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 15 

 Abstract 16 

Our study investigates interplays between dissolution, precipitation, and transport processes 17 

taking place across randomly heterogeneous conductivity domains and the ensuing spatial 18 

distribution of preferential pathways. We do so by relying on a collection of computational analyses 19 

of reactive transport performed in two-dimensional systems where the (natural) logarithm of 20 

conductivity is characterized by various degrees of spatial heterogeneity. Our results document that 21 

precipitation and dissolution jointly take place in the system, the latter mainly occurring along 22 

preferential flowpaths associated with the conductivity field, the former being observed at locations 23 

close to and clearly separated from these. High conductivity values associated with the preferential 24 

flowpaths tend to further increase in time, giving rise to a self-sustained feedback between transport 25 

and reaction processes. The clear separation between regions where dissolution or precipitation takes 26 

place is imprinted onto the sample distributions of conductivity which tend to become visibly left 27 

skewed with time (with the appearance of a bimodal behavior at some times). The link between 28 

conductivity changes and reaction-driven processes promotes the emergence of non-Fickian effective 29 

transport features. The latter can be captured through a continuous time random walk model where 30 

solute travel times are approximated with a truncated power law probability distribution. The 31 

parameters of such a model shift towards values associated with increasingly high non-Fickian 32 

effective transport behavior as time progresses. 33 

1.Introduction 34 

Diagnosis and characterization of the feedback between geochemical precipitation/dissolution 35 

reactions and solute transport processes in heterogeneous subsurface systems is key to a variety of 36 

environmental and Earth science scenarios (Rege & Fogler, 1989; Berkowitz et al., 2016). A critical 37 

challenge is the emergence of complex dependencies between physical and chemical processes taking 38 

place across aquifer bodies (Saripalli et al., 2001). Heterogeneity of these systems promotes diverse 39 

patterns of precipitation and/or dissolution that may imprint a variety of dynamic system responses, 40 

including, e.g., wormholing and oscillatory behaviors of system attributes such as porosity and 41 
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permeability (Edery et al., 2011; Garing et al., 2015; Golfier et al., 2002). Examples of practical 42 

applications in this context include geologic CO2 storage (e.g., Pawar et al., 2015; Noiriel & Daval, 43 

2017; Cabeza et al., 2020 and references therein), acid injection in production wells (e.g., Liu et al., 44 

2017 and references therein), and reactive transport of contaminants (e.g., Ceriotti et al., 2018; Dalla 45 

Libera et al., 2020 and references therein). 46 

Computational studies can assist the analysis of patterns of chemical transport across 47 

heterogeneous subsurface systems in the presence of precipitation/dissolution phenomena. While 48 

requiring an explicit description of the spatial heterogeneity of the system properties (Atchley et al., 49 

2014), routine application of numerical simulations in practical settings is hampered by (i) our limited 50 

knowledge of the system attributes, resulting in uncertainty affecting the parameterization of the 51 

underlying physical and chemical processes and their variability, and (ii) the computational costs 52 

required to properly quantify such uncertainties and their propagation onto environmental quantities 53 

of interest. In this context, we rely on an effective approach to characterize the evolution of key 54 

features of solute transport in the presence of rock-fluid interactions across a porous medium whose 55 

spatially heterogeneous conductivity field is interpreted according to a commonly employed 56 

stochastic framework. 57 

A critical element we tackle is related to the analysis of the dynamic feedback between reactive 58 

transport and spatially heterogenous distributions of porous media attributes such as hydraulic 59 

conductivity. Following prior studies, we start by recognizing that, even under geochemical 60 

equilibrium conditions, the spatial heterogeneity of system attributes typically imprints an uneven 61 

spatial distribution of regions where chemical reactions take place, local fluctuations of conductivity 62 

being key to this element (Edery, Porta, et al., 2016). Further to this, our conceptualization of the 63 

setting is grounded on the observation that rendering of transport features in geological formations 64 

through effective formulations typically requires embedding non-Fickian features. To this end, we 65 

rely on an upscaled description of transport where solute travel/waiting times are approximated with 66 

a truncated power law probability density function (PDF), hereafter termed TPL (Berkowitz et al., 67 

2006). This effective description is particularly relevant because the emergence of non-Fickian 68 

transport features in heterogeneous formations has been observed at diverse scales of observation, 69 

including pore-, laboratory- and field-scale scenarios (e.g., Edery et al., 2011; Muljadi et al., 2018; 70 

Menke et al., 2018 and references therein). 71 

In line with our objective, we rest on the framework of analysis developed in (Edery et al., 72 

2014; Edery, Porta, et al., 2016), where an effective depiction of transport processes is parametrized 73 

as a function of the statistics of solute residence times in randomly heterogeneous conductivity fields. 74 

A main element of this framework is that it yields a link between the TPL weighting times and the 75 

occurrence of preferential pathways that can be obtained from computational studies of transport in 76 

such conductivity fields (Edery et al., 2014). As a result, the methodology is conducive to an effective 77 

(or upscaled) representation of local features to identify signatures of non-Fickian transport (see also, 78 

e.g., Dentz et al., 2011; Edery et al., 2014). To illustrate the main features associated with the scenario 79 

of interest, we consider a Darcy-scale formulation of a reactive transport setup, where precipitation 80 

and/or dissolution of minerals are driven by the injection of an acid compound establishing local 81 

equilibrium with the resident fluid and a solid matrix of the host porous medium which is considered 82 

to be composed of calcite mineral. While the geochemical processes we consider are somehow 83 

streamlined with respect to a field-scale scenario (see, e.g., Lichtner, 1988; Dreybrodt et al., 1996), 84 

they embed the main elements characterizing the interplay between solute transport and rock-fluid 85 

interactions in Darcy-scale systems (e.g., Edery et al., 2011). Within this conceptual picture, our study 86 

aims at investigating (i) the interplay between the reactive process and the ensuing spatial distribution 87 
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of preferential pathways associated with spatially heterogeneous conductivities and (ii) the link 88 

between locally occurring reaction-driven phenomena and emerging non-Fickian effective transport 89 

features, as captured by the TPL formulation of the PDF of particle travel/waiting times. 90 

2.Methodology 91 

2.1 Chemical model 92 

We simulate a reactive transport scenario where calcite (𝐶𝑎𝐶𝑂3 (𝑠), subscript (s) denoting solid 93 

mineral) can dissolve or precipitate locally in the presence of chemical equilibrium between dissolved 94 

carbonic acid (𝐻2𝐶𝑂3) and pH. The amount of dissolved 𝐻2𝐶𝑂3 as a function of pH (see Figure S1 95 

in the supplementary material) is then governed by equilibrium conditions, which is tantamount to 96 

assuming a locally instantaneous reaction (i.e., as the reactive time scale approaches zero at 97 

equilibrium, this scenario corresponds to a local Damköhler number which tends to infinity). The 98 

formulation describing the chemical reactions can then be streamlined as: 99 

𝐶𝑎𝐶𝑂3 (𝑠)
 

↔ 𝐶𝑎    
2+ +  𝐶𝑂3   

2−  (1a) 100 

𝐻2𝐶𝑂3 
 

↔  2𝐻 
+ +  𝐶𝑂3 

2−  (1b) 101 

according to which two protons 𝐻 
+ in (1b) react with 𝐶𝑂3

2− to produce 𝐻2𝐶𝑂3 that in turn drives 102 

dissolution of the host calcium carbonate solid matrix. While simplified (see, e.g., Lichtner, 1988; 103 

Dreybrodt et al., 1996), the chemical set-up follows previous work by Edery et al. (2011), where there 104 

is an extensive assessment of the employed formulation (see also the Supplementary Material). In 105 

this context, and consistent with typical experimental practice, we consider the injected fluid and the 106 

porous medium to be associated with a source of 𝐻 
+ and an abundance of 𝐶𝑎   

2+, respectively. Thus, 107 

𝐶𝑎   
2+ is not rate limiting and the spatial distribution of 𝐻 

+, as driven by transport and reaction, 108 

governs pH. The rate limiting reaction is then (1b), that is controlled by the available 𝐻 
+ (or pH), 109 

similar to observations associated with other studies (Singurindy & Berkowitz, 2004; Edery et al., 110 

2011). The chemical reaction system (1a) and (1b) is here simplified (see, e.g., Krauskopf & Bird, 111 

1967) through: 112 

𝑐𝑜
 

↔  2ℎ +  𝑐 (2) 113 

where 𝑐𝑜 denotes 𝐻2𝐶𝑂3, ℎ and c representing 𝐻 
+ and 𝐶𝑎𝐶𝑂3 (𝑠), respectively.  114 

2.2 Flow and transport modeling 115 

Our computational setting is intended to mimic a laboratory scale scenario where a 60 × 24 cm2 116 

two-dimensional flow cell is filled with a porous system formed by a 𝐶𝑎𝐶𝑂3 (𝑠) solid matrix. The 117 

system is initially fully saturated with water and an injection of low pH water takes place across the 118 

upstream side of the cell. To investigate the influence of the dissolution/precipitation reaction on 119 

solute transport, we consider a uniform in the mean groundwater flow, taking place within a two-120 

dimensional domain where the (natural) logarithm of conductivity, 𝑦 = ln (𝑘), is considered as a 121 

zero-mean, second-order stationary random field. The latter is further characterized by an isotropic, 122 

simple exponential, covariance function, with (normalized) correlation length l/L, L being the length 123 

of the domain along the main flow direction. Various degrees of heterogeneity of the system are 124 

analyzed upon considering values of log-conductivity variance 𝜎0
2 = [1, 3, 5], subscript 0 denoting 125 

that these values refer to the initially generated conductivity distributions (i.e., prior to the occurrence 126 

of reactions). The domain is discretized through 300×120 elements of uniform size Δ = 0.2 cm, 127 



4 

 

yielding a field size of 60 × 24 cm2. Each field is synthetically generated through the widely tested 128 

sequential Gaussian simulator GCOSIM3D (Gómez-Hernández & Journel, 1993) and is characterized 129 

by l/L = 0.016. This yields a value of Δ/l = 0.2, which is deemed adequate to capture the local features 130 

of the covariance of 𝑦 and their impact on the main statistics of the velocity field and travel times 131 

(Ababou et al., 1989; Riva et al., 2009). We note that, while our study is representative of a laboratory 132 

scale analysis, the dimensions of the domain have no particular implication and they are only selected 133 

to ensure a meaningful description of the correlation structure that is included in the initially generated 134 

conductivity fields. 135 

For each value of 𝜎0
2, 20 random realizations of 𝑦 are generated, each being then subject to a 136 

deterministic pressure drop (ΔH = 100cm) between the inlet (left) and the outlet (right) sides. The 137 

local distribution of fluid velocity is computed through 138 

𝛻 ⋅ 𝒒(𝒙) = 0; 𝒒(𝒙) = −𝑘(𝒙) ⋅ 𝛻ℎ(𝒙) (3) 139 

where 𝒒(𝒙) is the local Darcy flux, vector 𝒙 corresponding to spatial location. The local fluid velocity 140 

field is then obtained as 𝒗 = 𝒒/𝜃, a constant initial porosity θ = 0.4 being here considered for the 141 

porous medium. 142 

Solute transport is then simulated across each conductivity field by a particle tracking approach 143 

(Le Borgne et al., 2008). A number of 105 ℎ particles (see (2)), which is selected to represent a full 144 

pore volume (whose magnitude is evaluated through the initial condition, i.e., before porosity and 145 

permeability are altered by the reactive processes) at constant pH = 3.5, is divided by the domain 146 

length and multiplied by the mean velocity (�̂� , as evaluated from (4) across the whole domain). A 147 

total amount of particles evaluated as 𝐼𝑛𝑡𝑒𝑔𝑒𝑟(105/𝐿 ∙ Δ𝑡 ∙ �̂�) is then injected into the system at 148 

regular time intervals (Δ𝑡 = 0.1 min). Particles are injected at the very beginning of each time step Δ𝑡 149 

and are flux-weighted according to the conductivity distribution at the inlet. The particles representing 150 

a full pore volume correspond to 𝑀𝐻 
+ = 10.79 moles of 𝐻 

+, the same amount being injected across 151 

the simulation course to obtain a constant pH = 3.5 in the injected fluid, while absence of ℎ particles 152 

is taken to correspond to pH = 8. We then evaluate the pH value (or 𝐻 
+ molar mass) associated with 153 

each ℎ particle by dividing the total number of 𝐻 
+ moles required to obtain a pH = 3.5 (i.e., 10.79 154 

mol of 𝐻 
+) by the pore volume (as represented by 105 ℎ particles). 155 

The upper and lower boundaries of the domain are reflective while the outlet boundary is 156 

absorbing. Particle migration is simulated through 157 

𝒅 = 𝒗[𝒙(𝑡𝑘)]δ𝑡 + 𝒅𝐷 (4) 158 

where d is particle displacement, x(tk) is the vector identifying spatial coordinates of particle location 159 

at time tk, v is fluid velocity at x(tk), δt = δs/v is the temporal displacement magnitude (v is the norm 160 

of v), and 𝒅𝐷 is the diffusive displacement. The latter is evaluated as dD = N[0,1]√2𝐷mδt, where 161 

N[0,1] represents a two-dimensional vector of random variables, whose entries are mutually 162 

independent and sampled from a Gaussian distribution with zero mean and unit variance, 𝐷m = 10-5 163 

cm2/min representing diffusion. The value of 𝛿𝑠 is selected to be an order of magnitude less than Δ, 164 

to accurately sample the velocity variability within a conductivity block. It is noted that, while taking 165 

into account pore-scale processes within a continuum-scale model through a local scale dispersion 166 

could be a modeling option, this would add an additional level of complexity to our numerical 167 

simulation without modifying the key elements of our work, which is focused on the interaction 168 

between flow patterns and reactive processes. In this context, our modeling choice is to represent 169 

macro-dispersive effects through averaging (in a multi-realization context) the effect of fluctuations 170 
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of velocity arising between diverse realizations of the conductivity field. Consistent with this, we rely 171 

on a constant and isotropic diffusion coefficient that can be associated with an advection-dominated 172 

transport regime (as quantified in terms of a Péclet number, as seen in the following). This choice is 173 

also consistent with previous works (e.g., Aquino and Bolster, 2017; Wright et al., 2021). 174 

Coupling between particle evolution and the geochemical setup illustrated in Section 2.1 is 175 

achieved in two steps. First, we advance all particles according to the displacement mechanism 176 

described above. Second, we satisfy the equilibrium condition (2) by equilibrating both 𝑐𝑜 and ℎ 177 

within each cell, leading to precipitation or dissolution of a calcite mineral. The calcite volume to 178 

mole ratio is taken as 𝑀𝐶𝑎𝐶𝑂3
= 37 

𝑐𝑚3

𝑚𝑜𝑙
 (Morse & Mackenzie, 1993) and the equilibrium between ℎ 179 

and 𝑐𝑜 particles (according to (2)) leads to a local precipitation (or dissolution) of the solid. We update 180 

in time the spatial distribution of porosity assuming that it is characterized by a uniform change within 181 

each individual domain cell. We finally update conductivity through the Kozeny-Carman (KC) 182 

formulation 183 

𝑘(𝑎𝑟)𝑖𝑗 = 𝑘(𝑏𝑟)𝑖𝑗 ∙
𝜃(𝑎𝑟)𝑖𝑗

3

(1−𝜃(𝑎𝑟)𝑖𝑗)
2 ∙

(1−𝜃(𝑏𝑟)𝑖𝑗)
2

𝜃(𝑏𝑟)𝑖𝑗
3  ; 𝜃(𝑎𝑟)𝑖𝑗 =  𝜃(𝑏𝑟)𝑖𝑗(1 ∓ 𝑀𝐶𝑎𝐶𝑂3

∙ 𝑀𝐻 
+) (5) 184 

where 𝑘(𝑎𝑟)𝑖𝑗 and 𝜃(𝑎𝑟)𝑖𝑗  are conductivity and porosity, respectively, after the reaction (𝑎𝑟) has 185 

taken place, while 𝑘(𝑏𝑟)𝑖𝑗 and 𝜃(𝑏𝑟)𝑖𝑗 are their counterparts before the reaction is observed, 186 

subscripts i and j being identifiers of a given cell. The process is repeated for each particle in each of 187 

the cells until an equilibrium between 𝑐𝑜 and ℎ is reached. We set an upper and a lower bound of 0.1 188 

and 0.9, respectively, for porosity, to avoid the occurrence of unphysical porosity values. These 189 

constraints are set for consistency with our assumptions, i.e., to consider Darcy flow across the porous 190 

domain. A complete clogging (or opening) of a void space would require a different mathematical 191 

and conceptual treatment, which is beyond the scope of our study. Precipitation is treated numerically 192 

in a corresponding way.  193 

We numerically calculate the updated local head and fluid velocity distributions from (4) at 194 

time intervals of 10 Δt, to reduce constraints associated with computational costs. The computational 195 

cost of each realization is between 1~3 days (depending on the value of 𝜎0
2), upon relying on a 16 196 

Xeon 2.6 Ghz processor with 64 GB RAM. With reference to the sensitivity of the results to the 197 

numerical parameters, we note that: (a) when considering single realizations, the results showed only 198 

minute sensitivity to increasing the number of particles by a factor of 10 (less than 3% difference in 199 

the results was observed); (b) results display a slightly larger sensitivity to the time step, otherwise 200 

resulting in a difference of less than about 5% in the amount of reaction when decreasing the time 201 

interval by an order of magnitude; and (c) preliminary analyses aimed at assessing possibe influences 202 

of the grid size on the key results of the study imbued us with confidence about the quality of the 203 

results obtained with the grid size employed in the study (details not shown), which we select as good 204 

compromise between computational accuracy and execution time constraints, in light of our 205 

objectives. 206 

The updated conductivity field is extracted and stored at the above mentioned regular intervals 207 

of 10 Δ𝑡. Transport of a non-reactive solute pulse is then simulated across each of these updated fields 208 

to capture the temporal evolution of the key parameters driving effective transport (see Section 2.3). 209 

While noting that natural porous media can exhibit complex relationships between permeability and 210 

porosity (Luquot & Gouze, 2009), which may not always be interpreted through the KC model (6), 211 

we employ the latter formulation because it is considered as a reference model in the literature and 212 
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can serve as a proxy for alternative improved parameterizations (Erol et al., 2017). We also recall that 213 

we consider local equilibrium, this choice being consistent with the specific objective of this work 214 

which is related to the characterization of transport under dynamic evolution of continuum-scale 215 

quantities such as conductivity, rather than being focused on a detailed characterization of the effects 216 

of the reactive process on the pore-scale structure (as reflected, e.g., by local changes of specific 217 

surface area). 218 

2.3 Quantities of interest 219 

The workflow described in Section 2.2 enables one to extract computationally-based quantities 220 

employed to characterize the analyzed reactive transport setup. As stated in Section 2.2, we simulate 221 

a tracer test within the original fields as well as within those modified by precipitation/dissolution. 222 

Particles are displaced through the action of advection and diffusion following a pulse (flux-weighted) 223 

injection at the inlet. These non-reactive transport simulations are performed to assess base values of 224 

parameters characterizing solute transport (a) prior to starting the reactive transport simulation as well 225 

as (b) at specific times after reaction changed the field. The empirical PDF of particle waiting times 226 

is assessed from the corresponding histogram starting by evaluating particle waiting times within a 227 

given domain cell through the inverse of the particle velocity computed at each time step multiplied 228 

by the cell length and weighted by the number of particles visiting the cell. This PDF is then used to 229 

estimate the parameters of the TPL model 230 

𝜓(𝑡𝑤) =  
𝑛

𝑡1

exp (−𝑡/𝑡2)

(1+
𝑡

𝑡1
)

1+𝛽  (6) 231 

where 𝑡𝑤 is the waiting time of a particle within a given domain cell, 𝑡1, 𝑡2, and 𝛽 are model 232 

calibration parameters, which are estimated through a standard least square technique. Note that 233 

previous results have shown that the parameters obtained from (6) can be readily used to interpret 234 

breakthrough curves associated with non-reactive solutes (Edery et al., 2014). 235 

The velocity fields are examined upon computing the evolution of the velocity and conductivity 236 

fields statistics, as described in the following. Let us consider a discrete field of a generic quantity 𝑧𝑖𝑗 237 

evaluated in a given cell 𝑖𝑗. In the particle tracking numerical simulations we quantify 𝑛𝑖𝑗(𝑡) as the 238 

number of particles that have visited cell 𝑖𝑗 along the simulation up to a given time 𝑡. Thus, we 239 

evaluate two relative frequency (or empirical probability) distributions, i.e., 𝑓(𝑧𝑖𝑗) and 𝑓(𝑛𝑧𝑖𝑗), 240 

hereafter termed as unweighted and weighted distribution of the variable 𝑧𝑖𝑗, respectively. We define 241 

the weighted variable 𝑛𝑧𝑖𝑗(𝑡) =  𝑛𝑖𝑗(𝑡)𝑧𝑖𝑗/�̅�(𝑡), where �̅� is the average value of 𝑛𝑖𝑗. Note that the 242 

adopted weighting scheme corresponds to weighting 𝑧𝑖𝑗 by the solute mass distribution. Average 243 

values of the weighted and unweighted distributions (hereafter denoted as 𝑧̅ and 𝑛𝑧̅̅ ̅, respectively) can 244 

then be evaluated. In the following we perform particle weighting in the non-reactive as well as in 245 

the reactive transport scenarios. Distribution weighting by reactive particles is indicated by 𝑛𝑅, 246 

meaning that weighting is performed based on the reactive transport simulations (i.e., considering ℎ 247 

and 𝑐𝑜 particles as explained above). The plain symbol 𝑛 indicates weighting by non-reactive 248 

particles, employed to simulate conservative tracer tests as detailed above. The variable 𝑧𝑖𝑗 is taken 249 

to correspond to either the cell log-conductivity 𝑦𝑖𝑗 or fluid velocity 𝑣𝑖𝑗 in the results illustrated in 250 

Section 3. 251 

3.Results 252 
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We start our analyses by simulating transport of a non-reactive tracer across the generated 253 

heterogeneous conductivity domains. As log-conductivity variance increases, the range of 254 

conductivity values naturally increases, this being reflected in the distribution 𝑓(𝑦𝑖𝑗) (see, e.g., Figure 255 

1 a-c (blue circles)). The shape of weighted conductivity distributions, 𝑓(𝑛𝑦𝑖𝑗), differs from the one 256 

of 𝑓(𝑦𝑖𝑗), consistent with the observation that particles are chiefly channelled towards preferential 257 

flow pathways. The latter distributions tend to be shifted towards high conductivity values and are 258 

characterized by an enhanced mean conductivity value as compared against their generated 259 

(unweighted) counterparts (see conductivity mean and weighted mean values in Table 1, and the 260 

results corresponding to the blue and red circles depicted in Figure 1 a-c). This shift is imprinted onto 261 

the probability density function (PDF) of the waiting times and onto its associated TPL parameters 262 

(see Figure 2 a-c), consistent with prior studies (Edery et al., 2014; Edery, Geiger, et al., 2016; Edery, 263 

2020). We then simulate reactive transport across the collection of generated fields, allowing for 264 

precipitation (and/or dissolution) of calcite and assessing the evolution of the conductivity field 265 

according to the Kozeny-Carman formulation introduced in Section 2. Conductivity, head, and 266 

velocity fields, as well as particle visitations, 𝑛𝑖𝑗(𝑡), associated with species ℎ and 𝑐𝑜 are sampled 267 

across time. 268 

After 200 𝑡 have elapsed (corresponding to a total simulation time of 20 min, i.e., a full pore 269 

volume) a set of ℎ particles connecting the inlet to the outlet of the system is clearly visible (see 270 

Figure 3 a and b), these particles being non-uniformly distributed in space. Figure 3a and b depict a 271 

heat map of the ℎ particles distribution at time t = 20 min (i.e., corresponding to the first pore volume), 272 

clearly evidencing the emergence of regions of preferential flow (PF). We also note that the number 273 

of ℎ particles density (corresponding to concentration) tends to decrease with increasing distance 274 

from the inlet, these being replaced by 𝑐𝑜 particles, consistent with the observation that they are 275 

consumed during the course of the reactive process which induces dissolution of the host solid matrix. 276 

The ℎ and 𝑐𝑜 particles attain equilibrium within cells away from the inlet. As such, reaction can only 277 

take place if a particle leaves (or enters) a cell under the action of advection and/or diffusion leading 278 

to a new equilibrium state. When examining the alteration of conductivities due to the 279 

dissolution/precipitation reaction, we note that dissolution (corresponding to an increase of 280 

permeability values) is primarily tied to the preferential flow pathways. Otherwise, precipitation is 281 

seen to take place in regions close (on average) to these pathways. The highest strength of 282 

precipitation is observed in the proximity of the preferential pathways, to then decrease with distance 283 

from these. 284 

Figures 3c and e depict the regions where conductivity has increased (due to dissolution) or 285 

decreased (due to precipitation), respectively. The ℎ particles invading the domain closely follow the 286 

PFs displaying a fingering pattern, leading to a corresponding dissolution pattern associated with 287 

locally increased conductivities. Since conductivity values along the PFs are typically higher (on 288 

average), dissolution is increasing these conductivities even further, giving rise to a self-sustained 289 

enhancing mechanism. The concentration of ℎ particles reaches a local (i.e., within a given cell) 290 

equilibrium with the produced 𝑐𝑜 particles. Hence, dissolution will take place where transport induces 291 

shifts in concentration that need to be compensated by the dissolution/precipitation process to 292 

maintain local equilibrium. Such scenarios can be attained (i) by 𝑐𝑜 particles exiting the preferential 293 

flow pathways due to the action of diffusion (i.e., they leave locations where concentration of ℎ 294 

particles is large upon diffusing towards higher pH regions where they precipitate) or (ii) by ℎ 295 

particles traveling through the fast preferential paths and advancing through these. Figure 3g and h 296 

display regions with dominating dissolution or precipitation for cells outside and within the PFs, 297 
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respectively. Here cells associated with PFs are identified upon relying on particle visitations 298 

following Edery et al. (2014). Dissolution dominates within the PFs (as indicated by the red cells in 299 

Figure 3h), because ℎ particles are injected through a flux-weighted boundary condition. On the other 300 

hand, the produced 𝑐𝑜 particles do not precipitate at locations corresponding to the high ℎ 301 

concentration residing in the PFs. These may precipitate away from these regions, where they 302 

experience low concentrations of ℎ particles. Thus, we observe a reduction of conductivity taking 303 

place in regions adjacent to the PFs (Figure 3b and g). In summary, our computational results 304 

document an increase of conductivity along the preferential pathways jointly with a conductivity 305 

reduction within regions close to these and along directions approximately normal to them. 306 

Changes of conductivity values ensuing precipitation/dissolution are clearly visible by the 307 

broadening of the unweighted log-conductivity distribution 𝑓(𝑦𝑖𝑗), see Figure 1d-f, and Figure 1g-i 308 

(blue circles), evaluated at times t = 10 and t = 20 min, respectively. The reaction dynamics leads to 309 

a conductivity field characterized by a slightly increased average value, given that our computational 310 

analyses entail the injection of an acid fluid into the system (see Table 1 for details). Detailed 311 

inspection of Figure 1d and f reveals that precipitation takes place across a slightly larger area than 312 

dissolution, i.e. values of the frequency distribution 𝑓(𝑦𝑖𝑗) associated with low conductivities tend to 313 

increase at a larger rate rather than those corresponding to high conductivities (the left tail of the 314 

distributions becomes heavier than the right tail with the progress of reaction). The 315 

weighted (𝑓(𝑛𝑦𝑖𝑗)) and unweighted (𝑓(𝑦𝑖𝑗)) distributions (red and blue circles in Figure 1d-f, and 316 

Figure 1g-i at time t = 10 and t = 20 min, respectively) are visibly broadening, being associated with 317 

an average conductivity which is higher than the one of the originally generated conductivity domains 318 

(see Table 1). As stated above, dissolution is focused along the preferential pathways, which comprise 319 

an area of limited extent with respect to the whole field.  320 

The above documented mechanism and its signature on the weighted and unweighted 321 

conductivity frequency distributions are sensitive to the initial log-conductivity variance, 𝜎0
2. When 322 

considering both distributions 𝑓(𝑦𝑖𝑗) and 𝑓(𝑛𝑦𝑖𝑗), associated with the case 𝜎0
2 = 1, the distributions 323 

variance are seen to increase in time, as compared to the values attained at the beginning of the 324 

simulation (i.e., prior to reaction; see Figure 1a to d and g, and Table 1). Otherwise, as the initial 325 

heterogeneity increases (see, e.g., 𝜎0
2 = 3,5) mean and variance associated with the weighted and 326 

unweighted conductivity distributions display only minor changes (approximately 10%) across the 327 

temporal window considered. The conductivity fields characterized by the lowest 𝜎0
2 value are 328 

associated with preferential pathways that are not starkly recognizable when analyzed under non-329 

reactive transport conditions. These channels become more clearly distinguishable as reactions induce 330 

an increase of the conductivities along the PFs. At the same time, precipitation causes a decrease of 331 

the conductivity outside the PF. This leads to an increased importance of the left tail of 𝑓(𝑦𝑖𝑗), 332 

corresponding to an increase of low conductivity values (see Figure 1, left middle and bottom rows). 333 

With reference to the highest conductivity variance analyzed, the reaction patterns for the 334 

precipitation and dissolution lead to a smaller relative change between conductivity frequency 335 

distributions evaluated prior and after the reaction. Relative changes between the unweighted and 336 

weighted conductivity frequency distributions (including the ensuing mean and variance listed in 337 

Table 1) evaluated before and after the reaction are less pronounced as the variance of the generated 338 

conductivity field increases (see Figure 1 middle and right columns and Table 1). This is related to 339 

the observation that, as log-conductivity variance increases, preferential pathways in the originally 340 

generated field become markedly more distinct. Thus, relative differences between unweighted and 341 

weighted conductivity histograms are seen to diminish in time because the flow field is already 342 
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organized according to well-identified pathways and tends to preserve its initial pattern (Figure 1d-f, 343 

and Figure 1g-i at time t = 10 and t = 20 min, respectively). Note that low order statistics (i.e., mean 344 

and variance) of velocity and conductivity display only a minute evolution with the progress of 345 

reaction, in spite of the relevant changes exhibited by the tails of the frequency distributions (see 346 

Figure 1) for all considered values of 𝜎0
2, the latter feature being relevant when addressing non-347 

Fickian transport, as further discussed below.  348 

As stated in Section 2.2, the conductivity fields altered through precipitation/dissolution and 349 

extracted at regular time intervals of 10 Δ𝑡 are subject to non-reactive transport analyses and the 350 

ensuing evolution of the parameters of the TPL model (6) is analyzed. Key results of these analyses 351 

are listed in Table 1 with reference to the original (unaltered) conductivity fields and at the final 352 

simulation time (i.e., at time t = 200 𝑡). Analysis of the results associated with transport across the 353 

log-conductivity field characterized by the smallest original variance (i.e., 𝜎0
2 = 1) and listed in Table 354 

1 indicates that the changes of the sample log-conductivity PDF induced by the progress of the 355 

reaction are reflected by the parameters of the TPL model (6). These transition from estimated values 356 

corresponding to an effective Fickian transport regime (corresponding to 𝛽 = 2, see also Figure 2a) 357 

to values denoting a highly non-Fickian effective transport setting, manifested by the widening of the 358 

support of the waiting time PDF 𝜓(𝑡𝑤) (see also Figure 2d and 2g, for results obtained at t = 10 and 359 

20 min, respectively). Effective transport in the domain with the highest variance (i.e., 𝜎0
2 = 5; see 360 

Table 1) is characterized by estimated TPL parameters corresponding to a non-Fickian signature also 361 

prior to the occurrence of precipitation/dissolution (Figure 2c). Such a signature is then further 362 

enhanced after reaction has altered the conductivity field, yet displaying a less marked evolution of 363 

the shape of the 𝜓(𝑡𝑤) as compared to the case 𝜎0
2 = 1 (see also Figure 2f and i for t = 10 and 20 min, 364 

respectively). 365 

The observed temporal changes in conductivity and the ensuing local dynamics of transport 366 

pattern yield global variations in the reaction rate. Consistent with prior studies and the imposed 367 

boundary conditions, the mean velocity associated with the originally generated conductivity domains 368 

increases with 𝜎0
2. As the reaction progresses and the conductivity fields change, the increased area 369 

subject to dissolution leads to a slight increase of the mean velocity for all of the 𝜎0
2 analyzed. To 370 

analyze the influence of the preferential flow on the velocity that is affecting particle transport, we 371 

consider the average value 𝑛𝑅𝑣̅̅ ̅̅ ̅, evaluated upon considering weighting by the number of reactive 372 

particles, 𝑛𝑅, visiting each cell (where the term reactive particles denotes both ℎ and 𝑐𝑜 particles 373 

employed in the context of the reactive transport simulations). The weighted average velocity displays 374 

an initial increase over time due to the increase of conductivity within the preferential pathways. 375 

When considering the relative change across the whole simulation time, values of the temporal 376 

increase of 𝑛𝑅𝑣̅̅ ̅̅ ̅ are similar across the three heterogeneity levels examined, i.e., they are seemingly 377 

independent of 𝜎0
2. However, results in Figure 4a also reveal that the average velocity 𝑛𝑅𝑣̅̅ ̅̅ ̅ displays 378 

distinct temporal histories depending on 𝜎0
2. In particular, the value of 𝑛𝑅𝑣̅̅ ̅̅ ̅ tends to attain an 379 

asymptotic value at time 𝑡 ≈ 7 min for 𝜎0
2 = 5, while showing a sustained increasing trend for 𝜎0

2 =380 

1. This result suggests that the feedback between reaction and flow patterns reaches an asymptotic 381 

condition faster in systems characterized by higher heterogeneity. 382 

The temporal evolution of the velocity fields due to the precipitation/dissolution reaction and 383 

the resulting conductivity changes lead to time-dependent reaction pattern and reaction rates. The 384 

Damköhler number is infinite on a local scale in our computational analyses, because the reaction is 385 

instantaneous. When considering the entire system, transport processes induce a net overall reaction 386 

rate that can be quantified as the sum of the total conductivity changes across time 387 
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(𝑆𝑢𝑚(|∆𝑘𝑖𝑗|) [
𝑐𝑚

𝑠𝑒𝑐
]). The latter incorporates both positive and negative changes of hydraulic 388 

conductivity and therefore quantifies the overall intensity of precipitation and dissolution processes 389 

in the domain. The quantity 𝑆𝑢𝑚(|∆𝑘𝑖𝑗|) is evaluated across all realizations for each of the 𝜎0
2 values 390 

considered and is depicted in Figure 4b as a function of time. These results indicate that the overall 391 

reaction rate increases in time with a similar rate for all considered values of 𝜎0
2(figure 4b) at early 392 

times. The observed increase is consistent with the initially advancing of the reaction front across the 393 

domain. We observe that the reactive processes magnitude is proportional to 𝜎0
2. For low initial levels 394 

of heterogeneity, conductivity values along the preferential pathways are closer to the average field 395 

conductivity than what can be observed for the highly heterogeneous domains. As such, the portion 396 

of the domain where precipitation or dissolution can take place increases at a rate proportional to 𝜎0
2. 397 

As the reaction front reaches the domain outlet, the dissolving front found in the PF leaves the domain. 398 

Hence, the global variation in conductivity (which is proportional to the magnitude of reactive 399 

processes) tends towards an asymptotic value, corresponding to the diffusion-controlled solute 400 

exchange along a direction transverse to the preferential pathways (see Figure 3). In agreement with 401 

results shown in Figure 4a, this transition towards an asymptotic regime takes place earlier for larger 402 

values of 𝜎0
2, while a smaller initial heterogeneity implies a longer transient period. 403 

4.Conclusions 404 

Our computational study tackles the quantitative characterization of the feedbacks between 405 

precipitation and dissolution reaction dynamics taking place in randomly heterogenous conductivity 406 

fields associated with various degrees of spatial heterogeneity. Our work leads to the following key 407 

conclusions. 408 

• Joint occurrence of precipitation and dissolution is tightly coupled with the existence of 409 

preferential flow pathways. Conductivity increase due to the dissolution reaction along such 410 

paths leads to enhance particle migration along these. The dominance of preexisting 411 

preferential flow regions on the (reactive) transport pattern across the field is therefore further 412 

reenforced and self-sustained across time. At the same time, diffusion promotes displacement 413 

of particles, leading to precipitation (and hence a progressive reduction over time of local 414 

conductivities) at locations in the proximity of these. 415 

• Reactive processes yield an increase over time of the range of conductivity values across the 416 

domain, eventually leading to a widening of the support of solute waiting times and 417 

conductivity distributions. The clear separation between regions where dissolution or 418 

precipitation takes place is reflected in sample distributions of conductivity which tend to 419 

become visibly left skewed with time, a feature which is associated with precipitation taking 420 

place in low conductivity cells located in the proximity of existing preferential flow 421 

pathways. 422 

• Solute mass weighted conductivity and velocity distributions are at the basis of our 423 

characterization of the parameters of a TPL model which is at the core of the characterization 424 

of the probability density function of particle travel/waiting times and enables us to capture 425 

effective (upscaled) non-Fickian transport behaviors. With the progress of 426 

precipitation/dissolution reactions, transport shifts towards an increasingly acute non-Fickian 427 

effective behavior (see Figure 2 and ensuing parameter values listed in Table 1). The latter is 428 

then seen as a direct outcome of the documented feedbacks between transport and reactions 429 

taking place in heterogeneous porous media. The evolution of TPL model parameters towards 430 

a pronounced non-Fickian behavior is associated with only minor changes of the mean and 431 

variance of log-conductivity values. This result is consistent with the conceptual picture that 432 
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the tails of flux and hydraulic conductivity distributions carry critical information to 433 

characterize transport while displaying only a minor effect on low order statistics associated 434 

with these quantities. Our results suggest that this feature must be acknowledged to properly 435 

characterize transport in the presence of precipitation/dissolution. In this context, we recall 436 

that our study is not aimed at exploring the skill of any specific transport model to interpret 437 

non-reactive transport across the conductivity fields prior and/or after reaction takes place, 438 

this particular analysis being deferred to a future study. 439 

• We observe the emergence of an asymptotic regime in highly heterogeneous systems, where 440 

the (averaged) solute velocity attains a constant value even in the presence of reaction. This 441 

suggests the occurrence of an equilibrium state between reactive processes and transport 442 

under the flow conditions analyzed. This regime is attained because the effects of locally 443 

occurring precipitation and dissolution balance each other at the overall scale of the system, 444 

so that the ensuing (ensemble-averaged) solute velocity remains unaffected. The time 445 

required to attain such an asymptotic state increases with decreasing initial heterogeneity of 446 

the conductivity field, thus suggesting that pre-asymptotic behaviors may be more relevant 447 

in initially (i.e., prior to reaction taking place) homogeneous systems. 448 

Our results are based on numerical simulations and may be used to inform upscaling 449 

approaches to capture the pre-asymptotic and asymptotic dynamics of reactive transport in 450 

heterogeneous systems through simplified models. Future computational studies might also include 451 

an assessment of the importance of initial/boundary conditions and/or of solute injection mode on the 452 

emergence of non-Fickian transport features, with special emphasis on locations close to the inlet 453 

boundary which might then have an impact on the overall solute residence times and related statistics. 454 

 455 

 𝜎0
2 = 1 𝜎0

2 = 3 𝜎0
2 = 5 

t [min] 0 10 20 0 10 20 0 10 20 

�̅� 0.15 0.16 0.17 0.45 0.46 0.46 0.66 0.67 0.69 

𝑛𝑦̅̅̅̅  0.32 0.33 0.35 0.83 0.84 0.86 1.20 1.19 1.21 

𝜎2(𝑦𝑖𝑗) 0.97 1.20 1.37 2.80 3.10 3.26 4.60 4.96 5.11 

𝜎2(𝑛𝑦𝑖𝑗) 0.99 1.21 1.41 2.80 3.07 3.21 4.60 4.85 5.00 

𝑣𝑇̅̅ ̅ 0.36 0.37 0.38 0.41 0.42 0.43 0.45 0.46 0.47 

𝑛𝑣𝑇̅̅ ̅̅ ̅ 0.45 0.47 0.50 0.67 0.70 0.72 0.86 0.88 0.90 

β 2.00 1.40 1.05 1.70 1.20 0.95 1.40 0.80 0.60 

t1 0.10 0.09 0.06 0.10 0.07 0.03 0.08 0.03 0.01 

Log10 (t2) 1.0 2.5 2.8 1.5 2.2 2.9 1.6 2.5 3.0 
 456 

Table 1. Values of mean and variance of unweighted and weighted log-conductivity distributions and estimated parameters of the 457 
effected TPL model obtained through calibration of (6) against the computed distributions of particle waiting times in the domain 458 
cells. Results are listed for the three values of the initial log-conductivity variance (𝜎0

2) and are obtained from non-reactive transport 459 
simulations performed across conductivity fields resulting from reactive transport simulations at selected times. 460 

 461 
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 462 

 Figure 1. Relative frequency distributions 𝑓(𝑦𝑖𝑗) (blue circles) and 𝑓(𝑛𝑦𝑖𝑗) (red circles) for a tracer test performed on the 463 
conductivty field prior to reaction and those associated with reactive simulation times of 10 and 20 minutes. Results correspond to 464 
𝜎0

2  = 1,3,5 (left, middle and right columns, respectively) and to t = (a-c) 0, (d-f) 10, and (g-i) 20 min. Mean and variance of these 465 
distributions are listed in Table 1. 466 

 467 

 468 
Figure 2. Sample and modeled probability density function 𝜓(𝑡𝑤) of particle waiting times for a tracer test performed on the 469 
conductivty field prior to reaction those associated with reactive simulation times of 10 and 20 minutes. Results correspond to 𝜎0

2  =470 
1, 3, 5 (left, middle and right columns, respectively) and t = (a-c) 0, (d-f) 10 min, and (g-i) 20 min. Values of TPL parameters 471 
estimated by calibrating model (6) on the sample distributions are listed in Table 1. 472 
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 473 

 474 
Figure 3. Heat map representing (a,b) 𝐿𝑜𝑔10(𝑛𝑅𝑖𝑗), i.e., the number of ℎ particles visiting each cell for 𝜎0

2  = 1 𝑎𝑛𝑑 5, respectively, 475 
and (c-f) relative change in hydraulic conductivity at time t = 20 min (corresponding to the first pore volume) with respect to the 476 
initially generated values for 𝜎0

2  = 1 (c and e) and 𝜎0
2  = 5 (d and f). Panels c and d display positive changes in conductivity with 477 

respect to the initial field, while panels e and f display negative changes in conductivity, both positive and negative changes being 478 
represented in log-scale.  Results correspond to a selected realizaton of the the log-conductivity fields. The highlighted box 479 
illustrates the separation between regions where precipitation or dissolution take place.  Panels g and h display cells associated with 480 
a net decrease (green) and increase (red) of conductivity for cells outside (g) or within the PF (h), for 𝜎0

2  = 1. 481 

 482 

 483 

Figure 4. Temporal evolution of (a) the weighted mean velocity 𝑛𝑅𝑣̅̅ ̅̅ ̅ (open symbols) and (b) the sum of all conductivity changes over 484 
1 minut . Results correspond to 𝜎0

2  = 1 (circles), 3 (squares), and 5 (diamond). 485 
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