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Abstract. In this study, we develop a watershed zonation approach for characterizing watershed organization and function in 

a tractable manner by integrating multiple spatial data layers. Recognizing the coupled ecohydrogeological-biogeochemical 

interactions that occur across bedrock through canopy compartments of a watershed, we hypothesize that (1) suites of 

above/belowground properties co-varying with each other, (2) hillslopes are representative units for capturing watershed-scale 

heterogeneity, (3) remote sensing data layers and clustering methods can be used to identify watershed hillslope zones having 15 

unique distributions of bedrock-through-canopy properties relative to neighboring parcels, and (4) property suites associated 

with the identified zones can be used to understand zone-based functions, such as response to early snowmelt or drought, and 

associated solute exports to the river. We demonstrate this concept using unsupervised clustering methods that synthesizes 

airborne remote sensing data (LiDAR, hyperspectral, and electromagnetic surveys) along with satellite and streamflow data 

collected in the East River Watershed, Crested Butte, Colorado, USA. Results show that, (1) hillslope-average elevation and 20 

slope are significantly correlated with near-surface bedrock electrical resistivity (top 20 m), (2) elevation and aspect are 

independent controls on plant and snow signatures, (3) the correlation between hillslope-averaged above- and below- ground 

properties are significantly higher than pixel-by-pixel correlation and (4) K-means, hierarchical clustering, and Gaussian 

mixture clustering methods generate similar zonation patterns across the watershed. Using independently collected data, it is 

shown that the identified zones provide information about zone-based watershed functions, including foresummer drought 25 

sensitivity and river nitrogen exports. The approach is expected to be extensible to other sites and generally useful for guiding 

the selection of hillslope experiment locations and informing model parameterization. 
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1 Introduction 

Predictive understanding of watershed functions is often hindered by the heterogeneous and multiscale fabric of watersheds 30 

(e.g., Peters-Lidard et al., 2017). Heterogeneity exists within each of the watershed compartments, including aboveground 

compartments (i.e., plant species distribution and plant dynamics, topography) and belowground compartments (i.e., soil and 

bedrock structures/properties). Such watershed patterns influence ecohydrological and biogeochemical processes, which in 

turn affect watershed functions and create emerging patterns as feedback (Sivapalan, 2006). Since watersheds consist of 

diverse biotic and abiotic compartments, watershed functions include diverse signatures, including hydrological (i.e., partition, 35 

storage, and release of water), ecological (e.g., species adaptation, productivity), and geochemical (e.g., nutrient cycling, solute 

export) signatures (Sivapalan, 2006; Wagener et al., 2007). There is a multiscale nature of heterogeneity such that different 

processes have different characteristic scales. Studies have suggested that the relevant spatial scale for hydrological 

heterogeneity governing fluxes is on the order of 100 m (Wood et al., 2011), whereas for soil moisture it is on the order of 

several or several tens of meters (e.g., Engstrom et al., 2005; Wainwright et al., 2015), and one meter or less for biogeochemical 40 

dynamics (e.g., Burt and Pinay, 2005; Groffman et al., 2009).  

 

There have been extensive studies to investigate how the heterogeneous watershed organization influences water, energy, and 

nutrient cycling and their fluxes (e.g., Peters-Lidard et al., 2017). There are two directions for tackling this problem: a bottom-

up Newtonian approach or a top-down Darwinian approach. The Newtonian approach is a reductionist approach to describe a 45 

system by a set of mass/energy/momentum conservation equations with spatially variable parameters. Recently, integrated 

hydrological and reactive transport models have been successfully implemented to describe and predict watershed behaviors 

from hillslope to watershed and continental scales (e.g., Maxwell and Kollet, 2008; Li et al., 2017). In addition, the 

Hydrological Response Unit concept has been used to classify the landscapes based on spatial datasets (e.g., landcover types, 

elevation, and soil maps) and to parameterize hydrological models (Flugel, 1997; Aytaç, 2020). On the other hand, the 50 

Darwinian approach identifies rules or organizing principles governing spatial patterns of complex datasets, and defines 

watersheds as self-organized and co-evolved units by watershed functional traits (McDonnell et al., 2007). Catchment scaling 

and similarity concepts have been used to synthesize the catchment datasets across scales and to classify catchments (Wagener 

et al., 2007; Thompson et al., 2011; Sawicz et al., 2011; Krause et al. 2014). 

 55 

In parallel, there have been significant advances recently in understanding and quantifying the watershed-scale heterogeneity 

of bedrock-to-canopy terrestrial compartments, which regulate water and nutrient cycling and their exports; particularly 

through the critical zone observatory (CZO) network (Brantley et al., 2017). In particular, Pelletier et al. (2018) have 

highlighted the control of slope aspects on ecosystem and critical-zone systems, finding that, for example, in water-limited 

systems, the north-facing slopes have less evapotranspiration and hence higher soil moisture, deeper weathering, and larger 60 

nutrient retention in soil (e.g., Hinckley et al., 2014). Such advances are largely attributed to a variety of spatially extensive 
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characterization technologies across bedrock-to-canopy compartments, which provide various patterns. High-resolution DEM 

from LiDAR have been applied to better understand the relationship between geomorphology and hydrology (Prancevic and 

Kirchner, 2019), as well as to measure snow depths and snow-water-equivalent (SWE) over a basin scale (Painter et al., 2016). 

LiDAR data was also able to inform near-surface soil properties (Patton et al., 2018; Gillin et al., 2015), hydrological 65 

connectivity (Jensco et al., 2009) and biogeochemical hotspots (Duncan et al., 2013). In addition, hyperspectral remote sensing 

can map plant traits (e.g., Asner et al., 2015), leaf water contents (e.g., Colombo et al., 2008), leaf chemistry (e.g., Feilhauer, 

et al., 2015) and other properties, which are also proxies for soil biogeochemistry (Madritch et al., 2014). At the same time, 

geophysics has been extensively used to characterize the subsurface structure and to estimate soil and bedrock properties. 

Surface geophysics has been used to measure bedrock depth, weathering zone thickness, and other properties (e.g., de Pasquale 70 

et al., 2019), contributing to hillslope-scale hydrological characterization and modeling. Surface ERT and seismic data have 

also revealed the influence of tectonic stresses and hydrological processes on bedrock fracturing and weathering (Rempe and 

Dietritch, 2014; St. Clair et al., 2015). Airborne geophysics—particularly airborne electromagnetic (EM) surveys—was 

originally developed for mineral exploration, but is now increasingly used for water-resources applications (e.g., Barfod et al., 

2018; Ball et al., 2020). 75 

 

Despite these advancements, there are still challenges in associating watershed functions to heterogenous watershed patterns. 

It remains a challenge to integrate multitype and multiscale datasets, including ground-based point measurements and airborne 

or satellite remote-sensing datasets. Although the aboveground properties, such as topography and plant characteristics, can 

be mapped over the watershed scale, the subsurface variability is still difficult to map over that scale, which is one of the 80 

biggest uncertainties in hydrology (Fan et al., 2019). In addition, even though hillslope-scale characterization and experiments 

(such as tracer tests) can be extremely useful for providing detailed information about watershed functions (e.g., Hinkley et al, 

2014); it is difficult to select several hillslopes for such intensive characterization, or to gauge the representativeness of one 

hillslope for an entire watershed. 

 85 

In this study, we develop and test the concept of a zonation approach for tractably characterizing the organization of a 

watershed based on multiple spatial data layers, and how these characteristic patterns aggregate to predict watershed functions. 

The clustering-based zonation approaches have emerged recently as effective spatial data integration methods that use spatial 

clustering to identify regions or zones that have unique distributions of heterogeneous properties and key functions relative to 

neighboring regions (Hubbard et al., 2013; Wainwright et al., 2015; Hermes et al., 2020). For watershed zonation, we consider 90 

a hillslope as a fundamental unit for watershed hydrology and element cycling, funneling water and elements from the ridge 

to the river (Fan et al., 2019), and also representing aspect controls on critical zones (Pelletier et al., 2018). We then hypothesize 

that (1) a suite of above/belowground compartments—plants, topography, soil, bedrock—are co-varying with each other 

through complex ecohydrological-biogeochemical interactions, (2) we can identify watershed subsystems or zones that have 

unique distributions of bedrock-through-canopy properties relative to neighboring parcels, and (3) the identified zones can 95 
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capture the variability of key watershed functions. We demonstrate our approach using the airborne and spatial datasets 

collected in the East River watershed region near Crested Butte, Colorado, USA (Hubbard et al., 2018). We apply and compare 

multiple clustering methods to understand the characteristics, commonality, and differences among each method. Finally, we 

validate the zonation hypothesis based on the datasets that define key watershed functions, including drought sensitivity of 

plant productivity and water/nitrogen export. 100 

 

2 Site and Data 

We consider the domain of approximately 15 km by 15 km (Figure 1) near Gothic, Colorado, USA, which is the same area 

used in a recent study (Wainwright et al., 2020). As described in Hubbard et al. (2018), the domain includes four catchments, 

including the East River, Washington Gulch, Slate River and Coal Creek. It is part of the Elk Range in the Rocky Mountains, 105 

with elevation from 2800 m to 4000 m (Figure 1a). The major land-cover types (NLCD 2011) are rock outcrop (12%), 

evergreen forest (29%), deciduous forest (18%), grassland (30%), and woody wetland (6%). Geology within the domain is 

diverse, including Paleozoic, Mesozoic, and Cenozoic sedimentary rocks (silt- and sandstones of the late Permian Maroon 

Formation; shales and sandstones of the upper Cretaceous Mancos Shale and Mesaverde group, respectively; silt- and 

sandstones of the Eocene Wasatch Formation) and Miocene igneous intrusive rocks of predominantly granodioritic 110 

composition (Gaskill et al., 1991). 

 

The spatial data layers include the USGS landcover map (NLCD 2011) and the digital geological map of Colorado (Green et 

al., 1992). Although a soil map is available, it is uniform except for outcrop regions, and therefore not informative for the 

purposes of the current study. We assume that the geological map and topographic metrics can capture the variability of soil 115 

properties, since Gillin et al. (2015) documented strong correlations between topographic metrics and soil properties. In 

addition, we used four airborne datasets (Texts S1): an airborne electromagnetic (AEM) survey acquired in fall 2017 (Minsley 

and Ball, 2018; Uhlemann et al., submitted; Zamudio et al., 2020), LiDAR and hyperspectral data collected by the National 

Ecological Observation Network (NEON) team in June 2018 (Chadwick et al., 2020), and NASA Airborne Snow Observatory 

(ASO) data collected in April 2018 (doi.org/10.5067/M4TUH28NHL4Z).  120 

 

To test the zonation hypothesis, we used datasets representing two key functions: foresummer drought sensitivity of plant 

productivity and river nitrogen export. The foresummer drought sensitivity map based on Landsat NDVI was developed by 

Wainwright et al. (2020) to represent the plant productivity responses to early snowmelt and subsequent drought conditions in 

the early growing season. Since the satellite images were not used in clustering, they were considered independent datasets. In 125 

addition, the annual discharge and nitrogen export are computed from the streamflow and chemistry data at the sub-catchments 
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(Figure 1) within the domain used in Carroll et al. (2018). The nitrogen export was computed in the same manner as Newcomer 

et al. (2021). 

 

 130 
Figure 1. Study domain with (a) elevation and (b) land cover map (USGS NLCD 2011). The black lines are the boundaries of the 

four watersheds (from right to left: East River, Washington Gulch, Slate River and Coal Creek), and the thin black boundaries are 

sub-catchments of the East River watershed from Carroll et al. (2018): (1) Rock, (2) East Above Quigley (EAQ), (3) Quigley, (4) East 

Below Copper (EBC), (5) Gothic, (6) Rustlers, (7) Pumphouse, (8) Bradley, (9) Marmot, (10) Avery, and (11) Copper.  In (b), the red 

region is the urban area. 135 
 

3 Methodology 

3.1 Watershed and Hillslope Characteristics 

We followed Wainwright et al. (2020) to compute pixel-by-pixel topographic metrics based on the LiDAR Digital Elevation 

Model (DEM), including slope, Topographic Wetness Index (TWI), and annual net potential solar radiation. We selected 140 

metrics based on the previous studies that reported their relevance to soil moisture, soil thickness, water quality and others 

(Mohanty et al., 2000; Gillin et al., 2015; Lintern et al., 2018). In parallel, we delineated each hillslope based on the DEM, 

following Noel et al. (2014) and using Topotoolbox (Schwanghart, 2014). We set the threshold of flow accumulation to match 

the stream observations at major tributaries of the East River (Carroll et al., 2018). Although the hillslope is based on surficial 

water routing, we assume that the DEM captures near-surface hydrological connectivity as documented by Jensco et al. (2009). 145 
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We then defined the characteristics of each hillslope, based on the spatial data layers (Figure S1). We computed the average 

values of the DEM topographic metrics, AEM-based bedrock resistivity, NEON products, and peak SWE in each hillslope. In 

addition, we computed the relief of each hillslope, which was the difference between the minimum and maximum elevation. 

For the categorical variables such as land-cover types and geology, we computed the percent coverage of each plant type and 150 

surface geology in each hillslope. These 15 hillslope features are defined for each hillslope (Table S1).  

3.2 Cluster-Based Approach to identify Watershed Zones 

Based on the hillslope features, we first evaluated the correlations among multivariate parameters in above/belowground 

properties. Although such multivariate co-variability has been analyzed using principal component analysis (Devadoss et al., 

2020), we used scatter plots and correlation coefficients in this study because of nonlinearity. We then applied three commonly 155 

used unsupervised clustering methods: K-means (KM), hierarchical clustering (HC), and Gaussian mixture models (GMM; 

Hastie et al., 2001; Kassambara, 2017). We scaled each feature by the mean and standard deviation, and defined the 

dissimilarity between two data points based on the Euclidean distance. The characteristics of each method are described in 

Texts S2. Multiple methods are often evaluated based on true classes or labeled datasets (Rodriguez et al., 2019), which are 

not available here. We used a silhouette score, which represented how similar a given data point was to its own cluster 160 

compared to other clusters. For GMM, we used the Bayesian Information Criterion (BIC) for selecting the number of clusters 

to maximize BIC.  

 

After the clusters are defined, we transfer the clusters—the group of hillslopes that have similar features—to the spatial map 

as zones. We identify the common zones across the three methods as well as the zones that differ. We then evaluate the 165 

distribution of hillslope features and functions in each zone using box plots to define the characteristics of each zone. The 

foresummer drought sensitivity (Wainwright et al., 2020) is a watershed function available throughout the domain that allows 

us to quantify the hillslope-average values in the same manner as other spatial data layers. In addition, we computed the spatial 

coverage of each zone in each subcatchment, and compared them to the ratio between the annual nitrogen export and total 

discharge, which is considered as a key metric of how watersheds retain and lose nutrients (Newcomer et al., 2021). 170 

 

4. Results 

4.1 Watershed Zonation 

Figure 2 shows that the above- and belowground hillslope features are significantly correlated with each other. In particular, 

elevation is correlated with all other features except for net annual potential radiation. The hillslopes at higher elevation have 175 

steeper slopes and lower TWI, higher bedrock resistivity and higher peak SWE. There are some nonlinearities: TWI increases 

beyond the linear function at lower elevations. The relationship between peak NDVI and elevation is quadratic, having peaks 
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in mid-elevation (corresponding to around 3300 m). The net annual potential radiation is weakly correlated with slope, TWI, 

and peak SWE. The correlation coefficients among the hillslope-averaged features are significantly higher than the ones of 

pixel-by-pixel ones (Figure S2).  180 

 
Figure 2. Correlation and scatter plots (Pearson’s correlation coefficients) among selected hillslope features (Table S1). The * sign 

represents p-values < 0.01.  

 

The clustering results are then mapped spatially as the watershed zones (Figure 3). The number of clusters is seven, since 185 

GMM showed the highest silhouette score at seven clusters (Figure S3a), and BIC is also highest at seven clusters (above five; 

Figure S3b). The zones are similar among the three methods, although there are minor differences. Zones 1–6 are common 

zones across the three methods. Zone 7 appears in GMM (Figure 3a), but is categorized as Zone 1 by the other methods. Zone 
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8 appears only in KM (Figure 3b); Zone 8 is mostly a part of Zone 3 in the other methods, although some Zone 8 hillslopes 

are represented as Zone 2 in GMM. Zone 9 appears in HC (Figure 3c), but is a part of Zone 3 in KM and HC. The frequency 190 

maps (Figure S4) show that some hillslopes are consistently categorized in the same zones among three methods.  

        
(a)       (b)                      (c) 
Figure 3. Hillslope zonation based on (a) Gaussian mixture model (GMM), (b) K-means (KM), and (c) hierarchical clustering (HC). 

Each zone, colored according to the cluster index from 1 to 9, has a characteristic suite of above and below ground properties. There 195 
are 6 common zones among the three methods, and 3 additional zones (Zone 7 – 9) that are different. The black lines are the hillslope 

boundaries. 

 

Box plots shows the characteristics of each identified zone (Figures 4 and 5). Although each map has seven zones, we use nine 

zones that are found across the three clustering methods based on the frequency map and take the average (Figure S4). 200 

Elevation (Figure 4a) increases from Zone 1 to 6, while Zone 7 is located at the lowest elevations. The elevation of Zone 8 is 

between that of Zone 2 and Zone 3, while Zone 9 is similar to 4. Slope (Figure 4b) shows a similar progression to elevation, 

which is consistent with the correlation plot (Figure 2). Relief (Figure 4c) also has a similar order to the elevation, except that 

Zones 5 to 6 are similar, because the higher elevation hillslopes are smaller with lower relief, even though the slope is high. 

TWI (Figure 4d) has an opposite trend to elevation, consistent with the correlation plot (Figure 2). In terms of net potential 205 

radiation (Figure 4e), the grassland-dominated hillslopes (Zones 1, 2, 5) tend to be higher, while the conifer-dominated 

hillslopes (Zones 3, 4, 8, 9) are lower except for Zone 4 being around the average. The bedrock resistivity (Figure 4f) is higher 

at the higher elevation zones (Zones 4, 5, 6) or intrusive-rock -dominated zones (Zones 4 and 6). NDVI (Figure 4g) is higher 

in the forest-dominated zones (Zone 2, 3, 4, 8). Zone 6 has significantly lower NDVI, since it is predominantly in the barren 

region. NDWI (Figure 4h) is lower in the low elevation zones (Zones 1). Peak SWE (Figure 4i) is also associated with the 210 

elevation; it is the highest in Zone 6, which has the highest elevation, and the lower net potential radiation.  
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(a)    (b)    (c) 

 
 215 

(d)    (e)    (f) 

 
(g)    (h)    (i) 
Figure 4. Boxplots of hillslope pattern features: (a) elevation, (b) slope, (c) relief, (d) TWI, (e) annual net potential radiation, (f) 

bedrock electrical resistivity (top 20 m), (g) peak NDVI in 2018, (h) NDWI (at peak NDVI) in 2018, and (i) peak SWE in 2018. The 220 
horizontal lines are the overall mean and plus/minus one standard deviation.  

 

With respect to geology (Figure 5a-c); shale coverage (Figure 5a) decreases in the higher-elevation zones that see a 

concomitant increase in intrusive rocks and hydrothermally altered sandstones (Zones 4, 5, 6, 8), whereas non-altered 
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sandstone regions (Figure 5b) are dominant in mid-elevation hillslopes (Zone 3 and 5). Among the conifer-dominated areas 225 

(Zones 3, 4, 8, 9), most (Zones 3, 8 and 9) are associated with shale and sandstone, while Zones 4 are associated with intrusive 

rock. In terms of land-cover types (Figure 5d-g), the barren area coverage (Figure 5d) increases with elevation from Zone 1 to 

6. The grassland region (Figure 5e) exists across all zones, but it is particularly high in the low-elevation zones (Zones 1 and 

2) and the higher-elevation south-facing zone (Zone 5). The coverage of deciduous vegetation (Figure 5f) is higher at lower 

elevation (i.e., Zones 1, 2, 7); Zone 2 in particular has high aspen coverage. Finally, the evergreen forest regions (Figure 5g) 230 

appear in Zones 3, 4, 8, and 9, which are associated with the mid-range elevation, higher slope, and lower net potential 

radiation. Zone 4 has a higher coverage of intrusive rock, while Zone 3, 8 and 9 are in the shale-sandstone regions. The 

difference among Zone 3, 8 and 9 are separated such that Zone 9 has particularly high elevation and SWE, and Zone 8 has 

particularly high NDVI. The characteristics of each zone is summarized in Table 1.  

 235 

 
(a)    (b)    (c) 

 
(d)    (e)    (f) 
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 240 
(g) 
Figure 5. Boxplots of hillslope pattern features with respect to geology and land-cover types: the percent coverage of (a) shale, (b) 

sandstone, (c) igneous (intrusive) rock, (d) barren, (e) grassland, (f) deciduous forest and (g) evergreen forest.   

 
Table 1. Summary of the features in each zone based on Figure 5 and 6. 245 
Zone Elevation Slope TWI Resistivity Radiation Peak NDVI Peak SWE Plant types Geology 

1 Low Low High Low Mid-High Mid Low Grassland Shale 

2 Low-Mid Low-Mid Mid-High Low-Mid Mid-High Mid-High Low-Mid Grassland-Deciduous Shale 

3 Mid Mid Mid-High Mid Low Mid-High Mid Evergreen Shale-Sandstone 

4 Mid Mid-High Low-Mid High Mid Mid-High Mid-High Evergreen Intrusive 

5 Mid-High Mid-High Low-Mid Mid-High Mid-High Low-Mid Mid-High Grassland Shale-Sandstone 

6 High High Low High Mid-Low Low High Barren Shale-Intrusive 

7 Very low Low Very high Low Mid-High Mid Low Grassland-Deciduous Shale 

8 Mid Mid Mid Low-Mid Mid-Low Mid-High Mid Evergreen Shale-Sandstone 

9 Mid-High High Low Low-Mid Low Low-Mid Mid-High Evergreen Shale-Sandstone 

 

4.2 Watershed Functions 

Foresummer drought sensitivity (Figure 6a) has an opposite trend to elevation (Figure 4a), with higher sensitivity in lower-

elevation zones (Zone 1, 2, 7), and the lowest in Zone 6. Zone 5 – high-elevation south-facing grassland-dominated hillslopes 

– has higher sensitivity than the zones that are in a similar range. The conifer-dominated zones (Zones 3, 4, 8, and 9) have 250 

lower-than-average sensitivity. Tukey’s pairwise comparison metrics suggest that the differences are significant except in the 

case of conifer-dominated Zones (3, 4, 8, and 9).  

 

We found that the magnitude of annual nitrogen exports scaled log-linearly with discharge, albeit with bifurcation among some 

of the smaller catchments (Figure 6c). The Rock and Gothic subcatchments, which are predominantly within conifer-255 

dominated Zone 3 (Figure b). By contrast, Zone 2 dominated subcatchments (Marmot, Avery) have a larger nitrogen export 
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than would be expected from the simple scaling relationship. In addition, we computed the correlation between the N export 

and % coverage of each zonation, which are 0.54 (p-value = 0.01) for Zone 2, and –0.67 (p-value = 0.02) for Zone 3 (Figure 

6d and e).   

 260 

 
(a)       (b)             (c) 

    
(d)                    (e) 
Figure 6. (a) Boxplot of the foresummer drought sensitivity as a function of zones, (b) zonation coverage of each subcatchment, (c) 265 
annual discharge vs N export in 2015, 2016 and 2017, and (d, e) normalized N export (N export divided by annual discharge) as a 

function of the percent coverage of (d) Zone 2 and (e) Zone 3, respectively. In (b), the color code is the same as Figure 3 – 5.  

 

5 Discussion 

We first identified the co-variability between topographic metrics, elevation, bedrock resistivity, and plant signatures at the 270 

watershed scale. In particular, the near-surface bedrock electrical resistivity is significantly correlated to slope and elevation. 

The detailed analysis of AEM by Uhlemann et al. (submitted) has found that, (1) bedrock resistivity is primarily controlled by 

bedrock type, and (2) within the shale and sandstone, the bedrock resistivity is affected by the extent of hydrothermal alteration. 

The relationship between topography, elevation, and bedrock strength has been documented extensively (e.g., Selby, 1987; 

Clarke and Burbank, 2010). Montgomery (2001) showed that, in low-precipitation and low soil production environments, such 275 
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as the East River, the erosion rate is dependent on rock strength and slope steepness, whereby erosion-resistant rock (i.e., 

hydrothermally-altered sandstones and shales and/or igneous rocks) are on steeper slopes than more erodible rocks. Erosion-

resistant rocks also remain at higher elevations, while erodible rock erodes away. This work provides information on how 

surface topographic features are linked to bedrock variability and could be potentially used to inform bedrock variability, 

which is considered as one of the largest uncertainties in watershed science (Fan et al., 2019). 280 

 

Our results show that plant signatures and peak SWE are primarily correlated with elevation. The quadratic dependency of 

NDVI and aboveground biomass on elevation is consistent with previous studies (e.g., Wainwright et al., 2020); productivity 

and biomass increases with elevation up to 3300-3500 m because plants have more access to snow-derived water at higher 

elevation. Above 3500 m, plant productivity is limited by temperature. Net annual potential radiation is not correlated with 285 

elevation, but associated with conifer coverage and peak SWE. The conifer forest and high vegetative biomass are associated 

with north-facing slopes due to higher water availability, which is consistent with previous syntheses studies (e.g., Pelletier et 

al. 2018). The spatial variability of peak SWE is also consistent with previous studies being associated with elevation and 

radiation (Anderson et al., 2016). In addition, the conifer-dominated zones are associated with high-resistivity bedrock, while 

aspen forests are located within the less resistive bedrock. This is consistent with past studies that conifer trees grow in the 290 

shallow bedrock regions, while aspen require the establishment of deeper root systems (e.g., Burke and Kasahara, 2011). 

Although there have been studies that have reported the co-variability of plants, topographic metrics, and aspect-controlled 

bedrock weathering (e.g., Pelletier et al, 2018), our analysis suggested an additional control of geological variability.  

 

We found that hillslope-averaged metrics improve the correlations significantly, compared with pixel-by-pixel correlations. In 295 

natural systems, the degree of heterogeneity increases as the domain of interest increases (e.g., Neumann et al., 2003). The key 

controls change depending on the scale; while microtopography is a major control on snow (both in accumulation and melting) 

and soil moisture within hillslopes (Falco et al., 2019; Devadoss et al., 2020), elevation and aspect become major controls at a 

large scale (Pelletier et al., 2018; Fan et al., 2019). Our analysis showed that when we evaluated the watershed-scale 

heterogeneity, hillslopes would be an appropriate unit for capturing the key controls on co-varied above/belowground 300 

properties and watershed functions. This is consistent with Wood et al. (2011), concluding that the order of 100 m is a sufficient 

resolution for representing hydrological fluxes. 

 

The co-variability between aboveground and belowground properties suggests that we may reduce the complexity or 

multidimensionality of watershed heterogeneity. We identified zones that capture co-varied properties through unsupervised 305 

clustering, which is compressing the multidimensional parameter space into one-dimensional classes. In the East River 

watershed, the zones are primarily dictated by elevation, while aspect or radiation poses orthogonal controls to the elevation. 

Geology and bedrock are also correlated with elevation, such that hillslopes dominated by crystalline rocks and 

hydrothermally-altered shales and sandstones are primarily found at higher elevations.  The plant types are associated with 
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both elevation and radiation, such that the dominant type changes from grassland, aspen, conifer, and grassland to barren from 310 

low to high elevations, and conifers are dominant in the north-facing hillslopes.  

 

We compared three commonly used clustering methods: hierarchical clustering, k-means, and Gaussian mixture models. Such 

methodological or conceptual model uncertainties are important to characterize, since they are often larger than parameter 

uncertainty (Neumann et al., 2003; Ye et al., 2010). Based on the frequency map, we can also identify the hillslopes that are 315 

consistently categorized in each zone as most representative hillslopes in that zone. In addition, our results show that different 

methods yield fairly similar zones provided the distance metrics are the same. Differences could be explained as the further 

division of an identified zone, such that one method divided a zone into two, due to a particular metric. For example, the lower 

elevation south facing hillslopes were divided into Zone 1 and 7, due to high TWI in Zone 7, which was also associated with 

low drought sensitivity.  320 

 

The zones are evaluated with the metrics associated with key watershed functions, including foresummer drought sensitivity 

of plant productivity and river nitrogen export from subcatchments. Drought sensitivity is mainly affected by the dominant 

plant species in the hillslopes, which is consistent with Wainwright et al. (2020). The conifer-dominated hillslopes have lower 

sensitivity to the droughts, since they are located mostly in north-facing hillslopes and conifer trees have deeper roots. 325 

However, there is a difference in two grassland-dominated zones: Zone 5 and Zone 1, with the high elevation grassland less 

sensitive to droughts, possibly owing to increased water availability in higher elevation. Nitrogen export is known to be 

controlled by multiple factors, such as plant retention, soil cover (Sickman et al., 2002) and geology (Wan et al., 2019). Our 

analysis showed that the conifer-dominated zone (Zone 3) is associated with low nitrogen export, while Zone 2, which has the 

highest fraction of aspen forests, is associated with higher N export. Conifer forests have previously been observed to have 330 

high nitrogen retention (Abrahamsen and Stuanes, 1998, Sollins et al., 1981), particularly through ectomycorrhizal uptake 

(Höberg et al., 2011). By contrast, deciduous aspen forests produce annual leaf litters, with a low C:N content, releasing 

nitrogen back to the soil (e.g., DeByle et al., 1985; Köchy and Wilson, 1997, Buck & St. Clair, 2012). In addition, Wan et al. 

(2019) found that shale was a significant geogenic source of nitrogen, based on the intensive observation sites located in Zone 

2 of this watershed, which is consistent with the global data synthesis (Houlten et al., 2018). We found that the conifer-335 

dominant hillslopes, including those in Zone 3, were in sandstone or igneous rock regions, or in less resistive shale (which is 

assumed to have a lower fracture density). These factors may be combined to reduce the nitrogen delivery to the river in the 

conifer-dominated hillslopes, and thus the lower observed river nitrogen exports from that sub-watershed. 

 

Our approach provides an objective way to classify different hillslopes by including the variability associated with different 340 

clustering methods. Although it is similar to catchment clustering and classification of past studies (e.g., Krause et al. 2014), 

those studies defined the classes of watersheds based on streamflow signatures, which were sparse; particularly in headwater 

catchments. The expansion of spatial data layers from various remote-sensing data layers provides alternative opportunities to 

https://doi.org/10.5194/hess-2021-228
Preprint. Discussion started: 10 May 2021
c© Author(s) 2021. CC BY 4.0 License.



15 
 

apply clustering to such spatial features. In addition, although our approach is similar the Hydrological Response Unit approach 

(Flugel, 1997) or hillslope clustering done by Chaney et al. (2018), their main purpose was to parameterize hydrological 345 

models. Our analysis confirmed the significance of zonation using the key watershed properties and functions based on 

observational datasets. Since hillslope-scale studies and experiments are an integral part of watershed science and critical zone 

science (Hinckley et al., 2014; Tokunaga et al. 2019; Wan et al. 2019), our zonation approach can guide the placement of 

experimental plots more effectively, as well as improve model parameterization in large-scale hydrological models (Chainy et 

al., 2019) by honoring distinct boundaries and water/element export contributions. 350 
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