% of the annual WY variation (R2 = 0.8), with an NSE of 0.9, RMSE of 96.3 mm yr-1 (Figure 4b). Monthly-

scale NSE across the six stations (Figure 4) ranged 0.5-0.8. The model captured 50%-80% of the monthly variation (R2 = 0.5-
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0.8) of WY, with root mean squared errors (RMSE) of 15.9-30.7 mm per month (Figure 4c). Averaged across all gauges, 

monthly NSE was 0.6, R2 was 0.7, and RMSE was 21.2 mm per month.  

 215 

Figure 4: (a) Time series of the simulated water yield (WY) and measured streamflow to the Danjiangkou Reservoir at the annual 

scale; (b) Comparison between simulated and observed annual WY for six hydrological gauging stations within the UHRB, shown 

in Figure 1; (c) Time series of the simulated and measured WY at the monthly scale for six hydrological gauging stations. 
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3.3 Changes in water yield (WY) 220 

In scenario S1 (all factors), the UHRB had an annual WY of 205.4-533.3 mm yr-1, with a mean of 308.5 mm yr-1 during 2001-

2018 (Figure 5a, 5b), peaking in late summer to early autumn and accounting for 34% of the mean annual P (Figure 5d). The 

overall WY in the UHRB slightly decreased at a rate of -2.9 mm yr-1 over the study period, though this trend was not statistically 

significant (p = 0.58). Decreasing trends of WY occurred over 74% of the UHRB, though only 9% of the basin had a trend at 

the confidence level of 90% (p < 0.10; see Appendix Figure A3). Using the Mann-Kendall test, change points of annual WY 225 

were detected during 2009-2011 (Appendix Figure A2). The average annual WY before this change point (2001-2008, 319.3 

mm yr-1) was 60.8 mm higher than that after the change point (2012-2018, 258.5 mm) (Figure 5b). In contrast, the difference 

in the average annual P was only 24.1 mm between the two periods, so the difference in annual WY cannot be explained by 

precipitation alone.  

 230 

Figure 5: (a) The spatial distribution of mean annual water yield (WY) during 2001-2018 in the Upper Han River Basin; (b) The 

temporal variation of annual WY (Scenario S1) during 2001-2018, the dashed red lines denote the mean annual WY for periods 
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before (2001-2008) and after (2009-2018) Mann-Kendall change points; (c) The combined and individual effects of vegetation and 

climate on WY during 2001-2018; (d) Average monthly evapotranspiration (ET), WY, and precipitation (P) during 2001-2018. 

The model experiments revealed that vegetation greening had a significant negative effect on annual WY with a rate of -3.2 235 

mm yr-1 (p < 0.01) during 2001-2018 (Figure 5c). Spatially, greening induced a WY decrease in 90% of the UHRB, while WY 

increases due to greening were mainly in high elevation areas (above 3000m). The WY decrease from greening had strong 

negative correlation over space with elevation (R=-0.7), and positive correlation with average annual temperature (R=0.7) and 

VPD (P=0.8). The effects of climate on WY varied substantially from year-to-year, with a standard deviation (STD) of 101.9 

mm, but had no significant trend (slope = 0.4 mm yr-1; p = 0.95; Figure 5b). These climate effects were also the main driver of 240 

overall annual WY variation (STD = 108.6).  

In addition to reducing total WY, vegetation greening also significantly reduced the ratio of annual WY to P (Figure 6a). After 

the first change point of WY/P ratio identified by the Mann-Kendall method in 2003, the ratio decreased with a significant 

trend of 0.008 yr-1 (p = 0.06) (Figure 6a). The annual WY/P ratio also had a significant negative correlation with NDVI, with 

a correlation coefficient of −0.7 (p = 0.00) (Figure 6b).  245 

 

Figure 6: (a) The temporal variation of annual WY/P (water yield/precipitation) ratio during periods before (2001-2003, orange line) 

and after (2003-2018, green line, the red dotted line denotes the trend for the period 2003-2018) Mann-Kendall change point; (b) 

The correlation between WY/P ratio and NDVI during 2003-2018. 

 250 

3.4 Potential greening effects on WY in different climate conditions 

The greening trend from 2001 to 2018 significantly reduced WY, but the same greening trend could exert different effects on 

WY depending on climate conditions (Figure 7). By comparing the WY without greening (Scenario S2) and after greening 

(Scenario S3) but with dynamic climate variability, we found that the vegetation greening could potentially induce a reduction 

of 77.1 mm in annual WY on average, accounting for 25% of the mean annual WY (308.5 mm) during 2001-2018. The 2018 255 

vegetation greening condition could have caused the largest decrease in WY by 99.3 mm in 2003 and the least by 43.9 mm in 
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2001 (Figure 7). The relative changes in WY derived from S2 and S3 during 2001-2018 ranged from 14% (2011) to 31% 

(2002) (Figure 7).  

 

Figure 7: The annual water yield (WY) without vegetation greening and potential effects of vegetation greening on WY from 260 
2001~2018 derived from the difference between S2 and S3 under different climate condition and their proportion to WY without 

greening. 

The differences in potential vegetation greening effects on WY could result from different climate conditions in those years. 

In order to understand the relationship between the potential greening effects on WY and climate, we explored the correlation 

between greening-induced ET and WY changes and climate variables (Figure 8). The three climate variables (SR, T, VPD) 265 

have strong positive correlations (R > 0.6) with potential absolute ET changes from greening (Figure 8), indicating that 

vegetation greening would increase ET more in a warmer and drier climate. In contrast, the three climate variables are not as 

strongly correlated with potential absolute WY changes from greening (Figure 8). The nature of the relationship reversed for 

potential relative WY changes from greening compared with those of the absolute WY changes. The greening effects on 

proportional change in WY were positively correlated with T (R = 0.7, p = 0.02), SR (R = 0.5, p = 0.00), and VPD (R = 0.4, p 270 

= 0.06) (Figure 8), and negatively correlated with P (R = -0.7, p = 0.00), indicating that vegetation greening could cause more 

proportional WY decrease in dry years. Regression analyses also revealed that the proportional WY changes from greening 

would increase one percentage point per 0.1°C increase in T, 0.3 hPa increase in VPD. 
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Figure 8: Correlation coefficients between greening induced evapotranspiration (ET) and water yield (WY) changes and climate 275 
variables (shortwave radiation, SR; precipitation, P; temperature, T; and vapor pressure deficit, VPD). The absolute changes refer 

to total magnitude change in ET or WY from vegetation greening, while the relative changes denote the proportional change in WY 

after greening relative to WY without any greening. The numbers in boxes are the corresponding correlation coefficients. Double 

asterisks denote p<0.05; single asterisks denote p<0.10.  

3.5 Changes in hydrological drought risk from vegetation greening 280 

Hydrological drought risks increased due to vegetation greening. There were 109 drought months during 2001-2018 based on 

scenario S1 (dynamic climate and vegetation), but there were only 87 drought months of the same intensity in the scenario 

without greening (S2) (Figure 9). In contrast, the number of hydrological drought months increased to 132 in the scenario with 

2018 greenness (S3) (Figure 9). The risk of extreme hydrological drought more than doubled between the scenarios without 

greening (17 total months) and after greening (42 total months), indicating that vegetation greening during 2001-2018 could 285 

not only increase the occurrence risks of hydrological drought but could also amplify existing hydrological droughts. 
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Figure 9: The percentages of counts of months in the different hydrological drought intensities for actual water yield (WY) (S1), WY 

without greening (S2), WY after greening (S3) (numbers in color bars are the corresponding counts of months).  

Given that the monsoon period (July-November) contributes about 70% of annual WY in the UHRB, changes in hydrological 290 

drought risk during the monsoon period is more critical to water supply capacity to the water diversion project than other 

months. Nearly two-thirds (63%) of months experiencing severe or extreme hydrological drought for scenario S1 were during 

the monsoon periods (July-November) of 2001-2018. Vegetation greening could potentially cause a reduction in WY during 

the monsoon period of 38.2 mm on average, accounting for 18% of the mean WY without greening during the monsoon period. 

The six driest monsoon periods were in severe or extreme hydrological drought (less than 70% of mean WY) during 2001-295 

2018, during which vegetation greening could potentially cause a WY decrease of 23.2 mm, accounting for 23% of the WY 

without greening.  
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4 Discussion 

4.1 Reduced water yield and drought amplification from greening  

The relationship between vegetation and the water cycle is one of the most classic issues in the area of ecohydrology. Many 300 

paired catchment and modelling studies provided evidence that vegetation greening and/or afforestation would increase ET 

and decrease WY (Bosch and Hewlett, 1982; Farley et al., 2005; Liu et al., 2008). However, the extent of the effects of 

vegetation greening varies in different climate conditions (Bai et al., 2020; Ingwersen, 1985). WY is more sensitive to 

vegetation greening in water-limited regions than in energy-limited regions (Feng et al., 2016). For example, in the Loess 

Plateau, an arid/semi-arid area of China, the ratio of annual WY to P decreased from 8% before afforestation (1980-1999) to 305 

5% as vegetation increased during 2000-2010 (Feng et al., 2016). Unlike the Loess Plateau, vegetation greening in the UHRB 

did not dominate the long-term trend of WY, but climate (especially P) did, which is consistent with previous studies in the 

subtropical zone (Guo et al., 2008; Hu et al., 2005; Twine et al., 2004). In contrast, the Poyang Lake basin, a subtropical basin 

in southeast China with an annual P of around 1,800 mm, experienced greening as well, but the ratio of WY to P even increased 

from 0.38 in 2004 to 0.52 in 2014 based on the observed data, which is attributed to increased soil moisture induced by 310 

vegetation greening (Wang et al., 2018).  

The UHRB is located on the southern side of the Qinling Mountains, which marks the northern edge of the subtropical monsoon 

and the dividing line between the subtropical and temperate zones in China (Figure 1a). The P in the UHRB is less than that 

of other subtropical basins (e.g., Poyang Lake basin), but ET of the UHRB is comparable to those subtropical basins due to 

the abundance of vegetation. The climate regime and vegetation cover make the UHRB more likely to suffer hydrological 315 

drought, and the water cycle can be largely influenced by vegetation dynamics. While the WY of the Poyang Lake basin would 

only decrease approximately 3% even under an extreme greening scenario (Guo et al., 2008; Tang et al., 2018), the effects of 

vegetation greening on the water cycle in the UHRB are much larger than this, with a decrease in WY up to 25% for comparable 

levels of vegetation greening (Figure 5c). 

Climate is also a critical factor in the interaction between vegetation and the water cycle. Drought risk has increased globally 320 

in recent decades and will continue to rise in the future as a result of global warming (Cook et al., 2020; Huang et al., 2016; 

Lesk et al., 2016; Williams et al., 2020). An increase in temperature directly raises the saturation vapor pressure, which in turn 

increases global VPD (Yuan et al., 2019; Zhang et al., 2019a), especially when combined with a decrease in oceanic 

evaporation (Trenberth et al., 2007), which contributes approximately 85% of atmospheric water vapor. Here, we show that 

the same greening trend could cause more decline in WY under conditions of higher temperature and VPD. Leaf area index in 325 

the UHRB is expected to continue increasing in the foreseeable future, even under the Representative Concentration Pathway 

2.6 (Mahowald et al., 2016), regardless of whether new forests will be created in the UHRB. Future trends of precipitation in 

the UHRB are uncertain (Chen and Frauenfeld, 2014; Feng et al., 2011; Guo et al., 2018), but water availability would likely 

be lower in the UHRB after vegetation greening compared to the same climate conditions but without vegetation greening. 
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4.2 Reduced capacity of water supply to SNWDP from greening 330 

Since the UHRB was chosen as the source water areas of the middle route of the SNWDP, whether the basin has the capacity 

to supply enough water to the project is one of the most debated issues about the project (Barnett et al., 2015; Stone, 2006; 

Zhang et al., 2020). According to a report from the Chinese government (Wang and Yang, 2005), the perennial mean water 

available for diversion from the UHRB is 12-14 km3 yr-1 and 6.2 km3 yr-1 in dry years. However, severe droughts were not 

included (Barnett et al., 2015), and increasing drought events will challenge the feasibility of the project (Liu et al., 2015). 335 

According to official statistics of the SNWDP (middle route), the capacity of the water supply of the UHRB seems unlikely to 

meet expectations. The diverted water from the UHRB increased gradually from 2.3 km3 in 2015 (the first year of the middle 

route SNWDP operation) to 6.9 km3 in 2019 but did not reach the maximum designed water diversion volume in Phase I of 

the project (9.5 km3) so far. Apart from the project not yet being in full operation, another important reason for the low water 

diversion rate was the insufficient WY in the UHRB during the operational period relative to long-term levels (Zhang et al., 340 

2020).  

The water supply capacity of the UHRB was determined by two factors: 1) the magnitude of WY in the UHRB and 2) the 

downstream water demand. The inflow of the Danjiangkou Reservoir showed a sharp decrease since 1990, decreasing from 

41.0 km3 during 1951-1989 to 31.6 km3 yr-1 during 1990-2006, largely attributed to P reduction (Liu et al., 2012). We also 

show that WY for the overall UHRB was likely further reduced to 29.3 km3 yr-1 during 2001-2018. In the future, as the 345 

modelling experiments show (e.g., scenario S3), WY could vary within 15.2-44.6 km3 yr-1 (26.5 km3 yr-1 on average) even if 

vegetation greenness does not continue to increase beyond 2018 levels and the climate regime remains consistent. At the same 

time, the UHRB must meet the downstream water use demand, including household, agriculture, and industry, as well as 

maintaining a basic flow rate for shipping and pollutant dilution (Li et al., 2017; Liu et al., 2003). These downstream water 

demands likely range from 12.2 to 18.5 km3 yr-1 (Hu and Guo, 2006; Li et al., 2017; Liu et al., 2003; Xu and Chang, 2009). 350 

The capacity of water supply to the SNWDP can be approximately estimated as WY of UHRB minus the downstream water 

demand. Therefore, the multi-year average water supply capacity would be only about 14 km3 yr-1 under scenario S3, assuming 

the low bound downstream water demand (12.2 km3 yr-1). In contrast, the water supply capacity would be about 21 km3 yr-1 if 

the UHRB had pre-2001 vegetation conditions, as simulated in scenario S2, which indicated that the vegetation greening during 

2001-2018 could decrease the water supply capacity of UHRB to the SNWDP by 7.3 km3 yr-1, accounting for 77% of the 355 

planned annual water diversion target of the Phase I project (9.5 km3 yr-1). This estimate represents the potential maximum 

volume of water that can be served to the SNWDP. Under the influence of water abandonment in flooding season and the low 

diversion rate due to low reservoir water levels in the drought season, the real water supply to the SNWDP could be much 

lower than this estimate.  

The capacity of water supply to the SNWDP at a seasonal scale was highly related to the possibility of hydrological drought 360 

in the UHRB. The water supply rate to the project is controlled with a unifying operation principle based on the real-time water 

level of the Danjiangkou Reservoir. Therefore, the SNWDP can withstand hydrological drought for short periods due to the 
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huge storage capacity of the reservoir, but vegetation greening can significantly increase the risk and duration of hydrological 

drought. The water storage of the reservoir would rapidly decrease as hydrological drought progresses, thus directly lowering 

the water diversion potential to the SNWDP. Moreover, the intensity of the hydrological drought determines the magnitude of 365 

water deficit relative to SNWDP demand. Vegetation greening can also greatly exacerbate existing hydrological drought, 

which not only amplifies the water supply deficit to the SNWDP during hydrological drought but can also cause more severe 

local water shortages. Overall, our study suggests that afforestation could potentially reduce local WY, thus weakening the 

capacity of the water supply to SNWDP.  

4.3 Implications for water diversion projects 370 

Compared to other water diversion projects (WDPs) around the world, the middle route of the SNWDP diverts a much larger 

proportion of WY from the source basin (UHRB) (Shumilova et al., 2018). The UHRB serves about one-third to half of the 

total WY to the SNWDP. In contrast, 78% of the WDPs in the US in 1973-1982 extracted <1% of annual streamflow from the 

source basins (Emanuel et al., 2015). Consequently, the middle route of the SNWDP has more influence on the natural water 

balance in the water source basin, and the water diversion capacity is more vulnerable to hydrological drought events. In 375 

addition, the downstream of the UHRB has more than 12 million people, 12,000 km2 of farmland, and large-scale industries 

whose water-use demand is an important constraint on water diversion. To stabilize the water supply of the middle route of 

the SNWDP, the Phrase II project is currently being planned, which will construct an additional canal to divert water from the 

Three Gorges Reservoir in the mainstream Yangtze River to the Danjiangkou Reservoir. After the Phase II project is completed, 

the UHRB will not be the only source for diverted water, and the water supply to the SNWDP will be more stable. However, 380 

the additional engineering exerts more human influence on the water cycle, and its unintended consequences for hydrological 

and environmental systems remain uncertain. 

China has 59 major WDPs, each with a total canal length of at least 50 km or an annual water diversion volume greater than 

0.1 km3 (Yu et al., 2018). Watershed protection measures such as large-scale afforestation have been implemented for more 

than twenty years in China. Afforestation and ecological restoration in water source basins of WDPs can help control sediment 385 

and thus improve water quality, but vegetation greening can also cause negative effects on water availability, thus lowering 

the operational effectiveness of WDPs. Rapid vegetation greening occurred in most of China in recent decades, which is 

projected to continue in the foreseeable future (Liu et al., 2015). Therefore, navigating this tradeoff between water quality 

improvement and water resource availability should be an important consideration for current and future WDPs.  

Managing water stress needs to consider both supply and demand. From the perspective of water demand (North China), the 390 

water transferred from the south supplied more than 70% of the domestic water use in the project-served cities in 2019. 

Moreover, the probability of concurrent drought events between the UHRB and North China is highly likely to increase in the 

next 30 years (Liu et al., 2015). Consequently, any fluctuation of WY in the water source region (the UHRB) or any problem 

with project facilities would influence the water supply of the serviced cities with a huge population. Therefore, it is risky for 

https://doi.org/10.5194/hess-2021-240
Preprint. Discussion started: 1 June 2021
c© Author(s) 2021. CC BY 4.0 License.



19 

 

 

North China cities to become over-dependent on water diversion and comprehensive water management policies are needed 395 

to sustain the water supply from the UHRB basin while meeting the water demand in North China. 

5 Conclusions 

Using a new watershed ecohydrological model, we found that vegetation greening in the Upper Han River Basin (UHRB) 

greatly decreased both annual water yield (WY) and the ratio of WY to precipitation over the study period (2001-2018), 

potentially reducing the annual capacity of water supply to the South to North Water Diversion Projects (SNWDP). Vegetation 400 

greening could also exacerbate hydrological drought risk and reduce about a quarter of WY on average during hydrological 

drought periods. In the future, hydrological drought risk will likely continue to increase in the UHRB due to increases in 

temperature and vapor pressure deficit, which could be compounded by increasing vegetation greenness and may seriously 

reduce the water availability for the middle route of the SNWDP. Our study suggests that improved watershed management 

(e.g., forest management and reducing water use) is needed to address the effects of vegetation greening and climate change 405 

on water supply capacity in watersheds serving as water sources for large water diversion projects. 
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Appendix A: 

 

Figure A1. Inter-annual variations of averaged air temperature (a), total precipitation (b), vapor pressure deficit (VPD) (c) and 

shortwave radiation (SR) (d) in the Upper Han River Basin from 2001 to 2018.  
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Figure A2. Abrupt change detections of the Mann-Kendall for annual water yield (WY) (a) and the ratio between WY and 

precipitation ratio (b) in the Upper Han River Basin from 2001 to 2018. UBk and UFk are time statistics of the Mann-Kendall 

method.  

 
Figure A3. The linear trend of annual water yield (WY) at the confidence level of 90% (p < 0.10). 640 
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