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Abstract. Spatial reconstruction of stream temperature is relevant to water quality standards and fisheries 

management, yet large, regional scale datasets are rare because data are decentralized and inharmonious. This data 

discordance is a major limitation for understanding thermal regimes of riverine ecosystems. To overcome this 

barrier, we first aggregated one of the largest stream temperature databases on record with data from 1700 10 

individual stations over nine years from 2009–2017 (n=45,000,000 hourly measurements) across France (area = 

552,000 km2). For each station, we calculated a simple, ecologically relevant metric–the thermal peak–that 

captures the magnitude of summer thermal maximums. We then used three statistical models to extrapolate the 

thermal peak to nearly every stream reach in France and Corsica (n=105,800) and compared relative model 

performances with an air temperature metric. In general, the hottest thermal peaks were found along major rivers, 15 

whereas the coldest thermal peaks were found along small rivers with forested riparian zones, strong groundwater 

inputs, and which were located in mountainous regions. Several key predictors of the thermal peak emerged, 

including drainage area, mean summer air temperature, minimum monthly specific discharge, and vegetation cover 

in the riparian zone. Despite differing predictor importance across model structures, we observed strong 

concordance among models in their spatial distributions of the thermal peak, suggesting its robustness as a useful 20 

metric at the regional scale. Finally, air temperature was found to be a poor proxy for the stream temperature 

thermal peak across nearly all stations and reaches, highlighting the growing need to measure and account for 

stream temperature in regional ecological studies. 

1 Introduction 

Stream water temperature controls the rates of biogeochemical processes (Nimick et al., 2011; Song et 25 

al. 2018) and the distribution and phenology of aquatic communities (Hawkins et al. 1997; Wolter 2007). 

Water temperature extremes, like summer maxima, are particularly strong drivers of aquatic biota 

behavior, habitat selection (Carlson et al., 2007; Xu et al., 2010), and water quality (van Vliet and 

Zwolsman, 2008). Despite their importance, we lack an understanding of the spatial distributions of 

thermalmaximums, largely due to a paucity of consistent stream temperature data. There is thus a need 30 

to develop and improve spatially distributed stream temperature datasets with a focus on identifying 

areas most affected by thermal maximums. 

National- and even regional-scale stream temperature data are a relatively recent phenomenon (Jackson 

et al., 2018), in part due to advancements in in-situ sensors (Isaak et al., 2017), but these data tend to be 

spatiotemporally uncoordinated across regions and river networks (Arismendi et al., 2014). This results 35 
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in snapshot datasets, necessitating the use of air temperature proxies to supplement or even replace 

stream temperature time-series (Conti et al., 2015; Logez et al., 2012; Tisseuil et al., 2012). Indeed, 

ecologists regularly use air temperature as a proxy or predictor of stream temperature (Buisson and 

Grenouillet, 2009; Durance and Ormerod, 2009; Mayer 2012) despite the fact that water temperature 

better explains the spatial organization of aquatic biota (Kirk and Rahel, 2022). While air temperature 40 

can be used to fill temporal data gaps (Morrill et al. 2005), air temperature is a poor surrogate for stream 

temperature in several cases. In particular, air temperature correlates poorly with stream temperature in 

headwater reaches (Caissie, 2006), and in reaches with strong local controls (e.g., riparian vegetation, 

groundwater inflows, bed form, impoundements) (Moatar and Gailhard, 2006; Hill and Hawkins, 2014; 

Loicq et al., 2018; Chandesris et al., 2019; Seyedhashemi et al., 2021).  45 

The spatial variation of summer stream temperature is controlled by several factors, each with varying 

spatiotemporal influence (Fullerton et al., 2015). The most commonly observed factor is stream size–

often evaluated with a drainage area or distance-from-source proxy–which tends to have a positive 

relationship with stream thermal maxima (Hrachowitz et al., 2010; Imholt et al., 2013; Isaak et al., 2017). 

As stream’s surface area increases, it leads to rapid heat transfer and subsequent equilibration with air 50 

temperatures.  Intuitively, discharge is also a strong control on stream temperature distributions, with 

increasing groundwater influence (e.g., measured with monthly flow minima or the base flow index 

[BFI]) often cited as a mitigating effect on thermal maxima (Chang and Psaris, 2013; Hare et al. 2021). 

An obvious candidate factor is summer air temperature, which exhibits clear positive relationships with 

stream thermal maxima, albeit at regional scales (Moore et al, 2013; Isaak et al., 2017).  In addition to 55 

these three dominant factors, an array of additional controls like local geology, slope, altitude, and 

riparian cover can modulate these relationships, leading to unexpected spatial distributions of stream 

water temperature (Fullerton et al., 2015). 

To account for the variety of controls on stream temperature spatial distributions in a data scarce 

landscape, researchers turn to predictive models. Still, despite a recent growth in modeling techniques, 60 

including statistical (Segura et al. 2015, Benyahya et al. 2007) and physical (Beaufort et al. 2016a,b) 

approaches, models that can capture regional or national-scale stream temperature distributions remain 

scarce (but see Hare et al. 2021). At these larger spatial scales, statistical models, which relate stream 

temperature to climatic and environmental variables, are likely the most pertinent and parsimonious for 

management. Indeed, geostatistical river network models that can incorporate network covariance 65 

structure are likely the most appropriate and accurate models to estimate spatial distributions of stream 

temperature (Isaak et al., 2017), but their use is limited to regions with high data density. As most 

countries lack the required data for such approaches, researchers are more prone to employ empirical 

regressions or machine learning approaches, but the comparative accuracy and utility of these 

approaches is still unknown. 70 

In light of these gaps in data and understanding, our objectives were twofold: 1) to aggregate and develop 

a homogeneous national-scale stream temperature database for France, and 2) to develop empirical 
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statistical models to predict a simple, ecologically relevant stream thermal metric that captured the 

magnitude of the stream temperature maxima at the regional scale. To do so, we first defined an 

interannual thermal metric, which we termed the “thermal peak”, using heterogeneous and non-75 

concomitant time series of stream temperature and estimated it at 1700 stations for 2009–2017. We then 

tested three statistical models and one multi-model approach to predict this metric at the regional scale 

and compare their predictive capacity with that of air temperature. Specifically, we used these models 

to address the following question: what are the spatial patterns of stream temperature maxima in France 

and their drivers, and are these patterns consistent across modeling approaches? We hypothesized that 80 

spatial patterns would be consistent, whereas the drivers would depend on the modeling approach used. 

We also hypothesized that stream size, air temperature, and groundwater contributions would emerge 

as important, regardless of approach.  

2. Methods 

2.1 Study area and monitoring network 85 

The study area is continental France and Corsica (550,000 km2). France is located in a temperate zone characterized 

by a variety of climates due to the influences of the Atlantic Ocean, the Mediterranean Sea, and mountain areas. 

We assembled a large stream temperature dataset for this area by combining data from both public (national, 

regional; approximately 600 stations available from http://www.naiades.eaufrance.fr/), fishing associations and 

other private and public sources sub-national agencies. Due to the diversity of data origins, the assembled time 90 

series did not have a consistent spatial and temporal structure. Some regions are densely monitored while others 

had few instrumented streams and much of the data do not exhibit temporal overlap, challenging our ability to 

define comparable metrics among streams. Hence, our main challenge was to coalesce and homogenize all the 

disparate data sources. 

The stream temperature data used here comprise approximately 45,000,000 hourly measurements from 1,700 95 

unique measurement stations (n=2,107,623 site-days) collected between 2009 and 2017, primarily during summer. 

All the stations under strong human influence (i.e., dam releases and nuclear power thermal effluent) were 

excluded from this data set. All data were recorded by automatic data loggers managed by professional biologists, 

hydrologists, and fishermen. Outliers from each station’s time series were removed with automatic outlier 

detection filters and the resulting hourly data were screened visually before being averaged into daily mean stream 100 

temperature data (hereafter referred to as Tw). The automatic outlier detection consists of three steps with eight 

unique filters that remove, in order, 1) stream temperature anomalies based on hourly data, 2) anomalies between 

Tw and daily mean air temperature (Tair) at monthly scales, and 3) anomalies between Tw and Tair at daily scales 

(Table 1; Moatar et al., 2001; Beaufort et al., 2020b). Tair was provided by the 8 km gridded SAFRAN (Système 

d’Analyse Fournissant des Renseignements Atmosphériques à la Neige) atmospheric reanalysis data released by 105 

Meteo-France over 2009-2017 period (Vidal et al., 2010). It was extracted from SAFRAN meshes overlapping the 

station location. 

Table 1. Outlier detection and data filtering process of stream temperature dataset  
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Filter type Definition Threshold (°C) 

Data 

removed 

(%) 

Stream 

temperature 

anomalies 

from hourly 

data 

Maximum temperature > threshold (by month) 
14, 15, 20, 24, 28, 30, 32, 33, 

29, 28, 18, 17 (Jan.–Dec.) 

2 

Minimum temperature < threshold -0.5 

Difference in consecutive data > threshold 2 

Daily diel range > threshold 7 

Difference in daily max. or min. in consecutive 

data > threshold 
3 

Monthly Tw–

Tair 

anomalies 

R2 of daily regressions by month < threshold 0.1 [unitless] 

 Deviation of the monthly difference (Tw –Tair) to 

its interannual mean > threshold 
4 

Daily Tw–Tair 

anomalies 

Daily difference (Tw –Tair) > the monthly mean of 

daily differences by threshold 
2.5 5 

 

To understand spatial patterns in ecologically meaningful temperature metrics, we focused on the two hottest 

stream temperature months, July and August (hereafter referred to as summer), a time period essential for the 110 

growth and survival of many aquatic species. This focus also had the benefit of maximizing the number of 

observation stations for analysis. Still, out of the 1700 stations, 490 stations had just one year of data, 88 stations 

had observations covering summer over all nine years, and only 30 had year-round observations for all nine years 

(Figure 1a,b). To obtain hydraulic and hydrologic characteristics for each station, stations were projected onto the 

Theoretical Hydrographic Network for France (RHT; Pella et al., 2012), an oriented hydrographic network with 115 

defined flow directions (i.e., built-in upstream-downstream dependencies) that comprises 114,600 reaches of 

median length 1,961 m (2,475±1,512 m, mean±sd). A majority of stations were located on RHT river reaches with 

drainage areas 20–500 km², whereas most reaches are small streams with a drainage area of less than 20 km² 

(Figure 1c). 

 120 
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Figure 1. Data availability for each temperature station used in this study. a) Map of stream temperature stations 

in France with RHT network shown for all reaches of Strahler order >4, b) Heatmap of data availability by year 

(x-axis) and station (y-axis) with the total stations per year listed at the top of each column. Sites are colored by 

the number of years with observations, and c) Distributions of drainage area for RHT reaches (blue) and of 

thermal stations (black). 125 

2.2 Defining the thermal peak metric 

Due to the limited concordance among stream temperature time series (Figure 1b) and to focus our analysis towards 

ecologically relevant ends, we summarized stream temperature data with a simple metric, the thermal peak. This 

metric has precedent in regional species distribution models that instead used air temperature (hereafter referred 

to as Tair) as a proxy (Buisson and Grenouillet, 2009). We refer to this metric as the thermal peak (Tp), and define 130 

it as the interannual average of the mean temperature of the 30 hottest consecutive days of each year ���,���������
	
: 

�
 =
∑ ��,������������

�
���

�
      (1) 

where:  

i = year index; and 

N= the number of years of observation available from 2009–2017 (N = 1–9) 135 

We did not know a priori the 30 hottest consecutive days of each year, but a sensitivity analysis on the sites with 

annual data suggests that July and August were regularly the hottest months (Fig: A1). Indeed, across sites with 

annual data, the hottest day of the year always occurred within the approximate 30 day period between July 28 and 

August 30 (mean±sd: August 12±16 days), and only 3% of site-years had their hottest 30-days outside of this 

period. This fact further allowed us to take advantage of many of the sub-annual time series, particularly those 140 

generated by fishing agencies, which only contain July and August data. 

2.3 Climate correction of the thermal peak 

The thermal peak can be biased depending on the climatic variability of the years of observation for each station. 

Indeed, only 30 of our stations had Tp calculated using all nine years of data, and therefore had the highest level 

of confidence in their estimate. We refer to the Tp from these 30 stations as Tp,ref, indicating that these are reference, 145 

or true estimates of Tp (Table 2). To account for the bias associated with missing data at the remaining 1670 

stations, we gap-filled missing data at these stations using site-specific stream-air temperature regressions. This 

method accounts for interannual variation in climatic forcing on stream temperature, and we therefore refer to it 

as a climate correction. 

The climate correction is achieved by first calculating station-specific regressions during summer between daily 150 

Tw and a right-aligned moving average of Tair at lags ranging from 2–10 days. The moving average lag whose 

regression produced the highest coefficient of determination was then used to fill gaps in the time series of Tw for 

each station. Stations with watershed areas greater than 1000 km2 tended to have the best R2 at the longest lags, 

but there were no clear trends at smaller watershed areas (Fig. A2) Next, we reconstructed summer stream 

temperature using this regression and subsequently recalculated Tp based on this reconstructed data. We refer to 155 

Tp from these climate-corrected data as Tp,clim to indicate that missing data were gap-filled with the climate 

correction procedure (Table 2). 
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To validate this approach, we conducted a permutation test on the 30 stations with full annual monitoring from 

2009–2017 (i.e., sites where a Tp,ref is known). At each site, we introduced randomly placed, artificial annual gaps 

into observed data ranging from 1–9 years to simulate missing data. We then backfilled these introduced gaps 160 

according to the climate correction method. Following gap-filling, we calculated two metrics: 1) Tp using gap-

induced data without gap-filling (Tp,gap), and 2) the thermal peak using the gap-filled data (Tp,fill; Table 2). We then 

compare these two metrics to the reference thermal peak (Tp,ref) using absolute biases at each tested permutation 

(i.e., the number of introduced gap years). This approach allowed us to assess whether the climate-corrected 

reconstruction of the gaps in time series is 1) a useful approach, and 2) lower in bias and uncertainty compared to 165 

using observed data alone. 

Table 2. List of thermal peak terminology with the count of sites (n) used in their calculation  

Notation Definition n 

Tp,obs 
thermal peak, or the interannual average of the mean temperature of the 

30 hottest consecutive days of each year for station with observations 
1700 

Tp,ref thermal peak for reference stations with all nine years of data 30 

Tp,clim 
thermal peak for stations with less than nine years of data to which 

climate correction was applied 
1670 

Tp,gap thermal peak for reference stations with introduced data gaps 30 

Tp,fill 
thermal peak for reference stations whose introduced data gaps were 

filled with climate correction 
30 

Tp,m 
modeled thermal peak using statistical extrapolation to the RHT network 

using statistical method m 
114,600 

Tp,air thermal peak estimated using the SAFRAN reanalysis Tair data 114,600 

2.4 Extrapolating the thermal peak to national scale with statistical modeling 

We estimated Tp throughout the entire RHT network using four distinct statistical models. For modeling (Tp,m) it 

was not clear how to choose a priori a particular model structure due to the complexity of the processes involved 

in determining local stream temperature. Therefore, we tested four different structures: 1) a multiple linear 170 

regression model (REG), 2) an artificial neural network model (ANN) that is potentially non‐linear, but 

encompasses a linear model as a special case, 3) a random forest model (RF) that can also be non‐linear, but with 

a different strategy than ANN, and 4) a multi-model combination (MM), which combines the three prior structures 

ANN, RF, and REG. All these models are based on a function to estimate Tp at all stations (i): 

�
,�,	 = �(��,	 , … , ��,	)      (5) 175 

Where gn,i = the nth explanatory variable defined for each ith station.  

To measure how stream thermal regime estimations might be different if using a Tair proxy, we also calculated 

Tp,air using Tair. The Tp,air is calculated identically to Tp, but using daily Tair instead of daily Tw, as would be done 

in ecological studies using Tair as a proxy for Tw. Finally, to determine the effect of climate corrections on the full 

RHT extrapolation, we compared the distribution of Tp,m values when models were fitted using either Tp,obs or 180 

Tp,clim. 

2.4.1 Explanatory variables 

We selected sixteen variables (Table 3) to explain the spatial distribution of Tp,m based both on results from a prior 

analysis (Beaufort et al., 2020a), review of the literature and an effort to minimize variable collinearity (Fig. A3). 

We further considered the ability to calculate or estimate each variable at the scale of the entire RHT network. The 185 

variables fall into three categories: climatic, hydrologic, and watershed characteristics. 
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The four climatic variables were determined from SAFRAN reanalysis data for the years 2009–2017: 1) mean 

annual precipitation, 2) mean summer precipitation, 3) mean annual snowfall, and 4) mean summer air 

temperature.  

The four hydrological variables were determined by extrapolation based on prior datasets. In general, we wanted 190 

to quantify the influence of groundwater on Tp, but lacked the local hydrometric data necessary to calculate the 

typically used BFI (Hare et al. 2021) at a majority of sites. Hence, we turned to the following variables that could 

potentially quantify groundwater influence across all of our sites. The first two variables, monthly minimum 

discharge (Sauquet et al. 2008) and the annual minimum monthly discharge with a return period of five years 

(Catalogne, 2012), describe the low-flow regime of each site. The remaining two variables, the hydrologic regime 195 

(HR; Sauquet et al., 2008) and the concavity index (CI; Sauquet and Catalogne, 2011), are dimensionless and 

characterize the general hydrology of each site. More specifically, the HR groups sites into one of 12 classes 

ranging from rainfall-dominated, to transitional, to glacial and snow melt dominated. These classes generally fall 

into buffered (i.e., high baseflow) or highly variable (i.e., low baseflow) hydrologic regimes. The CI describes the 

concavity of the flow duration curve, where values close to 1 indicate low flow variability (e.g., large high storage 200 

capacity in aquifer or snow) and values close to 0 indicate high flow variability (e.g., low storage capacity 

exemplary of Mediterranean systems). 

The eight variables relating to watershed characteristics were extracted from either the SYRAH-CE (SYstème 

Relationnel d’Audit de l’Hydromorphologie des Cours d’Eau) database (Valette et al., 2012) or the RHT database 

(Pella et al., 2012). The three variables from RHT comprise: 1) mean altitude, 2) watershed drainage area, and 3) 205 

mean slope. The five variables from SYRAH-CE comprise: 1) riparian vegetation cover in a 10 m buffer, 2) linear 

upstream weir density along the stream, 3) areal upstream weir density for the watershed, 4) upstream pond cover 

as a fraction of stream area, and 5) incision class describing the rate of incision of the valley. 

 

Table 3. List of explanatory variables used in models and hypothesized effects on thermal peaks 

Category Variable [units] Notation Source Hypothesized effect Reference 

Climatica 

Mean annual precipitation 

[mm] 

Pannual SAFRAN Reduced Tp via 

increased baseflow 

Strauch et al. 2017 

Mean summerb precipitation 

[mm] 

Psummer SAFRAN Increased summer Tp via 

warm runoff 

Nelson and Palmer, 

2007 

Mean annual snow 

accumulation [mm] 

Sannual SAFRAN Reduced Tp via colder 

snowmelt water 

Caissie, 2006; Webb et 

al., 2008 

Mean summerb air temperature 

[°C] 

Tsummer SAFRAN Increased summer Tp Moore et al, 2013; Isaak 

et al., 2017 

Hydrologic 

Mean annual specific 

discharges [L s-1 km-2] 

Qmean RHT Reduced Tp via greater 

thermal capacity 

Caissie, 2006 

Mean monthly minimum 

specific discharge* [L s-1 km-2] 

qmin RHT Increased Tp via lower 

baseflow 

Chang and Psaris, 2013 

Concavity index† [-] CI RHT Reduced Tp at higher CI This paper 

Hydrological regime‡ [-] HR RHT Reduced Tp under high 

baseflow regimes and 

vice versa 

This paper 

Mean watershed elevation [m] elev RHT Reduced Tp via low Tair Isaak and Hubert, 2001 
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Watershed 

characteristics 

Drainage area [km²] area RHT Increased Tp due to 

greater thermal exchange 

Hrachowitz et al., 2010; 

Imholt et al., 2013 ; 

Isaak et al., 2017 

Mean slope of the watershed 

[m km−1] 

slope RHT Reduced Tp via reduced 

insolation exposure time 

Daigle et al., 2010 

Riparian vegetation cover ratio 

in 10 meters buffer (%)** 

veg SYRAH Reduced Tp via shading Moore et al., 2005 

Linear weir density upstream 

of stations (# km-1)** 

weirs SYRAH Increased Tp via 

warming 

Chandesris et al., 2019 

Areal weir density upstream of 

stations (# km-2)** 

weir area SYRAH Increased Tp via 

warming 

Chandesris et al., 2019 

Pond cover ratio upstream of 

stations (%)** 

ponds SYRAH Increased Tp via 

warming 

Seyedhashemi et al., 

2021 

Stream incision class ** SI SYRAH Reduced Tp for greater 

incision  

Webb et al., 2008 

aall climate variables are calculated on data from 2009–2017 
bsummer refers to July–August 

*determined by geostatistical interpolation on the RHT network (Sauquet et al., 2000) with return period of five years 

†ratio of flow duration quantiles Q10-Q99/Q1-Q99, as defined by Sauquet and Catalogne (2011) 

‡classes from 1–12 with pluvial regimes from 1–6, transition regimes from 7–8; and glacial and snow melting regimes from 9–12 (Sauquet et al., 2008) 

**Detailed description of these variables in Valette et al. (2012). 

2.4.2 Multiple regression 210 

We first fit a multiple linear regression model between Tp and explanatory variables using all possible variables 

characterized in Table 3. Prior to fitting, we scaled the explanatory variables so that their fitted coefficients could 

be compared in terms of relative importance. We did not use any variable selection techniques in the multiple 

regression approach because our goal was to compare across the four modeling approaches (regression, ANN, 

random forest, and multi-model) that use the same independent variables. In other words, we did not seek to have 215 

the most parsimonious multiple regression model, but instead used all 16 variables (Table 3) to create the model. 

Each of these variables was previously assessed for multicollinearity (Fig. A3), and variance inflation factors were 

all less than 3. 

2.4.3 Artificial neural network 

We then used an ANN—specifically a feed‐forward neural network with one hidden layer (R package nnet; 220 

Venables and Ripley 2002)—to estimate Tp as a potentially non‐linear function of covariates. An ANN is a flexible 

mathematical structure with an interconnected set of simple processing elements, called nodes or neurons, that 

emulates the functioning of neurons in the human brain. They are used as an alternative tools to identify and 

simulate complex and highly nonlinear relationships between input and output data that ANN identifies during the 

‘learning process’. We included a direct connection between covariate inputs and outputs so that the case with 225 

zero hidden units corresponded to a linear relationship. We used weight decay regularization, also known as ridge 

regression, to control overfitting by decreasing less relevant coefficients. Both the number of hidden units and the 

amount of weight decay were selected with a first cross‐validation procedure (Bishop, 2006). To quantify the 

importance of the different covariates, we used a connection weight approach (Olden and Jackson, 2002; Olden et 

al., 2004):  230 

�� = ∑  �,!"!
�!#
!$�      (6) 

where  

WV (-) = the relevance of covariate V,  
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AV,h (-) = the ANN coefficients connecting hidden unit h to covariate V,  

Bh (-) = the ANN coefficients connecting hidden unit h to the output, and  235 

nhu = the number of hidden units 

2.4.4 Random forest 

We used a random forest (RF) for the third statistical model structure. RFs is a machine-learning method that 

draws bootstrap samples from original training data and fits a tree to each sample and the ensemble of trees are 

used for regression (Breiman, 2001). Each tree recursively partitions the individuals from each sample into non-240 

overlapping groups of each predictor, which are then used to predict the target variable, in this case Tp. The average 

across the ensemble of trees is used as the final regression. The importance of each predictor variable was provided 

as standard output by the randomForest package, which determines how much the mean square errors in prediction 

increases when that covariate is randomly permuted within the tree. We used the R package “randomForest” (Liaw 

& Wiener, 2002), following Breiman’s algorithm (Breiman, 2001) allowing 500 trees. 245 

2.4.5 Multi-model combination 

Finally, we used a multi-model combination approach to obtain a consensus estimation map of Tp,m. The 

temperature predictions from each previously described model were linearly combined to reduce the associated 

uncertainties through multiple linear regression. 

�%,&&,' =  )�%,*++,' +  -�%,./,' + 0�%,.12,' + 3   (7) 250 

where:  

Tp,mm,i=multi-model Tp based on observed and reconstructed Tw,i for each observation station, i;  

Tp,ANN,i=Tp estimated by ANN for each observation station i;  

Tp,RF,i=Tp estimated by RF at each observation station i;  

Tp,REG,i=Tp estimated by multiple regression at each observation station i; and  255 

a, b, c, d=fitted regression coefficients. 

Temperature predictions made by the three models are used as multi-model independent variables and each model 

prediction is weighted with a coefficient to match the observations as closely as possible. Hence, the multi-model 

coefficients are calculated only in relation to observations at the 1700 stations. Then, using equation (7) with 

calculated coefficients, we extrapolate Tp along the river network. 260 

2.4.6 Model cross-validation and comparison with air temperature 

To assess each model’s performance prior to spatial extrapolation to the entire RHT network, we conducted a 

cross-validation on observed data from our 1700 stations. For each model, including Tp,air, we used 80% of stations 

(n = 1360) as training data to estimate model parameters. Using those model parameters, we estimated validation 

data Tp at the remaining 20% of stations (n=340) and cross-validated those estimates with Tp,obs. We conducted 265 

this cross-validation 100 times allowing for random selection of stations used in the training and validation data 

sets. We evaluated the results of the cross-validation with the Nash-Sutclife efficiency criterion (NSE, Nash and 

Sutcliffe, 1970), the RMSE (Root Mean Square Error) and biases between observed Tp,obs and Tp,m. We also 

conducted regressions of Tp,obs and Tp,m.  
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We also compared all Tp model results with a thermal peak calculated using only Tair from SAFRAN reanalysis 270 

data, Tp,air. The goal was to evaluate model performance with the simplest and most widely available stream 

temperature proxy. 

2.4.7 Hypothesis testing 

We evaluated the hypothesis that spatial patterns across models would be consistent, but that drivers would depend 

on the modeling approach in two ways. First, we compared relative importance of the most important variables 275 

across models to see if the same variables emerged. Second, we visually compared maps of Tp,m and compared 

their distributions across watershed area and stream order. We evaluated our second hypothesis that stream size, 

air temperature, and groundwater contributions would emerge as important regardless of approach by comparing 

their relationships with Tp,m across modeling approaches using Kendall tau correlation. 

3. Results 280 

3.1 Validation of the climate correction approach 

Gap-filling Tw with our climate correction approach resulted in consistently lower absolute biases for Tp (i.e., Tp,fill) 

compared to only using available data (i.e., Tp,gap), regardless of the length of introduced annual gaps (Figure 2). 

This discrepancy in bias between uncorrected and corrected data increased exponentially with the number of 

introduced gaps, growing from a median of 0.03°C with one year of gaps to 0.25°C with eight years of gaps. 285 

Climate corrected biases remained below 0.25°C for 75% of the stations with up to six years of introduced gaps. 

There was no systematic bias regardless of the years taken into account in the regressions. 

 

Figure 2. Improvement in absolute bias of thermal peaks across all reference sites (Tp,ref; n=30) when introduced 

annual gaps were filled with the climate correction procedure (|Tp,fill–Tp,ref|, red boxplots) compared to when gaps 290 

were unfilled (|Tp,gap–Tp,ref|, blue boxplots) regardless of the number of introduced gaps. 
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3.2 Model cross-validation 

In cross validation, all four statistical models performed substantially better than air temperature at accurately 

predicting Tp (Figure 3). Indeed, Tp,air overestimates the observed Tp,ref by 2.5°C on average (Figure 3a), and the 

negative NSE for Tp,air indicates that using a simple mean of Tw observations is a better predictor of Tp than using 295 

Tair (Figure 3b). Overall, models tend to slightly underestimate Tp (Figure 3a), but mean biases are close to 0°C. 

The REG and ANN models had similar performance (median RMSE > 1.5°C; median NSE = 0.6), whereas the 

RF and MM models obtained the best performances (median RMSE < 1.5°C; median NSE = 0.7) with the MM 

slightly superior for NSE (Figure 3b,c). The models explain in cross-validation between 70% and 78% of the 

variation in Tp,obs with the best performances for RF and MM (Figure 3d-f). Sites with larger watershed areas had 300 

consistent positive bias (lighter colors in Figure 3d-g), but bias was more evenly distributed for sites with smaller 

watershed areas, thought the smallest watersheds tended to exhibit negative bias. We did not observe any strong 

spatial patterning in performance metrics, although sites with larger watershed areas tended to have positive bias 

(Figure 3d–h). 

 305 

Figure 3. Cross validation performance metrics for modeled thermal peaks (Tp,m), where 80% of stations (n = 

1360) were training data and 20% of stations (n=340) were validation data. Violin plots show distributions of 100 

replicates of training-validation data for each model’s performance metrics: a) bias relative to Tp,ref; b) NSE; c) 

RMSE of Tp,m relative to observed Tp. Horizontal lines indicate sample medians and red points indicate sample 

means. d-f) Tp,m vs. Tp,obs for each model colored by watershed area at the site. Simple linear regression results (n 310 

= 1700) are shown in blue with comparison to a 1:1 line (dashed). 

3.3 Explanatory variables importance and effects in models 

Variable importance differed among modeling approaches, and the maximum importance value for any one 

variable was between 25–30% (Figure 4). The two most important variables were watershed area (area) and mean 
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summer air temperature (Tsummer) for the RF and multiple regression models (Figure 4b,c). For the ANN model, 315 

minimum monthly specific discharge (qmin) and riparian vegetation cover (veg) were most important (Figure 4a; 

note that qmin is not correlated with area, Figure A3). Surprisingly, area and Tsummer obtained relative importances 

of less than 5% in ANN whereas they were the most important variables in the RF and the REG models. Across 

models, none of the three precipitation variables (Table 3) emerged as important, nor did the stream incision class. 

The cumulative importance of the four most relevant variables of the REG and ANN models is respectively 92% 320 

and 81%, which means that the other variables had very little weight in the estimates. This sum is only 69% for 

RF, which indicates that the relative importance of the explanatory variables are more distributed and the other 

explanatory variables had a significant weight in the estimates which could explain the best performances in cross 

validation of RF. In particular, linear and areal weir density upstream of stations occupied a cumulative 7% relative 

importance. These variables also occupied the two next greatest importance rankings (at 1.7% and 0.9% relative 325 

importance, respectively) for the multiple regression model after those shown in Figure 4. 

 

Figure 4. Relative importance of top four explanatory variables calculated in cross validation for the estimation 

of Tp with the models: a) ANN; b) REG and c) RF. To compare the relative importance of each variable for each 

model, all variables were centered and scaled. Text in the upper right of each panel refers to the sum of the relative 330 

importances of the first four explanatory variables in each model; colors indicate the explanatory variable. 

 

The direction and magnitude of effects from the hypothesized variables (area, groundwater contributions, and 

summer air temperature) did not systematically differ across modelling approaches (Figure 5). However, there 

were minor differences in that the RF model tended towards higher Tp,m than ANN and REG models at small 335 

watershed areas and tended towards lower Tp,m than ANN and REG models at larger watershed areas (compare 

Fig. 5g with 5a and 5d). The RF model was also less sensitive to Tsummer, with RF producing lower Tp,m than ANN 

and REG models at sites with cooler summer temperatures and lower Tp,m than ANN and REG models at sites 

with warmer summer temperatures (compare Fig. 5i with 5c and 5f). 
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 340 

Figure 5. Modeled Tp at each of the 1700 observation stations as a function of the variables hypothesized to be 

equally important across approaches. Rows indicate the model used (points also colored accordingly) and columns 

are separated by area, qmin, and Tsummer; area and qmin are natural-log transformed. Lines indicate best-fit smoothers 

using a generalized additive model and text indicates Kendall tau correlation values (all p<0.001). There was no 

systematic difference in variable effects on Tp,m. 345 

3.4 Spatial extrapolation of thermal peaks and comparison with air temperature 

The statistical models could extrapolate Tp to 92% (105,800 reaches) of the RHT network, and the resulting spatial 

structure of the extrapolations was consistent across models (Figure 6). On average, Tp was 18.2°C and ranged 

between 6.3°C and 27.0°C.  The highest Tp,m (i.e., Tp > 22°C) were generally found on the largest rivers located in 

the southeast and in the sedimentary plains. The lowest Tp,m are found in the mountain streams of the Alps, 350 

Pyrenees and Massif Central, and in the northwest. Although the distribution Tp,m is consistent among models 

(Figure 6), there are some clear disparities, particularly at the extremes. The ANN model predicts lower Tp,m  (20% 

of reaches Tp,m<15°C) compared to the RF and multi-model (< 10%; Fig A4a). Application of the climate 

correction prior to model fitting and subsequent extrapolation showed that differences at the RHT are less than 
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0.5°C at 89% of the reaches (Fig A4b). Still, 10% of the reaches exhibited Tp,m differences greater than 0.5°C, and 355 

the vast majority of these differences are negative (9.4% vs. 1.6%), suggesting that climate correction more often 

than not reduces overestimates in Tp. 

Estimating Tp with air temperature (i.e., Tp,air) led to consistently higher values than were obtained with statistical 

models, with Tp,air greater than 20°C for more than 70% of the reaches (Figure 6a, Fig A4a). Indeed, depending on 

the model, 94–97% of reaches had Tp,m lower than Tp,air (Figure 6) and more than 95% of these were in reaches 360 

with watershed areas less than 1000 km2. Tp,air exhibited its greatest overestimations in the smallest watersheds 

(Figure 7a) and switched from overestimation to underestimation relative to Tp,m at reaches with watershed areas 

between 2000–5000 km2. While this behavior was similar across models, the REG and ANN models tended to be 

produce lower Tp,m for small areas and higher Tp,m for large areas compared to RF and MM models, suggesting 

their increased sensitivity to this variable. Tp,air also increased its overestimations relative to Tp,m in reaches with 365 

the most groundwater contributions (Figure 7b). Similar to watershed area, the REG and ANN models tended to 

be produce higher Tp,m for low qmin and lower Tp,m for high qmin than the RF and MM models, suggesting higher 

sensitivity to this variable. In other words, in small watersheds with low baseflow, Tp,m from REG and ANN 

models were 2–3°C less than from RF and MM models, but in large watersheds with high baseflow, Tp,m from 

REG and ANN models were 3–5°C greater than from RF and MM models. 370 

 

Figure 6. Thermal peaks (Tp) of stream water extrapolated to all reaches of the French hydrographical network 

RHT with the different predictive model structures: a) air temperature (Tair), b) multiple regression (REG), c) 

artificial neural network (ANN), d) random forest (RF), and e) multi-model combination of all previous models 

(MM). All reaches are colored by their modeled range of Tp and colors are chosen to improve visualization. 375 
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Figure 7. Differences between stream thermal peaks estimated by air temperature and models depending 

on a) watershed area, and b) minimum monthly specific discharge. To simplify visualization across the 114,600 

reaches, points were summarized across 5% bins in the x-axis; points indicate mean values at each bin, with 

vertical error bars indicating standard error. a) As watershed area increases, Tair shifts from overestimation to 380 

underestimation relative to Tp,m, with a shift in sign between 2,000 and 5,000 km2. b) As minimum monthly 

specific discharge increases, Tair tends to increase its overestimation relative to Tp,m, especially for watershed 

size greater than 100 km² (colors). Only results for RF model are shown for clarity of presentation and because it 

had the best performance (each model had similar patterns). 

4. Discussion 385 

We compiled one of the largest regional summertime stream temperature datasets to address the growing need to 

understand the spatial distributions of stream thermal maxima. This database is available for use at the following 

website: https://thermie-rivieres.inrae.fr. Using this database, we demonstrated that a simple, ecologically 

meaningful metric, which we term the thermal peak (Tp), can be reliably estimated at the regional scale using a 

few easily accessible explanatory variables. 390 

4.1 Horizons and limitations in estimating large-scale stream thermal metrics 

Spatiotemporally comprehensive stream temperature datasets are rare because interest in these data is relatively 

recent and there is little money to support instrumentation at regional or national scales. This lack of centralized 

data has been recognized as a major limitation for understanding thermal regimes of riverine ecosystems 

(Arismendi et al., 2012; Ouellet et al., 2020). Here, we alleviated these limitations by homogenizing existing 395 

disparate datasets and demonstrated the aggregated utility of such datasets on improving our understanding of 

stream temperature distributions. Indeed, our homogenized dataset allowed us to identify, at a national scale, a 

map of summer stream temperature maxima with important implications for aquatic species distributions under 

climate change. We note here that the more detailed computation of Tp (i.e., rolling window of 30-days) could be 
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simplified with a mean of August stream temperature data, as we observed this to regularly be the hottest month 400 

across all observable data. 

We observed the hottest Tp along major rivers and the coldest Tp along small rivers and in mountainous regions 

(Fig. 6). The downside of the current approach is that is based on interannual metrics. Indeed, the non-

concomitance of the time series precluded us from comparing extreme years (hot vs. cold). However, the stream 

temperature dataset used here contains enough interannual information that it could be used to calibrate models 405 

and assess the impact of climate change on thermal regimes  (cf. Isaak et al., 2017, 2020). This map can presently 

be used to predict and manage cold-water stream habitats, with potential for regular multi-annual updates. 

To enable unbiased comparison among stations from time series with gaps, we used a climate correction of Tw 

based on regression with Tair. The efficacy of regressions between Tw and Tair is well understood (Ducharne, 2008; 

Segura et al., 2015, Moatar and Gailhard, 2006), and the approach can be easily transferred to other stations and 410 

regions. On the other hand, a cautious approach is required for such regressions, because they assume seasonal 

correlation between Tair and Tw, and can therefore only apply to rivers having natural seasonal dynamics, without 

dam release, thermal peaking, or major weirs regulating the flow of streams  (Bruno et al., 2013; Chandesris et al., 

2019; Seyedhashemi et al., 2021; Casado et al., 2013). Moreover, our rolling window approach to Tw–Tair 

regression suggests that the watershed size may be an important factor in developing these relationships, with 415 

regressions for larger rivers benefitting from longer lags in Tair (Fig. A2). However, where possible, climate 

correction makes it possible to significantly reduce the biases in Tp estimates when compared to those made using 

observed data without climate corrections (Figs. 2 and 3). The biases are reduced when the number of years of 

observation available is less than four. Beyond this limit, the meteorological variability specific to each year is 

sufficient to estimate Tp, which confirms results obtained by (Jones and Schmidt, 2018). Moreover, climate 420 

correction reduces overestimation of Tp, reinforcing the importance of taking into account these climatic 

corrections of temperature metrics even if it only slightly affects the majority of rivers (Isaak et al., 2017)  

4.2 Spatial extrapolation of Tp is consistent and best predicted with a random forest model 

All four statistical models achieved similar predictive performance, but the RF model exhibited marginal 

improvements over the others (Fig. 3). The MM approach only slightly improves performance in cross-validation 425 

in comparison with RF (vis-à-vis the NSE criterion), so it is unlikely to be a useful approach in future applications 

due to its complexity. Moreover, whereas the multi-model has the best performance, it lacks the explanatory power 

and relative simplicity of the other approaches. In contrast, a potential benefit of the multi-model approach is that 

by leveraging multiple approaches, it can compensate for errors particular to individual models. 

Overall, our model performances (NSE = 0.75, RMSE <2) were of the same order as other large scale stream 430 

temperature studies found in the literature (cf. Segura et al., 2015; Daigle et al., 2010; Wehrly et al., 2009), 

suggesting that our approach is reasonable and broadly applicable. Indeed, literature ranges of RMSE for monthly 

stream thermal maxima are consistent with values we obtained here (e.g., 0.9–2.1°C for 16 sites across Canada 

(Daigle et al. 2010) and 2.0–2.3°C for 1131 sites across USA (Wehrly et al., 2009)), suggesting a general accuracy 

limit to current modeling approaches. This is likely because RF models can be prone to overfitting such that they 435 

can accurately predict a set of observations, but their performance may decline when predictions are made at 

unsampled locations. They also have less robust means of model selection and significance testing than the much 

simpler multiple linear regression approach. 
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In spatial extrapolation, the Tp estimates are globally consistent between the models and the same spatial structures 

are found regardless of the approach used (Figure 6). We observed divergences between the models in particular 440 

for Tp less than 14°C where ANN tends to predict coldest Tp for more reaches compared to other models (Fig. A4). 

Still, because our analysis is limited to 2009–2017, these model differences may diminish as Tw measurements 

grow in time and space. We further note that the performance of the modeling techniques used here was less than 

that of spatial stream-network models (SSNs) applied to similar temperature datasets, which typically have 

R2~0.90 and RMSE~1.0°C (Isaak et al. 2017). We tested a SSN model on a small region well covered by data 445 

(9000 km², 92 stations) for a robust estimation of parameters with the R package SSN (see Fig. A5 and Table A1), 

and indeed; SSN had reduced bias relative to than random forest model (absolute bias decreased by 0.2°C). By 

comparing the observed and estimated values, we can see that compared to the SSN, the RF model tends to 

underestimate the high values (on major rivers) and to overestimate the low values (on smaller reaches). Still, the 

spatial patterns are very consistent among the two approaches, though there are important differences between the 450 

SSN and RF model estimates which can be +/- 2°C. However, SSNs are labor intensive to apply in comparison to 

non-geospatial techniques and require specialized geospatial algorithms for fitting. Hence, despite lower accuracy, 

the approaches used here may be useful in more generic use cases when geospatial data and computing time are 

limiting.  

4.3 Drivers of thermal peak depend on model structure 455 

We observed clear divergence of variable importance for the estimation of Tp among the ANN, RF, and REG 

models. The two most relevant variables in RF and REG were watershed area and mean summer air temperature, 

consistent with other studies (Laanaya et al., 2017; McGarvey et al., 2018; Moore et al, 2010, 2013). Drainage 

area also emerged as one of the most important variables driving thermal peaks, behind watershed elevation and 

slope, in a recent regional study (Johnson et al, 2020). Likewise, distance from source and Strahler order, which 460 

directly correlate with drainage area, are known to be important drivers of thermal peaks (Hrachowitz et al, 2010; 

Imholt et al, 2013; Ducharne, 2008, Mohseni et Stephan, 1999). The clear rationale for this common effect is that 

longer residence times in large rivers allow more time for temperature equilibration with the atmosphere compared 

to small rivers (Beaufort et al., 2020a; Mohseni et al., 1998, Fullerton et al., 2015). Large rivers are also less shaded 

by riparian vegetation and are less influenced by groundwater inflows, which compounds residence time effects. 465 

Importantly, RF had a much more even distribution of variable importances relative to the other models structures, 

which is likely due to its non‐linear structure. In contrast, for ANN, the most important variables were minimum 

monthly specific discharge (43%) followed by riparian vegetation cover (23%). Higher minimum flows imply a 

consistent groundwater supply, leading to cool surface waters in summer (Hannah et al., 2004; Kelleher et al., 

2012; Lalot et al., 2015). Similarly, greater riparian vegetation implies more shading and reduced temperature 470 

increases from solar radiation (Dugdale et al., 2018; Loicq et al., 2018; Moore et al., 2013). These differences in 

relevance between the variables for each model underlines the importance of using several approaches and shows 

that the multi-model approach makes it possible to take into account all these across-model divergences. We 

caution however, that while predictability may increase, interpretation of variable importance in multi-models is 

complex, and their utility may therefore decrease when project goals are focused on critical variables for stream 475 

temperature habitat restoration. 
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4.4 Air temperature is not an appropriate proxy for stream temperature 

Estimates of Tp produced by stream temperature were clearly more accurate than those produced by air temperature 

(Figs. 3 and 5). In cross-validation, Tp,air overestimated observed Tp by more than 2°C, could not differentiate 

stream temperature among regions (Figs. 6 and 7), and could not differentiate large rivers from small rivers. These 480 

results highlight the need to account for stream-specific temperature estimates, especially when such Tp,air 

overestimates inflate potential ecological change (cf. Kirk and Rahel 2022). Our results further demonstrated that 

this overestimation of Tp,air was greatest in smaller rivers, and that these biases were amplified in streams with 

significant groundwater contribution (Fig. 7), implying that groundwater buffers effects of increasing Tair. This 

aligns with recent results that found sites with deep groundwater contributions are much less likely to exhibit 485 

increasing summer stream temperatures compared to sites with shallow groundwater contributions (Hare et al. 

2021). However, we note that the influence of qmin on Tp,air–Tp,w is weak up to values of approximately 5 L s-1 km-

2 (Fig. 7b), which is in accordance with recent work in the same region (Beaufort et al., 2019). This small effect 

may in part be because qmin is not an effective proxy for groundwater contributions; the base flow index is likely 

more appropriate (Kelleher et al, 2012; O’Driscoll & DeWalle, 2004, Hare et al, 2021; Johnson et al, 2020), but 490 

we were unable to obtain this parameter in this work at a national scale. 

Overall, this work clearly demonstrates that Tair is an inappropriate proxy for Tw, with important implications for 

ecological studies, especially those that consider temperature tolerance thresholds of aquatic species. Species 

distribution models may need to use Tair instead of Tw because data from Tw are not sufficient in the regions studied 

(McGarvey et al., 2018). It is therefore important to introduce Tw in input of these models rather than Tair in order 495 

to limit the biases linked to the poor spatial representation of Tair.  

This research further emphasizes the importance of spatial scale and heterogeneity for water temperature studies. 

As streams increase in size, they become more coupled to air temperature dynamics. Hence, smaller reaches more 

influenced by groundwater inputs and vegetation may serve as “climate refugia” for ectotherms species especially 

in the context of climate change. Therefore, choosing the best predictors at a spatial scale for thermal peaks and 500 

other thermal regime metrics is essential to accurately predict and manage future stream cold-water habitat.  

4. Conclusion 

Stream thermal maxima are essential controls on aquatic ecosystems, but our understanding of their spatial 

distribution and thus our ability to adequately manage them accordingly is limited by data availability and simple 

metrics applicable at large scales. To address these gaps, we created a publicly available, harmonized dataset of 505 

stream temperature that can used by ecologists in France and scientists more broadly. We then developed a simple, 

ecologically relevant metric–the thermal peak, Tp– that can be extrapolated at large scales, even when data are 

sparse. We developed an innovative climate correction method to reduce biases related to such data sparseness, 

when applied to summer data. The Tp provides an important perspective on the magnitude of thermal maximums 

during summer, but development of additional metrics such as threshold exceedance frequency, duration, and 510 

timing will continue to grow our understanding of stream temperature behavior under climate change. However, 

development of these metrics will require longer and more spatially explicit time series. Hence, we argue that to 

improve our capacity to manage and benefit from aquatic ecosystems, it is critical to continue and expand our 

stream temperature measurement networks. 
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5. Appendix A 515 

 

Figure A1. Histogram of the median date for the hottest 30-day periods across all sites that had annual data. 

Thirty day rolling windows of mean daily stream temperature were calculated across the entire time series and for 

each site, and the 30-day windows with the maximum values were selected here. The median date here refers to 

day 15 in the 30 day period. 520 
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Figure A2. Daily lags for Tair that produce the highest R2 (colors) for a regression between Tw and a right-

aligned moving average of Tair at each site as a function of watershed area. The moving average lag whose 

regression produced the highest R2 was used to fill gaps in the time series of Tw for each station. Each point 

represents a station, with the x-axis being the watershed area at that station, the y-axis being the lag in Tair that 525 

produced the best regression. Points are jittered for visual clarity; only integer lag values were possible. Black 

points indicate the mean and standard error (horizontal bars) of watershed areas within each possible lag (2–10 

days). 
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Figure A3. Correlation matrix of all 16 considered environmental variables prior to selection in the thermal 530 

peak analysis. All variables had collinearity values less than 0.6 or greater than -0.6. 

 

Figure A4. Distributions of Tp,m extrapolated to all RHT network reaches. a) Histogram of models (10 bins equally 

spaced between 0°C and 30°C) according their extrapolated Tp value, colored by model, and b) differences between 

Tp,m calculated with and without climate corrections on the 1,630 stations with gaps in their data. 535 
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Figure A5. Figure comparing modeled thermal peak (Tp,m) estimates from (a) SSN, (b) RF, and (c) the 

difference between RF and SSN. The SSN model here is from a benchmark test on a small region well covered 

by data (9000 km², 92 stations) for a robust estimation of parameters with the R package SSN. SSN had reduced 

bias relative to than random forest model (absolute bias decreased by 0.2°C). Additionally, by comparing the 540 

observed and estimated values, we can see that RF tends to underestimate the high values and to overestimate the 

low values. Unfortunately, due to the lack of an RHT with upstream-downstream information, we could not 

apply at the scale of the whole watershed. Still, the spatial patterns are very consistent among the two 

approaches, though there are important differences between the SSN and RF model estimates which can be +/- 

2°C. The estimates of the SSN model are generally warmer than those of RF on the main major river axes and 545 

colder on the small tributaries. This is consistent also with observations. So, while the presented models may not 

be optimal, we are confident the spatial patterns are correct. 

 

Table A1. Comparison of model performance metrics for the region tested in Figure A5 

 Model RMSE (-) NSE (-) Bias (°C) Absolute bias (°C) 

RF  1.24 0.44 0.01 0.95 

SSN 0.99 0.81 0.05 0.76 
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