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Abstract. The prevalent soil moisture probe algorithms are based on a polynomial function that does not 
account for the variability in soil organic matter. Users are expected to choose a model before application: 
either a model for mineral soil or a model for organic soil. Both approaches inevitably suffer from 
limitations with respect to estimating the volumetric soil water content in soils having a wide range of 
organic matter content. In this study, we propose a new algorithm based on the idea that the amount of 20 
soil organic matter (SOM) is related to major uncertainties in the in-situ soil moisture data obtained using 
soil probe instruments. To test this theory, we derived a multiphase inversion algorithm from a physically-
based dielectric mixing model capable of using the SOM amount, performed a selection process from the 
multiphase model outcomes, and tested whether this new approach improves the accuracy of soil moisture 
(SM) data probes. The validation of the proposed new soil probe algorithm was performed using both 25 
gravimetric and dielectric data from the Soil Moisture Active Passive Validation Experiment in 2012 
(SMAPVEX12). The new algorithm is more accurate than the previous soil-probe algorithm, resulting in 
a slightly improved correlation (0.824 à 0.848), 12 % lower root mean square error (RMSE; 0.0824 à 
0.0727 cm3⋅cm-3), and 95 % less bias (-0.0042  à 0.0001 cm3⋅cm-3). These results suggest that applying 
the new dielectric mixing model together with global SOM estimates will result in more reliable soil 30 
moisture reference data for weather and climate models and satellite validation. 

1. Introduction 

Soil moisture (SM) plays a critical role in weather and climate by affecting atmospheric variables via 
latent and sensible heat exchange. For example, near-surface air temperature can be affected by the 
evapotranspiration of surface and root zone soil moisture. Therefore, its correlation with the near-surface 35 
temperature is usually considered an effective indicator of the coupling strength between the land surface 
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and the atmosphere (Seneviratne et al., 2006; Koster et al., 2009; Seneviratne et al., 2010; Jaeger and 
Seneviratne, 2011; Seneviratne et al., 2013; Hirschi et al., 2014; Whan et al., 2015). In particular, soil 
moisture anomalies in a dry regime have been reported as the main cause of strong land-atmosphere 
coupling, which can trigger drought and heat waves (Fischer et al., 2007; Zampieri et al., 2009; Guillod 40 
et al., 2015; Hauser et al., 2016; Hirschi et al., 2011; Miralles et al., 2011; Taylor et al., 2012; Mueller 
and Seneviratne, 2012; Seo et al., 2019).  Soil moisture also influences precipitation formation and storm 
tracks by coupling with the atmosphere (Koster et al., 2004; Taylor et al., 2012; Guillod et al., 2015; 
Santanello et al., 2018, 2019; Zhang et al., 2019). Consequently, inaccurate SM information in the land-
surface-model hinders accurate predictions of extreme climate and weather because of unrealistic land-45 
atmosphere interactions that result from uncertainties in air temperature, moisture, dynamics, cloud 
formation and precipitation.  
High-quality in-situ soil moisture data are an important reference for evaluating climate models (Yuan 
and Quiring, 2017; Zhuo et al., 2019) and remote-sensed SM data (Entekhabi et al., 2010; Kerr et al., 
2010) . However, it is not practically possible to perform in-situ SM measurements with high spatial and 50 
temporal coverage. Soil moisture networks based on cosmic ray neutron probes might be more 
manageable for long-term operation, however this approach - and associated networks are not established, 
globally, as dielectric based approach. A practical alternative is to employ a portable soil probe that is 
calibrated using locally measured soil moisture. In particular, portable dielectric sensors make use of the 
relationship between the dielectric constant and volumetric soil water content. However, such retrieval of 55 
the volumetric soil water content from dielectric measurements does not account for soil organic matter 
(SOM) and saturation conditions. A few studies have reported the relationship between the dielectric 
constant and the volumetric soil water content in organic soils (Topp et al., 1980; Roth et al., 1992; Bircher 
et al., 2012). However, the calibration functions derived from these studies have limitations for global-
scale applications because they were developed using only a few specific sites and/or applicable only for 60 
the sites with a limited range of organic matter content. For the purpose of a global soil moisture probe 
observing system, using an inversion method of the existing physical dielectric mixing model can be a 
great alternative approach to incorporate the variability of organic matter into the probe algorithm beyond 
the current empirical probe models. 
With this background, this work provides a pathway for a physical model to consider soil organic matter. 65 
We developed an inverse dielectric mixing model for mineral soil derived from Park et al. (2019, 2017) 
to obtain more accurate volumetric soil moisture estimates from the dielectric constant. The proposed 
model reflects the damping effect and simulates the supersaturation of soil moisture over soil porosity 
(when soil moisture occupied larger than porosity of dry compacted soil in the unit volume causing light 
weight clay swelling or starting existence of standing water or starting surface runoff due to the 70 
precipitation accumulation over soil surface faster than infiltration) so that we can capture the standing 
water and surface runoff during flood events, which has not been studied in other prevalent dielectric 
mixing models  
The most recent high resolution SOM map (Hengl et al., 2014; Batjes, 2016) is only available as a static 
variable for the land model; therefore, the realism of the parameterization for surface runoff, infiltration, 75 
evapotranspiration, and soil respiration is limited. Therefore, it would be important to obtain a spatially 
and temporally varying SOC map from satellite measurements. SMAP has the potential to provide an 
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unprecedented and unique benefit to solve various challenges in deriving such maps regardless of the 
relatively coarse resolution of the SMAP radiometer measurements because of the following three reasons: 
1) microwaves can detect SOC underneath vegetation, which other shorter wave sensors cannot perceive; 80 
2) the temporally varying OC evolution obtained even from low-resolution satellite image will be helpful 
in various modelling and observation studies, and 3) the limitation of the low-resolution issue can be 
overcome by recent downscaling approaches, such as machine learning methods, that can utilize a synergy 
with other ground, spaceborne and satellite data. Consequently, the other aim of this study is to provide a 
foundation for global SOM estimation using observations from a satellite, such as Soil Moisture Active 85 
Passive (SMAP), by developing a dielectric mixing model based on accurate in-situ SOM and gravimetric 
soil moisture. 
The remainder of this paper is organized as follows: Section 2 introduces the inversion approach of 
dielectric mixing model to estimate soil moisture from organic-rich mineral soil using the probe. The data 
used in this study are described in Sect. 3. In Sect. 4, we evaluate the results using the soil moisture 90 
measured during SMAPVEX12. Finally, a summary and discussion for further applications are provided 
in Sect. 5. 

2. Method 

The dielectric constant indicates a polarizability of materials at a certain wavelength. The dipole structure 
of water molecules is highly sensitive to a microwave electric field with very high dielectric constant 95 
(approximately 80). On the other hand, the dielectric constant of mineral soil at microwave electric fields 
is rarely reacting, having only low value from 3 to 5. Therefore, an instrument which can measure the 
effective dielectric constant of soil medium such as Stevens Hydraprobe can provide an accurate estimate 
of water amount within soil (Jackson et al., 1982; Schmugge, 1983; Stafford, 1988). Also, from space, 
microwave satellite such as SMAP (Soil Moisture Active Passive) (Entekhabi et al., 2010), SMOS (Soil 100 
Moisture and Ocean Salinity) (Wigneron et al., 2007) and AMSR-E (Advanced Microwave Scanning 
Radiometer for EOS) can effectively estimate soil moisture from the measured brightness temperature by 
relating the effective dielectric constant of land surface. 
For the application of portable soil moisture probes, the in-situ soil moisture data are provided based on 
the empirical relationship between the measured dielectric constant and the volumetric soil moisture 105 
(Seyfried and Murdock, 2004; Bell et al., 2013) using the following equation: 
𝑤 = 0.0838(ε!"# − 0.0846                 (1) 

 
where,	𝜀$%& is the real part of the dielectric constant measured with the soil probe and w is the estimation 
of the volumetric soil moisture (cm3⋅cm-3). As apparent in Eq. (1), the dependence of 	𝜀!"# on SOM was 110 
not considered in the estimation of w. 
To consider the SOM, we first derive Eqs. (2)–(4), based on Park et al. (2019).  
If the observed real part of the dielectric constant measured with the soil probe is smaller than the real 
part of the dielectric constant at the wilting point, 𝜀!"# < 𝜀'(, we obtain: 
for w < wwp 115 
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𝑤 = 𝑎1(𝜀!"# − 1)𝐻)* + 17 + 𝑏                         (2) 
 
where,  
𝑎 = 1/(𝜀"!+,- − 𝜀air ) 

𝑏 = −
(1 − 𝑝)𝜀soil + 𝑝𝜀air 

𝜀bound − 𝜀air 
 120 

where, H is the damping factor (0.8), ebound, is the dielectric constant for bound water, efree, dielectric 
constant for free water, eair is the dielectric constant for air (1). 
 
If the observed real part of the dielectric constant measured with the soil probe is larger than the real part 
of the dielectric constant at the wilting point and still smaller than the saturation point, 𝜀'( < 𝜀!"# < 𝜀( , 125 
we get: 
for wwp < w < p 

𝑤 = )%./%!)01(3)(4"#$)*)6%&)*)
71

                (3) 
 
where,   130 
𝑎 =

𝜀free − 𝜀bound 

𝑝 − 𝑤'(
 

𝑏 =
𝑝𝜀bound −𝑤'(𝜀free 

𝑝 − 𝑤'(
− 𝜀air  

𝑐 = (1 − 𝑝)𝜀soil + 𝑝𝜀air  
 
Finally, for 𝜀!"# > 𝜀(, we get: 135 
for p < w 
𝑤 = 𝑎1(𝜀!"# − 1)𝐻)* + 17 + 𝑏                (4) 
 

𝑎 =
1

𝜀free − 𝜀soil 
 

𝑏 = −
𝜀soil 

𝜀free − 𝜀soil 
 140 

 
According to Debye Relaxation, the dielectric constant of free water at less than 2GHz frequency has a 
constant value of approximately 80. However, in the field measurements (Curtis, John O. et al., 1995; 
Ishida, 2000; Mironov et al., 2013; Fal et al., 2016) it is found that in clay-rich soil, the real part of the 
dielectric constant increases at lower frequencies, which occurs by the clay-ion-complex interaction 145 
(Kelleners et al., 2005). Therefore, in this study for 50 MHz, the clay content and the real part of the 
dielectric constant at 1.4GHz are empirically considered in the dielectric constant not only for free, but 
also, for bound water Eq.(5,6). 
𝜀89:: = 𝜀89::&.()*+ + 65 ∙ 𝑣3;1<                (5) 
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𝜀%$=>? = 𝜀%$=>?&.()*+ + 5 ∙ 𝑣3;1<                           (6) 150 
Also, we proposed the formulation of the dielectric constant for the dried organic-rich mineral soil at 50 
MHz, as shown in Eq. (7). 

𝜀soil = 1𝜀clay ⋅ 𝑣clay + 𝜀sand ⋅ 𝑣sand + 𝜀silt ⋅ 𝑣silt 7(1 − 𝑣SOM ) + 𝜀SOM ⋅ 𝑣SOM    
                       (7) 

where, efree 1.4GHz and ebound 1.4GHz are the dielectric constant for free and bound water at 1.4GHz, 155 
respectively and vclay, vsilt and vsand are the volumetric ratios (cm3⋅cm-3) for clay, silt and sand, respectively. 
 
The bulk density for organic soils can be computed with pure mineral and organic matter densities 
(Federer et al., 1993) or be expressed with their total volume and mass of these component (Liu et al., 
2013; Jin et al., 2017). By relating these two formulas, we can derive the following volumetric ratio of 160 
organic matter (vSOM, cm3⋅cm-3) (see appendix A for more details): 

𝑣@AB = @A *
@AB

− 1B CD,-. 
CD./ 

+ 1C
)*

                 

(8) 
where, 
 165 
SOM	[kg/kg] = 𝑓$3 ⋅

EF	[I/KI]
*MMM

                (9) 
 
𝐵𝐷 = 0.071 + 1.322 ∙ 𝑒𝑥𝑝(−0.0071 ∙ OC)            (10) 
 
SOM is expressed as organic carbon (OC) in the majority of global soil maps (Hugelius et al., 2013; 170 
Hengl et al., 2014, 2017, “Harmonized world soil database v1.2 | FAO SOILS PORTAL,” 2020) as well 
as in the published units in the SMAPVEX 12 study (Manns and Berg, 2014).  Organic carbon is the 
major component of SOM, and in order to convert OC to SOM, the conversion factor (foc) of 1.8 was used 
in Eq (9). The conventional OC-to-SOM conversion factor was proposed to be 1.724 by (Waksman and 
Stevens, 1930; Stenberg et al., 2010). However, it has been reported that the OC-to-SOM conversion 175 
factor can vary from 1.25 to 2.5, and the conventional value of 1.724 tends to overestimate the OC, as 
reported by Pribyl (2010). Instead of 1.724, 1.8 is a more appropriate value for a wide range of OC, as 
supported by various studies (Broadbent, 1953; Ranney, 1969; Manns and Berg, 2014). Therefore, in this 
study, we applied 1.8 for the conversion factor foc in Eq. (9). If a further effort in mapping conversion 
factors in global scale is made in a future study, the probe sensor algorithm might benefit in the 180 
improvement of its accuracy for soil moisture estimation in organic and peat soils.   
  By applying Eq.(10) (Hossain et al., 2015), 𝐵𝐷NO (bulk density of “pure” mineral matter) and 𝐵𝐷PEN 
(bulk density of “pure” organic matter) in Eq.(8) are computed as 1.393 g⋅cm-3 with 0% OC (0g OC per 
1kg soil) and 0.097 g⋅cm-3 with 56% OC (560g OC per 1kg  soil) converted from 100% SOM with the 
conversion factor 1.8 by Eq.(9), respectively. 185 
   In a previous study, Eq. (11) was proposed as the wilting point, which is a function of SOM (kg⋅kg-1) 
with the slope parameter of SOM modified from 0.786 to 0.6 (Park et al., 2019). In our study the porosity 
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is suggested as a power law function according to the SOM variable, as shown in Eq. (12) (please see the 
result of simulation in all SOM and clay regions in Figure B1 in Appendix B).   
 190 
𝑤QR = 0.02982 + 0.089 ∙ 𝑣3;1< + 0.65 ∙ SOM                             (11) 
𝑝 = 0.194 + 0.26 ∙ 𝑣3;1< + 0.5 ∙ SOMM.T             (12) 
 
By applying Eqs. (11) and (12), which require Eq. (8), Eqs. (2–4) can be used to compose the inverse 
dielectric mixing model for organic-rich mineral soil (IDO). A detailed description of the parameters used 195 
in the algorithm is provided in Table 1. Previous studies (K. E. Saxton et al., 1986; Vereecken et al., 1989; 
Schaap et al., 1998, 2001; Chadburn et al., 2015) showed that greater SOM values increase the wilting 
point and porosity as proposed in equations (11-12). This relationship between the organic matter and the 
soil parameters might become more complex in organic rich soil if the type of OC is also important and 
the dominancy for the OC type change in high SOC region. Such a complex relationship should be 200 
considered by including detail classification of SOM as sapric, hemic and fibric based on previous study 
(Verry et al., 2011). 
 
 
Table 1. Required physical properties to inverse the dielectric mixing model 205 

Symbol Physical property Physical 
unit 

𝜀!"# Dielectric constant (real part) measured by TDR 
instrument 

- 

𝜀"!+,- Dielectric constant (real part) of bound water at 
50MHz 

- 

𝜀UVWW Dielectric constant (real part) of free water at 
50MHz 

- 

𝜀"!+,-	*.0XYZ Dielectric constant (real part) of bound water at 
1.4GHz 

- 

𝜀UVWW	*.0XYZ Dielectric constant (real part) of free water at 
1.4GHz 

- 

𝜀#![\ Dielectric constant (real part) of dry soil  - 
𝜀][V Dielectric constant (real part) of air - 
𝑝 Dry porosity or saturation point cm3⋅cm-3 
𝑤QR Wilting point [cm3cm-3] cm3⋅cm-3 

H Damping factor [-] - 
w Volumetric soil water cm3⋅cm-3 

vclay Volumetric mixing ratio of clay cm3⋅cm-3 
vsilt Volumetric mixing ratio of silt cm3⋅cm-3 
vsand Volumetric mixing ratio of sand cm3⋅cm-3 
vSOM Volumetric mixing ratio of soil organic matter cm3⋅cm-3 
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OC Organic carbon g⋅kg-1 
SOM Organic matter kg⋅kg-1 
BD Bulk density g⋅cm-3 

 
The IDO model is composed of bound, mixed, and free water models, as shown in Fig. 1(a–c), 
respectively. The dielectric constant at the wilting point or porosity should be calculated first and then 
compared to the measured data in order to determine which model should be used among the Eqs.2, 3, or 
4 for soil moisture estimation from the measured dielectric constant. The results of this selection for soil 210 
moisture estimation from the measured dielectric constant is displayed as shown as red dots in Fig. 1(d).  
The difference in the soil moisture estimation from the observed dielectric constant based on the Seyfried 
and IDO models is presented in Fig. 1(e). The IDO model provides larger SM values with high SOM 
input (purple curve) and lower SM values in low SOM input (orange curve) compared to the Seyfried 
model (black dotted curve). The factory setting (default probe algorithm) reflects the average SOM effect 215 
empirically in the generalized model. Even with medium-range SOM (red curve), a relatively small but 
more complex difference between the two approaches can be revealed in the SM estimation: lower SM 
estimation in wet soil and higher SM estimation in dry soil than the probe estimated (black dotted). 



   

 

8 
 

 
Figure 1: Single phase relationship between (a) dielectric constant and bound water, (b) bound and 220 
free water mixture, (c) free water, (d) soil moisture estimated among those models, and (e) 
comparison with the polynomial-based soil probe sensor algorithm proposed by Seyfried (Seyfried 
and Murdock, 2004) and for organic-rich mineral soils (IDO) 
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3. Data 225 

First, it was necessary to determine whether including the organic matter parameter in the dielectric 
mixing model improves the accuracy of soil moisture estimation from the probed dielectric constant. Thus, 
we compared the results with the SM measured using the gravimetric method during SMAPVEX12. The 
SMAPVEX12 field campaign took place in 2012 (southwest of Winnipeg, Manitoba, Canada), and the 
SMAP SM retrieval algorithms were calibrated and validated before the launch of the SMAP satellite in 230 
2015 (McNairn et al., 2015). During this field campaign, intensive data of the L-band brightness 
temperature and total radar backscatter cross-section (Tsang and Li, 1999; Entekhabi et al., 2010; Kim et 
al., 2014), were collected using airborne sensors. The land surface type, crop type, crop water content, 
soil texture (clay and sand contents) were evaluated during the experiment. Soil sampling included 
numerous measurements of the real part of the dielectric constant, these measurements were obtained 235 
using soil probes obtained from 16 sampling locations on 50 different agricultural fields (McNairn et al., 
2015). The dielectric data was obtained approximately every 2 days between June 6 to July 17, 2012. The 
sampling depth of the probe is approximately 5.7cm and is representative of the soil layer relevant to the 
brightness temperature emission depth detectable by SMOS and SMAP (Schmugge, 1983; Jackson et al., 
1997). In addition to the dielectric observations a gravimetric soil sample was obtained from each 240 
sampling field during the sampling dates. The gravimetric samples were obtained from a sampling core 
with dimensions of 4.7 cm diameter x 4.6 cm depth (Manns and Berg, 2014), the volumetric water content 
from these samples was also used for the development of calibration equations for the dielectric probes 
(Rowlandson et al., 2013). For comparison with our new model, we used probe measurements (real 
dielectric constant) as the input and volumetric soil moisture data as references (Rowlandson et al., 2013), 245 
which were simultaneously archived with microwave brightness temperature measured from airborne 
NASA’s L-band active-passive PALS instrument. The ancillary information for this function (soil texture 
information) was provided by Bullock et al. (2014). At the SMAPVEX12 validation sites (Fig. 2a), the 
volumetric clay and sand mixing ratios for Eqs. 5, 6, 7, 11, and 12 are from the Agriculture and Agri-
Food Canada (AAFC) Soil Landscapes of Canada database (Government of Canada, n.d.). The OC 250 
information was sampled from the SoilGrid250m database (Hengl et al., 2017, 2014; Poggio et al., 2021) 
and compared to the field estimates of the OC put forth by Manns and Berg (2014). The field samples of 
the OC were processed by grinding oven dried soil samples, and igniting and burning off organic mass at 
375 °C. The SOM was determined from the weight difference between before and after igniting the soil 
samples and divided by 1.8 to convert SOM to OC (Ball, 1964; Manns and Berg, 2014; Wang et al., 2011). 255 
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Figure 2: (a) SMAPVEX12 validation sites (adapted from (Rowlandson et al., 2013)) and (b) 
calculated distribution of soil organic matter in Canada based on the SoilGrid250m database. 
 260 
There are significant range differences among the global soil organic carbon maps (Zhu et al., 2019), such 
as the HWSD (“Harmonized world soil database v1.2 | FAO SOILS PORTAL,” 2020), SoilGrid250m 
(Hengl et al., 2014, 2017), WISE30sec (Batjes, 2016), and Northern Circumpolar Soil Carbon Database 
(NCSCD; (Hugelius et al., 2013)). Therefore, the reliability of the global soil organic maps used for local 
soil moisture estimation using soil probes is still unknown. To investigate the potential limitation of global 265 
OC maps (hereafter called the OCmap experiment), we performed a comparison of OC measurements 
obtained from each SMAPVEX12 site (Manns and Berg, 2014) with those retrieved from the SoilGrid205 
map. As shown in Fig. 3(a), there is an offset between both datasets of ~ 50 g･kg−1. The estimated OC 
from the map was greater and showed a wider OC range compared to the measured OC in the 
SMAPVEX12 sites (Fig. 3b). This means that the SoilGrid250m (Hengl et al., 2017) estimates are, on 270 
average, more than 100 % higher than the measured data. Thus, a potential limitation of the SoilGrid250m 
map exists not only in the spatial pattern, but also in the overall magnitude (74.4 g･kg-1 in average). In 
this study, we used OC from SoilGrid250m (without any scaling factor) for the OCmap experiment. 
We investigated the OC accuracy using one type of OC input into the new soil probe algorithm (Eqs. 2–
4) by performing two experiments: 1) OC entered using a SoilGrid250m map (OCmap experiment; blue 275 
in Fig. 3) and 2) SMAPVEX12 the OC in-situ of SMAPVEX12 (red in Fig. 3). 

b)a)
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Figure 3: Comparison between organic carbon (OC) observation from SMAPVEX12 (red) and data 
sampled from highly resolved SoilGrid250m map (Hengl et al., 2017) (blue) in: (a) in histogram and 
(b) in scatter plot. 280 

4. Calibration of portable soil-moisture sensors 

The development of the calibration models is necessary for further campaigns or further extension of the 
global soil moisture network based on a portable soil moisture sensor. For example, calibration models 
(Rowlandson et al., 2013) were proposed by deriving the parameters A, B, and C of the quadratic function 
between the effective dielectric constant and soil moisture for each SMAPVEX12 station.  285 
     
𝜀$%& = 𝐴𝑤7 + 𝐵𝑤 + 𝐶               (13) 
In each site a unique set of A, B and C was obtained to estimate w (volumetric soil moisture) from the 
measured dielectric constant e. It is important to verify whether these empirical models are transferable 
to other field sites based on physical interpretation. Therefore, we compared them with those derived from 290 
the dielectric mixing model, as shown in Table 2. The weighting function describing the attenuation of 
signal on probe and satellite sensor can be an exponential form basically following Beer-Lambert law 
where infinite attenuation of the electric field is allowed but negligible for the deeper sampling depth. On 
the other hand, a quadratic form can be considered as the weighting function based on the assumption of 
linearly decreasing refractive index scheme (Wilheit, 1978) so that the emission can be assumed to be 295 
zero from the deeper sampling depth. In this study, as shown in Table 2, we assumed the Beer-Lambert 
law to consider the attenuation effect by applying the damping factor 0.8 applicable both for probe and 
satellite remote sensing. More detailed derivation associated with the damping factor can be found in the 
previous study (Park et al., 2017). 
 300 
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Table 2. A, B, and C parameters of the relationship between the effective dielectric constant and 
soil moisture adapted from (Park et al., 2017) with damping factor H (0.8) ; dielectric constant for 
free (𝜀free), bound water (𝜀bound) and soil mineral including organic matter (𝜀soil). 

w range A B C 

w < wwp 0 (𝜀%$=>? − 𝜀1^9)𝐻 1(1 − 𝑝)𝜀&$^; + 𝑝𝜀1^9 − 17𝐻
+ 1 

wwp < w < 
p 

𝜀UVWW − 𝜀"!+,-
𝑝 − 𝑤'(

𝐻 
@
𝑝ε"!+,- −𝑤'(𝜀UVWW

𝑝 − 𝑤'(

− 𝜀1^9C𝐻 

1(1 − 𝑝)𝜀#![\ + 𝑝𝜀1^9 − 17𝐻
+ 1	

p < w 0 (𝜀UVWW − 𝜀#![\) ∙ 𝐻 𝜀#![\𝐻 − 𝐻 + 1 
 
We observed that when the wilting point and porosity increased with increasing OC [according to Eqs. 305 
(11–12)], A and B increased and decreased, respectively, as shown in Fig. 4. The results of this matching 
(Fig. 4) showed that A and B used in the quadratic function computed for SMAPVEX12 can be 
parameterized with soil texture, wilting point, porosity, and the bound and free water dielectric constants. 
Additionally, the C parameter indicates the effective dielectric constant of the mixture of dry organic 
matter (approximately 1.2 (Savin et al., 2020)) and solid mineral soil (3-5); ideally, the C parameter value 310 
should decrease with an increase in OC. Notably, the clay content was also positively correlated with an 
increase in OC in the SMAPVEX12. Therefore, owing to the simultaneous increase in clay content, which 
is characterized by a high dielectric constant, the sensitivity of the C parameter to OC variation 
(decreasing pattern in C) is nullified, as shown in Fig. 4(c). Furthermore, because C perfectly represents 
the dielectric constant of dry soil, it should be greater than 1, which is the real part of the dielectric constant 315 
of a vacuum. Based on this physical constraint, the previous C (gray points in Fig. 4) is unrealistically 
low (less than that of the vacuum state) in the higher SOM range. The minimum C is (1-p)𝜀soil among 
three w ranges [Eq. (4)] because the following order is always true [(1-p)𝜀soil < (1-p) 𝜀soil + p < 𝜀soil] and 
it is larger than 2 as shown in Fig. 4 C. This shows that the proposed IDO computes a more realistic value 
of dielectric constant for organic-rich mineral soil. 320 
 



   

 

13 
 

 
 
Figure 4: Relationship between soil organic carbon measurements (x-axis) and calibration 
parameters (A, B and C) (y-axis) relating between measured dielectric constant (𝜀) and volumetric 325 
soil moisture (w): (blue dash lines) A, B, C which are not sensitive to OC measurements (Seyfired 
approach); (gray dots) A, B, C which are empirically obtained (Rowlandson et al., 2013); (red dots) 
A, B, C which are physically simulated by proposed IDO which applies the wilting point and 
porosity as functions of sand and clay volumetric mixing ratios as well as soil organic carbon with 
the damping factor applied. 330 

5. Results 

This study aimed to mitigate a significant discrepancy found between volumetric soil moisture estimated 
by soil probe sensor (considered as ground truth for the validation of land surface modelling and remote 
sensing) and the gravimetric soil moisture. Therefore, in this section, the new approach proposed in the 
section 2 investigated whether the accuracy of the new sensor algorithm can be improved compared to 335 
the existing probe algorithm. Firstly, looking at the Fig. 5(a) the current issue in the probe SM estimates 
was well displayed in terms of the matching pattern of the gravimetric soil moisture with the measured 
dielectric constant. It showed that the existing probe soil moisture (red dots in Fig.5(a)) couldn’t follow 
both features that appeared in the measurements (the significant scattering degree and the distinct varying 
patterns in dry and wet condition). This is a fundamental limitation of the traditional polynomial function, 340 
the Seyfried model as well as a two-mode system (mineral or organic (peat) soil), as proposed by Topp 
et al. (1980) or Roth et al., (1992).  
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Figure 5: Scatter plot between probe measurements of the real part of the dielectric constant (x-345 
axis) and volumetric soil moisture (y-axis) measured by gravimetric method (green dots in a, b, c),  
Seyfried model (red dots in a), IDO with SOM taken from SoilGrid250m (Hengl et al., 2017) (red 
dots in b) and IDO using OC measured during SMAPVEX12 (Manns and Berg, 2014) (red dots in 
c). 
 350 
On the other hand, the IDO, with soil organic carbon considered, allowed us to compute SM with a similar 
scattering pattern comparable to that measured by gravimetric method. It means that soil organic carbon 
is a critical factor for the application of the soil moisture sensors from portable to satellite based. In regards 
to the shape appearing in the scattering pattern, IDO captured the distinctively curved edge in the low and 
high-end points close to the values of 12 and 50, respectively, in the x-axis for the real part of the dielectric 355 
constant. The only difference between b) and c) at Fig.5 is OC input, originated from SoilGrid250m or 
from in-situ obtained during SMAPVEX12, respectively, with the same input of clay and sand mixing 
ratio from SMAPVEX 12. This pattern is probably related to the transition moments from bound to mixed 
(a to b in Fig. 1) and from mixed to free water states (b to c in Fig.1), which is very interesting evidence 
indicating that soil probes can detect critical soil parameters such as wilting point and soil porosity based 360 
on the accumulated dielectric measurements of certain sites. 
Even though the shape of SM scattering estimated from the measured dielectric data (x-axis) became 
similar to the one appearing in the gravimetric soil moisture, it is also required to investigate whether the 
actual improvement in the SM accuracy has been achieved via the point-by-point comparison with the 
gravimetric data. This analysis was illustrated in the Q-Q plot in Fig.6. It displayed that the scattered 365 
uncertainty shown in Fig. 6(a) of the current soil probe algorithm can be reduced by IDO approach as (b) 
and (c). The scatter error shown in Fig.6(a) slightly converged into a 1:1 line when the IDO adapted the 
OC map as input (b) and further improved with a narrower scattered error pattern with OC in-situ (c). 
This result further supported that the OC variability with the proposed model can mitigate the uncertainty 
in SM estimation of the current dielectric-based soil moisture sensor network. 370 
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Figure 6: Performance of soil moisture probe algorithms in terms of scattering degree to the 
gravimetric measurements (x-axis); soil moisture estimates (y-axis) using a) 3rd order polynomial 
approach (Seyfried and Murdock, 2004; Bell et al., 2013), b) the proposed inverse dielectric mixing 
model (IDO) with the variational soil organic matter (SOM) sampled from the SoilGrid250m map 375 
(Hengl et al., 2017) and c) the same algorithm but with SOM measured from SMAPVEX12 (Manns 
and Berg, 2014). 
 
In Fig. 7, we investigated more characteristics of SM uncertainty; how the biases of SM estimated by the 
conventional probe algorithm are related to the in-situ OC and whether they can be mitigated by the 380 
proposed algorithm with the OC measurements. Fig. 7(a) shows that both negative and positive biases are 
affected by the IDO. Fig. 7(b), obtained by spreading out the histogram according to the degree of SOM, 
provides an in-depth analysis on how these biases are distributed according to the measured SOM. This 
shows that the negative bias in the high SOM range was reduced because the polynomial function of the 
conventional probe algorithm presented in Fig. 1(e) tends to overestimate the SM in the cases of lower 385 
SOM and underestimate the SM in cases of higher SOM (as compared to the proposed multiphase model). 
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Figure 7: (a) Histogram of soil moisture (SM) bias and (b) its scatter relationship according to soil 390 
organic matter (SOM) converted from in-situ organic carbon (OC) 
 
The importance of accurate and highly resolved organic carbon data in soil moisture estimation from 
portable soil sensors is highly evident from the statistical validation presented in Table 3. The results 
confirmed that the IDO performs better than the traditional probe algorithm based on a 3rd order 395 
polynomial function especially with the OC measured in the SMAPVEX12 field campaign (with a 
maintained spatial variability); RMSE = 0.0727 cm3⋅cm-3, correlation of 0.848, and bias of 0.0001 
cm3⋅cm-3. 
 
Table 3. Validation of soil moisture obtained from Probe (Probe SM), organic-rich mineral soil 400 
based on SoilGrid250m organic carbon map (IDOmap), and SMAPVEX12 OC in-situ observation 
(IDOobs) 

 Bias RMSE Correlation 
Probe -0.0042 0.0824 0.824 
Proposed algorithm with organic carbon map 
(IDOmap) 

0.0222 0.0789 0.835 

Proposed algorithm with in-situ organic carbon 
(IDOobs) 

0.0001 0.0727 0.848 
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The results in this section demonstrated that the wilting point and porosity which emerged in paring the 
gravimetric soil moisture and the dielectric measurements, could be detected also by the new model. Also, 405 
it is proven that the volumetric soil moisture could be estimated from the sensor more accurately in terms 
of bias, RMSE and correlation analysis. It means that our approach can provide more accurate soil 
moisture probe algorithm than currently used in various soil moisture networks such as USCRN (US 
Surface Climate Observing Reference Networks) and the SMAPVEX field campaigns. In the boreal forest 
and Alaska Tundra region with abundant SOM, our study can deliver a significant effect to the validation 410 
and conclusion of the previous studies in land surface modelling and microwave satellite remote sensing, 
which used the probe soil moisture as a reference data. 

6. Summary and discussion 

In this study, we proposed an inverse dielectric mixing model for a 50-MHz soil sensor for agricultural 
organic-rich mineral soil. The 50MHz sensor is a prevalent frequency band for soil moisture probes.  415 
(Cosh et al., 2021) found that in North America soil sensors using this waveband occupied 40% of the 
soil moisture networks (10 of 25 including USCRN) and 53% of sensors (1021 of 1923 locations). 
Therefore, the proposed algorithm has potential to contribute significantly to the accuracy of the soil 
moisture estimates derived from current in-situ soil moisture measurements. Furthermore, since the 
SMAPVEX also used 50 MHz sensors, it is anticipated that the accuracy of the calibration and validation 420 
of the SMAP related soil moisture algorithms will be increased. The proposed model is composed of three 
nonlinear functions that are mathematically capable of describing the physical behaviour, including the 
effect of the organic matter content. In this model, we proposed a physical mixing approach of organic 
matter in dry soil and improved the wilting point and saturation point. This derivation also can be applied 
to other bands for Capacitance sensors (5TE (70MHz), Wet (20MHz), Time-Domain-Reflectometry 425 
(TDR) (TDR100/200 (1450MHz), SoilVUE-10 (1450MHz) and satellite sensors SMAP (L-band) and 
SMOS (L-band) (AMSR-E (JAXA) X/C, Sentinel-1 (ESA) (C)). It is also noticed that the applied organic 
matter carbon data sampled from SMAPVEX12 sites (36 g⋅kg-1) was half that of the OC map (74 g⋅kg-1). 
The validation results demonstrated a higher performance of the new model. Regardless of the small 
amount of OC, its effect improved the performance of the SM estimation, which was demonstrated via 430 
the IDO proposed in this study. We compared the obtained soil-moisture retrievals with improved RMSE 
(13% ↓), slightly stronger correlation (3%↑), and lower bias (90%↓) using the new model and gravimetric 
soil moisture data. But still the coverage of the simulated pattern over the measured points was smaller. 
Therefore, we sought out a potential further improvement based on the additional experiment designed 
with SOM varying within the proposed model. The simulation based on the conventional polynomial 435 
function (red curve in the Fig. 8 (a)) could not reduce the innate uncertainties and the IDO proposed in 
this study could resolve this issue. However, the red dots simulated with IDO (Fig. 8(b)) covered over the 
measured green dots insufficiently. Therefore, in order to activate this weak pattern, we performed the 
experiments to impose a more dynamic OC estimate to investigate whether greater or less SOM can cover 
a similar boundary of the measured distribution through the IDO model. The results showed that the 440 
piecewise pattern of SM simulated with the proposed approach well covered the measured pattern with 
imposing lower (1 %) to higher (30 %) SOM. 
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Figure 8: Investigation of the similarity of the scatter pattern between the measured dielectric 
constant and the soil moisture: (a) obtained from the gravimetric measurements and (b) 445 
experimentally simulated with extreme soil organic matter (SOM) from 0 % to 30 %. 
 
Because the SOM is translated from OC with a conversion factor (1.8) in this study, the improvement 
might have been not sufficient. A realistic estimation of the conversion factor (foc) in Eq. (10) varying 
from 1.25 up to 2.5 might be a possible solution for this.  In addition, the IDO is a model able to replace 450 
the calibration factors A, B, and C of Eq. (13) with the soil properties presented in Table.2. Overall, the 
proposed more physics based IDO can replace the current soil probe sensor algorithm, which does not 
incorporate the importance of organic matter variability. 
A significant improvement could not be shown probably due to two reasons: the instrumental error in 
measuring OC from soil sample or the constant OC to SOM conversion factor (1.8 for all soil samples). 455 
In addition, uncertainty can be suspected from other sources, such as clay or sand contents or soil salinity 
(assumed to be 0 % in this study) used in the IDO. These effects on the dielectric measurements and their 
uncertainties probably served as the limitation of further improvement by the IDO. Therefore, for the 
potential users to apply our approach, note the following range of SOM applied: our study was validated 
in 1% - 15 % and performed the sensitivity experiment in 1% - 30% SOM. 460 
Nevertheless, the results regarding the adaptation of in-situ OC in our study demonstrated that the 
accuracy of the SOM input for IDO is critical for the accuracy of SM estimation from the probe sensor. 
In previous studies (Topp et al., 1980; Roth et al., 1992; Bircher et al., 2016), in the organic mode or the 
peat soil, the dielectric constant and soil moisture relationship is calibrated to be able to simulate the 
dielectric constant lower than mineral soil with given soil moisture. These results are consistent with our 465 
study, which showed decreasing dielectric constant value in higher SOM by increasing bound water 
fraction due to higher wilting point (wp). Therefore, if we have more information about the dielectric 
constant of perfectly dried peat soil and a more accurate model for the wilting point and porosity of this 
soil, our model will be able to cover soils from mineral to peat regions to obtain more accurate global soil 
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moisture. In addition, if we improve this model toward a frequency dependent model in the future study, 470 
the existing and future probe measurements obtained in various frequencies will be able to contribute 
more extensively for the calibration and validation of satellite and model. 
25 
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Appendix A 
Based on the computation of the bulk density for organic soils, the volumetric mixing ratio of soil organic 
matter can be derived as shown in Eqs. (A.1)-(A.7). 
 495 
𝐵𝐷&$^; =

N01.N230
_01._230

= CD01×CD230
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where, MMI [kg] and MSOM [kg] are mass of mineral and soil organic matter; VMI, [cm3] and VSOM [cm3] 
are volume of mineral soil and soil organic matter; 𝜐PEN	[cm3 ∙cm-3] and SOM [kg∙kg-1] are volume and 505 
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mass mixing ratio; and 𝐵𝐷NO [kg∙cm-3] and 𝐵𝐷PEN [kg∙cm-3] are bulk density of mineral and organic 
matters, respectively. 
 
Appendix B 
 510 

 
Figure B1 Simulations of wilting point, Eq.(11) improved of Park et al., 2019 and porosity, Eq.(12), 
proposed in this study which are function of soil organic matter at extreme case a) volumetric clay 
mixing ratio 100% and b) 0% of the total mineral within soil 
 515 
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