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Abstract. The prevalent soil moisture probe algorithms are based on a polynomial function that does not account for the 

variability in soil organic matter. Users are expected to choose a model before application: either a model for mineral soil or a 

model for organic soil. Both approaches inevitably suffer from limitations with respect to estimating the volumetric soil water 15 

content in soils having a wide range of organic matter content. In this study, we propose a new algorithm based on the idea 

that the amount of soil organic matter (SOM) is related to major uncertainties in the in-situ soil moisture data obtained using 

soil probe instruments. To test this theory, we derived a multiphase inversion algorithm from a physically based dielectric 

mixing model capable of using the SOM amount, performed a selection process from the multiphase model outcomes, and 

tested whether this new approach improves the accuracy of soil moisture (SM) data probes. The validation of the proposed 20 

new soil probe algorithm was performed using both gravimetric and dielectric data from the Soil Moisture Active Passive 

Validation Experiment in 2012 (SMAPVEX12). The new algorithm is more accurate than the previous soil-probe algorithm, 

resulting in a slightly improved correlation (0.824 à 0.848), 12 % lower root mean square error (RMSE; 0.0824 à 0.0725 

cm3⋅cm-3), and 90 % less bias (-0.0042  à 0.0004 cm3⋅cm-3). These results suggest that applying the new dielectric mixing 

model together with global SOM estimates will result in more reliable soil moisture reference data for weather and climate 25 

models and satellite validation. 

1. Introduction 

Soil moisture (SM) plays a critical role in weather and climate by affecting atmospheric variables via latent and sensible heat 

exchange. For example, near-surface air temperature can be affected by the evapotranspiration of surface and root zone soil 

moisture. Therefore, its correlation with the near-surface temperature is usually considered an effective indicator of the 30 

coupling strength between the land surface and the atmosphere (Seneviratne et al., 2006; Koster et al., 2009; Seneviratne et 

https://doi.org/10.5194/hess-2021-233
Preprint. Discussion started: 31 May 2021
c© Author(s) 2021. CC BY 4.0 License.



2 
 

al., 2010; Jaeger and Seneviratne, 2011; Seneviratne et al., 2013; Hirschi et al., 2014, p.; Whan et al., 2015). In particular, soil 

moisture anomalies in a dry regime have been reported as the main cause of strong land-atmosphere coupling, which can 

trigger drought and heat waves (Fischer et al., 2007; Zampieri et al., 2009; Hirschi et al., 2011; Miralles et al., 2011; Mueller 

and Seneviratne, 2012; Taylor et al., 2012; Guillod et al., 2015; Hauser et al., 2016; Seo et al., 2019).  Soil moisture also 35 

influences precipitation formation and storm tracks by coupling with the atmosphere (Koster et al., 2004; Taylor et al., 2012; 

Guillod et al., 2015; Santanello et al., 2018, 2019; Zhang et al., 2019). Consequently, inaccurate SM information in the land-

surface-model hinders accurate predictions of extreme climate and weather because of unrealistic land-atmosphere interactions 

that result from uncertainties in air temperature, moisture, dynamics, cloud formation, and precipitation.  

High-quality in situ soil moisture data are an important reference for evaluating climate models (Yuan and Quiring, 2017; 40 

Zhuo et al., 2019) and remote-sensed SM data (Entekhabi et al., 2010; Kerr et al., 2010) . However, it is not practically possible 

to perform in situ SM measurements with high spatial and temporal coverage. A practical alternative is to employ a portable 

soil probe that is calibrated using locally measured soil moisture. In particular, portable dielectric sensors make use of the 

relationship between the dielectric constant and volumetric soil water content. However, such retrieval of the volumetric soil 

water content from dielectric measurements does not account for soil organic matter (SOM) and saturation conditions. A few 45 

studies have reported the relationship between the dielectric constant and the volumetric soil water content in organic-rich 

soils (Topp et al., 1980; Roth et al., 1992; Bircher et al., 2012). However, the calibration functions derived from these studies 

have limitations for global-scale applications because they were developed using only a few specific sites and/or applicable 

only for the sites with a limited range of organic matter content. For the purpose of a global soil moisture probe observing 

system, using an inversion method of the existing physical dielectric mixing model can be a great alternative approach to 50 

incorporate the variability of organic matter into the probe algorithm beyond the current empirical probe models. 

With this background, this work provides a pathway for a physical model to consider soil organic matter. We developed an 

inverse dielectric mixing model for mineral soil derived from (Park et al., 2017, 2019) to obtain more accurate volumetric soil 

moisture estimates from the dielectric constant. The proposed model reflects the damping effect and simulates the 

supersaturation of soil moisture over soil porosity (when soil moisture occupied larger than porosity of dry compacted soil in 55 

the unit volume causing light weight clay swelling or starting existence of standing water or starting surface runoff due to the 

precipitation accumulation over soil surface faster than infiltration) so that we can capture the standing water and surface 

runoff during flood events, which has not been studied in other prevalent dielectric mixing models  

The most recent high resolution SOM map (Hengl et al., 2014; Batjes, 2016) is only available as a static variable for the land 

model; therefore, the realism of the parameterization for surface runoff, infiltration, evapotranspiration, and soil respiration is 60 

limited. Therefore, the other aim of this study is to provide a foundation for global SOM estimation using observations from a 

satellite, such as Soil Moisture Active Passive (SMAP), by developing a dielectric mixing model based on accurate in-situ 

SOM and gravimetric soil moisture.  

The remainder of this paper is organized as follows: Section 2 introduces the inversion approach of dielectric mixing model to 

estimate soil moisture from organic soil using the probe. The data used in this study are described in Sect. 3. In Sect. 4, we 65 
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evaluate the results using the soil moisture measured during SMAPVEX12. Finally, a summary and discussion for further 

applications are provided in Sect. 5. 

2. Method 

Dielectric constant indicates a polarizability of materials at certain wavelength. The dipole structure of water molecule is highly 

sensitive to microwave electric field having very high dielectric constant approximately 80. On the other hand, the dielectric 70 

constant of soil mineral at microwave is rarely reacting having only low value from 3 to 5. Therefore, an instrument which can 

measure the effective dielectric constant of soil medium such as Stevens Hydraprobe can provide the accurate information of 

water amount within soil (Jackson et al., 1982; Schmugge, 1983; Stafford, 1988). Also, from the space, microwave satellite 

such as SMAP (Soil Moisture Active Passive) (Entekhabi et al., 2010), SMOS (Soil Moisture and Ocean Salinity) (Wigneron 

et al., 2007) and AMSR-E (Advanced Microwave Scanning Radiometer for EOS) can effectively estimate soil moisture from 75 

the measured brightness temperature by relating the effective dielectric constant of land surface. 

For the application of portable soil probe, the in situ soil moisture data are provided based on the empirical relationship between 

the measured dielectric constant and the volumetric soil moisture (Seyfried and Murdock, 2004; Bell et al., 2013) using the 

following equation: 

𝑤 = 0.0838(ε!"# − 0.0846                   (1) 80 

 

where,	𝜀$%& is the real part of the dielectric constant measured with the soil probe, and w is the estimation of the volumetric 

soil moisture (cm3⋅cm-3). As apparent in Eq. (1), the dependence of 	𝜀!"# on SOM was not considered in the estimation of w. 

 

To consider the SOM, we first derive Eqs. (2)–(4), based on Park et al. (2019).  85 

If the observed real part of the dielectric constant measured with the soil probe is smaller than the real part of the dielectric 

constant at the wilting point, 𝜀!"# < 𝜀'(, we obtain: 

for w < wwp 

𝑤 = 𝑎1(𝜀!"# − 1)𝐻)* + 17 + 𝑏                            (2) 

where,  90 

𝑎 = 1/𝜀bound  

𝑏 = −
(1 − 𝑝)𝜀soil + 𝑝𝜀air 

𝜀bound 
 

where, H is the damping factor (0.8), ebound, is the dielectric constant for bound water, efree, dielectric constant for free water, 

eair is the dielectric constant for air (1). 

 95 
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If the observed real part of the dielectric constant measured with the soil probe is larger than the real part of the dielectric 

constant at the wilting point and still smaller than the saturation point, 𝜀'( < 𝜀!"# < 𝜀( , we get: 

for wwp < w < p 

𝑤 = 𝑎((𝜀!"# − 1)𝐻)* + 𝑐 + 𝑏                   (3) 

where,   100 

𝑎 = <1𝑝 − 𝑤'(7/(𝜀free − 𝜀bound ) 

𝑏 =
𝑤'(𝜀free − 𝑝𝜀bound 

<1𝑝 − 𝑤'(7(𝜀free − 𝜀bound )
 

𝑐 =
1𝑤'(𝜀free − 𝑝𝜀bound 7

+

41𝑝 − 𝑤'(7(𝜀free − 𝜀bound )
− 𝜀soil + 𝜀air  

 

Finally, for 𝜀!"# > 𝜀(, we get: 105 

for p < w 

𝑤 = 𝑎1(𝜀!"# − 1)𝐻)* + 17 + 𝑏                   (4) 

𝑎 =
1

𝜀free − 𝜀soil 
 

𝑏 = −
𝜀soil 

𝜀free − 𝜀soil 
 

 110 

For frequencies from 1.4 GHz to 50 MHz, the clay content is empirically considered in the dielectric constant for free, bound 

water, and dried organic soil at 50 MHz, as shown in Eq. (5–7). 

𝜀,-.. = 𝜀,-..!.#$%& + 65 ∙ 𝑣/012                   (5) 

𝜀%$345 = 𝜀%$345!.#$%& + 5 ∙ 𝑣/012                   (6) 

𝜀soil = 1𝜀clay ⋅ 𝑣clay + 𝜀sand ⋅ 𝑣sand + 𝜀silt ⋅ 𝑣silt 7(1 − 𝑣SOM ) + 𝜀SOM ⋅ 𝑣SOM              (7) 115 

where, efree 1.4GHz and ebound 1.4GHz are the dielectric constant for free and bound water at 1.4GHz, respectively and vclay, vsilt and 

vsand are the volumetric ratios (cm3⋅cm-3) for clay, silt and sand, respectively. 

 

The volumetric ratio of organic matter (vSOM, cm3⋅cm-3) can be estimated from the organic matter and the bulk density (BDSOM) 

using the following equation: 120 

𝑣678 = AB *
678

− 1CB 9:soil 
9:'()

C + 1D
)*

                 (8) 
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In this study, 𝐵𝐷&$;0 was 1.2301 gcm-3 and the 𝐵𝐷<=> used in Eq. (8) is computed using the following non-linear model (Périé 

and Ouimet, 2011). 

𝐵𝐷678 = −1.977 + 4.105 ⋅ SOM− 1.229 ⋅ ln(SOM) − 0.103 ⋅ (ln(SOM))+            (9) 125 

 

where SOM is the mass of organic matter per mass of soil (kg SOM kg-1 soil).  

 

   In a previous study, Eq. (11) was proposed as the wilting point, which is a function of SOM (kg⋅kg-1)  (Park et al., 2019). In 

our study, and the porosity is suggested as a power law function according to the SOM variable, as shown in Eq. (12).   130 

𝑤?@ = 0.02982 + 0.089 ∙ 𝑣/012 + 0.786 ∙ SOM               (11) 

𝑝 = 0.18 + 0.26 ∙ 𝑣/012 + 0.54 ∙ SOMA.C               (12) 

 

By applying Eqs. (11) and (12), which require Eq. (8), Eqs. (2–4) can be used to compose the inverse dielectric mixing model 

for organic soil (IDO). A detailed description of the parameters used in the algorithm is provided in Table 1.  135 

 

Table 1. Required physical properties to inverse the dielectric mixing model 

Symbol Physical property Physical unit 

𝜀!"# Dielectric constant (real part) measured by TDR instrument - 

𝜀"!DEF Dielectric constant (real part) of bound water at 50MHz - 

𝜀GHII Dielectric constant (real part) of free water at 50MHz - 

𝜀"!DEF	*.KLMN Dielectric constant (real part) of bound water at 1.4GHz - 

𝜀GHII	*.KLMN Dielectric constant (real part) of free water at 1.4GHz - 

𝜀#!OP Dielectric constant (real part) of dry soil  - 

𝜀QOH Dielectric constant (real part) of air - 

𝑝 Dry porosity or saturation point cm3⋅cm-3 

𝑤?@ Wilting point [cm3cm-3] cm3⋅cm-3 

H Damping factor [-] - 

w Volumetric soil water cm3⋅cm-3 

vclay Volumetric mixing ratio of clay cm3⋅cm-3 

vsilt Volumetric mixing ratio of silt cm3⋅cm-3 

vsand Volumetric mixing ratio of sand cm3⋅cm-3 

vSOM Volumetric mixing ratio of soil organic matter cm3⋅cm-3 

OC Organic carbon g⋅kg-1 
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OM Organic matter % 

BD Bulk density g⋅cm-3 

PD Solid particle density kg⋅m-3 

 

SOM is expressed as organic carbon (OC) in the majority of global soil maps (Hugelius et al., 2013; Hengl et al., 2014; Batjes, 

2016; Hengl et al., 2017; “Harmonized world soil database v1.2 | FAO SOILS PORTAL,” 2020), as well as in the published 140 

units in the SMAPVEX 12 study (Manns and Berg, 2014).  Organic carbon is the major component of SOM, and in order to 

convert OC to SOM, the conversion factor (foc) of 1.8 was used in Eq (10). 

SOM = 𝑓$/ ⋅ OC                  (10) 

The conventional OC-to-SOM conversion factor was proposed to be 1.724 by (Waksman and Stevens, 1930; Stenberg et al., 

2010). However, it has been reported that the OC-to-SOM conversion factor can vary from 1.25 to 2.5, and the conventional 145 

value of 1.724  tends to overestimate the OC, as reported by Pribyl (2010). Instead of 1.724,  1.8 is a more appropriate value 

for a wide range of OC, as supported by various studies (Broadbent, 1953; Ranney, 1969; Manns and Berg, 2014). Therefore, 

in this study, we applied 1.8 for the conversion factor foc in Eq. (10). 

The IDO model is composed of bound, mixed, and free water models, as shown in Fig. 1(a–c), respectively. The selection 

process for the model parameters is shown in Fig. 1(d) and requires the dielectric constant values to be estimated from the 150 

known wilting point and porosity, along with 𝜀?@ and 𝜀@ values to retrieve the soil moisture value from the measured dielectric 

constant. Instead of estimating them, we selected the second largest measured SM value. We found that in an S-like stepwise 

model, the second order in SM magnitude is the proper method to select Eqs. 2, 3, or 4 without the knowledge of  𝜀'(	and	𝜀(. 

Additionally, selecting the lowest or highest value for a given measurement along the x-axis might be a valid selection process 

for any type of concave or convex-like stepwise model. 155 

The difference in the soil moisture estimation from the observed dielectric constant based on the Seyfried and IDO models is 

presented in Fig. 1(e). The IDO model provides larger SM values with high SOM input (purple curve) and lower SM values 

in low SOM input (orange curve) compared to the Seyfried model (black dotted curve). The factory setting (default probe 

algorithm) reflects the average SOM effect empirically in the generalized model. Even with medium-range SOM (red curve), 

a relatively small but more complex difference between the two approaches can be revealed in the SM estimation: lower SM 160 

estimation in wet soil and higher SM estimation in dry soil than the probe estimated (black dotted). 
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Figure 1: Single phase relationship between (a) dielectric constant and bound water, (b) bound and free water mixture, 

(c) free water, (d) selection process among those models, and (e) comparison with the polynomial-based soil probe 

sensor algorithm proposed by Seyfried (Seyfried and Murdock, 2004) and for organic soils (IDO) 165 
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3. Data 

First, it was necessary to determine whether including the organic matter parameter in the dielectric mixing model improves 

the accuracy of soil moisture estimation from the probed dielectric constant. Thus, we compared the results with the SM 170 

measured using the gravimetric method during SMAPVEX12. The SMAPVEX12 field campaign took place in 2012 

(southwest of Winnipeg, Manitoba, Canada), and the SMAP SM retrieval algorithms were calibrated and validated before the 

launch of the SMAP satellite in 2015 (McNairn et al., 2015). During this field campaign, intensive data of the L-band brightness 

temperature and back-scattering albedo were collected using airborne sensors. The land surface type, crop type, soil texture 

(clay and sand contents), the real part of the dielectric constant from soil moisture probes with the field average of 16 sampling 175 

data obtained in every second day from June 6 to July 17, 2013). The sampling depth of the probe is established as top 5cm 

soil which layer is relevant to the brightness temperature emission depth detectable by SMOS and SMAP(Schmugge, 1983; 

Jackson et al., 1997) and gravimetrically determined volumetric soil moisture at the ground sites were measured on the ground 

by sampling soils with 4.7 cm diameter x 4.6 cm depth (Mann and Berg, 2013). For comparison with our new model, we used 

probe measurements (real dielectric constant) as the input and volumetric soil moisture data as references (Rowlandson et al., 180 

2013), which were simultaneously archived with microwave brightness temperature measured from airborne NASA’s L-band 

active-passive PALS instrument. The ancillary information for this function (soil texture information) was provided by 

(Bullock et al., 2014). At the SMAPVEX12 validation sites (Fig. 2a), the volumetric clay and sand mixing ratios for Eqs. 5, 6, 

7, 11, and 12 are from the Agriculture and Agri-Food Canada (AAFC) Soil Landscapes of Canada database (Government of 

Canada, n.d.). The OC information was sampled from the SoilGrid1km database (Hengl et al., 2014) and compared to the field 185 

estimates of the OC  put forth by Manns and Berg (2014).   

 
Figure 2: (a) SMAPVEX12 validation sites (adapted from (Rowlandson et al., 2013)) and (b) calculated distribution of 

soil organic matter in Canada based on the SoilGrid1km database. 

 190 

b)a)
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There are significant range differences among the global soil organic carbon maps (Zhu et al., 2019), such as the HWSD 

(“Harmonized world soil database v1.2 | FAO SOILS PORTAL,” 2020), SoilGrid1km (Hengl et al., 2014), WISE30sec (Batjes, 

2016), and Northern Circumpolar Soil Carbon Database (NCSCD; Hugelius et al., 2013). Therefore, the reliability of the global 

soil organic maps used for local soil moisture estimation using soil probes is still unknown. To investigate the potential 

limitation of global OC maps (hereafter called the OCmap experiment), we performed a comparison of OC measurements 195 

obtained from each SMAPVEX12 site (Manns and Berg, 2014) with those retrieved from the SoilGrid1km map. As shown in 

Fig. 3(a), there is an offset between both datasets of ~ 50 g･kg−1. The estimated OC from the map was greater and showed a 

wider OC range compared to the measured OC in the SMAPVEX12 sites (Fig. 3b). This means that the SoilGrid250m (Hengl 

et al., 2017) estimates are, on average, more than 100 % higher than the measured data. Thus, a potential limitation of the 

SoilGrid250m map exists not only in the spatial pattern, but also in the overall magnitude (74.4 g･kg-1 in average). In this 200 

study, we used OC from SoilGrid250m (without any scaling factor) for the OCmap experiment. 

We investigated the OC accuracy using one type of OC input into the new soil probe algorithm (Eqs. 2–4) by performing two 

experiments: 1) OC entered using a SoilGrid250m map (OCmap experiment; blue in Fig. 3) and 2) SMAPVEX12 the OC in 

situ of SMAPVEX12 (red in Fig. 3). 

  205 
Figure 3: Comparison between organic carbon (OC) observation from SMAPVEX12 (red) and data sampled from 

highly resolved SoilGrid250m map (Hengl et al., 2017) (blue) in: (a) in histogram and (b) in scatter plot. 

4. Calibration of portable soil-moisture sensors 

The development of the calibration models is necessary for further campaigns or further extension of the global soil moisture 

network based on a portable soil moisture sensor. For example, calibration models (Rowlandson et al., 2013) were proposed 210 

by deriving the parameters A, B, and C of the quadratic function between the effective dielectric constant and soil moisture for 

each SMAPVEX12 station.       
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𝜀 = 𝐴𝑤+ + 𝐵𝑤 + 𝐶                  (13)  

In each site a unique set of A, B and C was obtained to estimate w (volumetric soil moisture) from the measured dielectric 

constant e. It is important to verify whether these empirical models are transferable to other field sites based on physical 215 

interpretation. Therefore, we compared them with those derived from the dielectric mixing model, as shown in Table 2. The 

weighting function describing the attenuation of signal on probe and satellite sensor can be an exponential form basically 

following Beer-Lamber law where infinite attenuation of the electric field is allowed but negligible for the deeper than 

sampling depth. On the other hand, a quadratic form can be considered as the weighting function based on the assumption of 

linearly decreasing refractive index scheme (Wilheit, 1978) so that the emission can be assumed to be zero from the deeper 220 

sampling depth. In this study, as shown in Table 2, we assumed the Beer-Lamber law to consider the attenuation effect by 

applying the damping factor 0.8 applicable both for probe and satellite remote sensing. More detail derivation associated with 

the damping factor can be found in the previous study (Park et al., 2017). 

 

Table 2. A, B, and C parameters of the relationship between the effective dielectric constant and soil moisture adapted 225 

from (Park et al., 2017) with damping factor H (0.8) ; dielectric constant for free (𝜀free), bound water (𝜀bound) and 

soil mineral including organic matter (𝜀soil). 

w range A B C 

w < wwp 0 (𝜀%$345 − 1) ∙ 𝐻 1(1 − 𝑝)𝜀#!OP + 𝑝7 ∙ 𝐻 + 𝐻 − 1 

wwp < w < p 
𝜀GHII − 𝜀"!DEF
𝑝 − 𝑤'(

∙ 𝐻 
𝑝ε"!DEF −𝑤'(𝜀GHII

𝑝 − 𝑤'(
∙ 𝐻 (1 − 𝑝)𝜀#!OP ∙ 𝐻 + 𝐻 − 1 

p < w 0 (𝜀GHII − 𝜀#!OP) ∙ 𝐻 𝜀#!OP ∙ 𝐻 + 𝐻 − 1 

 

We observed that when the wilting point and porosity increased with increasing OC [according to Eqs. (11–12)], A and B 

increased and decreased, respectively, as shown in Fig. 4. The results of this matching (Fig. 4) showed that A and B used in 230 

the quadratic function computed for SMAPVEX12 can be parameterized with soil texture, wilting point, porosity, and the 

bound and free water dielectric constants. Additionally, the C parameter indicates the effective dielectric constant of the 

mixture of dry organic matter (approximately 1.2 (Savin et al., 2020)) and solid mineral soil (3-5); ideally, the C parameter 

value should decrease with an increase in OC. Notably, the clay content was also positively correlated with an increase in OC 

in the SMAPVEX12. Therefore, owing to the simultaneous increase in clay content, which is characterized by a high dielectric 235 

constant, the sensitivity of the C parameter to OC variation (decreasing pattern in C) is nullified, as shown in Fig. 4(c). 

Furthermore, because C perfectly represents the dielectric constant of dry soil, it should be greater than 1, which is the real 

part of the dielectric constant of a vacuum. Based on this physical constraint, the previous C (gray points in Fig. 4) is 

unrealistically low (less than that of the vacuum state) in the higher SOM range. The minimum C is (1-p)𝜀soil among three w 
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ranges [Eq. (4)] because the following order is always true [(1-p)𝜀soil < (1-p) 𝜀soil + p < 𝜀soil] and it is larger than 2 as shown in 240 

Fig. 4 C. This shows that the proposed IDO computes a more realistic value of dielectric constant for organic soil. 

 

 
Figure 4: Relationship between soil organic carbon measurements (x-axis) and calibration parameters (A, B and C) (y-

axis) relating between measured dielectric constant (𝜀) and volumetric soil moisture (w): (blue dash lines) A, B, C which 245 

are not sensitive to OC measurements (Seyfired approach); (gray dots) A, B, C which are empirically obtained 

(Rowlandson et al., 2013); (red dots) A, B, C which are physically simulated by proposed IDO which applies the wilting 

point and porosity as functions of sand and clay volumetric mixing ratios as well as soil organic carbon with the 

damping factor applied. 

5. Results 250 

This study aimed to mitigate a significant discrepancy found between volumetric soil moisture estimated by soil probe sensor 

(considered as ground truth for the validation of land surface modeling and remote sensing) and the gravimetric soil moisture. 

Therefore, in this section, the new approach proposed in the section 2 was investigated whether the accuracy of the new sensor 

algorithm can be improved comparing to the existing probe algorithm. Firstly, looking at the Fig. 5(a) the current issue in the 

probe SM estimates was well displayed in terms of the matching pattern of the gravimetric soil moisture with the measured 255 

dielectric constant. It showed that the existing probe soil moisture (red dots in Fig.5(a)) couldn’t follow both features appeared 

in the measurements (the significant scattering degree and the distinct varying patterns in dry and wet condition). This is a 

fundamental limitation of the traditional polynomial function, the Seyfried model as well as a two-mode system (mineral or 

organic soil), as proposed by Topp et al. (1980) or (Roth et al., 1992). 
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 260 
Figure 5: Scatter plot between probe measurements of the real part of the dielectric constant (x-axis) and volumetric 

soil moisture (y-axis) measured by gravimetric method (green dots in a, b, c),  Seyfried model (black dots in a), IDO 

with SOM taken from SoilGrid250m (Hengl et al., 2017) (red dots in b) and IDO using OC measured during 

SMAPVEX12 (Manns and Berg, 2014) (red dots in c). 

 265 

On the other hand, the IDO, soil organic carbon considered, allowed us to compute SM with similar scattering pattern 

comparable to the measured by gravimetric method. It means that soil organic carbon is critical factor for the application of 

the soil moisture sensor from portable to satellite based. In the regards of the shape appearing in the scattering pattern, IDO 

captured the distinctively curved edge in the low and high-end points close to the values of 12 and 50, respectively, in the x-

axis for the real part of the dielectric constant. Only difference between b) and c) at Fig.5 is OC input, originated from 270 

SoilGrid250m or from in-situ obtained during SMAPVEX12, respectively, with the same input of clay and sand mixing ratio 

from SMAPVEX 12. This pattern is probably related to the transition moments from bound to mixed (a to b in Fig. 1) and 

from mixed to free water states (b to c in Fig.1), which is a very interesting evidence indicating that soil probes can detect 

critical soil parameters such as wilting point and soil porosity based on the accumulated dielectric measurements of certain 

sites. 275 

Even though, the shape of SM scattering estimated from the measured dielectric data (x-axis) became similar to the one 

appeared in the gravimetric soil moisture, it is also required to investigate about whether the actual improvement in the SM 

accuracy has been achieved via the point-by-point comparison with the gravimetric data. This analysis was illustrated in the 

Q-Q plot in Fig.6. It displayed that the scattered uncertainty shown in Fig. 6(a) of the current soil probe algorithm can be 

reduced by IDO approach as (b) and (c). The scatter error shown in Fig.6(a) slightly converged into a 1:1 line when the IDO 280 

adapted the OC map as input (b) and further improved with a narrower scattered error pattern with OC in situ (c). This result 
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further supported that the OC variability with the proposed model can mitigate the uncertainty in SM estimation of the current 

dielectric-based soil moisture sensor network. 

 
Figure 6: Performance of soil moisture probe algorithms in terms of scattering degree to the gravimetric measurements 285 

(x-axis); soil moisture estimates (y-axis) using a) 3rd order polynomial approach (Bell et al., 2013; Seyfried and 

Murdock, 2004), b) the proposed inverse dielectric mixing model (IDO) with the variational soil organic matter (SOM) 

sampled from the SoilGrid1km map (Hengl et al., 2017) and c) the same algorithm but with SOM measured from 

SMAPVEX12 (Manns and Berg, 2014). 

 290 

In Fig. 7, we investigated more characteristics of SM uncertainty: how the biases of SM estimated by the conventional probe 

algorithm are related to the in situ OC and whether they can be mitigated by the proposed algorithm with the OC measurements. 

Fig. 7(a) shows that both negative and positive biases are affected by the IDO. Fig. 7(b), obtained by spreading out the 

histogram according to the degree of SOM, provides an in-depth analysis on how these biases are distributed according to the 

measured SOM. This shows that the negative bias in the high SOM range was reduced because the polynomial function of the 295 

conventional probe algorithm presented in Fig. 1(e) tends to overestimate the SM in the cases of lower SOM and underestimate 

the SM in cases of higher SOM (as compared to the proposed multiphase model). 
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Figure 7: (a) Histogram of soil moisture (SM) bias and (b) its scatter relationship according to soil organic matter 300 

(SOM) converted from in-situ organic carbon (OC) 

 

The importance of accurate and highly resolved organic carbon data in soil moisture estimation from portable soil sensors is 

well evident from the statistical validation presented in Table 3. The results confirmed that the IDO performs better than the 

traditional probe algorithm based on a 3rd order polynomial function specially with the OC measured in the SMAPVEX12 305 

field campaign (with a maintained spatial variability); RMSE = 0.0761 cm3⋅cm-3, correlation of 0.8476, and bias of -0.0014 

cm3⋅cm-3. 

 

Table 3. Validation of soil moisture obtained from Probe (Probe SM), organic soil based on SoilGrid250m organic 

carbon map (IDOmap), and SMAPVEX12 OC in situ observation (IDOobs) 310 

 Bias RMSE Correlation 

Probe -0.0042 0.0824 0.824 

Proposed algorithm with organic carbon map (IDOmap) 0.0266 0.0807 0.833 

Proposed algorithm with in situ organic carbon (IDOobs) 0.0004 0.0725 0.849 

 

The results in this section demonstrated that the wilting point and porosity which emerged in paring the gravimetric soil 

moisture and the dielectric measurements, could be detected also by new model. Also, it is proved that the volumetric soil 

moisture could be estimated from the sensor more accurately in terms of bias, RMSE and correlation analysis. It means that 

our approach can provide more accurate soil moisture probe algorithm than currently used in various soil moisture network 315 

such as USCRN (US Surface Climate Observing Reference Networks) and the SMAPVEX field campaigns. In the boreal 
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forest and Alaska Tundra region with abundant SOM, our study can deliver a significant effect to the validation and conclusion 

of the previous studies in land surface modeling and microwave satellite remote sensing, which used the probe soil moisture 

as a reference data. 

6. Summary and discussion 320 

In this study, we proposed an inverse dielectric mixing model for a 50-MHz soil sensor for agricultural organic soil. This 

model is composed of three nonlinear functions that are mathematically capable of describing the physical behavior, including 

the effect of the organic matter content. It is also noticed that the used organic matter carbon data sampled from SMAPVEX12 

sites (36 g⋅kg-1) was half that of the OC map (74 g⋅kg-1). The validation results demonstrated a higher performance of the new 

model. Regardless of the small amount of OC, its effect improved the performance of the SM estimation, which was 325 

demonstrated via the IDO proposed in this study. We compared the obtained soil-moisture retrievals with improved RMSE 

(13% ↓), slightly stronger correlation (3%↑), and lower bias (90%↓) using the new model and gravimetric soil moisture data. 

But still the coverage of the simulated pattern over the measured points was smaller. Therefore, we sought out a potential 

further improvement based on the additional experiment designed with OM varying within the proposed model. The simulation 

based on the conventional polynomial function (red curve in the Fig. 8 (a)) could not reduce the innate uncertainties and the 330 

IDO proposed in this study could resolve this issue. However, the red dots simulated with IDO (Fig. 8(b)) covered over the 

measured green dots insufficiently. Therefore, in order to activate this weak pattern we performed the experiments to impose 

a more dynamic OC estimate to investigate whether greater or less SOM can cover a similar boundary of the measured 

distribution through the IDO model. The results showed that the piecewise pattern of SM simulated with the proposed approach 

well covered the measured pattern with imposing lower (1 %) to higher (30 %) SOM. 335 
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Figure 8: Investigation of the similarity of the scatter pattern between the measured dielectric constant and the soil 

moisture: (a) obtained from the gravimetric measurements and (b) experimentally simulated with extreme soil organic 

matter (SOM) from 0 % to 30 %. 

 340 

Because the SOM is translated from OC with a conversion factor (1.8) in this study, the improvement might had been not 

sufficient. A realistic estimation of the conversion factor (foc) in Eq. (10) varying from 1.25 up to 2.5 might be a possible 

solution for this.  In addition, the IDO is a model able to replace the calibration factors A, B, and C of Eq. (13) with the soil 

properties presented in Table.2. Overall, the proposed more physics based IDO can replace the current soil probe sensor 

algorithm, which does not incorporate the importance of organic matter variability. 345 

A significant improvement could not be shown probably due to two reasons: the instrumental error in measuring OC from soil 

sample or the constant OC to SOM conversion factor (1.8 for all soil samples). In addition, uncertainty can be suspected from 

other sources, such as clay or sand contents or soil salinity (assumed to be 0 % in this study) used in the IDO. These effects on 

the dielectric measurements and their uncertainties probably served as the limitation of further improvement by the IDO. 

Nevertheless, the results regarding the adaptation of in-situ OC in our study demonstrated that the accuracy of the OM input 350 

for IDO is critical for the accuracy of SM estimation from the probe sensor. Furthermore, we anticipate that the proposed 

approach will be more effective in obtaining a more realistic SM from soil probe sensors in organic soils. 
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