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Abstract. Spatiotemporally comprehensive stream temperature datasets are rare because interest in these data is 

relatively recent and there is little money to support instrumentation at regional or national scales. This lack of 

data has been recognized as a major limitation for understanding thermal regimes of riverine ecosystems. To 

overcome these barriers, we first aggregated one of the largest stream temperature databases on record with data 10 

from 1700 individual stations over nine years from 2009–2017 (n=45,000,000 hourly measurements) across France 

(area = 552,000 km2). For each station, we calculated a simple, ecologically relevant metric–the thermal peak–that 

captures the magnitude of summer thermal extremes. We then used three statistical models to extrapolate the 

thermal peak to nearly every stream reach in France and Corsica (n=105,800) and compared relative model 

performances among each other and with an air temperature proxy. In general, the hottest thermal peaks were 15 

found along major rivers, whereas the coldest thermal peaks were found along small rivers with forested riparian 

zones, strong groundwater inputs, and which were located in mountainous regions. Several key predictors of the 

thermal peak emerged, including drainage area, mean summer air temperature, minimum monthly specific 

discharge, and vegetation cover in the riparian zone. Despite differing predictor importance across model 

structures, we observed strong concordance among models in their spatial distributions of the thermal peak, 20 

suggesting its robustness as a useful metric at the regional scale. However, air temperature was a poor proxy for 

the stream temperature thermal peak across nearly all stations and reaches, highlighting the growing need to 

measure and account for stream temperature in regional ecological studies. 

1 Introduction 

Stream temperature is a master variable affecting ecosystem processes in lotic systems. It controls the solubility 25 

of gases and related biogeochemical reactions, regulates metabolism (Wolter, 2007), nutrient cycling (Malard et 

al., 2002), and decomposition rates, and dictates animal ingestion and digestion rates (Elliott, 1976), reproduction 

cycles (Daufresne et al., 2004), and mobility (Ojanguren and Brañta, 2000). Stream temperature can also be a 

source of stress and mortality for aquatic organisms, especially when coupled to additional stressors like low water 

levels (Miller et al., 2007). Consequently, the dynamics of populations and communities, their relative composition 30 

(Kishi et al., 2005) and their size structure (Daufresne et al., 2009) are intimately related to stream thermal regimes. 

Climate change threatens freshwater ecosystems through multiple pathways, but rising stream temperatures and 

reduced flows and levels may be most common and deleterious for aquatic organisms. In particular, many 

ectotherm species are unlikely to tolerate warmer environmental conditions (Tisseuil et al., 2012). In response, 

cold-water fish species will likely shift towards higher latitudes and altitudes, while warm-water species will likely 35 

expand their geographical distribution (Heino et al., 2009). However, the magnitude and direction of these 
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expected changes will depend strongly on patterns of stream temperature change, which is currently poorly 

constrained. Hence, it is critical to describe and analyze the spatiotemporal variability of river thermal regimes. 

The five main components of stream thermal regimes comprise temperature magnitude, frequency, duration, rate 

of change, and timing, with different metrics to quantify the biological or ecological importance of each component 40 

(Steel et al., 2017; Olden and Naiman, 2010; Tsang et al., 2016). However, these metrics can be accurately 

determined only if continuous time series of stream temperature are available (Jones and Schmidt, 2018). 

Although recent advancements in in-situ sensor technology have greatly expanded stream temperature data 

availability (Isaak et al., 2017) there is still a lack of long-term data for the vast majority of stream reaches, limiting 

understanding of thermal regimes at river network and regional scales (Arismendi et al., 2014). In addition, stream 45 

temperature data collection is often spatiotemporally uncoordinated across regions and river networks, resulting 

in snapshot datasets that are regularly supported or replaced with air temperature proxies in aquatic ecology studies 

(Conti et al., 2015; Logez et al., 2012; Tisseuil et al., 2012). While air temperature can be used to fill data gaps 

(Buisson and Grenouillet, 2009; Durance and Ormerod, 2009), air temperature is a poor surrogate for stream 

temperature in several cases. In particular, air temperature correlates poorly with stream temperature in headwater 50 

reaches (Caissie, 2006), in reaches with strong local controls (e.g., riparian vegetation, groundwater inflows, bed 

form, impoundements), and in reaches with large environmental heterogeneity (Moatar and Gailhard, 2006; Hill 

and Hawkins, 2014; Loicq et al., 2018; Chandesris et al., 2019; Seyedhashemi et al., 2021). Hence, using air 

temperature metrics to study climate change impacts on the aquatic species distributions may result in misguided 

inference and consequent management decisions. 55 

In addition to air temperature proxies, many studies have turned to regionalized deterministic and statistical models 

to fill stream temperature data gaps (e.g. Mohseni et al., 1998; Segura et al., 2015; Chang and Psaris, 2013; 

Beaufort et al., 2016; Westhoff et al., 2007; Yearsley, 2012). Deterministic models rely on a physically based 

formulation of stream energy conservation to compute water temperature (Yearsley, 2012; van Vliet et al., 2012; 

Beaufort et al., 2016). However, such models suffer from large data requirements leading to a preference for 60 

statistical approaches, especially in ungauged catchments. Some of these approaches empirically relate stream 

temperature to climatic and environmental variables, such as air temperature, discharge, altitude or channel width 

(Benyahya et al., 2007; Moore et al., 2013). Other statistical methods include lumped regression-based models 

(Daigle et al., 2010; Ducharne, 2008; Hrachowitz et al., 2010; Bustillo et al., 2014), distributed stream-network 

models (Detenbeck et al., 2016; Isaak et al., 2017), and machine learning methods (Chenard and Caissie, 2008; 65 

DeWeber and Wagner, 2014). Still, these approaches often have dense spatial data requirements and their estimates 

are usually temporally limited (Isaak et al., 2010; Pratt and Chang, 2012; Hill et al., 2013). Indeed, few studies 

estimate stream temperature over a full year, likely because of non-linear relationships and seasonal hysteresis 

between air and stream temperature, missing data, and autocorrelation (Jackson et al., 2018; Letcher et al., 2016; 

Sohrabi et al., 2017). However, for management purposes in the context of climate change, annual stream 70 

temperature patterns may be unnecessary. Indeed, stream temperature metrics that focus on extreme periods (e.g., 

summer) are likely adequate to understand trends of increasing pressures on aquatic ecosystems. 

To that end, our objective here is to develop empirical statistical models to predict a simple, ecologically relevant 

stream thermal metric that captures the magnitude of the stream temperature extremes at the regional scale. To do 

so, we first define an interannual thermal metric, which we term the “thermal peak”, using heterogeneous and non-75 

concomitant time series of stream temperature and estimate it at 1,700 stations for 2009–2017. We then test three 
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statistical models and one multi-model approach to predict this metric at the regional scale and compare their 

predictive capacity with that of air temperature.  

2. Methods 

2.1 Study area and monitoring network 80 

The study area is continental France and Corsica (550,000 km2). France is located in a temperate zone 

characterized by a variety of climates due to the influences of the Atlantic Ocean, the Mediterranean Sea, and 

mountain areas. 

We assembled the most exhaustive stream temperature dataset in France to date by combining data from both 

public (national, regional) and private managers (fishermen associations). Due to the diversity of station 85 

ownership, the assembled times series do not have a consistent spatial and temporal structure. Some regions are 

densely monitored while others have few instrumented streams and much of the data do not exhibit temporal 

overlap, challenging our ability to define comparable metrics among streams. Hence, our main challenge was to 

pool the maximum of observation stations to optimize the number of monitored streams while dealing with the 

non-continuous observation periods of the stations. The large spatial and temporal heterogeneity of the monitoring 90 

data precluded application of spatial autocorrelation methods, and we have therefore chosen to consider only non-

spatial statistical models. 

The stream temperature data used here comprise approximately 45,000,000 hourly measurements from 1,700 

unique measurement stations (n=2,107,623 site-days) collected between 2009 and 2017, primarily during summer. 

All the stations under strong human influence (i.e., dam releases and nuclear power thermal effluent) and stations 95 

without seasonal dynamics were previously excluded from this data set. All data were recorded by automatic data 

loggers managed by professional biologists or hydrologists. Outliers from each station’s time series were removed 

with automatic outlier detection filters and the resulting data were screened visually before being averaged into 

mean daily stream temperature data (hereafter referred to as Tw). The automatic outlier detection consists of three 

steps with eight unique filters that remove, in order, 1) hourly Tw anomalies, 2) monthly anomalies between Tw 100 

and Tair, and 3) daily anomalies between Tw and Tair (Moatar et al., 2001; Beaufort et al., 2020b). 

To address ecologically meaningful temperature metrics under climate change, we focused on the two hottest 

stream temperature months, July and August (hereafter referred to as summer), a time period essential for the 

growth and survival of many aquatic species. This focus also has the benefit of maximizing the number of 

observation stations for analysis. Still, out of the 1700 stations, 490 stations have just one year of data, 88 stations 105 

have observations covering summer over all nine years, and only 30 have year-round observations for all nine 

years (Figure 1a,b). To obtain hydraulic and hydrologic characteristics for each station, stations were projected 

onto the Theoretical Hydrographic Network for France (RHT; Pella et al., 2012), an oriented hydrographic network 

with defined flow directions that comprsies 114,600 reaches of median length 1,961 m (2,475±1,512 m, mean±sd). 

A majority of stations were located on RHT river reaches with drainage areas 20–500 km², whereas most reaches 110 

are small streams with a drainage area of less than 20 km² (Figure 1c). 
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Figure 1. Data availability for each temperature station used in this study. a) Map of stream temperature stations 

in France with RHT network shown for all reaches of Strahler order >4, and b) Heatmap of data availability by 

year (x-axis) and station (y-axis) with the total stations per year listed at the top of each column. Sites are colored 115 

by the number of years with observations. c) Distributions of drainage area for RHT reaches (blue) and of 

thermal stations (black). 

2.2 Defining the thermal peak stream temperature metric 

Due to the limited concordance among stream temperature time series (Figure 1b) and to focus our analysis towards 

ecologically relevant ends, we summarized our stream temperature data with a simple metric. This kind of metric 120 

has precedent in regional species distribution models that instead used air temperature (hereafter referred to as Tair) 

as a proxy (Buisson and Grenouillet, 2009). 

We refer to this metric as the thermal peak (Tp), and define it as the interannual average of the mean temperature 

of the 30 hottest consecutive days of each year ���,���������
	
: 

�
 =
∑ ��,������������

�
���

�
      (1) 125 

Where i = year index; and N= the number of years of observation available from 2009–2017 (N = 1–9). Across 

sites, the hottest day of the year always occurred within the approximate 30 day period between July 28 and August 

30 (mean±sd: August 12±16 days), lending support to this focused approach. 

2.3 Climate correction of the thermal peak 

The thermal peak can be biased depending on the climatic variability of the years of observation for each station. 130 

Indeed, only 30 of our stations have Tp calculated using all nine years of data, and therefore have the highest level 

of confidence in their estimate. We refer to the Tp from these 30 stations as Tp,ref, indicating that these are reference, 
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or true estimates of Tp (Table 1). To account for the bias associated with missing data at the remaining 1670 

stations, we gap-filled missing data at these stations using site-specific stream-air temperature regressions. This 

method accounts for interannual variation in climatic forcing on stream temperature, and we therefore refer to it 135 

as a climate correction.  

The climate correction is achieved by first calculating station-specific regressions between daily Tw and a right-

aligned moving average of daily Tair at lags ranging from 2–10 days. The moving average lag whose regression 

produced the highest coefficient of determination was then used to fill gaps in the time series of Tw for each station. 

Next, we reconstructed summer stream temperature using this regression and subsequently recalculated Tp based 140 

on this reconstructed data. We refer to Tp from these climate-corrected data as Tp,clim to indicate that missing data 

were gap-filled with the climate correction procedure (Table 1). 

To validate this approach, we conducted a permutation test on the 30 stations with full annual monitoring from 

2009–2017 (i.e., sites where a Tp,ref is known). At each site, we introduced randomly placed, artificial annual gaps 

into observed data ranging from 1–9 years to simulate missing data. We then backfilled these introduced gaps 145 

according to the climate correction method. Following gap-filling, we calculated two metrics: 1) Tp using gap-

induced data without gap-filling (Tp,gap), and 2) the thermal peak using the gap-filled data (Tp,fill; Table 1). We then 

compare these two metrics to the reference thermal peak (Tp,ref) using absolute biases at each tested permutation 

(i.e., the number of introduced gap years). This approach allowed us to assess whether the climate-corrected 

reconstruction of the gaps in time series is 1) a useful approach, and 2) lower in bias and uncertainty compared to 150 

using observed data alone. 

Table 1. List of thermal peak terminology with the count of days (n) used in their calculation  

Notation Definition n 

Tp,obs 
thermal peak, or the interannual average of the mean temperature of the 

30 hottest consecutive days of each year for station with observations 
1700 

Tp,ref thermal peak for reference stations with all nine years of data 30 

Tp,clim 
thermal peak for stations with less than nine years of data to which 

climate correction was applied 
1670 

Tp,gap thermal peak for reference stations with introduced data gaps 30 

Tp,fill 
thermal peak for reference stations whose introduced data gaps were 

filled with climate correction 
30 

Tp,m 
modeled thermal peak using statistical extrapolation to the RHT network 

using statistical method m 
114,600 

Tp,air thermal peak estimated using the air temperature proxy 114,600 

 

2.4 Extrapolating the thermal peak to national scale with statistical modeling 

We estimated Tp throughout the entire RHT network using four distinct statistical models. For modeling (Tp,m) it 

is not clear how to choose a priori a particular model structure due to the complexity of the processes involved in 155 

determining local stream temperature. Therefore, we tested four different structures: 1) a multiple linear regression 

model (REG), 2) an artificial neural network model (ANN) that is potentially non‐linear, but encompasses a linear 

model as a special case, 3) a random forest model (RF) that can also be non‐linear, but with a different strategy 

than ANN, and 4) a multi-model combination (MM), which combines the three prior structures ANN, RF, and 

REG. All these models are based on a function to estimate Tp at all stations (i): 160 

�
,�,	 = �(��,	 , … , ��,	)      (5) 

Where gn,i = the nth explanatory variable defined for each ith station.  
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To measure how stream thermal regime estimations might be different if using a Tair proxy, we also calculated 

Tp,air using Tair from SAFRAN data. The Tp,air is calculated identically to Tp, but using daily Tair instead of daily 

Tw, as would be done in ecological studies using Tair as a proxy for Tw. Finally, to determine the effect of climate 165 

corrections on the full RHT extrapolation, we compared the distribution of Tp,m values when models were fit using 

either Tp,obs or Tp,clim. 

2.4.1 Explanatory variables 

We selected sixteen variables (Table 2) to explain the spatial distribution of Tp,m based both on results from a prior 

analysis (Beaufort et al., 2019), and on a principal component analysis to minimize variable dependencies. We 170 

further considered the ability to calculate or estimate each variable at the scale of the entire RHT network. The 

variables fall into three categories: climate, hydrology, and catchment characteristics. 

The four climatic variables were determined from SAFRAN reanalysis data for the years 2009–2017: 1) mean 

annual precipitation, 2) mean summer precipitation, 3) mean annual snowfall, and 4) mean summer air 

temperature. The SAFRAN reanalysis data (grid 8 km) were available at hourly time step (Quintana-Segui et al., 175 

2008; Vidal et al., 2010) and climatic variables were extracted from the SAFRAN meshes overlapping the station 

location. 

The four hydrological variables were determined by extrapolation based on prior datasets. The first two variables, 

monthly minimum discharge (Sauquet et al. 2008) and the annual minimum monthly discharge with a return period 

of five years (Catalogne, 2012), describe the low-flow regime of each site. The remaining two variables, the 180 

hydrologic regime (HR; Sauquet et al., 2008) and the concavity index (CI; Sauquet and Catalogne, 2011), are 

dimensionless and characterize the general hydrology of each site. More specifically, the HR groups sites into one 

of 12 classes ranging from rainfall-dominated, to transitional, to glacial and snow melt dominated. The CI describes 

the concavity of the flow duration curve, where values close to 1 indicate low flow variability (e.g., large high 

storage capacity in aquifer or snow) and values close to 0 indicate high flow variability (e.g., low storage capacity 185 

exemplary of Mediterranean systems). 

The eight variables relating to catchment characteristics were extracted from either the SYRAH-CE database 

(Valette et al., 2012) or the RHT database (Pella et al., 2012). The three variables from RHT comprise: 1) mean 

altitude, 2) catchment drainage area, and 3) mean slope. The five variables from SYRAH-CE comprise: 1) riparian 

vegetation cover in a 10 m buffer, 2) linear upstream weir density along the stream, 3) areal upstream weir density 190 

for the catchment, 4) upstream pond cover as a fraction of stream area, and 5) incision class describing the rate of 

incision of the valley. 

Table 2. List of explanatory variables used in models. 

Category Variable Notation Source 

Climate 

Mean annual precipitation (2009 –2017) [mm] 

Mean summer precipitation, July–August (2009 –2017) [mm] 

Mean annual snow accumulation (2009 –2017) [mm] 

Mean summer air temperature, July–August (2009 –2017) [°C] 

Pannual 

Psummer 

Sannual 

Tsummer 

SAFRAN 

SAFRAN 

SAFRAN 

SAFRAN 

Hydrology 

Mean monthly annual minimum discharges with a return period of 5 years* [L s-1 km-2] 

Mean monthly minimum specific discharge* [L s-1 km-2] 

Concavity index† [-] 

Hydrological regime‡ [-] 

Qmin 

qmin 

CI 

HR 

RHT 

RHT 

RHT 

RHT 
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Catchment 

characteristics 

Mean catchment elevation [m] 

Drainage area [km²] 

Mean streams slope over the catchment [m km−1] 

Riparian vegetation cover ratio in 10 meters buffer (%)** 

Linear weir density upstream of stations (# km-1)** 

Areal weir density upstream of stations (# km-2)** 

Pond cover ratio upstream of stations (%)** 

Stream incision class ** 

elev 

area 

slope 

veg 

weirs 

weir area 

ponds 

SI 

RHT 

RHT 

RHT 

SYRAH 

SYRAH 

SYRAH 

SYRAH 

SYRAH 

*determined by geostatistical interpolation on the RHT network (Sauquet et al., 2000) 

†ratio of flow duration quantiles Q10-Q99/Q1-Q99, as defined by Sauquet and Catalogne (2011) 

‡classes from 1–12 with pluvial regimes from 1–6, transition regimes from 7–8; and glacial and snow melting regimes from 9–12 (Sauquet et al., 2008) 195 
**Detailed description of these variables in Valette et al. (2012). 

2.4.2 Multiple regression 

We first fit a multiple linear regression model between Tp and explanatory variables using all possible variables. 

Prior to fitting, we scaled the explanatory variables so that their fitted coefficients could be compared in terms of 

relative influence.  200 

2.4.3 Artificial neural network 

We then used an ANN—specifically a feed‐forward neural network with one hidden layer (R package nnet; 

Venables and Ripley 2002)—to estimate Tp as a potentially non‐linear function of covariates. We included a direct 

connection between covariate inputs and outputs so that the case with zero hidden units corresponded to a linear 

relationship. We used weight decay regularization, also known as ridge regression, to control overfitting by 205 

decreasing less relevant coefficients. Both the number of hidden units and the amount of weight decay were 

selected with a first cross‐validation procedure (Bishop, 2006). To quantify the relevance of the different 

covariates, we used a connection weight approach (Olden and Jackson, 2002; Olden et al., 2004):  

�� = ∑  �,!"!
�!#
!$�      (6) 

Where WV (-) = the relevance of covariate V, AV,h (-) = the ANN coefficients connecting hidden unit h to covariate 210 

V, Bh (-) = the ANN coefficients connecting hidden unit h to the output, and nhu = the number of hidden units. 

2.4.4 Random forest 

We used a random forest for the third statistical model structure, using Breiman’s algorithm (Breiman, 2001) with 

the R package randomForest (Liaw and Wiener, 2002) allowing 500 trees. The relevance of each predictor variable 

was provided as standard output by the randomForest package, which determines how much the mean square 215 

errors in prediction increases when that covariate is randomly permuted within the tree. 

2.4.5 Multi-model combination 

Finally, we used a multi-model combination approach to obtain a consensus estimation map of Tp,m. The estimates 

from each previously described model were linearly combined to reduce the associated uncertainties through 

multiple linear regression. 220 

�%,&& =  (�%,)** +  ,�%,-. + (�%,-/0 + 1   (7) 

With Tp,mm= Tp based on observed and reconstructed Tw; Tp,ANN= Tp estimated by ANN; Tp,RF= Tp estimated by 

RF; Tp,REG= Tp estimated by multiple regression; and a, b, c, d =fitted regression coefficients. 
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2.4.4 Model cross-validation 

To assess model performance prior to spatial extrapolation to the entire RHT network, we conducted a cross-225 

validation on observed data from our 1700 stations. For each model, including Tp,air, we used 80% of stations (n = 

1360) as training data to estimate model parameters. Using those model parameters, we estimated validation data 

Tp at the remaining 20% of stations (n=340) and cross-validated those estimates with Tp,obs. We conducted this 

cross-validation this 100 times allowing for random selection of stations used in the training and validation data 

sets. We evaluated the results of the cross-validation with the Nash-Sutclife efficiency criterion (NSE, Nash and 230 

Sutcliffe, 1970), the RMSE (Root Mean Square Error) and biases between observed Tp,obs and Tp,m. 

3. Results 

3.1 Validation of the climate correction approach 

Gap-filling Tw with our climate correction approach resulted in consistently lower absolute biases for Tp (i.e., Tp,fill) 

compared to only using available data (i.e., Tp,gap), regardless of the length of introduced annual gaps (Figure 2). 235 

This bias was less than 0.5°C for more than 75% of stations with only one year of observation. In contrast, when 

there is only one year available, the biases for data with artificial gaps, Tp,gap, are higher than 0.5 °C for 75% of 

the stations. There was no systematic bias regardless of the years taken into account in the regressions. 

 

Figure 2. Improvement in absolute bias of thermal peaks across all reference sites (Tp,ref; n=30) when introduced 240 

annual gaps were filled with the climate correction procedure (|Tp,fill–Tp,ref|, red boxplots) compared to when gaps 

were unfilled (|Tp,gap–Tp,ref|, blue boxplots) regardless of the number of introduced gaps. 

3.2 Model cross-validation 

In cross validation, all four statistical models performed substantially better than air temperature at accurately 

predicting Tp (Figure 3). Indeed, Tp,air overestimates the observed Tp,ref by 2.5°C on average (Figure 3a), and the 245 
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negative NSE for Tp,air indicates that using a simple mean of Tw observations is a better predictor of Tp than using 

Tair (Figure 3b). Overall, models tend to slightly underestimate Tp (Figure 3a), but mean biases are close to 0°C. 

The REG and ANN models had similar performance (median RMSE > 1.5°C; median NSE = 0.6), whereas the 

RF and MM models obtained the best performances (median RMSE < 1.5°C; median NSE = 0.7) with the MM 

slightly superior for NSE (Figure 3b,c). We did not observe any spatial patterning in performance metrics (not 250 

shown). 

 

Figure 3. Cross validation performance metrics for modeled thermal peaks (Tp,m), where 80% of stations (n = 

1360) were training data and 20% of stations (n=340) were validation data. Violin plots show distributions of 100 

replicates of training-validation data for each model’s performance metrics: a) bias relative to Tp,ref; b) NSE; c) 255 

RMSE of Tp,m relative to observed Tp. Horizontal lines indicate sample medians and red points indicate sample 

means. 

3.3 Relevance of explanatory variables in models 

Explanatory power varied among modeling approaches, and the maximum variance explained for any one variable 

was between 25–30%. (Figure 4) The two most relevant variables were catchment area (area) and mean summer 260 

air temperature (Tsummer) for the RF and multiple regression models (Figure 4b,c), but were minimum monthly 

specific discharge (qmin) and riparian vegetation cover (veg) for the ANN model (Figure 4a; qmin is not correlated 

with area, R² = 0). Surprisingly, area and Tsummer obtained relative importances of less than 5% in ANN whereas 

they were the most influential variables in the RF and the REG models. It should be noted that the cumulative 

importance of the four most relevant variables of the REG and ANN models is respectively 92% and 81%, which 265 
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means that the other variables have very little weight in the estimates. This sum is only 69% for RF, which indicates 

that the relative importance of the explanatory variables are more distributed and the other explanatory variables 

have a significant weight in the estimates which could explain the best performances in cross validation of RF. 

 

Figure 4. Relative importance of top four explanatory variables calculated in cross validation for the estimation 270 

of Tp with the models: a) ANN; b) REG and c) RF. To compare the relative importance of each variable for each 

model, all variables were centered and scaled. Text in the upper right of each panel refers to the sum of the relative 

importances of the first four explanatory variables in each model; colors indicate the explanatory variable. 

3.4 Spatial extrapolation of thermal peaks 

The statistical models could extrapolate Tp to 92% (105,800 reaches) of the RHT network, and the resulting spatial 275 

structure of the extrapolations was consistent across models (Figure 5). On average, Tp was 18.2°C and ranged 

between 6.3°C and 27.0°C.  The highest Tp,m (i.e., Tp > 22°C) were generally found on the largest rivers located in 

the southeast and in the sedimentary plains. The lowest Tp,m are found in the mountain streams of the Alps, 

Pyrenees and Massif Central, and in the northwest. Although the distribution Tp,m is consistent among models 

(Figure 5), there are some clear disparities, particularly at the extremes. The ANN model simulates Tp,m below 280 

14°C on more streams (> 15%) compared to other models (< 10%; Figure 6a). In stark contrast, estimating Tp with 

air temperature (i.e., Tp,air) led to consistently higher values than were obtained with statistical models, with Tp,air 

greater than 20°C for more than 70% of the reaches (Figure 5a, Figure 6a).  

Application of the climate correction prior to model fitting and subsequent extrapolation showed that differences 

at the RHT are less than 0.5°C at 89% of the reaches (Figure 6b). Still, 10% of the reaches exhibited Tp,m differences 285 

greater than 0.5°C, and the vast majority of these differences are negative (9.4% vs. 1.6%), suggesting that climate 

correction more often than not reduces overestimates in Tp. 
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Figure 5. Thermal peaks (Tp) of stream water extrapolated to all reaches of the French hydrographical network 

RHT with the different predictive model structures: a) air temperature (Tair), b) multiple regression (REG), c) 290 

artificial neural network (ANN), d) random forest (RF), and e) multi-model combination of all previous models 

(MM). All reaches are colored by their modeled range of Tp. 

 

Figure 6. Distributions of Tp,m extrapolated to all RHT network reaches. a) Comparison of models according 

their extrapolated Tp value, colored by model, and b) differences between Tp,m calculated with and without 295 

climate corrections on the 1,630 stations with gaps in their data. 

 

https://doi.org/10.5194/hess-2021-218
Preprint. Discussion started: 5 May 2021
c© Author(s) 2021. CC BY 4.0 License.



12 

 

 

 

4. Discussion 300 

We compiled one of the largest regional stream temperature datasets to address the growing need to understand 

stream thermal regimes in the context of climate change. We demonstrate that a simple, ecologically meaningful 

metric, which we term the thermal peak (Tp), can be reliably estimated at the regional scale using a few easily 

accessible explanatory variables. 

4.1 Horizons and limitations in estimating large-scale stream thermal metrics 305 

Spatiotemporally comprehensive stream temperature datasets are rare because interest in these data is relatively 

recent and there is little money to support instrumentation at regional or national scales. This lack of data has been 

recognized as a major limitation for understanding thermal regimes of riverine ecosystems (Arismendi et al., 2012; 

Ouellet et al., 2020). Existing data typically come from different entities and are not managed according to a 

predefined regional strategy, precluding broad-scale synthesis and understanding of controls on stream 310 

temperature and its subsequent effects on ecosystems and society. To overcome these barriers, we employed a 

combined empirical approach that allowed us to identify, at the regional scale, a map of summer stream 

temperature maxima with important implications for aquatic species distributions under climate change. We 

observed the hottest Tp along major rivers and the coldest Tp along small rivers and in mountainous regions (Figure 

5). The downside of the current approach is that it remains based on interannual metrics. Indeed, the non-315 

concomitance of the time series does not allow us to compare extreme years (hot vs. cold).  

To enable unbiased comparison among stations from time series with gaps, we used a climate correction of Tw 

based on regression with Tair. The efficacy of regressions between Tw and Tair is well-understood (Ducharne, 2008; 

Segura et al., 2015, Moatar and Gailhard, 2006), and the approach can be easily transferred to other stations and 

regions. On the other hand, a cautious approach is required for such regressions, because they assume seasonal 320 

correlation Tair and Tw, and can therefore only apply to rivers having natural seasonal dynamics, without dam 

release, thermal peaking, or major weirs regulating the flow of streams  (Bruno et al., 2013; Chandesris et al., 

2019; Seyedhashemi et al., 2021; Casado et al., 2013). However, where possible, climate correction makes it 

possible to significantly reduce the biases in the estimates of Tp to metrics based only on observations (Figure 3). 

The biases are particularly reduced when the number of years of observation available is less than four. Beyond 325 

this limit, the meteorological variability specific to each year is sufficient to estimate a robust interannual metric 

Tp, which confirms results obtained by (Jones and Schmidt, 2018). Moreover, climate correction reduces 

overestimation of Tp, when applied at scale (Figure 6b), reinforcing the importance of taking into account these 

climatic corrections to temperature metrics even if it only slightly affects the majority of rivers (Isaak et al., 2017)  

4.2 Spatial extrapolation of Tp is consistent and best predicted with a random forest model 330 

All four statistical models achieved similar predictive performance, but the RF model exhibited marginal 

improvements over the others (Figure 3). The MM approach only slightly improves performance in cross-

validation in comparison with RF (vis-à-vis the NSE criterion), so it is unlikely to be a useful approach in future 

applications due to its complexity. Our model performances (NSE = 0.75, RMSE <2) were of the same order as 

https://doi.org/10.5194/hess-2021-218
Preprint. Discussion started: 5 May 2021
c© Author(s) 2021. CC BY 4.0 License.



13 

 

other large scale stream temperature studies found in the literature (cf. Segura et al., 2015; Daigle et al., 2010; 335 

Wehrly et al., 2009), suggesting that our approach is reasonable and broadly applicable. 

In spatial extrapolation, the Tp estimates are globally consistent between the models and the same spatial structures 

are found regardless of the approach used (Figure 5). We observed divergences between the models in particular 

for Tp  less than 14°C where ANN tends to simulate coldest Tp for more reaches compared to other models (Figure 

6). Still, because our analysis is limited to 2009–2017, these model differences may diminish as Tw measurements 340 

grow in time and space. 

4.3 Drivers of thermal peak depend on model structure 

We observed clear divergence of variable importance for the estimation of Tp among the ANN, RF, and REG 

models. The two most relevant variables in RF and REG are catchment area and mean summer air temperature, 

consistent with other studies (Laanaya et al., 2017; McGarvey et al., 2018). Greater catchment area typically 345 

implies larger stream size, and subsequently higher Tp. Large rivers are also more impacted by low flow warming 

because they are less shaded by riparian vegetation and are less influenced by groundwater inflows. Moreover, 

longer water travel times in large rivers allow more time for temperature equilibration with the atmosphere 

compared to small rivers (Beaufort et al., 2019; Mohseni et al., 1998). Importantly, RF had a much more even 

distribution of variable importances relative to the other models structures, which is likely due to its non‐linear 350 

structure. In contrast, for ANN, the most important variables were minimum monthly specific discharge (43%) 

following by riparian vegetation cover (23%). Larger minimum flows imply a consistent groundwater supply, 

leading to cool surface waters in summer (Hannah et al., 2004; Kelleher et al., 2012; Lalot et al., 2015). Similarly, 

greater riparian vegetation implies greater shading and reduced temperature increases from solar radiation 

(Dugdale et al., 2018; Loicq et al., 2018; Moore et al., 2013). These differences in relevance between the variables 355 

for each model underlines the importance of using several approaches and shows that an approach combining all 

the models makes it possible to take into account all these divergences between models. We note that some 

variables used in models for Tp were not available across the entire hydrographic network for extrapolation. As a 

result, certain variables could not be used as the base flow index (BFI) whereas they have been successfully used 

by other studies (Beaufort et al., 2020a; Hill et al., 2013). 360 

4.4 Air temperature is not an appropriate proxy for stream temperature 

Estimates of Tp produced by stream temperature were clearly more accurate than those produced by air temperature 

(Figures 3 and 5). In cross-validation, Tp,air overestimated observed Tp by more than 2°C, could not differentiate 

stream temperature among regions (Figure 5), and could not differentiate large rivers from small rivers. This 

clearly demonstrates that Tair is an inappropriate proxy for Tw, with important implications for ecological studies, 365 

especially those that consider temperature tolerance thresholds of aquatic species. Species distribution models may 

need to use Tair instead of Tw because data from Tw are not sufficient in the regions studied (McGarvey et al., 

2018). It is therefore important to introduce Tw in input of these models rather than Tair in order to limit the biases 

linked to the poor spatial representativeness of Tair. Considering hydrological variables can limit these biases and 

introduce the effects of the size of the catchment on the variability of Tw metrics. However, there may be local 370 

cooling or warming effects, which can only be understood with field observations. We must therefore continue the 
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efforts already started for the acquisition of time series of Tw and monitoring more streams to obtain better thermal 

representativeness of hydrosystems. 

4. Conclusion 

Stream thermal regimes are essential controls on aquatic ecosystems, but our understanding of these regimes and 375 

thus our ability to adequately manage them accordingly in the context of climate change is limited by data 

availability and simple metrics applicable at large scales. To address these gaps, we developed a simple, 

ecologically relevant metric–the thermal peak, Tp– that can be extrapolated at large scales, even when data are 

sparse. We developed an innovative climate correction method to reduce biases related to such data sparseness, 

when applied to summer data. The Tp provides an important perspective on the magnitude of thermal extremes 380 

during summer, but development of additional metrics such as threshold exceedance frequency, duration, and 

timing will continue to grow our understanding of stream temperature behavior under climate change. However, 

development of these metrics will require longer and more spatially explicit time series. Hence, we argue that to 

improve our capacity to manage and benefit from aquatic ecosystems, it is critical to continue and expand our 

stream temperature measurement networks. 385 
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