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Abstract. The prevalent soil moisture probe algorithms are based on a polynomial function that does 
not account for the variability in soil organic matter. Users are expected to choose a model before 
application: either a model for mineral soil or a model for organic-rich mineral soil. Both approaches 
inevitably suffer from limitations with respect to estimating the volumetric soil water content in soils 
having a wide range of organic matter content. In this study, we propose a new algorithm based on the 20 
idea that the amount of soil organic matter (SOM) is related to major uncertainties in the in-situ soil 
moisture data obtained using soil probe instruments. To test this theory, we derived a multiphase 
inversion algorithm from a physically based dielectric mixing model capable of using the SOM amount, 
performed a selection process from the multiphase model outcomes, and tested whether this new 
approach improves the accuracy of soil moisture (SM) data probes. The validation of the proposed new 25 
soil probe algorithm was performed using both gravimetric and dielectric data from the Soil Moisture 
Active Passive Validation Experiment in 2012 (SMAPVEX12). The new algorithm is more accurate 
than the previous soil-probe algorithm, resulting in a slightly improved correlation (0.824 à 0.848), 
12 % lower root mean square error (RMSE; 0.0824 à 0.0725 cm3⋅cm-3), and 90 % less bias (-0.0042  
à 0.0004 cm3⋅cm-3). These results suggest that applying the new dielectric mixing model together with 30 
global SOM estimates will result in more reliable soil moisture reference data for weather and climate 
models and satellite validation. 

1. Introduction 

Soil moisture (SM) plays a critical role in weather and climate by affecting atmospheric variables via 
latent and sensible heat exchange. For example, near-surface air temperature can be affected by the 35 
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evapotranspiration of surface and root zone soil moisture. Therefore, its correlation with the near-
surface temperature is usually considered an effective indicator of the coupling strength between the 
land surface and the atmosphere (Seneviratne et al., 2006; Koster et al., 2009; Seneviratne et al., 2010; 
Jaeger and Seneviratne, 2011; Seneviratne et al., 2013; Hirschi et al., 2014,?; Whan et al., 2015). In 
particular, soil moisture anomalies in a dry regime have been reported as the main cause of strong land-40 
atmosphere coupling, which can trigger drought and heat waves (Fischer et al., 2007; Zampieri et al., 
2009; Hirschi et al., 2011; Miralles et al., 2011; Mueller and Seneviratne, 2012; Taylor et al., 2012; 
Guillod et al., 2015; Hauser et al., 2016; Seo et al., 2019).  Soil moisture also influences precipitation 
formation and storm tracks by coupling with the atmosphere (Koster et al., 2004; Taylor et al., 2012; 
Guillod et al., 2015; Santanello et al., 2018, 2019; Zhang et al., 2019). Consequently, inaccurate SM 45 
information in the land-surface-model hinders accurate predictions of extreme climate and weather 
because of unrealistic land-atmosphere interactions that result from uncertainties in air temperature, 
moisture, dynamics, cloud formation and precipitation.  
High-quality in situ soil moisture data are an important reference for evaluating climate models (Yuan 
and Quiring, 2017; Zhuo et al., 2019) and remote-sensed SM data (Entekhabi et al., 2010; Kerr et al., 50 
2010) . However, it is not practically possible to perform in situ SM measurements with high spatial and 
temporal coverage. Soil moisture networks based on cosmic ray neutron probes might be more 
manageable for long-term operation yet  is still not more established than the dielectric based approach. 
A practical alternative is to employ a portable soil probe that is calibrated using locally measured soil 
moisture. In particular, portable dielectric sensors make use of the relationship between the dielectric 55 
constant and volumetric soil water content. However, such retrieval of the volumetric soil water content 
from dielectric measurements does not account for soil organic matter (SOM) and saturation conditions. 
A few studies have reported the relationship between the dielectric constant and the volumetric soil 
water content in organic-rich soils (Topp et al., 1980; Roth et al., 1992; Bircher et al., 2012). However, 
the calibration functions derived from these studies have limitations for global-scale applications 60 
because they were developed using only a few specific sites and/or applicable only for the sites with a 
limited range of organic matter content. For the purpose of a global soil moisture probe observing 
system, using an inversion method of the existing physical dielectric mixing model can be a great 
alternative approach to incorporate the variability of organic matter into the probe algorithm beyond the 
current empirical probe models. 65 
With this background, this work provides a pathway for a physical model to consider soil organic 
matter. We developed an inverse dielectric mixing model for mineral soil derived from Park et al. 
(2017, 2019) to obtain more accurate volumetric soil moisture estimates from the dielectric constant. 
The proposed model reflects the damping effect and simulates the supersaturation of soil moisture over 
soil porosity (when soil moisture occupied larger than porosity of dry compacted soil in the unit volume 70 
causing light weight clay swelling or starting existence of standing water or starting surface runoff due 
to the precipitation accumulation over soil surface faster than infiltration) so that we can capture the 
standing water and surface runoff during flood events, which has not been studied in other prevalent 
dielectric mixing models  
The most recent high resolution SOM map (Hengl et al., 2014; Batjes, 2016) is only available as a static 75 
variable for the land model; therefore, the realism of the parameterization for surface runoff, infiltration, 
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evapotranspiration, and soil respiration is limited. Therefore, the other aim of this study is to provide a 
foundation for global SOM estimation using observations from a satellite, such as Soil Moisture Active 
Passive (SMAP), by developing a dielectric mixing model based on accurate in-situ SOM and 
gravimetric soil moisture.  80 
The remainder of this paper is organized as follows: Section 2 introduces the inversion approach of 
dielectric mixing model to estimate soil moisture from organic-rich mineral soil using the probe. The 
data used in this study are described in Sect. 3. In Sect. 4, we evaluate the results using the soil moisture 
measured during SMAPVEX12. Finally, a summary and discussion for further applications are 
provided in Sect. 5. 85 

2. Method 

The dielectric constant indicates a polarizability of materials at a certain wavelength. The dipole 
structure of water molecules is highly sensitive to a microwave electric field with very high dielectric 
constant (approximately 80). On the other hand, the dielectric constant of mineral soil  at microwave 
electric fields is rarely reacting, having only low value from 3 to 5. Therefore, an instrument which can 90 
measure the effective dielectric constant of soil medium such as Stevens Hydraprobe can provide an 
accurate estimate of water amount within soil (Jackson et al., 1982; Schmugge, 1983; Stafford, 1988). 
Also, from space, microwave satellite such as SMAP (Soil Moisture Active Passive) (Entekhabi et al., 
2010), SMOS (Soil Moisture and Ocean Salinity) (Wigneron et al., 2007) and AMSR-E (Advanced 
Microwave Scanning Radiometer for EOS) can effectively estimate soil moisture from the measured 95 
brightness temperature by relating the effective dielectric constant of land surface. 
For the application of portable soil moisture probes, the in-situ soil moisture data are provided based on 
the empirical relationship between the measured dielectric constant and the volumetric soil moisture 
(Seyfried and Murdock, 2004; Bell et al., 2013) using the following equation: 
𝑤 = 0.0838(ε!"# − 0.0846                 (1) 100 

 
where,	𝜀$%& is the real part of the dielectric constant measured with the soil probe and w is the 
estimation of the volumetric soil moisture (cm3⋅cm-3). As apparent in Eq. (1), the dependence of 	𝜀!"# 
on SOM was not considered in the estimation of w. 
To consider the SOM, we first derive Eqs. (2)–(4), based on Park et al. (2019).  105 
If the observed real part of the dielectric constant measured with the soil probe is smaller than the real 
part of the dielectric constant at the wilting point, 𝜀!"# < 𝜀'(, we obtain: 
for w < wwp 
𝑤 = 𝑎1(𝜀!"# − 1)𝐻

)* + 17 + 𝑏                         (2) 
 110 
where,  
𝑎 = 1/(𝜀"!+,- − 𝜀air ) 

𝑏 = − (
1 − 𝑝)𝜀soil + 𝑝𝜀air 

𝜀bound − 𝜀air 
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where, H is the damping factor (0.8), ebound, is the dielectric constant for bound water, efree, dielectric 
constant for free water, eair is the dielectric constant for air (1). 115 
 
If the observed real part of the dielectric constant measured with the soil probe is larger than the real 
part of the dielectric constant at the wilting point and still smaller than the saturation point, 𝜀'( <
𝜀!"# < 𝜀( , we get: 
for wwp < w < p 120 

𝑤 = )%./%
!)01(3)(4"#$)*)6%&)*)

71
                (3) 

 
where,   
𝑎 =

𝜀free − 𝜀bound 

𝑝 − 𝑤'(
 

𝑏 =
𝑝𝜀bound −𝑤'(𝜀free 

𝑝 − 𝑤'(
− 𝜀air  125 

𝑐 = (1 − 𝑝)𝜀soil + 𝑝𝜀air  
 
Finally, for 𝜀!"# > 𝜀(, we get: 
for p < w 
𝑤 = 𝑎1(𝜀!"# − 1)𝐻

)* + 17 + 𝑏                (4) 130 
 

𝑎 =
1

𝜀free − 𝜀soil 
 

𝑏 = −
𝜀soil 

𝜀free − 𝜀soil 
 

 
According to Debye Relaxation, the dielectric constant of free water at less than 2GHz frequency has a 135 
constant value of approximately 80. However, in the field measurements (Curtis, John O. et al., 1995; 
Fal et al., 2016; Ishida, 2000; Mironov et al., 2013) it is found that in clay-rich soil, the real part of the 
dielectric constant increases at lower frequencies, which occurs by the clay-ion-complex interaction 
(Kelleners et al., 2005). Therefore, in this study for 50 MHz, the clay content and the real part of the 
dielectric constant at 1.4GHz are empirically considered in the dielectric constant not only for free, but 140 
also, for bound water Eq.(5,6). 
𝜀89:: = 𝜀89::&.()*+ + 65 ∙ 𝑣3;1<                (5) 
𝜀%$=>? = 𝜀%$=>?&.()*+ + 5 ∙ 𝑣3;1<                           (6) 
Also, we proposed the formulation of the dielectric constant for the dried organic-rich mineral soil at 50 
MHz, as shown in Eq. (7). 145 

𝜀soil = 1𝜀clay ⋅ 𝑣clay + 𝜀sand ⋅ 𝑣sand + 𝜀silt ⋅ 𝑣silt 7(1 − 𝑣SOM ) + 𝜀SOM ⋅ 𝑣SOM    
                       (7) 

메모 포함[cp5]: RC1: Eq (5) and (6):  it is confusing whether 
this applies to 50MHz, or any frequency ranging from 
1.4GHz to 50MHz. Also please provide the original 
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where, efree 1.4GHz and ebound 1.4GHz are the dielectric constant for free and bound water at 1.4GHz, 
respectively and vclay, vsilt and vsand are the volumetric ratios (cm3⋅cm-3) for clay, silt and sand, 
respectively. 150 
 
The bulk density for organic-rich mineral soils can be computed with pure mineral and organic matter 
densities (Federer et al., 1993) or be expressed with their total volume and mass of these component 
(Liu et al., 2013; Jin et al., 2017). By relating these two formulas, we can derive the following 
volumetric ratio of organic matter (vSOM, cm3⋅cm-3) (see appendix A for more details): 155 

𝑣@AB =
@A

*
@AB

− 1B
CD,-. 
CD./ 

+ 1
C

)*

                 

(8) 
where, 
 
SOM = 𝑓$3 ⋅

EF
*GGG

                  (9) 160 
 
𝐵𝐷 = 0.071 + 1.322 ∙ 𝑒𝑥𝑝(−0.0071 ∙ OC)            (10) 
 
SOM is expressed as organic carbon (OC) in the majority of global soil maps (Hugelius et al., 2013; 
Hengl et al., 2014; Batjes, 2016; Hengl et al., 2017; “Harmonized world soil database v1.2 | FAO 165 
SOILS PORTAL,” 2020), as well as in the published units in the SMAPVEX 12 study (Manns and 
Berg, 2014).  Organic carbon is the major component of SOM, and in order to convert OC to SOM, the 
conversion factor (foc) of 1.8 was used in Eq (9). The conventional OC-to-SOM conversion factor was 
proposed to be 1.724 by (Waksman and Stevens, 1930; Stenberg et al., 2010). However, it has been 
reported that the OC-to-SOM conversion factor can vary from 1.25 to 2.5, and the conventional value of 170 
1.724  tends to overestimate the OC, as reported by Pribyl (2010). Instead of 1.724,  1.8 is a more 
appropriate value for a wide range of OC, as supported by various studies (Broadbent, 1953; Ranney, 
1969; Manns and Berg, 2014). Therefore, in this study, we applied 1.8 for the conversion factor foc in 
Eq. (9). If a further effort in mapping conversion factors in global scale is made in a future study, the 
probe sensor algorithm might benefit in the improvement of its accuracy for soil moisture estimation in 175 
organic-rich mineral soils.   
  By applying Eq.(10) (Hossain et al., 2015), 𝐵𝐷HI (bulk density of “pure” mineral matter) and 𝐵𝐷JEH 
(bulk density of “pure” organic matter) in Eq.(8) are computed as 1.393 g⋅cm-3 with 0% OC (0g OC per 
1kg soil) and 0.097 g⋅cm-3 with 56% OC (560g OC per 1kg  soil) converted from 100% SOM with the 
conversion factor 1.8 by Eq.(9), respectively. 180 
   In a previous study, Eq. (11) was proposed as the wilting point, which is a function of SOM (kg⋅kg-1) 
with the slope parameter of SOM modified from 0.786 to 0.6 (Park et al., 2019). In our study the 
porosity is suggested as a power law function according to the SOM variable, as shown in Eq. (12) 
(please see the result of simulation in all SOM and clay regions in Appendix B).   
 185 
𝑤KL = 0.02982 + 0.089 ∙ 𝑣3;1< + 0.65 ∙ SOM                             (11) 
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𝑝 = 0.194 + 0.26 ∙ 𝑣3;1< + 0.5 ∙ SOMG.N            (12) 
 
By applying Eqs. (11) and (12), which require Eq. (8), Eqs. (2–4) can be used to compose the inverse 
dielectric mixing model for organic-rich mineral soil (IDO). A detailed description of the parameters 190 
used in the algorithm is provided in Table 1.  
 
Table 1. Required physical properties to inverse the dielectric mixing model 

Symbol Physical property Physical 
unit 

𝜀!"# Dielectric constant (real part) measured by TDR 
instrument 

- 

𝜀"!+,- Dielectric constant (real part) of bound water at 
50MHz 

- 

𝜀OPQQ Dielectric constant (real part) of free water at 
50MHz 

- 

𝜀"!+,-	*.0STU Dielectric constant (real part) of bound water at 
1.4GHz 

- 

𝜀OPQQ	*.0STU Dielectric constant (real part) of free water at 
1.4GHz 

- 

𝜀#!VW Dielectric constant (real part) of dry soil  - 
𝜀XVP Dielectric constant (real part) of air - 
𝑝 Dry porosity or saturation point cm3⋅cm-3 
𝑤KL Wilting point [cm3cm-3] cm3⋅cm-3 

H Damping factor [-] - 
w Volumetric soil water cm3⋅cm-3 

vclay Volumetric mixing ratio of clay cm3⋅cm-3 
vsilt Volumetric mixing ratio of silt cm3⋅cm-3 
vsand Volumetric mixing ratio of sand cm3⋅cm-3 
vSOM Volumetric mixing ratio of soil organic matter cm3⋅cm-3 
OC Organic carbon g⋅kg-1 

SOM Organic matter kg⋅kg-1 
BD Bulk density g⋅cm-3 

 
The IDO model is composed of bound, mixed, and free water models, as shown in Fig. 1(a–c), 195 
respectively. The dielectric constant at the wilting point or porosity should be calculated first and then 
compared to the measured data in order to determine which model should be used among the Eqs.2, 3, 
or 4 for soil moisture estimation from the measured dielectric constant. The results of this selection for 
soil moisture estimation from the measured dielectric constant is displayed as shown as red dots in Fig. 
1(d).  200 
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like stepwise model.” 
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The difference in the soil moisture estimation from the observed dielectric constant based on the 
Seyfried and IDO models is presented in Fig. 1(e). The IDO model provides larger SM values with high 
SOM input (purple curve) and lower SM values in low SOM input (orange curve) compared to the 
Seyfried model (black dotted curve). The factory setting (default probe algorithm) reflects the average 
SOM effect empirically in the generalized model. Even with medium-range SOM (red curve), a 205 
relatively small but more complex difference between the two approaches can be revealed in the SM 
estimation: lower SM estimation in wet soil and higher SM estimation in dry soil than the probe 
estimated (black dotted). 
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Figure 1: Single phase relationship between (a) dielectric constant and bound water, (b) bound 210 
and free water mixture, (c) free water, (d) soil moisture estimated among those models, and (e) 
comparison with the polynomial-based soil probe sensor algorithm proposed by Seyfried 
(Seyfried and Murdock, 2004) and for organic-rich mineral soils (IDO) 
    

3. Data 215 

First, it was necessary to determine whether including the organic matter parameter in the dielectric 
mixing model improves the accuracy of soil moisture estimation from the probed dielectric constant. 
Thus, we compared the results with the SM measured using the gravimetric method during 
SMAPVEX12. The SMAPVEX12 field campaign took place in 2012 (southwest of Winnipeg, 
Manitoba, Canada), and the SMAP SM retrieval algorithms were calibrated and validated before the 220 
launch of the SMAP satellite in 2015 (McNairn et al., 2015). During this field campaign, intensive data 
of the L-band brightness temperature and back-scattering albedo were collected using airborne sensors. 
The land surface type, crop type, soil texture (clay and sand contents), the real part of the dielectric 
constant from soil moisture probes with the field average of 16 sampling data obtained in every second 
day from June 6 to July 17, 2013). The sampling depth of the probe is established as the top 5cm of soil 225 
which layer is relevant to the brightness temperature emission depth detectable by SMOS and 
SMAP(Schmugge, 1983; Jackson et al., 1997) and gravimetrically determined volumetric soil moisture 
at the ground sites were measured on the ground by sampling soils with 4.7 cm diameter x 4.6 cm depth 
(Mann and Berg, 2013). For comparison with our new model, we used probe measurements (real 
dielectric constant) as the input and volumetric soil moisture data as references (Rowlandson et al., 230 
2013), which were simultaneously archived with microwave brightness temperature measured from 
airborne NASA’s L-band active-passive PALS instrument. The ancillary information for this function 
(soil texture information) was provided by (Bullock et al., 2014). At the SMAPVEX12 validation sites 
(Fig. 2a), the volumetric clay and sand mixing ratios for Eqs. 5, 6, 7, 11, and 12 are from the 
Agriculture and Agri-Food Canada (AAFC) Soil Landscapes of Canada database (Government of 235 
Canada, n.d.). The OC information was sampled from the SoilGrid250m database (Hengl et al., 2014, 
2017) and compared to the field estimates of the OC  put forth by Manns and Berg (2014). The field 
samples of the OC were processed by grinding oven dried soil samples, and igniting and burning off 
organic mass at 375 °C. The SOM was determined from the weight difference between before and after 
igniting the soil samples and divided by 1.8 to convert SOM to OC (Ball, 1964; Wang et al., 2011; 240 
Manns and Berg, 2014). 

메모 포함[cp11]: RC1: Line 185: the authors should provide 
a brief description how the field estimates of OC was 
derived.  
 
Response: We added the description about OC sampling (p. 8, lines 
237-241). 
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Figure 2: (a) SMAPVEX12 validation sites (adapted from (Rowlandson et al., 2013)) and (b) 
calculated distribution of soil organic matter in Canada based on the SoilGrid250m database. 245 
 
There are significant range differences among the global soil organic carbon maps (Zhu et al., 2019), 
such as the HWSD (“Harmonized world soil database v1.2 | FAO SOILS PORTAL,” 2020), 
SoilGrid250m (Hengl et al., 2014, 2017), WISE30sec (Batjes, 2016), and Northern Circumpolar Soil 
Carbon Database (NCSCD; Hugelius et al., 2013). Therefore, the reliability of the global soil organic 250 
maps used for local soil moisture estimation using soil probes is still unknown. To investigate the 
potential limitation of global OC maps (hereafter called the OCmap experiment), we performed a 
comparison of OC measurements obtained from each SMAPVEX12 site (Manns and Berg, 2014) with 
those retrieved from the SoilGrid205 map. As shown in Fig. 3(a), there is an offset between both 
datasets of ~ 50 g･kg−1. The estimated OC from the map was greater and showed a wider OC range 255 
compared to the measured OC in the SMAPVEX12 sites (Fig. 3b). This means that the SoilGrid250m 
(Hengl et al., 2017) estimates are, on average, more than 100 % higher than the measured data. Thus, a 
potential limitation of the SoilGrid250m map exists not only in the spatial pattern, but also in the overall 
magnitude (74.4 g･kg-1 in average). In this study, we used OC from SoilGrid250m (without any scaling 
factor) for the OCmap experiment. 260 
We investigated the OC accuracy using one type of OC input into the new soil probe algorithm (Eqs. 2–
4) by performing two experiments: 1) OC entered using a SoilGrid250m map (OCmap experiment; blue 
in Fig. 3) and 2) SMAPVEX12 the OC in situ of SMAPVEX12 (red in Fig. 3). 

b)a)
메모 포함[cp12]: RC1:  Fig.2 (b): please provide colorbar for 
the OC map.   
 
Response: We added the color bar properly in Fig.2. 

메모 포함[cp13]: RC1: SoilGrids data: Does the author use 
SoilGrids 1km or SoilGrids 250m?  The authors indicates 
SoilGrids1km in one place, while it says SoilGrids250m data 
were used in another place. These two datasets can be 
quite different in terms of OC estimates. Bedies, 
SoilGrids1km provide OC estimates at certain depths, while 
SoilGrids250m provides OC estimates for different soil 
intervals. Please clarify.  
 
Response: Thank you for pointing out this error. Because we used 
SoilGrid250m in our study, we fixed the SoilGrids1km to 
SoilGrids250m (p.9, line 249). 
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Figure 3: Comparison between organic carbon (OC) observation from SMAPVEX12 (red) and 265 
data sampled from highly resolved SoilGrid250m map (Hengl et al., 2017) (blue) in: (a) in 
histogram and (b) in scatter plot. 

4. Calibration of portable soil-moisture sensors 

The development of the calibration models is necessary for further campaigns or further extension of 
the global soil moisture network based on a portable soil moisture sensor. For example, calibration 270 
models (Rowlandson et al., 2013) were proposed by deriving the parameters A, B, and C of the 
quadratic function between the effective dielectric constant and soil moisture for each SMAPVEX12 
station.       
𝜀$%& = 𝐴𝑤7 + 𝐵𝑤 + 𝐶           
       (13)  275 
In each site a unique set of A, B and C was obtained to estimate w (volumetric soil moisture) from the 
measured dielectric constant e. It is important to verify whether these empirical models are transferable 
to other field sites based on physical interpretation. Therefore, we compared them with those derived 
from the dielectric mixing model, as shown in Table 2. The weighting function describing the 
attenuation of signal on probe and satellite sensor can be an exponential form basically following Beer-280 
Lambert law where infinite attenuation of the electric field is allowed but negligible for the deeper than 
sampling depth. On the other hand, a quadratic form can be considered as the weighting function based 
on the assumption of linearly decreasing refractive index scheme (Wilheit, 1978) so that the emission 
can be assumed to be zero from the deeper sampling depth. In this study, as shown in Table 2, we 
assumed the Beer-Lambert law to consider the attenuation effect by applying the damping factor 0.8 285 
applicable both for probe and satellite remote sensing. More detailed derivation associated with the 
damping factor can be found in the previous study (Park et al., 2017). 
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Table 2. A, B, and C parameters of the relationship between the effective dielectric constant and 
soil moisture adapted from (Park et al., 2017) with damping factor H (0.8) ; dielectric constant for 290 
free (𝜀free), bound water (𝜀bound) and soil mineral including organic matter (𝜀soil). 

w range A B C 

w < wwp 0 (𝜀%$=>? − 𝜀1Y9)𝐻 1(1 − 𝑝)𝜀&$Y; + 𝑝𝜀1Y9 − 17𝐻
+ 1 

wwp < w < 
p 

𝜀OPQQ − 𝜀"!+,-
𝑝 − 𝑤'(

𝐻 @
𝑝ε"!+,- −𝑤'(𝜀OPQQ

𝑝 − 𝑤'(

− 𝜀1Y9C
𝐻 

1(1 − 𝑝)𝜀#!VW + 𝑝𝜀1Y9 − 17𝐻
+ 1	

p < w 0 (𝜀OPQQ − 𝜀#!VW) ∙ 𝐻 𝜀#!VW𝐻 − 𝐻 + 1 
 
We observed that when the wilting point and porosity increased with increasing OC [according to Eqs. 
(11–12)], A and B increased and decreased, respectively, as shown in Fig. 4. The results of this 
matching (Fig. 4) showed that A and B used in the quadratic function computed for SMAPVEX12 can 295 
be parameterized with soil texture, wilting point, porosity, and the bound and free water dielectric 
constants. Additionally, the C parameter indicates the effective dielectric constant of the mixture of dry 
organic matter (approximately 1.2 (Savin et al., 2020)) and solid mineral soil (3-5); ideally, the C 
parameter value should decrease with an increase in OC. Notably, the clay content was also positively 
correlated with an increase in OC in the SMAPVEX12. Therefore, owing to the simultaneous increase 300 
in clay content, which is characterized by a high dielectric constant, the sensitivity of the C parameter to 
OC variation (decreasing pattern in C) is nullified, as shown in Fig. 4(c). Furthermore, because C 
perfectly represents the dielectric constant of dry soil, it should be greater than 1, which is the real part 
of the dielectric constant of a vacuum. Based on this physical constraint, the previous C (gray points in 
Fig. 4) is unrealistically low (less than that of the vacuum state) in the higher SOM range. The 305 
minimum C is (1-p)𝜀soil among three w ranges [Eq. (4)] because the following order is always true [(1-
p)𝜀soil < (1-p) 𝜀soil + p < 𝜀soil] and it is larger than 2 as shown in Fig. 4 C. This shows that the proposed 
IDO computes a more realistic value of dielectric constant for organic-rich mineral soil. 
 

메모 포함[cp14]: Revised by the authors: The damping factor (H) 
had been applied all calculation and validation except Table 2. and 
Fig. 4. In this revision, we reflected the damping factor also in this 
table and Fig. 4. 
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 310 
 
Figure 4: Relationship between soil organic carbon measurements (x-axis) and calibration 
parameters (A, B and C) (y-axis) relating between measured dielectric constant (𝜀) and volumetric 
soil moisture (w): (blue dash lines) A, B, C which are not sensitive to OC measurements (Seyfired 
approach); (gray dots) A, B, C which are empirically obtained (Rowlandson et al., 2013); (red 315 
dots) A, B, C which are physically simulated by proposed IDO which applies the wilting point and 
porosity as functions of sand and clay volumetric mixing ratios as well as soil organic carbon with 
the damping factor applied. 

5. Results 

This study aimed to mitigate a significant discrepancy found between volumetric soil moisture 320 
estimated by soil probe sensor (considered as ground truth for the validation of land surface modelling 
and remote sensing) and the gravimetric soil moisture. Therefore, in this section, the new approach 
proposed in the section 2 investigated whether the accuracy of the new sensor algorithm can be 
improved compared to the existing probe algorithm. Firstly, looking at the Fig. 5(a) the current issue in 
the probe SM estimates was well displayed in terms of the matching pattern of the gravimetric soil 325 
moisture with the measured dielectric constant. It showed that the existing probe soil moisture (red dots 
in Fig.5(a)) couldn’t follow both features appeared in the measurements (the significant scattering 
degree and the distinct varying patterns in dry and wet condition). This is a fundamental limitation of 
the traditional polynomial function, the Seyfried model as well as a two-mode system (mineral or 
organic-rich mineral soil), as proposed by Topp et al. (1980) or (Roth et al., 1992).  330 
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메모 포함[cp15]: According to the correction of C in the Table 2, 
the Fig. 4c has been updated. 
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Figure 5: Scatter plot between probe measurements of the real part of the dielectric constant (x-
axis) and volumetric soil moisture (y-axis) measured by gravimetric method (green dots in a, b, c),  
Seyfried model (red dots in a), IDO with SOM taken from SoilGrid250m (Hengl et al., 2017) (red 335 
dots in b) and IDO using OC measured during SMAPVEX12 (Manns and Berg, 2014) (red dots in 
c). 
 
On the other hand, the IDO, with soil organic carbon considered, allowed us to compute SM with 
similar scattering pattern comparable to that measured by gravimetric method. It means that soil organic 340 
carbon is a critical factor for the application of the soil moisture sensors from portable to satellite based. 
In regards to the shape appearing in the scattering pattern, IDO captured the distinctively curved edge in 
the low and high-end points close to the values of 12 and 50, respectively, in the x-axis for the real part 
of the dielectric constant. Only difference between b) and c) at Fig.5 is OC input, originated from 
SoilGrid250m or from in-situ obtained during SMAPVEX12, respectively, with the same input of clay 345 
and sand mixing ratio from SMAPVEX 12. This pattern is probably related to the transition moments 
from bound to mixed (a to b in Fig. 1) and from mixed to free water states (b to c in Fig.1), which is 
very interesting evidence indicating that soil probes can detect critical soil parameters such as wilting 
point and soil porosity based on the accumulated dielectric measurements of certain sites. 
Even though the shape of SM scattering estimated from the measured dielectric data (x-axis) became 350 
similar to the one appearing in the gravimetric soil moisture, it is also required to investigate whether 
the actual improvement in the SM accuracy has been achieved via the point-by-point comparison with 
the gravimetric data. This analysis was illustrated in the Q-Q plot in Fig.6. It displayed that the scattered 
uncertainty shown in Fig. 6(a) of the current soil probe algorithm can be reduced by IDO approach as 
(b) and (c). The scatter error shown in Fig.6(a) slightly converged into a 1:1 line when the IDO adapted 355 
the OC map as input (b) and further improved with a narrower scattered error pattern with OC in situ 
(c). This result further supported that the OC variability with the proposed model can mitigate the 
uncertainty in SM estimation of the current dielectric-based soil moisture sensor network. 
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메모 포함[cp16]: RC1:  Fig. 5 (a) what are the results 
derived using the Seyfried model? The red dots?  
 
Response: Yes, the Seyfried model is indicated with the red dots. We 
corrected the black dots to the red dots in Fig.5(a) (p. 13,line 331). 
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Figure 6: Performance of soil moisture probe algorithms in terms of scattering degree to the 360 
gravimetric measurements (x-axis); soil moisture estimates (y-axis) using a) 3rd order polynomial 
approach (Bell et al., 2013; Seyfried and Murdock, 2004), b) the proposed inverse dielectric 
mixing model (IDO) with the variational soil organic matter (SOM) sampled from the 
SoilGrid250m map (Hengl et al., 2017) and c) the same algorithm but with SOM measured from 
SMAPVEX12 (Manns and Berg, 2014). 365 
 
In Fig. 7, we investigated more characteristics of SM uncertainty: how the biases of SM estimated by 
the conventional probe algorithm are related to the in-situ OC and whether they can be mitigated by the 
proposed algorithm with the OC measurements. Fig. 7(a) shows that both negative and positive biases 
are affected by the IDO. Fig. 7(b), obtained by spreading out the histogram according to the degree of 370 
SOM, provides an in-depth analysis on how these biases are distributed according to the measured 
SOM. This shows that the negative bias in the high SOM range was reduced because the polynomial 
function of the conventional probe algorithm presented in Fig. 1(e) tends to overestimate the SM in the 
cases of lower SOM and underestimate the SM in cases of higher SOM (as compared to the proposed 
multiphase model). 375 
 

 

메모 포함[cp17]: RC1: Fig.6 & 7: the reduction of the 
uncertainty in SM estimates is relatively limited. It may be 
partly due to a narrow range and also a low amount of SOM 
in the soil samples in the study area.  Therefore, it needs 
additional investigation whether this method applies to 
highly organic soil (e.g. SOM>30%), prevalent in the boreal 
and Arctic region, and how it performs if it is applicable. I 
would think this method is more general and has a high 
potnetial applicable to those conditions. However, the 
parameterization (including the witling point, porosity) 
needs additional improvement. It will be also helpful if the 
authors can compare their results with the previous 
methods that particularly incorporates organic carbon 
content. For example, in Bircher et al. 2016, the data do not 
show substantially dielectric differences in soils with 
SOM<30%, while this study shows even a small amount of 
SOM (SOM<~10-11%) can make a significant difference in 
the relationship between SM and dielectric constant.  
 
Response: I agreed with you about your comments that in the low or 
medium OC range, the previous study (Bircher) was hard to 
demonstrate the improvement by OC consideration and we made the 
significant difference as you mentioned in the last comment. 
Therefore, I believe the improvement is meaningful without further 
experiments.  
Furthermore, the direct comparison with the Bircher’s study is 
difficult for this study because of two different conditions; 1) the OC 
measurements (the OC measurements of Bircher’s study is obtained 
from soils highly covered with moss, which show very different 
characteristics from the one obtained from our SMAPVEX12 
agricultural soil and 2) the dielectric measurements (Bircher’s study 
used the theta probe which the frequency used in is 100MHz).  
Therefore, we decided to investigate the possibility of further 
improvement for higher OC regions in the future study. 
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Figure 7: (a) Histogram of soil moisture (SM) bias and (b) its scatter relationship according to soil 
organic matter (SOM) converted from in-situ organic carbon (OC) 380 
 
The importance of accurate and highly resolved organic carbon data in soil moisture estimation from 
portable soil sensors is highly  evident from the statistical validation presented in Table 3. The results 
confirmed that the IDO performs better than the traditional probe algorithm based on a 3rd order 
polynomial function specially with the OC measured in the SMAPVEX12 field campaign (with a 385 
maintained spatial variability); RMSE = 0.0727 cm3⋅cm-3, correlation of 0.848, and bias of 0.0001 
cm3⋅cm-3. 
 
Table 3. Validation of soil moisture obtained from Probe (Probe SM), organic-rich mineral soil 
based on SoilGrid250m organic carbon map (IDOmap), and SMAPVEX12 OC in situ observation 390 
(IDOobs) 

 Bias RMSE Correlation 
Probe -0.0042 0.0824 0.824 
Proposed algorithm with organic carbon map 
(IDOmap) 

0.0222 0.0789 0.835 

Proposed algorithm with in situ organic carbon 
(IDOobs) 

0.0001 0.0727 0.848 
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메모 포함[CP18]: RC1: I would think this method is more general 
and has a high potential applicable to those conditions. However, the 
parameterization (including the witling point, porosity) needs 
additional improvement.  
 
After improving the wp and p function based on your previous 
comment (p.5-6, lines 186-188), we could update the validation score 
properly in the table 3 (p.15, line 392). 
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The results in this section demonstrated that the wilting point and porosity which emerged in paring the 
gravimetric soil moisture and the dielectric measurements, could be detected also by the new model. 
Also, it is proven that the volumetric soil moisture could be estimated from the sensor more accurately 395 
in terms of bias, RMSE and correlation analysis. It means that our approach can provide more accurate 
soil moisture probe algorithm than currently used in various soil moisture networks such as USCRN 
(US Surface Climate Observing Reference Networks) and the SMAPVEX field campaigns. In the 
boreal forest and Alaska Tundra region with abundant SOM, our study can deliver a significant effect to 
the validation and conclusion of the previous studies in land surface modelling and microwave satellite 400 
remote sensing, which used the probe soil moisture as a reference data. 

6. Summary and discussion 

In this study, we proposed an inverse dielectric mixing model for a 50-MHz soil sensor for agricultural 
organic-rich mineral soil. The 50MHz sensor is a prevalent frequency band for soil moisture probes.  
(Cosh et al., 2021) found that in North America soil sensors using this waveband occupied 40% of the 405 
soil moisture networks (10 of 25 including USCRN) and 53% of sensors (1021 of 1923 locations). 
Therefore, the proposed algorithm has potential to contribute significantly to the accuracy of the soil 
moisture estimates derived from current in situ soil moisture measurements. Furthermore, since the 
SMAPVEX also used 50 MHz sensors, it is anticipated that the accuracy of the calibration and 
validation of the SMAP related soil moisture algorithms will be increased. The proposed model is 410 
composed of three nonlinear functions that are mathematically capable of describing the physical 
behaviour, including the effect of the organic matter content. In this model, we proposed a physical 
mixing approach of organic matter in dry soil and improved the wilting point and saturation point. This 
derivation also can be applied to other bands for Capacitance sensors (5TE (70MHz), Wet (20MHz), 
Time-Domain-Reflectometry (TDR) (TDR100/200 (1450MHz), SoilVUE-10 (1450MHz) and satellite 415 
sensors SMAP (L-band) and SMOS (L-band) (AMSR-E (JAXA) X/C, Sentinel-1 (ESA) (C)). It is also 
noticed that the applied organic matter carbon data sampled from SMAPVEX12 sites (36 g⋅kg-1) was 
half that of the OC map (74 g⋅kg-1). The validation results demonstrated a higher performance of the 
new model. Regardless of the small amount of OC, its effect improved the performance of the SM 
estimation, which was demonstrated via the IDO proposed in this study. We compared the obtained 420 
soil-moisture retrievals with improved RMSE (13% ↓), slightly stronger correlation (3%↑), and lower 
bias (90%↓) using the new model and gravimetric soil moisture data. But still the coverage of the 
simulated pattern over the measured points was smaller. Therefore, we sought out a potential further 
improvement based on the additional experiment designed with SOM varying within the proposed 
model. The simulation based on the conventional polynomial function (red curve in the Fig. 8 (a)) could 425 
not reduce the innate uncertainties and the IDO proposed in this study could resolve this issue. 
However, the red dots simulated with IDO (Fig. 8(b)) covered over the measured green dots 
insufficiently. Therefore, in order to activate this weak pattern, we performed the experiments to impose 
a more dynamic OC estimate to investigate whether greater or less SOM can cover a similar boundary 
of the measured distribution through the IDO model. The results showed that the piecewise pattern of 430 

메모 포함[CP19]: Editor: Your reply already points to the 
relevance of your work to some degree, so you appear to be 
developing a suitable line of argumentation that you can include in 
the revised text. 
 
Response: We emphasized the importance of our study relating to the 
current soil moisture probe network in the discussion. For example, 
the improvement by our study can be anticipated on over 50% 
locations of the current sensors installed in the United States (page 
16, lines 404-410). Furthermore, we discussed that the proposed 
mixing approach for dry organic soil is applicable to the other soil 
probe sensors in the different range of frequencies (p.16, lines 404-
410). 
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SM simulated with the proposed approach well covered the measured pattern with imposing lower 
(1 %) to higher (30 %) SOM. 

 
Figure 8: Investigation of the similarity of the scatter pattern between the measured dielectric 
constant and the soil moisture: (a) obtained from the gravimetric measurements and (b) 435 
experimentally simulated with extreme soil organic matter (SOM) from 0 % to 30 %. 
 
Because the SOM is translated from OC with a conversion factor (1.8) in this study, the improvement 
might have been not sufficient. A realistic estimation of the conversion factor (foc) in Eq. (10) varying 
from 1.25 up to 2.5 might be a possible solution for this.  In addition, the IDO is a model able to replace 440 
the calibration factors A, B, and C of Eq. (13) with the soil properties presented in Table.2. Overall, the 
proposed more physics based IDO can replace the current soil probe sensor algorithm, which does not 
incorporate the importance of organic matter variability. 
A significant improvement could not be shown probably due to two reasons: the instrumental error in 
measuring OC from soil sample or the constant OC to SOM conversion factor (1.8 for all soil samples). 445 
In addition, uncertainty can be suspected from other sources, such as clay or sand contents or soil 
salinity (assumed to be 0 % in this study) used in the IDO. These effects on the dielectric measurements 
and their uncertainties probably served as the limitation of further improvement by the IDO. 
Nevertheless, the results regarding the adaptation of in-situ OC in our study demonstrated that the 
accuracy of the SOM input for IDO is critical for the accuracy of SM estimation from the probe sensor. 450 
In previous studies (Topp et al., 1980; Roth et al., 1992; Bircher et al., 2016), in the organic mode or the 
peat soil, the dielectric constant and soil moisture relationship is calibrated to be able to simulate the 
dielectric constant lower than mineral soil with given soil moisture. These results are consistent with 
our study, which showed decreasing dielectric constant value in higher SOM by increasing bound water 
fraction due to higher wilting point (wp). Therefore, if we have more information about the dielectric 455 
constant of perfectly dried peat soil and a more accurate model for the wilting point and porosity of this 
soil, our model will be able to cover soils from mineral to peat regions to obtain more accurate global 
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메모 포함[CP20]: Editor: It will also help if you can expand the 
discussion of your results in view of earlier findings reported by 
others. 
 
Response: In the discussion, we investigated about whether the 
results presented in our study is consistent to the previous studies 
(Topp et al., 1980; Roth et al., 1992; Bircher et al., 2016) (p.17-18, 
lines 451-460). As a result, our estimation of soil moisture from the 
dielectric constant showed the similar pattern with the one estimated 
by previous results, and it could be explained by the bound water 
fraction of organic soil in our study. 

메모 포함[CP21]: RC1; It will be also helpful if the authors can 
compare their results with the previous methods that particularly 
incorporates organic carbon content. For example, in Bircher et al. 
2016, the data do not show substantially dielectric differences in soils 
with SOM<30%, while this study shows even a small amount of 
SOM (SOM<~10-11%) can make a significant difference in the 
relationship between SM and dielectric constant.  
 
Response: As the reviewer’s suggestion, the comparison to the study 
(Bircher et al. 2016) will be very helpful to demonstrate the benefit of 
our approach for 50MHz soil moisture sensor. However, as 
mentioned in above response, in the current study it is not directly 
applicable due to the difference in the type of organic soil and in the 
frequency of the soil probe sensor. I agreed with you about your 
comments that in the low or medium OC range, the previous study 
(Bircher) was hard to demonstrate the improvement by OC 
consideration and in our study, we made the significant difference as 
you mentioned in the reviewer’s last comment. Therefore, I believe 
the improvement is meaningful without further experiments. We 
decided to investigate the possibility of further improvement for 
higher OC regions in the future study. 
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soil moisture. In addition, if we improve this model toward a frequency dependent model in the future 
study, the existing and future probe measurements obtained in various frequencies will be able to 
contribute more extensively for the calibration and validation of satellite and model. 460 
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Appendix A 480 
Based on the computation of the bulk density for organic-rich mineral soils, the volumetric mixing ratio 
of soil organic matter can be derived as shown in Eqs. (13)-(19). 

𝐵𝐷&$Y; =
H01.H230
Z01.Z230

= CD01×CD230
(*)JEH)×CD230.JEH×CD01

        
 (13) 

Z230
Z01.Z230

H01.H230
Z230

= CD01×CD230
(*)JEH)×CD230.JEH×CD01

        485 
 (14) 

𝜐JEH = Z230
H01.H230

× CD01×CD230
(*)JEH)×CD230.JEH×CD01

        
 (15) 

𝜐JEH = H230
H01.H230

Z230
H230
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(*)JEH)×CD230.JEH×CD01

       
  (16) 490 

𝜐JEH = JEH
CD230

× CD01×CD230
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 (19) 495 
 

where, MMI [kg] and MSOM [kg] are mass of mineral and soil organic matter; VMI, [cm3] and VSOM [cm3] 
are volume of mineral soil and soil organic matter; 𝜐JEH	[cm3 ∙cm-3] and SOM [kg∙kg-1] are volume and 
mass mixing ratio; and 𝐵𝐷HI [kg∙cm-3] and 𝐵𝐷JEH [kg∙cm-3] are bulk density of mineral and organic 
matters, respectively. 500 
 
Appendix B 
 

 
Figure. 9 Simulations of wilting point, Eq.(11) improved of Park et al., 2019 and porosity, Eq.(12), 505 
proposed in this study which are function of soil organic matter at extreme case a) volumetric clay 
mixing ratio 100% and b) 0% of the total mineral within organic-rich mineral soil 
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