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Abstract. The study of climate change impact on water resources has accelerated worldwide over the past two decades. An 

important component of such studies is the bias correction step, which accounts for spatiotemporal biases present in climate 10 

model outputs over a reference period, and which allows realistic streamflow simulations using future climate scenarios. Most 

of the literature on bias correction focuses on daily scale climate model temporal resolution. However, a large amount of 

regional and global climate simulations are becoming increasingly available at the sub-daily time step, and even extend to the 

hourly scale, with convection-permitting models exploring sub-hourly time resolution.  Recent studies have shown that the 

diurnal cycle of variables simulated by climate models is also biased, which raises issues respecting the necessity (or not) of 15 

correcting such biases prior to generating streamflows at the sub-daily time scale. This paper investigates the impact of bias-

correcting the diurnal cycle of climate model outputs on the computation of streamflow over 133 small to large North American 

catchments. A standard hydrological modeling chain was set up using the temperature and precipitation outputs from a high 

spatial (12-km0.11o) and temporal (1-hour) regional climate model large ensemble (ClimEx-LE).  Two bias-corrected time 

series were generated using a multivariate quantile mapping method, with and without correction of the diurnal cycles of 20 

temperature and precipitation.  The impact of this correction was evaluated on three small (<500 km2), medium and large 

(>1000 km2) surface area catchment size classes. Results show relatively small (3 to 5%) but systematic improvements 

decreases in the relative error of most simulated flow quantiles (4-5% in the relative error of mean and different quantiles of 

flow including Q95 and Q99 and also flood with 20 years return period) of streamflow simulations when bias-correcting the 

diurnal cycle of precipitation and temperature. There was a clear relationship with catchment size, with improvements being 25 

most noticeable on the small catchments. The diurnal cycle correction allowed for hydrological simulations to accurately 

represent the diurnal cycle of summer streamflow onin small catchments. Bias-correcting the diurnal cycle of precipitation and 

temperature is therefore recommended when conducting impact studies at the sub-daily time scale on small catchments. 
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1 Introduction  

The potential impacts of climate change have become a crucial concern for public safety, the environment and the economy 35 

of the twenty-first century (Raza et al., 2019; Walsh et al., 2019; Vogel et al., 2019). There is evidence that the hydrological 

cycle has already been significantly influenced by the changing climate in many regions, and it has become an important issue 

for water resource managers and policy makers (Yira et al., 2017; Zhao et al., 2019; Qiu et al., 2019). In particular, it is 

expected that the frequency of extreme precipitation and convective storms will increase at the local and regional scales, and 

particularly in mid to high latitudes (Martel et al., 2020; Pfahl et al., 2017; Myhre et al., 2019; Sarhadi and Soulis, 2017; 40 

Barbero et al., 2017; Prein et al., 2017). Changes in extreme precipitation and patterns of convective storms will in turn impact 

flood risk (Quintero et al., 2018; Prein et al., 2017; Westra et al., 2014). To properly resolve extreme summer-fall convective 

precipitation, a sub-daily modelling time step is required for most applications (Sunyer et al., 2017; Beranová et al., 2018; Bao 

et al., 2017). In hydrology, this is  particularly true for  small watersheds, which have a sub-daily response time, and are most 

likely to be affected by the anticipated sub-daily amplification of precipitation extremes (Yuan et al., 2019). In order to better 45 

adapt to the consequences of a changing climate and to mitigate the future flood risk related to precipitation extremes on small 

watersheds, it is critical to consider a sub-daily time step for the entire hydro-climatic modeling chain. (Blenkinsop et al., 2018; 

Beranová et al., 2018) ). 

General circulation models (GCMs) and Earth System Models (ESMs) are invaluable tools for simulating the present and 

future climates  (Panday et al., 2015; Alfieri et al., 2015). These models do however require substantial computational power 50 

and disk space, which significantly limits both the spatial and temporal resolution at which they can be run, and the frequency 

at which their outputs can be archived. This is particularly the case for GCMs and ESMs which are run at the global scale. 

This explains why output data from these models have typically been limited to a relatively coarse spatial resolution of 100 

km1o (or more)(≥100km), and been archived at the daily time scale. These spatial and temporal resolutions are too coarse to 

allow studying the potential hydrological impacts of climate change on small catchments (Trzaska and Schnarr, 2014; 55 

Bajracharya et al., 2018; Fatichi et al., 2014) 

To overcome this issue, regional climate models (RCMs) have been used to dynamically downscale GCM outputs at a higher 

spatial and temporal resolution over limited area domains. RCMs can better take into account local topography, land sea 

contrast, soil properties, and land cover, which impact surface forcing and physical processes. The spatial resolution of RCMs 

is generally in the range of 12 to 50 km0.1 to 0.5o (10 to 50km), with typical temporal resolutions of 3 to 6 hours, which are 60 

suitable for forcing hydrological models on relatively small catchments. More recently, the use of convection-permitting RCMs 

has bridged the resolution gap to a 0.02o (2 km) or below few kilometers (Van Lipzig and Prein–Nicole, 2015; Chan et al., 
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2014; Kendon et al., 2017). This increase in spatial resolution requires a corresponding increase in temporal resolution (for 

numerical stability), and such models are therefore limited to even smaller computational domains. 

To properly assess climate model uncertainty, several multi-model (GCM and RCM) ensembles (e.g., CMIP5/6, CORDEX) 65 

have been used to address the uncertainty originating from greenhouse gas emission scenarios and structural climate model 

uncertainty. Internal climate variability is a third source of uncertainty, which can be studied with a multi -member ensemble 

from a single climate model and single greenhouse emission scenario. Each member of the ensemble originates from micro 

and macro perturbations to initial conditions (Deser et al., 2012; Deser et al., 2020). Using multi-member ensembles has 

become increasingly popular in the analysis of the impact of internal variability, as well as for exploring the impact of extreme 70 

climate events such as extreme precipitation, since these ensembles provide many ergodic climate realizations from which to 

sample large numbers of extreme events (Zhao et al., 2020; Martel et al., 2020; Shen et al., 2018).   

All global and regional climate model outputs are biased to some extent when compared to observations over a common 

reference horizon. These biases have a complex spatial and temporal structure (Chen et al., 2013b; Maraun, 2016; Ashfaq et 

al., 2010; Wang et al., 2014). Therefore, a bias correction step is considered as a prerequisite for most climate change impact 75 

assessment studies. A wide range of bias correction techniques are available, extending from simple scaling methods to more 

advanced trend-preserving multivariate distribution mapping approaches. There is a significant body of literature on bias 

correction methods and several inter-comparison studies have been published (Fang et al., 2015; Lafon et al., 2013; Chen et 

al., 2013b; Maraun, 2016; Ajaaj et al., 2016; Bárdossy and Pegram, 2011). However, this is no longer true since climate model 

outputs are increasingly available at sub-daily time steps. A very limited number of studies has looked at bias correction of 80 

sub-daily climate model outputs, but the focus has been on correcting sub-daily annual maximum values (e.g. Li et al., 2017; 

Requena et al., 2021).  Annual maximum values are important since they are used to determine the return period of extreme 

events for engineering design .  For example Li et al. (2017) showed that bias correcting the hourly annual maximum rainfall 

was recommended.  However, this literature has essentially been looking at a daily time step. A very limited number of studies 

has looked at bias correction of sub-daily climate model outputs, but the focus has been on correcting sub-daily annual 85 

maximum values (e.g. (Li et al., 2017; Requena et al., 2021). Annual maximum values are important since they are used to 

determine the return period of extreme events for engineering design .  For example Li et al. (2017) showed that bias correcting 

the hourly annual maximum rainfall was recommended., mainly owing to the fact that only a limited number of climate model 

simulations have been available at the sub-daily time scale (Sunyer et al., 2017). However, this is no longer true since climate 

model outputs are increasingly available at sub-daily time steps. It is well recognized that climate model biases are not constant 90 

in time, and as a result, different correction factors are typically computed for each month, or using a moving window across 

a calendar year. It is also known that high-resolution climate models are also biased in the reproduction of the diurnal cycle of 

many variables (Scaff et al., 2019; Bannister et al., 2019). As climate models slowly continue their steady march towards the 

sub-daily resolution, interesting research questions must be tackled. Should we bias-correct the diurnal cycles of climate model 

outputs? If so how? Do we have reliable reference datasets at the sub-daily time scale? Will this even influence the results of 95 

impact studies? 
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To provide an answer to these questions, this paper examines the impact of bias-correcting the diurnal cycle on the hydrology 

of several North American catchments. It also examines how the spatial scale influences the dynamic response of watersheds 

to extreme precipitation. In general, smaller watersheds are more sensitive to intense short-duration storms, whereas 

streamflows from larger catchments are somewhat smoothed by the flood wave propagation routing process. Therefore, in 100 

principle, an accurate representation of the diurnal cycle should be more critical for smaller catchments. To investigate this 

further, a wide range of catchment sizes has been selected.  

This paper is structured into three main sections. The methodology provides an overview of the study area, describes all 

datasets (observations and climate model) and presents the bias correction method chosen to correct the diurnal cycle. Section 

3 presents all results, and section 4 provides a discussion of the main results as well as concluding remarks.  105 

 

 

 2 Material and methods 

2.1 Study Area 

This study was conducted over the eastern United States in a rectangular region within the computational domain of the high-110 

resolution regional climate model used (see section 2.2 below for additional details). As described below, 133 MOPEX 

watersheds were selected based on the criteria of having observed hydrometric and meteorological data with less than 5% of 

missing data over a common 24-year reference period. These watersheds are dispersed across 4 climate zones of the Köppen 

climate classification. The impact of the catchment size is examined in this study by classifying watersheds into three groups:  

less than 500 km2, between 500 and 1000 km2 and more than 1000 km2. Catchments smaller than 500 km2 should have a clear 115 

sub-daily hydrological time response as compared to the larger catchments. Figure 1 presents the centroid location and relative 

size of each catchment. Basic catchment characteristics are presented in Table 1.  

 

Insert Figure 1 here 

 120 

Insert Table 1 here 

 

2.2 Datasets 

All the results presented in this paper are available at the hourly time step. All observations cover the 24-year 1980-2003 

period, which is defined as the reference dataset.  125 
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2.2.1 Observed Data 

Hourly observed precipitation and streamflow data were derived from the Model Parameter Estimation Experiment (MOPEX) 

(Duan et al., 2006). MOPEX hourly precipitation is a catchment-averaged value from the closest weather stations. The MOPEX 

database does not however provide the hourly temperature. Rather than interpolating daily maximum and minimum values to 

the hourly scale, we took hourly temperature data directly from ERA5 reanalysis  (Lindsay et al., 2014). At the catchment 130 

scale,Tarek et al. (2020b) showed that the ERA5 temperature is just as good as estimates derived from weather stations for 

hydrological modeling. The mean of all ERA5 grid points within each catchment was computed for every hour. 

2.2.2 Climate Model Data  

This project uses the ClimEx Large Ensemble (Leduc et al., 2019). The Climate Change and Hydrological EXtremes project 

(ClimEx) is a 50-member regional large ensemble computed using the 5th generation of the Canadian Regional Climate Model 135 

(CRCM5). CRCM5 was used to dynamically downscale the 50 members of the Canadian Earth System Model (v2) large 

ensemble (CanESM2-LE) (Arora et al., 2011) to a 0.11o (12 km) spatial resolution (Leduc et al., 2019; Martel et al., 2017) . 

The temporal resolution of archived ClimEx data is one hour for precipitation and three hours for most other variables. The 

ClimEx ensemble provides a sample of 7500 years, with each member covering the 1951-2100 period under the RCP 8.5 

scenario. In this study, hourly precipitation and 3-hour temperature data were extracted for all grid points within each watershed 140 

over the Climex Northeastern-North-American (NNA) domain. The ClimEx temperature was first interpolated to the hourly 

time step for all grid points by using Piecewise Cubic Hermite Interpolating Polynomials (Fritsch, 1985; Barker and 

Mcdougall, 2020). Precipitation and temperature were then averaged at the catchment scale to be consistent with the observed 

data over the reference period.     

2.3 Bias Correction 145 

The N-dimension multivariate bias correction (MBCn) by Cannon (2018) was selected in this study to correct biases of hourly 

precipitation and temperature. MBCn was chosen because it is arguably the most advanced quantile-based multivariate bias 

correction method available (Meyer et al., 2019; Chen et al., 2018; Su et al., 2020; Cannon et al., 2020).    

 MBCn (Cannon, 2018) is a multivariate generalization of quantile mapping that conveys all aspects of the distribution of 

observation data to the corresponding distribution from a climate model. MBCn preserves the climate model projection trends 150 

for all quantiles, which is a highly desirable property for climate change impact studies (e.g., (Maraun, 2016)) 

 All members of the ClimEx large ensemble were pooled together to compute the bias correction factors for both precipitation 

and temperature. The correction factors were then applied to all the members of the ClimEx ensemble. As discussed by Ayar 

et al. (2021)Ayar et al. (2020) and Chen et al. (2019), doing so preserves the internal variability of the ensemble. This paper is 

not directly concerned with the study of internal variability, but using a large ensemble allows the accurate empirical 155 
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computation of extreme events with very large return periods (Martel et al., 2020). Since climate model biases are not constant 

across the annual cycle, different correction factors were computed for each month of the year.   

In observance of the main objective of the present study, the MBCn bias correction method was applied in two different ways: 

1.  Standard Bias Correction (SBC): For each calendar month, a single set of quantile correction factors was applied to 

all hourly data. This approach assumes that all climate model biases are constant across the diurnal cycle. In this 160 

variant, for each month, there is one set of quantile correction factors and all hourly values are corrected using this 

set.   

2.  Diurnal Bias Correction (DBC): This variant specifically recognizes that climate model biases are not constant 

throughout the diurnal cycle (e.g., daylight biases may differ from nighttime biases). Bias corrections were therefore 

computed for each hour, using a 3-hour moving window to pool all hourly values within a given month before using 165 

the MBCn algorithm. This was performed to smooth the diurnal cycle of observations, and therefore remove some of 

the sampling noise in the observed data. In this variant, for each month, there are 24 sets of quantile correction factors 

(one for each hour).  

2.4 Hydrological model (GR4H) 

A hydrological model is needed to take and transform precipitation and temperature data into streamflow values. In this study, 170 

hourly streamflows were simulated by the GR4H  (modèle du Génie Rural à 4 paramètres Horaire) hydrological model. GR4H  

is an hourly rainfall-runoff model derived from its daily time step sibling, GR4J (Perrin et al., 2003)(Perrin et al. (2003)). 

GR4H is a lumped conceptual model with two storage reservoirs and four free parameters which define the production and 

routing functions, and which must be calibrated. GR4H was coupled with the CEMANEIGE degree-day snow model to 

simulate snowpack accumulation and depletion. CEMANEIGE is a  two-parameter snow model developed by  Valéry (2010). 175 

The combination of these two models, GR4J (GR4H) and CEMANEIGE, has shown good performance in different studies 

throughout the world (Riboust et al., 2019; Youssef et al., 2018; Raimonet et al., 2018). GR4h requires precipitation, 

temperature and potential evapotranspiration (Westra et al., 2014) as hourly inputs (Van Esse et al., 2013). The Oudin EpPET 

formulation (Oudin et al., 2005) was  used here. The combination of this PET Ep formula with the GR4J hydrological model 

has been used  successfully in many hydrological studies (Arsenault et al., 2018; Troin et al., 2018) 180 

The calibration of the hydrological model was performed automatically on all catchments using the Shuffled Complex 

Evolution (SCE-UA) algorithm (Duan et al., 1994), which has been shown to be highly efficient in a wide variety of problems 

(e.g.as recommended by e.g. Arsenault et al., (2014;, Huang et al. 2018; Muttil and Jayawardena, 2008), . The Nash-Sutcliffe 

Efficiency (NSE) criterion was used as the calibration objective function. The NSE criterion has been used in many studies, 

and represents a normalized root mean square error. It compares the hydrological model efficiency to the mean flow as a 185 

reference predictor, as shown in the following equation: 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑆𝑖𝑚

𝑡 − 𝑄𝑂𝑏𝑠
𝑡 )2𝑇

𝑡=1

∑ (𝑄𝑂𝑏𝑠
𝑡 − 𝑄𝑂𝑏𝑠)2𝑇

𝑡=1
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where 𝑄𝑆𝑖𝑚
𝑡 and 𝑄𝑂𝑏𝑠

𝑡 are respectively the simulated and observed discharges at time t and 𝑄𝑂𝑏𝑠is the mean of the observed 

discharge.  190 

NSE values range from negative infinity up to 1. A value of 1 indicates a perfect agreement between modeled and observed 

data, while a 0 value indicates that the hydrological model’s performance is no better than what is obtained from using the 

mean streamflow value as a predicting model. The hydrological model was calibrated over the entire 24-year period following 

the recommendations of Arsenault et al. (2018).  They showed that using the entire observation record for the calibration of a 

hydrological model results in a more robust parameter set than using a shorter period followed by a validation step. The often 195 

used split sample calibration/validation strategy was therefore not implemented in this study. 

3 Results  

Figure 2 presents the NSE criterion values obtained for the calibration procedure described above for the 133 catchments. 

Overall, the model calibration is good, with a mean NSE value of 0.78 across all catchments. 94.6% of the catchments have 

an NSE value above 0.7 and 36.9%, a value above 0.8. The smallest NSE value is 0.61. These results show that the hydrological 200 

model does a good job at simulating the hourly streamflow on the selected catchments. 

 

Insert Figure 2 here 

 

 205 

Figure 3 presents the observed and ClimEx simulated temperature diurnal cycles of a selected watershed for all four seasons 

(left-hand side), as well as the results of both bias correction approaches (right-hand side). The 50 members of the ClimEx 

ensemble are presented as a shaded envelope, with the ensemble mean as a solid line. Throughout this paper, time refers to the 

catchment local time. The left-hand side shows that ClimEx simulates a good temperature diurnal cycle, which is fairly close 

to the observed ones and for all seasons. Over this catchment, ClimEx runs a warm bias, especially for spring, summer and 210 

fall. The warm bias tends to be larger during the nighttime. All members of the ClimEx ensemble are very close to one another, 

with a difference of only about 1 degree between the coldest and warmest members. The diurnal cycle of temperature is hardly 

affected by internal climate variability. 

 

Insert Figure 3 here 215 

 

 

The right-hand side of Figure (3, B1 to B4)) presents the performance of Cannon (2018) multivariate bias correction (MBC) 

with diurnal cycle bias correction (DBC in green) and standard bias correction (SBC in blue). The pooling of all the ClimEx 
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members to derive a unique set of bias correction factors preserves the signature of internal variability, as can be seen by the 220 

width of the blue and green envelopes as compared to those of the gray envelope of uncorrected ClimEx values (A1 to A4). 

With the standard bias correction (SBC), all hourly values are corrected using common correction factors for each month. The 

bias correction then reduces to a simple vertical scaling, which reduces the mean daily bias to zero. However, hourly biases 

remain: these biases are negative from 6 AM06h00 to 2 PM14h00, and positive from 2 PM14h00 to 12 midnight. For the green 

curves, using a 3-hour moving window results in a diurnal cycle that is smoother than the observed one. This was a 225 

methodological choice made in order to filter out variability in the observations, likely resulting from sampling errors. Without 

the smoothing window, the bias-corrected diurnal cycle would have matched those of observations exactly.    

Figure 4 presents the observed and ClimEx simulated precipitation diurnal cycles for the same catchment. The layout of Figure 

4 is the same as for the temperature (Figure 3). Compared to the temperature, the simulated internal variability of precipitation 

is much larger, as shown by the width of the gray envelope on the left-hand side. Internal variability is largest for winter and 230 

fall, and smallest during summer. Precipitation differences between members can reach up to 100%, depending on the season 

and hour, highlighting the key role of internal variability in driving precipitation variability. Over this catchment, ClimEx 

precipitation is positively biased in winter and spring and negatively biased over the summer. Overall, there are large 

differences between observed and simulated precipitation, and these differences extend to the diurnal cycle. Summer is the 

only season where observations and ClimEx have a similar diurnal cycle despite a 3-4 hour lag between the peaks of both 235 

cycles. ClimEx presents a strong spring diurnal cycle, which is however, absent in the observations. Winter and fall do not 

show clear diurnal cycles in both the observations and ClimEx. The large differences between the observations and ClimEx 

outputs testify to the need for bias correction prior to using climate model outputs in hydrological models (or other impact 

models).   

 240 

Insert Figure 4 here 

 

 

Just as in Figure 3, the right-hand side of Figure 4 presents the performance of the multivariate bias correction (MBC) with 

diurnal cycle bias correction (DBC in green) and standard bias correction (SBC in blue).. Just as before, SBC (blue) simply 245 

scales precipitation to correct for the mean daily biases, with no impact on the shape of the modeled cycle. DBC (green), on 

the other hand, corrects the hourly distributions such that the bias-corrected diurnal cycle of ClimEx matches the observed 

one. Since precipitation correction is multiplicative, the internal variability envelope appears to be smaller in winter and spring 

because ClimEx is positively biased for these seasons. The reverse is observed for the summer season, when ClimEx is 

negatively biased. The relative internal variability (variability around the ensemble mean expressed in %) remains the same 250 

before and after correction.   

Overall, both bias correction methods do what they were designed for very efficiently. The transformation of the gray 

envelopes into the green ones highlights the strength of these distribution mapping approaches. The fact that they can shape 
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severely biased distributions into completely different ones also raises important questions about their use, as will be discussed 

later. 255 

Now that the bias correction efficiency has been established, we can look at the hydrological modeling to see if the correction 

of the diurnal cycle has any impact on the hydrological simulations. To this end, raw and bias-corrected hourly precipitation 

and temperature time series were used to force the GR4H hydrological model to generate streamflow time series. Since the 

ClimEx ensemble was forced by a GCM (instead of reanalysis), it is not possible to directly compare the hourly simulated 

streamflow series with ClimEx meteorological data against those simulated using the observed meteorology. For this reason, 260 

the first comparison will be based on the mean annual hydrograph. Figure 5 shows the mean annual hydrographs for four 

catchments of different sizes. It shows streamflow observations (redline), as well as streamflow simulations from the 

hydrological model, using precipitation and temperature from three different sources. They are the uncorrected ClimEx data 

(grey envelope) and bias corrected ClimEx data with and without accounting for the diurnal cycle biases (DBC, light green 

envelope with ensemble mean in dark green, and SBC, light blue envelope with the ensemble mean as a dotted dark blue line). 265 

Results show that the multivariate bias correction of precipitation and temperature translates into accurate streamflow 

simulations. The ensemble mean tracks very well with the mean observed hydrographs contained within the ClimEx envelope 

of internal variability. Observations  (red line) display a larger variability since they only contain 23 years of data, whereas the 

ensemble mean for both DBC and SBC comprise 1150 years (50 members times 23 years), and are therefore much smoother. 

The internal variability envelopes for DBC and SBC are very close to one another, with the blue envelope almost perfectly 270 

overlapping the green one. There are, however, small differences between the ensemble mean curves, indicating that taking 

the diurnal cycle biases into account impacts streamflow simulations to some extent. The largest differences are observed for 

the smallest catchment (upper right). 

 

Insert Figure 5 here 275 

 

The impact of diurnal cycle bias correction as a function of catchment size is illustrated in Figure 6, which shows typical results 

for a small (66 km2) and large (3817 km2) catchments.  Those two catchments have been chosen are they differ mostly with 

respect to their size.  They are located close to one another (Figure 6) and share common physiographical properties.  

 280 

Insert Figure 6 here 

 

  

The figure presents a one-month (July) snapshot of streamflow hydrographs for the mean member of the ClimEx ensemble, 

with standard and diurnal cycle bias correction. The upper graph shows the quicker reactivity of the smaller catchment to 285 

meteorological inputs as compared to the larger one. More importantly, Figure 6 shows that the diurnal cycle correction has a 

larger impact on the smaller catchment when compared to the larger one. On larger catchments, the flow routing process acts 
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as a low-pass filter, resulting in somewhat smoothed hydrographs, and blurring the difference between the two bias correction 

approaches. Figure 6, however, only shows that the diurnal cycle bias correction has an impact on streamflows,  and not 

whether or not this impact is beneficial. To figure out if the impact is beneficial, it is necessary to look at streamflow indicators.  290 

Figure 7 presents the impact of correcting the diurnal cycle on the relative bias B of mean annual simulated streamflow, as 

expressed by equation 1a and 1b: 

𝐵𝐷𝐵𝐶 =  
 𝑄𝑐𝑙𝑖𝑚𝑒𝑥𝐷𝐵𝐶
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −  𝑄𝑜𝑏𝑠

̅̅ ̅̅ ̅̅

𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅

 × 100%           1𝑎   

𝐵𝑆𝐵𝐶 =  
 𝑄𝑐𝑙𝑖𝑚𝑒𝑥𝑆𝐵𝐶
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −  𝑄𝑜𝑏𝑠

̅̅ ̅̅ ̅̅

𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅

  × 100%          1𝑏   

In the above equations, 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  is the mean annual streamflow resulting from running the hydrological model with observed 295 

precipitation and temperature, whereas   𝑄𝑐𝑙𝑖𝑚𝑒𝑥𝐷𝐵𝐶
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and  𝑄𝑐𝑙𝑖𝑚𝑒𝑥𝑆𝐵𝐶

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  respectively represent the mean annual simulated 

streamflow using bias corrected ClimEx precipitation and temperature, with and without correcting the diurnal cycles of both 

variables. Figure 7 shows boxplots of the relative bias of mean annual streamflow, with and without (DBC and SBC) mean 

diurnal cycle correction, for the three catchment size categories. Results are not shown for the streamflow simulations without 

bias-corrections since the errors are up to two order of magnitudes larger than for the bias-corrected simulations.   Each 300 

boxplot represents the distribution of mean relative streamflow bias for the 133 catchments. The central box displays the 25th, 

50th (median) and 75th quantiles of the distribution, whereas the lower and upper whiskers show the 5 th and 95th quantiles. 

Values below and above the 5th and 95th quantiles are shown as red circles and mean of the distributions are shown by purple 

crossrosses. Overall, the relative biases are relatively small across the board, indicating that the bias correction method does a 

good job at preserving the main characteristics of observed precipitation and temperature, at least in terms of hydrological 305 

modeling. Results show that accounting for diurnal cycles biases has an important impact on the representation of the mean 

annual streamflow. Correcting the diurnal cycle lowers the relative bias and diminishes the spread of the bias estimates. 

Relative biases are mostly positive with standard bias correction, and tend to be slightly negative with the diurnal bias 

correction. The impact is particularly clear for the small and medium catchments. For the large catchments, the absolute value 

of the median bias remains similar (goes from positive to negative), but the spread is lower when correcting the diurnal cycle. 310 

This is particularly clear for the central box (25 th to 75th quantiles). As shown in Figure 3, the climate model diurnal cycle of 

temperatures is flatter than for observations.  Bias correcting the diurnal cycle results in higher mean daily temperature leading 

to increased evapotranspiration and decreased streamflow values, likely explaining the observed results. 

 

Insert Figure 7 here 315 

 

To further understand the impact of the diurnal cycle correction, Figure 8 shows similar results for low-flow and high-flow 

metrics. Low flows are represented by the 5th and 10th quantiles of the annual streamflow distribution for each catchment, and 

high flows, by the 95th and 99th quantiles. All four graphs of Figure 8 are in the same format as those in Figure 7. The results 
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are therefore expressed as relative biases, and each boxplot represents the distribution of relative biases across all 133 320 

catchments. 

Low flows (upper row) are generally not well represented, with relatively large negative biases (mostly in the -10 to -30% 

range). The negative biases are larger for the smaller catchments. Correcting the diurnal cycle slightly increases the negative 

biases for the small and medium size catchments, but has a positive impact on spread across all catchments. This is once again 

particularly clear for the interquartile range. High flows (lower row) are much better simulated, with biases below 10% in most 325 

cases, with the exception of Q99 for the small catchments, where the biases are predominantly positive and  much larger (+10 

to +30%). Correcting the diurnal cycle provides relatively small, but consistent, bias reduction, as well as a reduction of the 

spread for the medium and large size catchments.  

 

Insert Figure 8 here 330 

 

 

Finally, Figure 9 presents similar results for the 20-year return period flood. The 95th, 99th and 20-year return period are all 

high-flow indicators. However, the first two represent relatively frequent high flow thresholds, with several days per year 

exceeding these values (18 and 3 days per year on average), whereas the 20-year return period threshold is an extreme value 335 

threshold that is exceeded once every 20 years on average. The 20-year return period was evaluated with a Log-Pearson III 

distribution following USGS guidelines (Flynn et al., 2006). It was calculated from the simulated flows using observed 

precipitation and temperature as well as bias-corrected ClimEx outputs. Figure 9 shows that bias-corrected data do a good job 

preserving the signature of meteorological data leading to extreme events. The relative biases are small for the medium and 

large size catchments, and slightly positive and a bit larger over the small catchments. Correcting the diurnal cycle provides 340 

relatively small but systematic bias reduction across-catchment spread improvements. These improvements are larger for the 

smaller size catchments. 

 

Insert Figure 9 here 

 345 

 

4 Discussion 

The preceding section has presented a hydrological modeling comparison of the impact of bias-correcting (or not) the diurnal  

cycle of precipitation and temperature modeled by a high-resolution regional climate model. Figures 3 and 4 show that bias 

correction methods can correct deficiencies in the representation of the diurnal cycles of temperature- and precipitation-350 

modeled data.  In the case of the temperature, ClimEx simulates a diurnal cycle with an amplitude similar to that of 
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observations, but with a clear bias and timing offset.  Both are effectively corrected using the MBCn method. The case of 

precipitation is more complicated as there are large differences between observations and modeled data. The MBCn method, 

by construct, was able to perfectly map the climate model biased diurnal cycle onto the observed one.  Considering the large 

differences between both cycles, a valid question is whether or not this bias correction step should even be done. The 355 

differences observed between both cycles are rooted in three possible causes: observation errors affecting the observed diurnal 

cycle, structural errors in the modeling of precipitation in the climate model, and internal climate variability. Measuring 

precipitation is difficult (Yang et al., 1999; Angulo-Martínez et al., 2018), and particularly so at the sub-daily scale. Measuring 

issues related to the use of tipping bucket rain gauges have been reviewed by Segovia-Cardozo et al. (2021).  Those issues are 

an underestimation of total amounts, and especially so for high intensity rainfall and light drizzle, losses from evaporation and 360 

non-linear response to rainfall intensity. In addition,  aAt the sub-daily scale, the precision of the tipping bucket maythe above 

may cause small shifts in the actual recording of small precipitation. Hourly recorded data is not available at all weather 

stations, and when it is, records often typically suffer from large amounts of missing data. Performing a reliable estimation of 

the diurnal cycle is therefore by no means a simple task. In this work, we used catchment-averaged hourly precipitation from 

the MOPEX database. Catchment selection for inclusion into the Mopex database was based on several quality control 365 

requirements, including quality precipitation data and minimum station density.  While we can assume that the quality of 

precipitation data is good (or at least better than average), we have no way to quantitatively assess the quality of the observed 

diurnal cycle over the reference period. This also limits our ability to evaluate the diurnal cycle from the climate model. 

Differences are however large enough to suspect potential problems in the physical representation of precipitation in ClimEx. 

The GCM and RCM climate model structures do not include all mechanisms leading to precipitation in the real world, and this 370 

may lead to large errors (Legates, 2014).  Even at the 12 km0.11o resolution of ClimEx, convection has to be parameterized, 

potentially leading to significant errors in the representation of larger precipitation quantiles. Knist et al. (2020) and Prein et 

al. (2016)  showed that resolving convection in climate models led to a better representation of precipitation intensity and of 

the diurnal cycle of precipitation, for example. Maraun et al. (2017) make a compelling argument with respect to the 

selection/disqualification of climate models based on their ability (inability) to represent key physical processes leading to any 375 

variable under consideration. Bias-correcting unrealistically simulated variables raises many important issues. Nevertheless, 

such issues are rather peripheral to the stated goal of this paper, which is to explore the impact of correcting (or not) the diurnal 

cycle of precipitation. The third factor explaining differences between observed and simulated precipitation cycles is the role 

of internal variability. Figure 4 shows that internal variability plays a very significant role in the representation of the diurnal 

cycle of precipitation. For the fall period, the difference between the observed and modeled cycles is smaller than the internal 380 

variability for most of the cycle. The large internal variability of precipitation has long been recognized in many studies (Deser 

et al., 2012; Dai and Bloecker, 2019), and it shows that 30 years (23 in the case of this study) of observations may simply not 

be a long enough period to adequately represent the diurnal cycle of precipitation. 

After bias correction, climate model precipitation and temperature outputs were used in a hydrological model to generate 

streamflows. Hydrological modeling results point to a relatively modest but consistent increase in hydrological modeling 385 
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performance for all metrics (with the exception of low flows) when the diurnal cycle of precipitation and temperature is 

corrected. The performance increase was clearly larger for the small catchments, but improvements were also seen for the 

medium and large size classes. The reasons for this improvement are not easy to pinpoint. Correcting the temperature diurnal 

cycle ensures a more realistic representation of the daily cycle of evapotranspiration, which may explain the better 

representation of the mean annual streamflow discharge. We can gain some insights by looking at the diurnal cycle of 390 

streamflows for summer (JJA) for one small and one large catchment, as shown in Figure 10. Small catchments are known to 

have such a cycle, where increased evapotranspiration in the afternoon (resulting from the strong temperature diurnal cycle) 

leads to a corresponding reduction of streamflowsstreamflow. It can be seen that the streamflow cycle is almost perfectlyvery 

well modeled for the small catchment when the diurnal cycle of both variables is corrected. For the large-size catchment, the 

diurnal streamflow cycle is flat for both observed and simulated streamflow.  This shows that the catchment response time 395 

(flow routing transfer time – time of concentration) is too large for the day-time increased evaporation to show at the basin 

outlet. The small differences induced by the diurnal cycle of precipitation and temperature data are smoothed out during flow 

routing to the basin outlet.  The internal variability of precipitation is transferred to streamflowsstreamflow, as represented by 

the large envelope from the 50 members of the ClimEx ensemble. For the larger catchment, there is no streamflow cycle in the 

observation because the flow routing transfer time is too great and smooths out small differences induced by the diurnal cycle 400 

of precipitation and temperature data.   

 

Insert Figure 10 here 

 

The absence of performance improvements for the low flow criterion can be partly explained by methodological choices. 405 

Modeling low flows is a more difficult task than modeling high flows, especially for conceptual models whose simplified 

structure is ill-suited to accurately represent the contribution of groundwater, which is complex, heterogeneous and sometimes 

dominant in the absence of precipitation. It is also well-known that the NSE criterion that was chosen for the hydrological 

model calibration is more sensitive to high-flows (Krause et al., 2005; Muleta, 2012). Since modeled low flows displayed large 

biases with and without bias correction of the diurnal cycle, we do not believe that discussing badly modeled streamflow 410 

metrics is very relevant. A discussion on low flows would be better served by using a hydrological model targeted at droughts, 

either with a different model structure or using a different objective function during calibration.   

There are many limitations to this study. A single climate model was used and our results should be replicated with other 

climate models. Potential differences may be related to bias correction and hydrological modeling. No bias correction method 

can correct all statistics and particularly so when it comes to joint distribution properties  (P and T in this case).  In addition, 415 

hydrological models are good spatial integrators, but they are highlysensitive non-linear integrators.  As such, small changes 

between two climate models (e.g. spatial resolution, interannual variability) could ultimately results in different streamflow 

simulations.  While dramatically different results using other climate models are not expected, a different sensitivity to 

catchment size could possibly be observed.  HoweverOn the other hand, there are still not many climate model runs available 
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with a high enough temporal and spatial resolution to apply to the study of small catchments, where the amplification of 420 

extreme precipitation is more likely to become critical as the climate becomes warmer. There are even fewer large ensembles 

being run at those fine resolutions. As shown in this paper, using a large ensemble shines a bright light on the role of internal 

climate variability in defining an accurate diurnal cycle for precipitation. The importance of internal variability and how it 

brings irreducible uncertainty to the bias correction process has been discussed in details by (Chen et al., 2016; Chen et al., 

2015; Maraun, 2012; Teutschbein and Seibert, 2013; Chen et al., 2018).  A single bias correction method was used in this 425 

study. It is well-known that the choice of a bias correction method has implications, which are often very significant, on 

streamflow metrics, and that a large amount of uncertainty can arise from this choice (Chen et al., 2013a; Iizumi et al., 2017)  

However the MBCn (Cannon, 2018) is arguably the best quantile mapping  method available. For small catchments, we believe 

that using a multi-variate method is highly desirable as preserving correlations between precipitation and temperature is key 

for an adequate representation of the diurnal cycle of key variables such as streamflows (as shown in Figure 10, for example). 430 

Small catchments modeled at the sub-daily scale would be very good targets to allow testing the advantage of multi-variate 

bias correction methods against univariate ones. Considering the subtle non-linear interactions between precipitation and 

temperature when modeling streamflows, it is possible that the improvements shown here in the representation of streamflows 

on small catchments may not have been realized using a univariate correction. This is something which could be tested in 

future work. 435 

Hourly temperature from the ERA5 reanalysis was used instead of observations from stations. However, at the catchment 

scale, recent work at the daily temporal scale (Tarek et al., 2020b, a) showed that the ERA5 temperature was as good as, or 

better than, temperature gridded datasets derived purely from weather station observations. In addition, Lompar et al. (2019) 

showed that using the ERA5 hourly temperature to replace missing data in observed time series led to very low RMSE values. 

This good performance of hourly temperature data is not entirely surprising considering that the surface temperature is 440 

assimilated by ERA5 and that the surface temperature can relatively easily be inferred from geopotential heights, which are 

typically well reproduced by reanalysis. 

One important remaining limitation of this work lies in the bias-correction not having been evaluated in a split-sample 

methodology.  The efficiency of any bias correction scheme on an independent period depends on the stationarity of the biases. 

It has been shown in many studies that climate model biases are not constant in time (e.g. (Wan et al., 2021; Maraun, 2012) 445 

and that non-stationarity can be amplified when using a hydrological model to simulate streamflows ((Hui et al., 2020).  The 

results presented here show that bias-correcting the diurnal cycle results in streamflow simulation improvements when tested 

on a common time-window with that of the bias correction process.  Performing the same test on a different time windows 

may impact the bias correction of the diurnal cycle of precipitation and temperature. In particular, the diurnal cycle of 

precipitation is not-stationary due to internal variability (as shown in Figure 4), and it is possible that the advantages of the 450 

sub-daily bias correction method may be somewhat reduced when tested over an independent validation period, as found by 

Chen et al., (2018) in a comparison study of multivariate vs univariate bias correction methods. On the other hand, the diurnal 
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cycle of temperature, which controls evapotranspiration (an important part of the diurnal streamflow cycle) is much less 

affected by internal variability (Figure 3). 

In light of the above results, and despite the limitations of this study, some recommendations can be made to climate change 455 

impact modelers concerned with the impact of extreme precipitation on small catchments. For catchments smaller than 500 

km2, a sub-daily hydrological modeling step is generally required for a good simulation of the flood peak and timing. For such 

catchments, the bias correction should include a step to account for differences between the observed and modeled diurnal 

cycles of temperature and, to a lesser extent, precipitation. Climate models do generate (as shown here) a realistic temperature 

diurnal cycle, and correcting for differences in timing and magnitude will ensure that the daily cycle of potential 460 

evapotranspiration matches that of observations. As discussed above, bias-correcting the diurnal cycle of precipitation is a bit 

more controversial. Taking into account the large internal variability of precipitation, as well as the potential issues surrounding 

the reliability of modeled precipitation, and especially extreme precipitation under a parameterized deep convection, arguments 

could be advanced from either side. Considering that these problematic issues also exist at the daily scale, and that bias 

correction of precipitation at this time scale is almost universally performed in impact studies, we feel that bias-correcting the 465 

diurnal cycle of precipitation is likely the best recommendation. A comparison between correcting only the temperature diurnal 

cycle versus correcting both the precipitation and temperature could help in figuring out the variable from which most of the  

improvement is derived.   

The issue of climate model resolution also needs to be raised. Climate model resolution has been steadily improving and there 

is hope that with a higher resolution, the need for bias correction will be lessened ((Lucas‐Picher et al., 2021).  There are 470 

however computational physical limits as to how rapidly model resolution can decrease. Model resolution also competes with 

added model complexity, leading to a convergence between GCMs and ESMs (Bierkens, 2015) at the global modelling scale, 

rather than a sharp decrease in resolution. Regional climate models have seen the largest increase in spatial resolution, albeit 

at the expense of a progressively smaller computational domain. Climate model improvements have been shown to reduce 

biases.  These improvements come from the increased resolution (e.g.(Lucas-Picher et al., 2017)  resulting in a better 475 

representation of local topography and land surface, and from better physics (e.g. (Kendon et al., 2017).  However, climate 

models remain an imperfect representation of the real climate system, and the sensitivity of impact models (e.g. hydrological 

model) to input data (e.g.  precipitation, temperature) will still require some level of post-processing to insure realistic outputs 

from impact models.  The ClimEex ensemble used in this study comes from a high-resolution climate model and quite clearly 

requires bias correction, showing that spatial resolution is not the only piece of the puzzle.  Using uncorrected ClimEex data 480 

results in unrealistic streamflow simulations (e.g. Figure 5).  However, with better and higher-resolution models, there is hope 

that post-processing methods will only end up correcting minor model deficiencies, and not correcting bad physics over a 

given area (e.g.(Maraun et al., 2017) Maraun et al., 2017) such as an incorrectly modeled precipitation annual cycle for 

example.  Increasing spatial resolution has however opened the door to convection-permitting models, which require a 

resolution of around 0.03o (3-4km) or better to resolve convection without the need for parametrization.  Convection-permitting 485 

models are becoming more common and have shown to improve In any case, considering that convection-permitting models 
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will become more common in the future, with an improvedthe representation of precipitation and extreme precipitation 

((Lucas‐Picher et al., 2021)Lucas-Picher et al., 2021, ). With the better physics of these models, it is likely that bias-correcting 

the daily cycle of precipitation will still be needed, but will be done for the right reasons, rather than to correct for sometimes 

implausible large biases. eventually become a standard procedure over small catchments. For larger catchments (> 500 km2), 490 

in this study, it is shown that improvements linked to the diurnal cycle correction become progressively smaller. For sub-daily 

hydrological modeling, it is however recommended to correct the diurnal cycle of temperature to ensure adequate 

representation of the potential evapotranspiration diurnal cycle. Correcting the daily cycle of precipitation is unlikely to make 

a big difference on streamflow metrics, considering the smoothing impact of flow routing. However, no ill effect of the diurnal 

cycle correction was observed for the medium to large catchments in this study. For those catchments, even though they were 495 

not investigated, it is likely that the relatively small improvements noted originated from the correction of the  temperature 

daily cycle and not from precipitation. 

 

5 Conclusion 

This paper investigated the impact of bias-correcting the diurnal cycle of a climate model on the computation of streamflow 500 

over 133 small to large catchments, using a high spatial (0.11o 12-km) and temporal (1-hour) regional climate simulation 

(ClimEx-LE) over Eastern North America.  The ClimEx regional climate model simulated a very realistic temperature diurnal 

cycle, but with timing and amplitude biases. There were however large differences between the simulated and observed diurnal 

cycles of precipitation. These differences result from a combination of observation errors, internal variability of precipitation 

and an inadequate representation of physical processes leading to precipitation by the climate model. These biases were 505 

successfully corrected using a multivariate quantile mapping method. The impact of bias-correcting (or not) the diurnal cycle 

of precipitation and temperature was evaluated on small (<500 km2), medium and large (>1000 km2) catchments. Results 

indicate that correcting the diurnal cycle results in better streamflow simulation, especially for smaller catchments, which have 

a definite sub-daily response timestime. For example,For the small catchments, the relative error between  comparing DBC 

and SBC for simulating discharge over small catchments, the relative error between observed and simulated flow quantiles of 510 

flowwas reduced.  For example, the median reduction was 5% for the 95th and 99th quantiles, and 4% for the median value of 

the 20-year flood across all small catchments.  (i.e. Q95 and Q99) has improved by 5% once DBC is used. Moreover, using 

DBC has improved relative error of simulation of flood with 20 years return period over small catchments by 4%. For larger 

catchments, bias-correcting the diurnal cycle only results in minor streamflow improvements. Despite the large differences in 

the diurnal cycles of observed and simulated precipitation, and the limitations of climate models in generating precipitation 515 

with parameterized convection, we nonetheless recommend bias-correcting the diurnal cycle of both temperature and 

precipitation when conducting climate change impact studies on small catchments at the sub-daily time step. 
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7 Code and data availability 

The MOPEX climate and streamflow database can be downloaded from the following link: 540 

(https://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/ ) (Duan et al., 2006) 

ERA5 data are available on the Copernicus Climate Change Service (C3S) Climate Data Store: 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form   (Hersbach and Dee, 2016). 

ClimEx data can be downloaded from: https://www.climex-project.org/en/data-access  

The  GR4J model (Perrin et al., 2003) and CemaNeige snow module (Valéry et al., 2014) are available on the Matlab File 545 

Exchange: https://www.mathworks.com/matlabcentral/fileexchange/61720-gr4j-rainfall-runoff-model-deterministic-and-

stochastic-methods-with-matlab. 

The SCE-UA global optimization algorithm can be downloaded from: 

https://www.mathworks.com/matlabcentral/fileexchange/7671-shuffled-complex-evolution-sce-ua-method 

 550 

Field Code Changed

http://crd-data-donnees-rdc.ec.gc.ca/CCCMA/products/CanSISE/output/CCCma/CanESM2/
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https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://www.climex-project.org/en/data-access
https://www.mathworks.com/matlabcentral/fileexchange/61720-gr4j-rainfall-runoff-model-deterministic-and-stochastic-methods-with-matlab
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9 Figures and table 

 

Figure 1: Distribution of watersheds across North Eastern America. Circles colour and size are based on relative watershed size. 
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 800 

Figure 1 Distribution of watersheds across North Eastern America. Squares, Circles and triangles symbols correspond 

to small, medium and large catchments respectively. 

 

 

 Number of 

Catchments 

Area (km2) Annual Temperature(°C) Annual Precipitation(mm) 

  Min Median Max Min Median Max Min Median Max 

Small 

Area 

12 66.5 268.8 468.7 9.4 11.9 15.3 967.2 1247.3 1891.5 

Medium 

Area 

25 530.9 758.6 994.5 7.4 10.9 17.8 861.9 1072.0 2007.8 

Large 

Area 

96 1002.3 3595.1 9885.9 7.4 11.5 19.1 804.2 1049.6 1657.3 

 805 

Table 1 General Characteristic of the three-catchment size groups 
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Figure 2 NSE calibration results for all catchments 
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Figure 3: Comparing temperature diurnal cycle of a sampled watershed before (left) and after (right) bias correction with two bias 

correction techniques (SBC and DBC) 
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  820 

Figure 3 Annual diurnal cycle of temperature before bias correction (first column: A1 to A4) and after bias correction 

(second column: B1 to B4) for catchment 02143040. Each row corresponds to a different season: DJF (December, 

January, February), MAM (March, April, May), JJA (Jun, July, August), SON (September, October, November). The 

right hand side shows both bias correction methods:  Standard Bias Correction (SBC) and Diurnal Bias Correction 

(DBC). The observations (ERA5) are shown in red.  Raw (uncorrected) Climex data is in grey, SBC is in blue and DBC 825 

is in green. The envelope defined by all 50 Climex members are shown in the corresponding light colours, whereas the 

dark coloured lines display the ensemble mean. Time is local with 24h corresponding to midnight. Figure 3 Annual 

diurnal cycle of temperature before bias correction (first column: A1 to A4) and after bias correction (second column: 

B1 to B4) for catchment ID 02143040. Each row corresponds to a different season: DJF (December, January, 

February), MAM (March, April, May), JJA (Jun, July, August), SON (September, October, November). The right-830 

hand side shows both bias correction methods:  Standard Bias Correction (SBC) and Diurnal Bias Correction (DBC). 

The observations (ERA5) are shown in red.  Raw (uncorrected) Climex data is in grey, SBC is in blue and DBC is in 

green. The envelope defined by all 50 Climex members is shown in the corresponding light colours, whereas the dark 

coloured lines display the ensemble mean. Time is local with 1h/24h corresponding to midnight.  

 835 
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Figure 4: Comparing precipitation diurnal cycle of a sampled watershed before (left) and after (right) bias correction with two bias 

correction techniques (SBC and DBC) 
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Figure 4 Annual diurnal cycle of precipitation before bias correction (first column: A1 to A4) and after bias correction 

(second column: B1 to B4) for catchment 02143040. Each row corresponds to a different season: DJF (December, 

January, February), MAM (March, April, May), JJA (Jun, July, August), SON (September, October, November). The 845 

right-hand side shows both bias correction methods:  Standard Bias Correction (SBC) and Diurnal Bias Correction 

(DBC). The observations (ERA5) are shown in red.  Raw (uncorrected) Climex data is in grey, SBC is in blue and DBC 

is in green. The envelope defined by all 50 Climex members are shown in the corresponding light colours, whereas the 

dark coloured lines display the ensemble mean. Time is local with 24h corresponding to midnight. Figure 4 Annual 

diurnal cycle of precipitation before bias correction (first column: A1 to A4) and after bias correction (second column: 850 

B1 to B4) for catchment ID 02143040. Each row corresponds to a different season: DJF (December, January, 

February), MAM (March, April, May), JJA (Jun, July, August), SON (September, October, November). The right-

hand side shows both bias correction methods:  Standard Bias Correction (SBC) and Diurnal Bias Correction (DBC). 

The observations (ERA5) are shown in red.  Raw (uncorrected) Climex data is in grey, SBC is in blue and DBC is in 

green. The envelope defined by all 50 Climex members is shown in the corresponding light colours, whereas the dark 855 

coloured lines display the ensemble mean. Time is local with 1h/24h corresponding to midnight.  
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Figure 5: Annual cycle hydrographs of four sampled watersheds in the study area 



31 

 

 860 

Figure 5 Hydrograph annual cycles for four selected catchments.  Catchments A and B are classified as large and 

medium size respectively. Catchments C and D are classified as small. 0 represents January first at 0h00, and 8760 is 

December 31st at 24h00.Figure 5 Hydrograph= annual cycles for four selected catchments.  Catchments A and B are 

classified as large and medium size respectively. Catchments C and D are classified as small. 1 represents January first 

at 0h00, and 8760 is December 31st at 24h00. 865 
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Figure 6: Hydrographs of two sampled watersheds for the month of July (small and large size surface area) 
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Figure 6 Hydrographs of two sampled catchments for the month of July (744 hourse=31 days * 24 hourse) (small and large size 

surface area) 
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Figure 37  Comparing relative error of mean flow with diurnal cycle bias correction (DBC) and standard bias correction (SBC) in 

three area categories 
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Figure 8: Distribution of relative error (model-obs/obs) corresponds to flow quantiles (Q5, Q10, Q95, Q99) of DBC and SBC 

(aggregate member) for watersheds grouped into three types according to their surface area (small, medium, and large) 885 

 

 

 

 

Figure 8 Distribution of the relative error (model-obs)/obs x 100% corresponding to flow quantiles Q5 (A). Q10 (B), 890 

Q95(C) and Q99(D).  Boxplots for both bias correction methods (DBC and SBC) are constructed from the distribution 

of relative errors from all catchments within each size class (small, medium, and large)Figure 8 Distribution of the 
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relative error (model-obs)/obs corresponding to flow quantiles Q5 (A). Q10 (B), Q95(C) and Q99(D).  Boxplots for both 

bias correction methods (DBC and SBC) are constructed from the distribution of relative errors from all catchments 

within each size class (small, medium, and large) 895 

 

 

 

Figure 9 Flood with 20 (QT20)-year return periods of diurnal cycle bias correction (DBC) and standard bias correction (SBC) for 

watersheds grouped into three types according to their surface area (small, medium, and large). Figure 9 Distribution of the 900 

relative error (model-obs)/obs x 100% for the 20-year flood QT20.  Boxplots for both bias correction methods (DBC 

and SBC) are constructed from the distribution of relative errors from all catchments within each size class (small, 

medium, and large) 
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Figure 10 Comparing discharge diurnal cycle of a sampled watershed before (left) and after (right) bias correction with two bias 

correction techniques (SBC and DBC) 
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 910 

Figure 10 Annual diurnal cycle of discharge in JJA (Jun, July, August) before bias correction (first column: A1 and A2) and 

after bias correction (second column: B1 and B2) for two selected catchments. First row is for catchment 02143040 (small size 

classification) and second row is for catchment 02156500 (large size classification).  The observations are shown in red.  

Streamflow simulations using uncorrected ClimEx members are shown in light grey, and the ensemble mean is in black. . 

Simulations using bias corrected data are in light blue (SBC) and light green (DBC) with the corresponding dark colours 915 

showing the ensemble mean. Time is local with 24h corresponding to midnight. Figure 10 Annual diurnal cycle of discharge 

in JJA (Jun, July, August) before bias correction (first column: A1 and A2) and after bias correction (second column: 

B1 and B2) two selected catchments. First row is catchment with ID 02143040 (small size classification) and second row 

is catchment with ID 02156500 (large size classification).  The observations are shown in red.  Streamflow simulations 

using uncorrected ClimEx data are shown in light grey, and the ensemble mean is in black. Simulations using bias 920 

corrected data are in light blue (SBC) and light green (DBC) with the corresponding dark colours showing the ensemble 

mean. Time is local with 0h/24h corresponding to midnight.  
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 930 

 Number of 

Catchments 

Area (km2) Annual Temperature(°C) Annual Precipitation(mm) 

  Min Median Max Min Median Max Min Median Max 

Small 

Area 

12 66.5 268.8 468.7 9.4 11.9 15.3 967.2 1247.3 1891.5 

Medium 

Area 

25 530.9 758.6 994.5 7.4 10.9 17.8 861.9 1072.0 2007.8 

Large 

Area 

96 1002.3 3595.1 9885.9 7.4 11.5 19.1 804.2 1049.6 1657.3 

 

Table 1 General Characteristic of the three-catchment size groups 

 

Appendix 1 USGS ID of the selected MOPEX catchments. 

Catchment ID 
01197500 03175500 02138500 01567000 02126000 02472000 03324300 03524000 05440000 

01518000 03238500 02143000 01574000 02135000 02478500 03326500 03528000 05447500 

01520000 03303000 02143040 01628500 02156500 02479300 03328500 03540500 05454500 

01541000 03346000 02143500 01631000 02202500 02482000 03331500 04100500 05515500 

01556000 03438000 03111500 01643000 02217500 02486000 03339500 04113000 05517500 

01558000 03443000 03361650 01664000 02228000 03011020 03345500 04115000 05518000 

02018000 03473000 03504000 01667500 02329000 03109500 03349000 04164000 05520500 

02058400 03531500 03550000 01668000 02339500 03164000 03361500 04176500 05526000 

02118000 04201500 07261000 01674500 02347500 03168000 03362500 04178000 05552500 

02475500 04221000 01371500 02016000 02365500 03237500 03364000 04185000 05554500 

03079000 05517000 01543500 02055000 02375500 03266000 03365500 04191500 05555300 

03161000 01372500 01548500 02083500 02383500 03269500 03451500 04198000 05569500 

03167000 01445500 01559000 02102000 02387500 03274000 03455000 05430500 05582000 

03173000 01560000 01562000 02116500 02448000 03289500 03465500 05435500 05584500 

05592500 05593000 05594000 07029500 07056000 07290000 07363500   
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