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Abstract 

The South Korean Peninsula is subject to hydrological extremes, and 70% of its terrain is mountainous, with sharp ridges and 10 

steep valley flanks. Recently, rapid urbanization has created an emerging demand for large-scale water resources, such as dams 

and reservoirs. Accordingly, complicated sediment-related problems have become an issue, with abundant soil loss during 

typhoons transported to the reservoirs, and downstream, riverbed degradation is caused by intercepting sediment. Thus, a 

reliable approach is required for predicting sediment yields of soil erosion and sedimentation. In this study, the specific 

degradation (SD) of 62 stream-river watersheds and 14 reservoir watersheds were calculated from field measurements of 15 

sediment concentration and deposition. Estimated SD ranged between 10 and 1,500 tons·km-2·yr-1. Furthermore, existing 

empirical models of sediment yield are insufficient for predicting specific degradation upstream of the reservoirs; therefore, a 

new model was developed based on multiple regression analysis and model tree data mining of 47 watersheds (~75% national 

land cover). Accuracy of the developed model was enhanced with the following significant parameters: (1) drainage area, (2) 

mean annual precipitation, (3) percent urbanized area, (4) percent water, (5) percent wetland and water, (6) percent sand at 20 

effective soil depths of 0–10 cm, (7) slope of the hypsometric curve, and (8) watershed minimum elevation. Additionally, 

erosion maps from the revised universal soil loss equation (RUSLE) were generated to validate model variables and further 

understand the sediment regime in South Korea. The gross erosion results for 16 ungauged watersheds were used to validate 

the empirical model by comparing sediment delivery ratios of other references. The modeled meaningful parameters were 

examined via remote sensing analyses of satellite and aerial imagery and revealed the features affecting erosion and 25 

sedimentation with an erosion loss map at 5-m resolution. Vulnerable areas of soil loss, including construction sites, and 

croplands, as well as sedimentation features, such as wetlands and agricultural reservoirs, were highlighted. 

 

Keywords Specific degradation, sediment yield, geospatial analysis, remote sensing, resolution effect, revised universal soil 

loss equation (RUSLE), data mining, multiple regression 30 

1 Introduction 

The process of soil erosion can be classified into three chronological stages: detachment, transport, and deposition. Some initial 

terminology related to erosion and sediment must first be clarified. “Gross erosion” refers to all erosion within a watershed. 

Commonly, erosion from water is composed of sheet (i.e., inter-rill), rill, gully, and instream erosions. When soil particles 

detach, they become part of the flow. At a specific location, the gross erosion material transported downstream is known as 35 

“sediment yield.” When the transport capacity of runoff is insufficient, deposition can occur within or even before reaching 

the stream. The “sediment delivery ratio” (SDR) can be calculated as the ratio of sediment yield to gross erosion (Julien, 2010). 

Although the revised universal soil loss equation (RUSLE) considers only sheet and rill erosions, it has been widely used to 
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estimate the overall sediment budget of catchments (Zhao et al., 2012; Kamaludin et al.,2013). The sediment yield is commonly 

measured at a river gauging station, or as accumulation in a reservoir. The term "specific degradation” (SD) refers to the ratio 40 

of mean annual sediment yield to the watershed area (Julien, 2010).  

 

In South Korea, most mountains and valleys (~65% of the total land area) are in a stage of old age, with deep valleys in the 

upstream regions and broad alluvial flat plains downstream (Fig. 1 (a)). Most of the mountainous watersheds are forested, and 

the plains are commonly cultivated as paddy fields, effectively functioning as small reservoirs for holding water during the 45 

summer (Yoon and Woo, 2000). Furthermore, ~17,000 reservoirs have been constructed to meet regional water demands (Fig. 

1 (b)). These conditions tend to reduce large-scale problems related to erosion and sedimentation. However, numerous 

concentrated and local issues are ongoing (Kang et al., 2021). For example, abundant soil loss can occur during typhoons, and 

the soil particles generated upstream induce sediment problems in reservoirs. Further downstream of the reservoir, riverbed 

degradation can be caused by intercepting sediment. Additional local issues can include landslides, aggradation, and floodplain 50 

sediment deposition.  

 

Accordingly, many scholars have suggested that an accurate method for predicting sediment yield under local conditions is 

required for sustainable management (Scherer, U., & Zehe, E. 2015; Gao et al., 2016; Kang et al., 2019). To this end, several 

methods have been applied in South Korea, including empirical models developed using regression analysis (Ryu and Min, 55 

1975; Ryu and Kim, 1976; MOC, 1992), and data mining techniques to derive new empirical equations of sediment discharge 

(Zhu et al., 2007; Kang and Jang, 2020; Kang et al., 2021). The existing formulas have produced highly variable results, 

because the underlying models were designed with different conditions and purposes in mind, and in some cases, were based 

on a relatively low number of observations. In particular, appropriate variable selection is fundamental for modeling sediment 

yield, which requires proper understanding of the influential mechanisms (Vente et al., 2011). Furthermore, upland gross 60 

erosion of a catchment and downstream sediment yield should be considered together to calculate the SDR and better 

understand the processes of sediment transport (Julien, 2010). The magnitude of the SDR is influenced by many factors, such 

as geomorphological, environmental, and artificial ones (Walling, 1983); however, spatiotemporal limitations present 

challenges, including uncertainties arising from data-scarcity and general issues of regional applicability (Gao et al., 2017). 

Thus, gross erosion and SDRs are not often used in practice by geomorphologists and river managers, save for some specialized 65 

purposes (Benavidez et al., 2018; Swarnkar et al., 2018).  

 

In this study, an abundance of field data was used to estimate specific degradation using a modified Einstein procedure and 

flow duration-sediment curve method. Subsequently, empirical models were developed from the estimated SD of 47 

watersheds, and 51 parameters derived from GIS analyses and field surveys. The results of this study suggest new uses of the 70 

SDR for validation of the proposed empirical model, and the SDRs from estimated gross erosion of ungauged watersheds by 

RUSLE were compared with modeled SD estimates. Additional geospatial analyses using erosion maps, satellite, and aerial 

imagery were used to identify meaningful erosion and sediment features and explain their effects on the soil erosion process. 

Because the grid size of parameters for RUSLE should not be arbitrary, the distortion of gross erosion was examined at three 

different spatial resolutions.  75 

2 Materials and Methods 

2.1 Specific degradation of rivers, streams, and reservoirs 

There were 62 sediment data points compiled for rivers, streams, and 14 reservoirs across five main rivers ((Fig. 1 (a)). Most 

of the major reservoirs with multipurpose dams are located in the mountainous regions (Fig. 1 (b)). When water enters a 
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reservoir, the flow velocity decreases, flow depth increases, and sedimentation occurs as a result of the overall decreased 80 

transport capacity of the stream. The amount of deposited sediment in the reservoir is dependent on sediment production from 

upland erosion, the rate of transportation, and the mode of deposition (Julien, 2010). Korea Water resource corporation (K-

water), the public body in charge of the construction, operation, and management of facilities for water resources, has published 

a sediment survey report of the multipurpose and storage dams of several reservoirs every ten years. The sediment deposition 

rate (𝑉𝑟 , m3·km-2·yr-1) can be derived from field measurements of the reservoir capacity. In the present study, Vr of the reservoir 85 

was calculated according to Eqs. (1) and (2): 

𝑉𝑟 = (𝑉𝑚 − 𝑉𝑖) (𝐴 × 𝑡)⁄   ,                (1) 

SD = (𝑉𝑟 × 𝜌𝑚𝑑) 𝑇𝐸⁄                     (2) 

where 𝑉𝑚 is the measured reservoir capacity from the impoundment of water (m3), 𝑉𝑖 is the initial capacity of the reservoir at 

impoundment (m3), A is the catchment area (km2), t is the time from the impoundment of water to measurement (yr), 𝑆𝐷 is the 90 

specific degradation (tons·km-2·yr-1), 𝑇𝐸  is the trap efficiency (%), and 𝜌𝑚𝑑  is the dry specific mass of the sediment deposition 

(tons·m-3). The reservoir trap efficiencies for multiple-purpose dams in South Korea are commonly > 96%, and a dry specific 

mass of 1.1 tons·m-3 was assumed when field measurements were unavailable (MOC, 1992). In this study, the most recent 

survey data were used, and the estimated reservoir SD ranged from 200 to 1,800 tons·km-2·yr-1 (Table 1). For the Imha, 

Miryang, and Buan reservoirs, the survey report concluded that the estimated total sediment data for the reservoir was 95 

unreliable; and therefore, provided identical results as the design value for the estimated sediment deposit rate. 

 

In terms of sediment data, stream and river watersheds were classified according to their location either up- or downstream of 

major reservoirs, respectively (Fig. 1 (a)). A total of 2,432 suspended sediment measurements were collected across 62 gauging 

stations. First, the total sediment load was estimated using a Modified Einstein Procedure (MEP; detailed methods were 100 

reported by Julien (2010)). The relationship varied between the estimated sediment load, and the discharge at the time of 

sediment measurement in streams and rivers (Fig. 2 (a)). Notably, total sediment discharge was higher at low discharge rates 

in streams. The mean channel characteristics from sediment measurement data are shown in Fig. 2 (b) and (c), and the results 

reflect the different characteristics of river and stream watersheds. Stream watersheds maintain a V-shaped valley in upland 

areas, with lower discharge and smaller cross-sectional areas than rivers. Gauging stations of rivers confirmed that they 105 

maintain relatively deep and wide channels at low elevations with mild slopes, ultimately indicating that they are in the 

transport zone, with long sand-beds. With the estimated total sediment load, the annual SD values were calculated using the 

flow duration–sediment rating curve (FD-SRC) method (Table 2). Consequently, 15 results with low sample numbers 

(sediment measurements < 15) and one unreasonably high result of the 62 river, stream, and reservoir stations were removed 

from modeling analyses.  110 

2.2 Modeling specific degradation  

Models of sediment yield were developed using the estimated SD data and 51 GIS-based watershed parameters by multiple 

regression analysis and data mining. The parameters considered were classified as geomorphological, climatological, 

anthropogenic, or pedological factors (Table 3). Geomorphological parameters were acquired during watershed delineation 

according to a 5 m × 5 m resolution digital elevation model (DEM) provided by the National Geographic Information Institute. 115 

Climatological variables were based on 60 points of precipitation and rainfall erosivity data from the Korea Meteorological 

Administration. The continuous raster data of mean annual precipitation and rainfall erosivity at 5-m resolution was generated 

by the ordinary kriging with the exponential semivariogram model which is reliable for rainfall data. Land cover type related 

to anthropogenic parameters was derived from 5 m × 5 m resolution raster data, classified by a hybrid method of the Korean 

Ministry of Environment from the Landsat TM, IRS 1C, SPOT5, and Arirang satellite images (Me, 2002). Pedological 120 

https://doi.org/10.5194/hess-2021-225
Preprint. Discussion started: 10 June 2021
c© Author(s) 2021. CC BY 4.0 License.



4 

 

variables were obtained from the National Institute of Agricultural Sciences and SWAT-K developed by the Korea Institute 

of Construction Technology. The detailed processes and information of all parameters were reported by Kang (2019).  

The regression model based on the RUSLE structure for SD was represented according to Eq. (3): 

ln 𝑆𝐷𝑖 =  𝛽0 + 𝛽1𝑙𝑛𝑋𝑖1 + ⋯ + 𝛽𝑝−1𝑙𝑛𝑋𝑖,𝑝−1 + 𝜀𝑖        (3)  

where 𝛽 is the regression coefficient, 𝑋 is the explanatory variable, 𝜀𝑖 is the error term, and 𝑝 is the number of explanatory 125 

variables. For the developed model, the confidence intervals were calculated according to Eq. (4): 

𝑆𝐷ℎ ± 𝑡 (1 −
𝛼

2
; 𝑛 − 𝑝) 𝑠{𝑆𝐷ℎ}          (4)  

where 𝛼 is the level of significance (assumed as 0.05 for 95%) and 𝑠{𝑆𝐷ℎ} is the standard deviation. Data mining can be used 

to effectively derive explicit formulas by separating the data into subtrees. Branches are divided when the standard deviation 

reduction is maximum (Quinlan, 1992) according to Eq. (4): 130 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

=
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
deviation

 (𝑇𝑖) − ∑
|𝑇𝑖|

|𝑇|𝑖 ×
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
deviation

 (𝑇𝑖)      (5) 

 where T is the set of total samples of the dependent variable and Ti is the set of subsamples of the dependent variable divided 

by the sub-intervals. The minimum data under the model tree classification conditions were assumed to be four for multiple 

regression analysis, and the standard deviation reduction was set to 5% to avoid unnecessary and excessive results. 

  135 

RUSLE was used to validate the developed models by remote sensing analyses of erosion and sedimentation using satellite 

and aerial imagery at different resolutions. Wischmeier and Smith (1965) developed the universal soil loss equation (USLE) 

using data from 10,000 test plots of agricultural areas in the U.S., later modifying this equation in 1978 (Eq. 6): 

𝐴 = 𝑅𝐾𝐿𝑆𝐶𝑃            (6)  

where A is the average annual soil loss, R is the rainfall erosivity factor, K is the soil erodibility factor, L is the slope length 140 

factor, S is the slope steepness factor, C is the cropping management factor, and P is the conservation practice factor.   

 

To validate the developed model, the calculated SDRs of ungauged watersheds from gross erosion and predicted SD were 

compared with ranges acquired from the literature. In this study, R values at 60 stations were calculated according to Eq. (7): 

𝑅 = ∑ 𝐸 ∙ 𝐼30 , 𝐸 = ∑ 𝑒 ∙ ∆𝑃, 𝑒 = 0.29[1 − 0.72 exp(−0.05 ∙ 𝐼)]       (7) 145 

where R is reported in (107 J·ha-1·mm-1·h-1), I30 is the maximum 30-min rainfall intensity (mm·h-1), E is the total storm kinetic 

energy (107 J·ha-1), ∆P is the increase in rainfall during the rainfall interval (mm), e is the estimated unit rainfall kinetic energy 

(MJ·ha-1·mm-1), and I is the rainfall intensity (mm·h-1). The soil erodibility factor (K) was calculated for each soil group 

according to Eqs. 8–10 (Wischmeier et al., 1971): 

𝐾 =
0.00021∙𝑀1.14∙(12−𝑂𝑀)+3.25(𝐶𝑠𝑜𝑖𝑙𝑠𝑡𝑟−2)+2.5(𝐶𝑝𝑒𝑟𝑚−3)

100
        (8) 150 

𝑀 = (𝑚𝑠𝑖𝑙𝑡 + 𝑚𝑣𝑓𝑠) ∙ (100 − 𝑚𝑐)          (9) 

𝑂𝑀 = 1.72 ∙ 𝑜𝑟𝑔𝐶           (10) 

where K is the soil erodibility factor ([ton∙acre∙h]·[hundreds of acre∙foot-tonf∙inch]-1), M is the particle size parameter, OM is 

the percentage of organic matter, Csoilstr is the soil structure code used for classification (1–4), Cperm is the profile permeability 

class (1–6), msilt is the percentage of silt, mvfs is the percentage of fine sand, mc is the percentage of clay, and orgC is the 155 

percentage of organic carbon content of the layer.  

For the topographic factors (LS), field measurements yielded the best results; however, various functional and practical GIS 

algorithms have also been developed for this purpose. Modeled results of gross erosion from GIS analyses have shown to be 

dominated by spatial heterogeneity, represented by LS in the RUSLE (Risse et al., 1993; Thompson et al., 2001; Wu et al., 

2005), implying that the resolution of the DEM used is directly related to the accuracy of topographic factors, and thus, soil 160 
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loss (Thompson et al., 2001). Moore and Wilson (1992) suggested a simple equation using a unit contributing area to estimate 

the LS factor (Eq. 11): 

𝐿𝑆 = (
𝜆

22.13 𝑓𝑜𝑟 𝑆𝐼 𝑢𝑛𝑖𝑡
)

𝑚

∙ (
sin (𝜃)

0.0896
)

𝑛

          (11)  

where 𝜆 is the flow path length (m), 𝜃 is the slope angle (in degrees), and m and n are constants. Moore and Burch (1986) 

suggested that m is 0.4 (range, 0.4–1.6) and n is 1.3 (range, 1.2–1.3). The flow path length (λ) is the distance from the point of 165 

origin of overland flow to the point where the slope decreases sufficiently to allow deposition to begin, or where the runoff 

enters a well-defined or constructed channel (Wischmeier & Smith, 1978). Flow Accumulation is one of the most common 

GIS tools for estimating flow path length, and when these values are multiplied by the DEM resolution, the distance travelled 

by a drop of water before reaching that particular cell is derived (Parveen and Kumar, 2012; Barriuso Mediavilla et al., 2017); 

however, this method is limited because the higher gross erosion results occur at the convergence of a catchment. Another 170 

option for estimating the LS was reported by Hickey (2000) and Van Remortel et al. (2001), based on single flow direction 

algorithms. These methods considered the downhill slope angle with a directional component, and non-cumulative slope length 

for high points (Van Remortel et al., 2004), thus diminishing the limitations from the unit contributing area (Galdino et al., 

2016). In this study, (1) Moore and Wilson’s method based on unit contributing area and (2) Van Remortel’s method based on 

the flow path and cumulative cell length portion (FCL) were used to estimate LS. The cropping management factor (C) and 175 

conservation practice factor (P) were referenced from the Ministry of Environment’s regulations and one additional source 

(ME, 2012; Kim, 2016), and their values are listed in Tables 4 and 5, respectively. P is dependent on the conditions of land 

use and slope, where the percent slope was derived from the DEM, and land use was based on the land cover raster. Although 

the advantages of calculating RUSLE with GIS are numerous, variable grid/cell sizes result in different soil erosion results. 

Molnár (1997) concluded that a large grid cell size (low spatial resolution) underestimated soil loss, and Julien and Frenette 180 

(1987) used a correction factor to extend the applicability of the RUSLE to larger watersheds. In this study, the resolution 

effects on the results of gross erosion were examined. Wu et al. (2005) suggested that sampling methods do not affect USLE 

application; therefore, the nearest-neighbor technique was applied for downscaling the DEM. Both land use and soil 

classification were downscaled by a majority function to determine the new cell value based on the most common values 

within the corresponding cells. Finally, the developed regression model was validated for ungauged watersheds in South Korea 185 

using the SDR, as defined by Eq. (12):  

𝑆𝐷𝑅 = 𝐴𝑇 𝑆𝑌⁄             (12) 

where SY is the sediment yield (estimated SD from the developed model) and 𝐴𝑇 is the gross erosion from the watershed 

(results of RUSLE). Mapping erosion at different spatial resolutions using the RUSLE can also help identify meaningful 

erosional and sediment features. 190 

 

3 Results 

3.1 Modeled specific degradation 

The SD results for rivers and streams decreased with watershed area, with river values being the lowest of the three water 

bodies analyzed. As expected, SD decreased from mountain streams to river valleys, suggesting that upland erosion occurs 195 

mainly in the upstream portions of the watersheds, while sedimentation is observed in the reservoirs and alluvial rivers 

downstream. The SD across reservoirs was relatively constant, with a mean value of 850 ton·km-2·yr-1. The models for 

predicting sediment yield using multiple regression and a model tree analyses were developed with 47 results of SD for rivers 

and streams and 51 watershed parameters derived from GIS analyses.  

Existing Model: 𝑆𝐷 = 2.45 × 10−7𝐴−0.04𝑃1.94𝑈0.61𝑊−0.64𝑆𝑎1.51𝐻𝑦𝑝1.84      (13)  200 
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Proposed Model: 𝑆𝐷 = 1.75 × 10−5𝐴−0.07𝑃2.23𝑈0.4𝑊𝑊−1.04𝐻𝑦𝑝𝑠−0.42       (14) 

Previously, Kang et al. (2019) developed empirical models for watersheds in South Korea using only 28 SD values for rivers. 

These existing models were validated by comparison with other empirical models of sediment yield in South Korea, and the 

most accurate model was derived (Eq. 13); however, it did not show sufficient performance for the SD of streams (RMSE = 

130.1 tons·km-2·yr-1, NSE = 0.284; Fig. 4 (a)). In the proposed model using multiple regression analysis and 47 results of SD 205 

for rivers and streams (Eq. 14), the most important parameters were watershed area (A), mean annual precipitation (P), percent 

urbanized area (U), percent wetlands and water area (WW), and slope of the hypsometric curve (Hyps). The proposed model 

based on multiple regression analysis predicted the SD of streams and rivers more accurately (Fig. 4 (b)). Validation was 

conducted using the additional reference from MOC (1992), and all the points were within the approximated 95% confidence 

intervals (RMSE = 88.8 tons·km-2·yr-1, NSE = 0.516). Additionally, the issue of multicollinearity for the proposed model was 210 

ruled out by checking the variance inflation factor (VIF), according to Eq. (15). 

VIF𝑖 =
1

1−𝑅𝑖
2            (15) 

Multicollinearity was ruled out, as none of the VIF values were > 10 (Table 6; Kutner et al., 2004).  

 

Additionally, the derived empirical model using data mining was proposed with five meaningful parameters (Eqs 16 and 17): 215 

LE ≤ 71.88 m; M1 = 9.3 × 10−9 × 𝑃2.8 × 𝑆𝐴0100.48 × 𝑈0.71 × 𝑊−0.43 × 𝐿𝐸0.036     (16) 

LE > 71.88 m; M2 = 2.5 × 10−3 × 𝑃1.4 × 𝑈0.29 × 𝑊−0.27 × 𝐿𝐸0.056      (17) 

Fig. 5 (a) delineates the divided groups according to the model’s suggestion and Fig. 5 (b) shows the classified SD for the 

rivers and streams by their locations. 

Both the RMSE (58.8 tons·km-2·yr-1) and NSE (0.56) indicated a superior performance compared to the multiple regression 220 

analysis model. According to the results, the data mining model tree well distinguished the SD values of streams and rivers 

according to the lowest elevation (LE). The proposed data mining model had a similar to the other, where the lowest elevation 

and slope of the hypsometric curve were used in both proposed models as relief aspects. Interestingly, the regression model 

included the percent of sand at effective soil depths of 0–10 cm, possibly indicative of the difference between sand bed rivers 

with fine suspended material, and gravel and cobble-bed streams.  225 

3.2 Model and geospatial analyses with RUSLE 

The estimated average gross erosion values obtained using the two approaches to LS factor calculation, at three different spatial 

resolutions and across the 15 watersheds, are shown in Table 7. 

Many researchers have suggested that the method for estimating the LS factor, and DEM resolution, are directly related to the 

accuracy of topographic factors. In this study, the UCA and FCL methods were used to estimate slope length and steepness. 230 

The main difference between the two methods was that flow accumulation does not consider the cutoff point where sediment 

will be deposited in UCA. Conversely, the FCL method accounts for deposition issues by evaluating changes in slope; however, 

it does not consider convergence flow or channel networks (Zhang et al., 2013). South Korea’s steep montane topography 

results in most watersheds maintaining smaller areas compared to other continental regions. Moreover, 65% of the precipitation 

falls during the summer rainy season, creating a correlated peak in sediment transport. Accordingly, there are many flow 235 

convergence points within these small watersheds; as a result, the FCL method yields a lower LS value for concave areas. 

When assessing spatial resolution, the results were corroborated by those of other studies (Molnár, 1997; Wu et al., 2005), in 

that gross erosion slightly decreased with higher DEM resolution because the cut-off points in the 5 m-resolution DEM were 

more apparent.  
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Since there was a divergent trend observed between SD values of streams and rivers, the gross erosion rates for stream NU3 240 

and river N1 were compared. The average gross erosion for NU3 (~4,000 tons·km-2·yr-1) was larger than that of N1 (~2,400 

tons·km-2·yr-1), and the SD values of N1 and NU3 were 71 and 193 tons·km-2·yr-1, respectively. To identify their differences, 

the erosion map, satellite, and aerial imagery were compared. Most wetlands in South Korea are alluvial features located near 

channels and are frequently inundated during flood events (Fig. 6 (b)). The geospatial analyses also indicated many wetland 

and vegetated floodplain regions near the alluvial rivers, with sand as the primary underlying substance (Fig. 6 (c) and (d)). In 245 

contrast to the river, the stream watershed did not contain many wetland and flood plains (Fig. 7 (c)). Gravel- and cobble-bed 

streams were commonly found in moderately steep mountain valleys (Fig. 7 (b)), which were subsequently deposited when 

water flow rates decreased (Fig. 7 (d)). Thus, the results suggest that stream watersheds carry more sediment, and alluvial 

rivers provided more opportunities for deposition.  

3.3 Model validation using the sediment delivery ratio 250 

The regression models developed in this study were validated using the SDR of the gross erosion levels measured at different 

resolutions, and predicted SD of 14 ungauged watersheds (Fig. 1 (b)). Boyce (1975) suggested that sediment yield varied 

inversely with the watershed area, whereas other research has suggested a range of SDRs from experimental data (Madiment, 

1993; Julien, 2010). The calculated SDRs from gauged rivers, streams, reservoirs, and ungauged watersheds, as well as results 

from other studies, are shown in Fig. 8.  255 

 

The gross erosion results from 3 different resolutions are delineated as bar graphs and indicated that estimated SDR levels 

were higher in the stream watersheds than rivers. The stream watersheds with values outside the predicted intervals (NU5 and 

SU3) likely arose from measurement errors associated with the abundance of bushes and trees at gauging points. Most of the 

calculated SDRs for ungauged watersheds using multiple regression analyses were within the range of external references; 260 

however, some of the calculated SDRs from model-tree data mining were also out of range. This result suggests that the data 

mining technique could be beneficial for predicting sediment yield under various hydrogeomorphic conditions. Alternatively, 

since sediment transport is a stepwise process, the proposed multiple regression model based on the USLE structure displayed 

better validation results. Further, the lowest elevation variable (LE) was well correlated with the observed differences between 

streams and rivers. However, it did not maintain strong explanatory power for predicting sediment yield compared to the slope 265 

of the hypsometric curve.  

4 Discussion 

4.1 Parameters of erosion and sedimentation  

Relationships between the significant parameters of the proposed model related to land use and estimated SDR were analyzed 

(Fig. 9). The negative relationship between the percent of wetland and water cover indicated that these areas provide 270 

opportunities for sediment deposition. Additionally, all SDR values (streams, rivers, and reservoirs) increased with increasing 

urbanized area, albeit to different extents for streams and rivers. Although increase in urbanized areas is not the main cause of 

soil loss, it can increase opportunities for soil loss. Further, urbanized areas, such as paved roadways and parking lots, can 

transport more soil particles at increasing flow rates. The hypsometric curve was expressed as the normalized cumulative area, 

and height of the watershed outlet, and correlates to flood responses, soil erosion, and sedimentation processes (Langbein, 275 

1947; Strahler, 1952). The hypsometric curves for the 76 watersheds show strong differences in relief aspects between streams, 

rivers, and reservoir watersheds (Fig. 10 (a)). The results of this study suggest a counter-intuitive relationship between the 

absolute slope value of the hypsometric curve and the SDR. This may be explained by the topographic irregularity of South 
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Korea and its effects on erosion and sedimentation processes, where steep mountain watersheds are located far from gauging 

stations and floodplains are prone to erosion from the urbanization processes. 280 

4.2 Effects of spatial resolution 

Geospatial analyses were conducted for upland erosion at three different spatial resolutions, using satellite and aerial imagery 

to reveal the mechanisms of the meaningful parameters in the proposed model and other possible factors related to land use. 

The 5 x 5 m resolution erosion map showed a significantly improved delineation than that of the lower resolutions (Fig. 11). 

 285 

As upland areas tend to be more rural croplands with high slope gradients, the corresponding stream watersheds would have a 

very high gross erosion rate compared to that of rivers (Fig. 11 (a)). The exposed soils of urbanization are prone to erosion, 

potentially releasing abundant quantities of sediment through flooding events. They can also be easily transported to waterways 

through surface runoff. Once construction is finished, these locations should change to low erosional risk sites; however, the 

urbanization process is nearly continuous. The results also delineated a swale located near the flat regions of the alluvial river 290 

(Fig. 11 (b)). It was also shown that wetlands are not a source of sediment yield; however, agricultural reservoirs are the main 

source of sediment deposition, as the annual soil loss for reservoirs was near 0~1 tons·km-2·yr-1. The erosion map at high 

resolutions also accurately captured reservoirs, with increasing variability as resolution decreased (Fig. 11 (c)). Thus, wetlands 

and water land cover with low gross erosion rates (0–10 tons·km-2·yr-1) could be incorrectly distorted as an erosional source 

(500–2,500 tons·km-2·yr-1) at a resolution of 90 m (Fig. 11 (d)).  295 

 

Additionally, only the high-resolution map (> 30-m resolution) was capable of delineating high-risk erosion areas, such as 

meandering channels without bank protection (Fig. 12 (a), white circle). For the development of the USLE, the unit plot had a 

length of 22.1 m, width of 1.83 m, and slope declination of 9% (Wischmeier and Smith, 1965). Similar to these reference 

conditions, the erosion maps of resolution 5 m and 30 m could be adopted to identify specific sites most in need of erosion and 300 

sediment management. The estimated mean annual soil loss for each land use was calculated for the different resolutions, and 

the results are shown in Fig. 13. 

 

The mean annual soil loss of the river watersheds, including many wetlands and water bodies, was more distorted than stream 

watersheds; urbanized areas also showed similar results. Over bare land, potentially a main source of sediment release, the 305 

gross erosion displayed the most severe distortion (≤ 100%). In conclusion, the high-resolution erosion maps could be used to 

capture areas with high erosion risk (e.g., upstream croplands and construction sites) and detailed features affecting 

sedimentation (e.g., wetlands and agricultural reservoirs).  

5 Conclusion 

In this study, the specific degradation (SD) of 62 river gauging stations and 14 reservoirs were investigated across South Korea. 310 

The SD estimated was the highest in reservoirs and calculated SD using a modified Einstein procedure ranged from 1,000 

tons·km-2·yr-1 in upstream mountain watersheds to 100 tons·km-2·yr-1 in large rivers and as low as 10 tons·km-2·yr-1 in 

downstream reservoirs and alluvial plain rivers. As expected, erosion occurred primarily upstream, and sedimentation took 

place in the downstream reservoirs and flood plains. Because the existing regression equation based on the 28 watersheds 

located in an alluvial river of South Korea displayed poor accuracy when predicting upstream SD values of the reservoirs (i.e., 315 

RMSE ~130 tons·km-2·yr-1), two empirical models using river and stream sediment measurement data were put forth. The 

proposed model derived from multiple regression analysis, based on the USLE structure, included the following meaningful 

variables: (1) watershed area, (2) mean annual precipitation at gauging stations, (3) percent urbanized area, (4) percent wetland 
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and water cover, and (5) slope of hypsometric curve parameters. The second data mining model tree contained: (1) mean 

annual precipitation at gauging stations, (2) percent of sand at effective soil depth of 0–10, (3) percent of urbanized area, (4) 320 

percent water cover, and (5) lowest elevation of the watershed. The two models maintained satisfactory RMSE values of 89 

and 59 tons·km-2·yr-1. Additionally, remote sensing erosion maps (satellite and aerial imagery) employing RUSLE were created 

at different spatial resolutions. To test model accuracy, the SDR for 14 ungauged watersheds, the sediment yield from the 

developed models and the gross erosion were also calculated. The erosion-prone areas, such as the cropland and construction 

site at the hillslope, could provide abundant sediment and could be deposited on reservoirs and wetlands, which are located 325 

near alluvial rivers during flood events. These features were often not visible, and mapping of high-erosion areas was very 

difficult to delineate on low-resolution maps. When comparing the average annual soil losses on the erosion maps at 5-m and 

90-m resolutions, the differences were as large as 100%. The calculated SDRs based on the multiple regression model were 

within the range suggested by the literature, and supporting the model’s use for predicting sediment yield of ungauged 

watersheds in South Korea; however, some of the estimated SDRs values from the data mining model were outside the range, 330 

indicating that even the data-driven method is limited. Empirical model development using multiple regression analyses and 

data mining techniques has shown promise for identifying at-risk watersheds. These methods should be applied with caution, 

because erosion and sedimentation are highly complex physical processes. In conclusion, priority should be given to 

understanding spatially varied erosion and sedimentation processes under different conditions and focusing in on variable 

mechanisms to develop empirical or statistical models. Also, a geospatial analysis with high-resolution data should identify 335 

the specific location which require sustainable management. The suggested methodologies here can be utilized for erosion and 

sediment management and to help understand the mechanisms of these processes in South Korea. 
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(a) (b) 

Figure 1: Study site locations throughout South Korea. 425 
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(b) 

 
(a) (c) 

Figure 2: (a) Sediment rating curve, and (b & c) channel characteristics between streams and rivers of South Korea.  

 

 435 

 

Figure 3: Specific degradation by watershed area for the analyzed rivers, streams and reservoirs of South Korea 

https://doi.org/10.5194/hess-2021-225
Preprint. Discussion started: 10 June 2021
c© Author(s) 2021. CC BY 4.0 License.



14 

 

  
 (a) (b) 

Figure 4: Prediction of specific degradation from the (a) existing model, and (b) proposed model, using multiple regression analyses. 

 

  
 (a) (b) 

Figure 5: Prediction of specific degradation from the proposed model using data mining: (a) rivers vs. streams, and (b) Model Tree 440 
conditions Eq 16 vs. Eq 17. 
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(b) (c) 

 
(a) (d) 

Figure 6: (a) Erosion map, (b–c) aerial photographs, and (d) satellite imagery of river watersheds, ESRI 2020 (study site: N1). 

 

 445 

 

  
(b) (c) 

 
(a) (d) 

Figure 7: (a) Erosion map, and (b–d) aerial images of stream watershed (study site: NU3). 
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Figure 8: Sediment delivery ratio for streams, rivers, reservoirs, and ungauged watersheds. 

 450 

  
 (a) (b) 

Figure 9: The relationship between the sediment delivery ratio and: (a) the percentage of wetland and water, and (b) the percentage 

of urbanized area for the rivers, streams, and reservoirs analyzed (black line is the fit of rivers and streams, green line is the fit of 

rivers, streams and reservoirs). 
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(a) (b) 

Figure 10: (a) The hypsometric curve for all river, stream, and reservoir watersheds analyzed, and (b) the corresponding relationship 455 
between the sediment delivery ratio and the slope of hypsometric curve (black line is the fit of rivers and streams, green line is the 

fit of rivers, streams and reservoirs). 
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 460 

    
(a) (e) (i) (m) 

    
(b) (f) (j) (n) 

    
(c) (g) (k) (o) 

    
(d) (h) (l) (p) 

Figure 11: (a)-(d) Satellite or aerial imagery from ESRI 2020, and gross erosion results at (e)-(h) 5 m, (i)-(l) 30 m, and (m)-(p) 90 m 

resolution (erosion maps have same scale as Figures 6 and 7). 

    
(a) (b) (c) (d) 

Figure 12: (a) Satellite image from ESRI 2020, and gross erosion results at (b) 5 m (c) 30 m, and (d) 90 m resolution. 
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 (a) (b) 

Figure 13: Resolution effects on gross erosion for each land use type for (a) N1, and (b) NU3. 

 465 

 

 

Table 1: The specific degradation of the major reservoirs in South Korea.  

Reservoir 

(ID) 
Year 

Area 

(km2) 

Total  

sediment 

(106 m3) 

Sediment 

deposition 

rate 

(m3·km-2·yr-1) 

Dry mass 

density 

(tons·m-3) 

Specific  

Degradation 

(tons·km-2·yr-1) 

Soyangriver (HR1) ‘06 2,703 81.5 914 1.29 1,228 

Chungju (HR2) ‘07 6,648 130.5 853 1.67 1,484 

Hoengseong (HR3) ‘13 209 0.5 183 *1.1 210 

Gwangdong (HR4) ‘12 125 0.9 714 *1.1 818 

Andong (NR1) ‘08 1,584 5.5 109 *1.1 125 

*Imha (NR2) ‘07 1,361 5.6 300 *1.1 344 

Hapcheon (NR3) ‘12 925 19 893 1.1 1,023 

Namriver (NR4) ‘04 2,285 12.5 350 *1.1 401 

*Miryang (NR5) ‘13 95 3.8 380 *1.1 435 

*Yeongcheon (NR6) ‘05 235 9.4 1,534 *1.1 1,758 

Daecheong (GR1) ‘06 4,134 81.4 616 1.38 886 

Juam_Main (SR1) ‘03 1,010 5.0 469 2.1 1,026 

Juam_reg (SR2) ‘03 135 2.1 1,089 *1.1 1,248 

Seomjinriver (SR3) ‘83 763 19.0 459 *1.1 526 

* Estimated sediment deposit rate is the same as the design value (i.e., unreliable results). 

  470 
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Table 2: Estimated specific degradation and data information of all gauging stations.  

Station Name 
Water 

shed 

Area 
# of 

Q 

# of 

Sedi

ment 

Annual 

sediment load 

Specific 

degradation 

(km2) (ton·yr-1) (tons·km-2·yr-1) 

H1 Yeoju 

Han 

11,047 3,256 97 1,295,000 117 

H2 Heungcheon 284 2,832 26 114,000 404 

*H3 Munmak 1,346 3,213 48 1,543,000 1,147 

H4 Yulgeuk 173 730 29 35,000 203 

H5 Namhanriver 8,823 1,084 30 207,000 24 

H6 Heukcheon 307 2,148 37 23,000 75 

HU1 Yeongchun 4,782 3,633 33 582,000 124 

*HU2 Samok bridge 2,298 1,437 22 2,586,000 1,057 

HU3 Yeongwol1 1,615 2,530 27 352,000 213 

N1 Seonsan 

Nak 

dong 

979 2,878 67 69,000 71 

N2 Dongchon 1,541 1,430 44 67,000 43 

N3 Gumi 10,913 1,774 33 229,000 21 

N4 Nakdong 9,407 2,517 53 413,000 44 

N5 Waegwan 11,101 2,136 147 622,000 56 

*N6 Ilseon bridge 9,533 1,826 14 39,000 4 

N7 Jindong 20,381 3,275 84 2,087,000 102 

N8 Jeongam 2,999 3,287 74 100,000 33 

N9 Hyangseok 1,512 1,809 63 127,000 84 

N10 Dongmun 175 1,826 29 13,000 75 

N11 Jeomchon 615 2,922 48 24,000 39 

N12 Yonggok 1,318 2,900 15 61,000 46 

N13 Jukgo 1,239 2,908 69 46,000 37 

N14 Gaejin2 750 3,242 57 39,000 52 

NU1 Socheon 697 2,557 15 140,000 201 

NU2 Yangsam 1,147 1,789 31 232,000 203 

NU3 Yeongyang 314 2,191 34 61,000 193 

*NU4 Dongcheon 143 1,096 12 45,000 318 

*NU5 Cheongsong 308 3,287 12 7,000 24 

NU6 Geochang1 228 2,556 31 39,000 172 

NU7 Geochang2 179 2,556 19 18,000 99 

*NU8 Jisan 161 3,287 14 176,000 1,093 

*NU9 Gohyeon 15 730 26 6,000 400 

*NU10 Daeri 

 

61 3,286 4 87,000 1,434 

NU11 Changchon 334 1,826 18 41,000 122 

NU12 Sancheong 1132 2,921 31 164,000 145 

NU13 Taesu 243 1,461 16 52,000 215 

*NU14 Imcheon 467 3,652 14 528,000 1,132 

NU15 Oesong 1232 730 16 128,000 104 

G1 Hoedeok 

Geum 

606 2,902 50 72,000 119 

G2 Gongju 6275 2,891 105 682,000 109 

G3 Hapgang 1850 2,192 30 247,000 134 

G4 Useong 258 730 21 16,000 61 

*G5 Guryong 208 2,556 7 12,000 60 

GU1 Cheongseong 491 3,266 53 56,000 115 

*GU2 Hotan 1003 2,192 9 18,000 18 

GU3 CheonCheon 291 2,922 52 67,000 230 

GU4 Donghyang 165 2,556 21 24,000 148 

Y1 Hakgyo 

Yeongsan 

190 2,921 40 19,000 97 

Y2 Naju 2039 2,532 109 233,000 114 

Y3 Mareuk 668 3,269 36 111,000 166 

Y4 Nampyeong 580 1,422 80 27,000 47 

Y5 Seonam 552 3,634 68 22,000 40 
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*YU1 Bongdeok 44 3,648 8 3,000 77 

S1 Jukgok 

Seom 

jin 

1269 3,264 15 41,000 32 

S2 Gokseong 1788 3,274 15 80,000 45 

S3 Gurye2 3818 3,640 102 172,000 71 

*S4 Yongseo 128 1,096 14 4,000 28 

SU1 Gwanchon 359 3,287 44 43,000 120 

*SU2 Ssangchi2 133 1,095 14 18,000 135 

SU3 Gyeombaek 295 3,277 56 17,000 56 

*SU4 Jangjeon2 273 2,191 11 57,000 207 

SU5 Songjeon 59 2,556 33 20,000 331 
* Discarded and/or unreasonable results. 

Table 3: Variables considered in the empirical model. 

Category Variables (number of variables) 

Geomorphological 

factors 

Line: total, main, tributary stream length, three stream orders (6) 

Area: watershed area, drainage density, length factor, shape factor (4) 

Relief: average watershed slope, river slope, middle relative height at middle 

relative area, elevation at middle relative area, lowest elevation, middle 

elevation, and three hypsometric indices (9)  

Climatology factors 
Precipitation at gauging station, averaged value over basin area, rainfall 

erosivities at gauging station, and averaged value over basin area (4) 

Anthropogenic factors 

(i.e. Land use) 

Percentage of urban, agricultural, forest, pastoral, bare, wetland, water area, and 

wetland and water area landcover (8) 

Pedological Factors 
Percentage of sand, clay, silt, and rock at 0–10, 10–30, 30–50, 0–30, and 0–50 

cm effective soil depths (20) 

 

Table 4: Cropping management factor (revised after ME, 2012).  475 

Major 

category 
Sub category C- value Reference 

Urban 

Residential 

0.01 (Kim, 2006) 

Industrial 

Commercial 

Recreational 

Transportation 

Institutional 

Agriculture 

Paddy field 0.1 (ME, 2012) 

Farm 0.3 (ME, 2012) 

Vinyl Greenhouse 0.1 Assumption 

Orchard 0.09 (ME, 2012) 

Generic 0.2 Assumption 

Forest 

Deciduous forest 

0.05 (ME, 2012) Evergreen forest 

Mixed forest 

Pasture 

Natural pasture 

0.15 (ME, 2012) Golf 

Other pasture 

Wet land 
Inland wetland 

0 (Kim, 2006) 
Coast wetland 

Bare land 
Mining site 

1 (ME, 2012) 
Other bare land 

Water 
Inland water 

0 (ME, 2012) Coast wetland 
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Table 5: Conservation practice factor (revised after ME, 2012). 

Land use Slope (%) P-value 

Bare land  1 

Paddy 

field 

Slope < 2% 0.12 

2–7% 0.1 

7–15% 0.12 

15–30% 0.16 

Slope > 30% 0.18 

Farm 

Slope < 2% 0.6 

2–7% 0.5 

7–15% 0.6 

15–30% 0.9 

Slope > 30% 1 

Pasture  1 

Forest  1 

Orchard  1 

 

Table 6: Calculated VIF values for the developed regression model. 

 Var1 Var2 Var3 Var4 Var5 

Model 1.40 1.18 2.46 1.90 1.85 

 480 

Table 7: Averaged gross erosion, using different methods and resolutions. 

Water 

shed 

LS 

method* 

Gross erosion 

(tons·km-2·yr-1) 
Water- 

shed 

LS 

method* 

Gross erosion 

(tons·km-2·yr-1) 

5 m 30 m 90 m 5 m 30 m 90 m 

N1 
1 2,353 2,030 1,918 

SU1 
1 3,845 3,780 3,513 

2 2,478   2 5,050   

N10 
1 2,133 2,040 1,913 

SU2 
1 4,118 3,808 3,400 

2 2,390   2 5,470   

N14 
1 3,398 3,088 2,678 

SU3 
1 4,393 4,123 4,053 

2 3,630   2 4,403   

NU1 
1 2,978 2,533 2,213 

SU4 
1 4,928 4,718 4,283 

2 3,513   2 5,525   

NU2 
1 3,398 2,968 2,648 

NR1 
1 3,230 3,043 2,740 

2 3,868   2 3,811   

NU3 
1 3,988 3,645 3,033 

NR2 
1 4,429 4,017 3,648 

2 4,103   2 4,840   

NU4 
1 3,768 3,538 3,088 

SR1 
1 2,925 3,109 3,496 

2 4,583   2 3,438   

NU5 
1 2,833 2,593 2,380 

SR3 
1 6,267 5,800 5,486 

2 3,593   2 6,497   

*1, based on UCA; 2, based on FCL. 
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