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Abstract. Spatial reconstruction of stream temperature is relevant to water quality standards and fisheries 

management, yet large, regional scale datasets are rare because data are decentralized and inharmonious. This data 

discordance is a major limitation for understanding thermal regimes of riverine ecosystems. To overcome this 

barrier, we first aggregated one of the largest stream temperature databases on record with data from 1700 10 

individual stations over nine years from 2009–2017 (n=45,000,000 hourly measurements) across France (area = 

552,000 km2). For each station, we calculated a simple, ecologically relevant metric–the thermal peak–that 

captures the magnitude of summer thermal extremes. We then used three statistical models to extrapolate the 

thermal peak to nearly every stream reach in France and Corsica (n=105,800) and compared relative model 

performances among each other and with an air temperature metric. In general, the hottest thermal peaks were 15 

found along major rivers, whereas the coldest thermal peaks were found along small rivers with forested riparian 

zones, strong groundwater inputs, and which were located in mountainous regions. Several key predictors of the 

thermal peak emerged, including drainage area, mean summer air temperature, minimum monthly specific 

discharge, and vegetation cover in the riparian zone. Despite differing predictor importance across model 

structures, we observed strong concordance among models in their spatial distributions of the thermal peak, 20 

suggesting its robustness as a useful metric at the regional scale. Finally, air temperature was found as a poor proxy 

for the stream temperature thermal peak across nearly all stations and reaches, highlighting the growing need to 

measure and account for stream temperature in regional ecological studies. 

1 Introduction 

Stream temperature is a master variable affecting ecosystem processes in lotic systems. It controls the solubility 25 

of gases and related biogeochemical reactions, regulates metabolism (Wolter, 2007), nutrient cycling (Malard et 

al., 2002) and decomposition rates, and dictates animal ingestion and digestion rates (Elliott, 1976), reproduction 

cycles (Daufresne et al., 2004) and mobility (Ojanguren and Brañta, 2000). Stream temperature can also be a 

source of stress and mortality for aquatic organisms, especially when coupled to additional stressors like low water 

levels (Miller et al., 2007). Consequently, the dynamics of populations and communities, their relative composition 30 

(Kishi et al., 2005) and their size structure (Daufresne et al., 2009) are intimately related to stream thermal regimes.  

The five main components of stream thermal regimes comprise temperature magnitude, frequency, duration, rate 

of change, and timing, with different metrics to quantify the biological or ecological importance of each component 

(Steel et al., 2017; Olden and Naiman, 2010; Tsang et al., 2016). Importantly, these metrics can be accurately 

determined only if continuous time series of stream temperature are available (Jones and Schmidt, 2018). 35 

Moreover, while each of these metrics can provide complementary information about stream thermal regimes, 
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many of them are strongly correlated (Ashley Steel et al., 2016; Rivers-Moore et al., 2013; Isaak et al., 2020) and 

their complete description may be unnecessary to understand critical temperature effects on ecosystems. Indeed, 

the collinearity of these metrics suggests the utility of a single metric to understand extreme stream temperature 

regimes, especially a metric that does not require continuous datasets for its calculation. Such a simple metric 40 

would allow for rapid spatial comparison that may help managers understand which rivers currently exceed 

thermal tolerances of important biota. 

Although recent advancements in in-situ sensor technology have greatly expanded stream temperature data 

availability (Isaak et al., 2017) there is still a lack of long-term data for the vast majority of stream reaches, limiting 

understanding of thermal regimes at river network and regional scales (Arismendi et al., 2014). In addition, stream 45 

temperature data collection is often spatiotemporally uncoordinated across regions and river networks, resulting 

in snapshot datasets that are regularly supported or replaced with air temperature proxies in aquatic ecology studies 

(Conti et al., 2015; Logez et al., 2012; Tisseuil et al., 2012). While air temperature can be used to fill data gaps 

(Buisson and Grenouillet, 2009; Durance and Ormerod, 2009), air temperature is a poor surrogate for stream 

temperature in several cases. In particular, air temperature correlates poorly with stream temperature in headwater 50 

reaches (Caissie, 2006), in reaches with strong local controls (e.g., riparian vegetation, groundwater inflows, bed 

form, impoundements), and in reaches with large environmental heterogeneity (Moatar and Gailhard, 2006; Hill 

and Hawkins, 2014; Loicq et al., 2018; Chandesris et al., 2019; Seyedhashemi et al., 2021). Hence, using air 

temperature metrics to study climate change impacts on the aquatic species distributions may result in misguided 

inference and consequent management decisions. 55 

Instead of using air temperature proxies, many studies have turned to regionalized deterministic and statistical 

models to fill stream temperature data gaps (e.g. Mohseni et al., 1998; Segura et al., 2015; Chang and Psaris, 2013; 

Beaufort et al., 2016; Westhoff et al., 2007; Yearsley, 2012). Deterministic models rely on a physically based 

formulation of stream energy conservation to compute water temperature (Yearsley, 2012; van Vliet et al., 2012; 

Beaufort et al., 2016). However, such models suffer from large data requirements leading to a preference for 60 

statistical approaches, especially in ungauged catchments. Some of these approaches empirically relate stream 

temperature to climatic and environmental variables, such as air temperature, discharge, altitude or channel width 

(Benyahya et al., 2007; Moore et al., 2013). Other statistical methods include lumped regression-based models 

(Daigle et al., 2010; Ducharne, 2008; Hrachowitz et al., 2010; Bustillo et al., 2014), distributed stream-network 

models (Detenbeck et al., 2016; Isaak et al., 2017), and machine learning methods (Chenard and Caissie, 2008; 65 

DeWeber and Wagner, 2014). Still, these approaches often have dense spatial data requirements and their estimates 

are usually temporally limited (Isaak et al., 2010; Pratt and Chang, 2012; Hill et al., 2013). Indeed, few studies 

estimate stream temperature over a full year, likely because of non-linear relationships and seasonal hysteresis 

between air and stream temperature, missing data, and autocorrelation (Jackson et al., 2018; Letcher et al., 2016; 

Sohrabi et al., 2017). However, for management purposes in the context of climate change, annual stream 70 

temperature patterns may be unnecessary. Indeed, stream temperature metrics that focus on extreme periods (e.g., 

summer) are likely adequate to understand trends of increasing pressures on aquatic ecosystems. 

To that end, our objectives are twofold: 1) to create of a harmonious stream temperature database for France, and 

2) to develop empirical statistical models to predict a simple, ecologically relevant stream thermal metric that 

captures the magnitude of the stream temperature extremes at the regional scale. To do so, we first define an 75 

interannual thermal metric, which we term the “thermal peak”, using heterogeneous and non-concomitant time 
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series of stream temperature and estimate it at 1700 stations for 2009–2017. We then test three statistical models 

and one multi-model approach to predict this metric at the regional scale and compare their predictive capacity 

with that of air temperature. Specifically, we used these models to address the following question: what are the 

spatial patterns of stream temperature extremes in France and their drivers, and are these patterns consistent across 80 

modeling approaches? We hypothesized that spatial patterns would be consistent, whereas the drivers would 

depend on the modeling approach used. We also hypothesized that stream size, air temperature, and groundwater 

contributions would emerge as important regardless of approach. 

2. Methods 

2.1 Study area and monitoring network 85 

The study area is continental France and Corsica (550,000 km2). France is located in a temperate zone characterized 

by a variety of climates due to the influences of the Atlantic Ocean, the Mediterranean Sea, and mountain areas. 

We assembled the most exhaustive stream temperature dataset for our study area to date by combining data from 

both public (national, regional; approximately 600 stations available from http://www.naiades.eaufrance.fr/), 

fishing associations and other private and public sub-national agencies. Due to the diversity of station ownership, 90 

the assembled times series do not have a consistent spatial and temporal structure. Some regions are densely 

monitored while others have few instrumented streams and much of the data do not exhibit temporal overlap, 

challenging our ability to define comparable metrics among streams. Hence, our main challenge was to coalesce 

and harmonize all the disparate data sources. 

The stream temperature data used here comprise approximately 45,000,000 hourly measurements from 1,700 95 

unique measurement stations (n=2,107,623 site-days) collected between 2009 and 2017, primarily during summer. 

All the stations under strong human influence (i.e., dam releases and nuclear power thermal effluent) and stations 

without seasonal dynamics have been excluded from this data set. All data were recorded by automatic data loggers 

managed by professional biologists, hydrologists, and fishermen. Outliers from each station’s time series were 

removed with automatic outlier detection filters and the resulting hourly data were screened visually before being 100 

averaged into daily mean stream temperature data (hereafter referred to as Tw). The automatic outlier detection 

consists of three steps with eight unique filters that remove, in order, 1) stream temperature anomalies based on 

hourly data, 2) anomalies between Tw and daily mean air temperature (Tair) at monthly scales, and 3) anomalies 

between Tw and Tair at daily scales (Table 1; Moatar et al., 2001; Beaufort et al., 2020b).  

Table 1. Outlier detection and data filtering process of stream temperature dataset  

Filter type Definition Threshold (°C) 

Data 

removed 

(%) 

Stream 

temperature 

anomalies 

from hourly 

data 

Maximum temperature > threshold (by month) 
14, 15, 20, 24, 28, 30, 32, 33, 

29, 28, 18, 17 (Jan.–Dec.) 

2 

Minimum temperature < threshold -0.5 

Difference in consecutive data > threshold 2 

Daily diel range > threshold 7 

Difference in daily max. or min. in consecutive 

data > threshold 
3 

Monthly Tw–

Tair 

anomalies 

R2 of daily regressions by month < threshold 0.1 [unitless] 

 Deviation of the monthly difference (Tw –Tair) to 

its interannual mean > threshold 
4 
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Daily Tw–Tair 

anomalies 

Daily difference (Tw –Tair) > the monthly mean of 

daily differences by threshold 
2.5 5 

 105 

To understand spatial patterns in ecologically meaningful temperature metrics, we focused on the two hottest 

stream temperature months, July and August (hereafter referred to as summer), a time period essential for the 

growth and survival of many aquatic species. This focus also has the benefit of maximizing the number of 

observation stations for analysis. Still, out of the 1700 stations, 490 stations have just one year of data, 88 stations 

have observations covering summer over all nine years, and only 30 have year-round observations for all nine 110 

years (Figure 1a,b). To obtain hydraulic and hydrologic characteristics for each station, stations were projected 

onto the Theoretical Hydrographic Network for France (RHT; Pella et al., 2012), an oriented hydrographic network 

with defined flow directions that comprsies 114,600 reaches of median length 1,961 m (2,475±1,512 m, mean±sd). 

A majority of stations were located on RHT river reaches with drainage areas 20–500 km², whereas most reaches 

are small streams with a drainage area of less than 20 km² (Figure 1c). 115 

 

Figure 1. Data availability for each temperature station used in this study. a) Map of stream temperature stations 

in France with RHT network shown for all reaches of Strahler order >4, b) Heatmap of data availability by year 

(x-axis) and station (y-axis) with the total stations per year listed at the top of each column. Sites are colored by 

the number of years with observations, and c) Distributions of drainage area for RHT reaches (blue) and of 120 

thermal stations (black). 

2.2 Defining the thermal peak metric 

Due to the limited concordance among stream temperature time series (Figure 1b) and to focus our analysis towards 

ecologically relevant ends, we summarized stream temperature data with a simple metric, the thermal peak. This 

metric has precedent in regional species distribution models that instead used air temperature (hereafter referred 125 
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to as Tair) as a proxy (Buisson and Grenouillet, 2009). We refer to this metric as the thermal peak (Tp), and define 

it as the interannual average of the mean temperature of the 30 hottest consecutive days of each year ���,���������
	
: 

�
 =
∑ �
�,������������

�
���

�
      (1) 

where:  

i = year index; and 130 

N= the number of years of observation available from 2009–2017 (N = 1–9) 

We did not know a priori the 30 hottest consecutive days of each year, but a sensitivity analysis on the sites with 

annual data suggests that July and August were regularly the hottest months (Fig: A1). Indeed, across sites with 

annual data, the hottest day of the year always occurred within the approximate 30 day period between July 28 and 

August 30 (mean±sd: August 12±16 days), and only 3% of site-years had their hottest 30-days outside of this 135 

period. This fact further allowed us to take advantage of many of the sub-annual time series, particularly those 

generated by fishing agencies, which only contain July and August data. 

2.3 Climate correction of the thermal peak 

The thermal peak can be biased depending on the climatic variability of the years of observation for each station. 

Indeed, only 30 of our stations have Tp calculated using all nine years of data, and therefore have the highest level 140 

of confidence in their estimate. We refer to the Tp from these 30 stations as Tp,ref, indicating that these are reference, 

or true estimates of Tp (Table 2). To account for the bias associated with missing data at the remaining 1670 

stations, we gap-filled missing data at these stations using site-specific stream-air temperature regressions. This 

method accounts for interannual variation in climatic forcing on stream temperature, and we therefore refer to it 

as a climate correction. 145 

The climate correction is achieved by first calculating station-specific regressions during summer between daily 

Tw and a right-aligned moving average of Tair at lags ranging from 2–10 days. The moving average lag whose 

regression produced the highest coefficient of determination was then used to fill gaps in the time series of Tw for 

each station. Stations with watershed areas greater than 1000 km2 tended to have the best R2 at the longest lags, 

but there were no clear trends at smaller watershed areas (Fig. A2) Next, we reconstructed summer stream 150 

temperature using this regression and subsequently recalculated Tp based on this reconstructed data. We refer to 

Tp from these climate-corrected data as Tp,clim to indicate that missing data were gap-filled with the climate 

correction procedure (Table 2). 

To validate this approach, we conducted a permutation test on the 30 stations with full annual monitoring from 

2009–2017 (i.e., sites where a Tp,ref is known). At each site, we introduced randomly placed, artificial annual gaps 155 

into observed data ranging from 1–9 years to simulate missing data. We then backfilled these introduced gaps 

according to the climate correction method. Following gap-filling, we calculated two metrics: 1) Tp using gap-

induced data without gap-filling (Tp,gap), and 2) the thermal peak using the gap-filled data (Tp,fill; Table 2). We then 

compare these two metrics to the reference thermal peak (Tp,ref) using absolute biases at each tested permutation 

(i.e., the number of introduced gap years). This approach allowed us to assess whether the climate-corrected 160 

reconstruction of the gaps in time series is 1) a useful approach, and 2) lower in bias and uncertainty compared to 

using observed data alone. 

Table 2. List of thermal peak terminology with the count of days (n) used in their calculation  
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Notation Definition n 

Tp,obs 
thermal peak, or the interannual average of the mean temperature of the 

30 hottest consecutive days of each year for station with observations 
1700 

Tp,ref thermal peak for reference stations with all nine years of data 30 

Tp,clim 
thermal peak for stations with less than nine years of data to which 

climate correction was applied 
1670 

Tp,gap thermal peak for reference stations with introduced data gaps 30 

Tp,fill 
thermal peak for reference stations whose introduced data gaps were 

filled with climate correction 
30 

Tp,m 
modeled thermal peak using statistical extrapolation to the RHT network 

using statistical method m 
114,600 

Tp,air thermal peak estimated using the SAFRAN reanalysis Tair data 114,600 

2.4 Extrapolating the thermal peak to national scale with statistical modeling 

We estimated Tp throughout the entire RHT network using four distinct statistical models. For modeling (Tp,m) it 

was not clear how to choose a priori a particular model structure due to the complexity of the processes involved 165 

in determining local stream temperature. Therefore, we tested four different structures: 1) a multiple linear 

regression model (REG), 2) an artificial neural network model (ANN) that is potentially non‐linear, but 

encompasses a linear model as a special case, 3) a random forest model (RF) that can also be non‐linear, but with 

a different strategy than ANN, and 4) a multi-model combination (MM), which combines the three prior structures 

ANN, RF, and REG. All these models are based on a function to estimate Tp at all stations (i): 170 

�
,�,	 = �(��,	 , … , ��,	)      (5) 

Where gn,i = the nth explanatory variable defined for each ith station.  

To measure how stream thermal regime estimations might be different if using a Tair proxy, we also calculated 

Tp,air using Tair from the Système d’Analyse Fournissant des Renseignements Atmosphériques à la Neige dataset 

(SAFRAN). SAFRAN is a mesoscale atmospheric analysis system for surface variables with reanalysis gridded 175 

data at hourly time steps with a resolution of 8 km using ground data observations (Durand et al. 1993; Vidal et 

al., 2010). Climatic variables including Tair were extracted from the SAFRAN meshes overlapping the station 

location. The Tp,air is calculated identically to Tp, but using daily Tair instead of daily Tw, as would be done in 

ecological studies using Tair as a proxy for Tw. Finally, to determine the effect of climate corrections on the full 

RHT extrapolation, we compared the distribution of Tp,m values when models were fit using either Tp,obs or Tp,clim. 180 

2.4.1 Explanatory variables 

We selected sixteen variables (Table 3) to explain the spatial distribution of Tp,m based both on results from a prior 

analysis (Beaufort et al., 2019), review of the literature and an effort to minimize variable collinearity (Fig. A3). 

We further considered the ability to calculate or estimate each variable at the scale of the entire RHT network. The 

variables fall into three categories: climate, hydrology, and catchment characteristics. 185 

The four climatic variables were determined from SAFRAN reanalysis data for the years 2009–2017: 1) mean 

annual precipitation, 2) mean summer precipitation, 3) mean annual snowfall, and 4) mean summer air 

temperature.  

The four hydrological variables were determined by extrapolation based on prior datasets. The first two variables, 

monthly minimum discharge (Sauquet et al. 2008) and the annual minimum monthly discharge with a return period 190 

of five years (Catalogne, 2012), describe the low-flow regime of each site. The remaining two variables, the 
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hydrologic regime (HR; Sauquet et al., 2008) and the concavity index (CI; Sauquet and Catalogne, 2011), are 

dimensionless and characterize the general hydrology of each site. More specifically, the HR groups sites into one 

of 12 classes ranging from rainfall-dominated, to transitional, to glacial and snow melt dominated. The CI describes 

the concavity of the flow duration curve, where values close to 1 indicate low flow variability (e.g., large high 195 

storage capacity in aquifer or snow) and values close to 0 indicate high flow variability (e.g., low storage capacity 

exemplary of Mediterranean systems). 

The eight variables relating to catchment characteristics were extracted from either the SYRAH-CE database 

(Valette et al., 2012) or the RHT database (Pella et al., 2012). The three variables from RHT comprise: 1) mean 

altitude, 2) catchment drainage area, and 3) mean slope. The five variables from SYRAH-CE comprise: 1) riparian 200 

vegetation cover in a 10 m buffer, 2) linear upstream weir density along the stream, 3) areal upstream weir density 

for the catchment, 4) upstream pond cover as a fraction of stream area, and 5) incision class describing the rate of 

incision of the valley. 

 

Table 3. List of explanatory variables used in models and hypothesized effects on thermal peaks 

Category Variable [units] Notation Source Hypothesized effect Reference 

Climatea 

Mean annual precipitation 

[mm] 

Pannual SAFRAN Reduced Tp via 

increased baseflow 

Strauch et al. 2017 

Mean summerb precipitation 

[mm] 

Psummer SAFRAN Increased summer Tp via 

warm runoff 

Nelson and Palmer, 

2008 

Mean annual snow 

accumulation [mm] 

Sannual SAFRAN Reduced Tp via colder 

snowmelt water 

Caissie, 2006; Webb et 

al., 2008 

Mean summerb air temperature 

[°C] 

Tsummer SAFRAN Increased summer Tp Moore et al, 2013; Isaak 

et al., 2017 

Hydrology 

Mean annual specific 

discharges [L s-1 km-2] 

Qmean RHT Reduced Tp via greater 

thermal capacity 

Caissie, 2006 

Mean monthly minimum 

specific discharge* [L s-1 km-2] 

qmin RHT Increased Tp via lower 

baseflow 

Chang and Psaris, 2013 

Concavity index† [-] CI RHT Proxy of water storage in 

the catchment) 

This paper 

Hydrological regime‡ [-] HR RHT Contrast between 

hydrological regimes 

This paper 

Catchment 

characteristics 

Mean catchment elevation [m] elev RHT Reduced Tp via low Tair Isaak and Hubert, 2001 

Drainage area [km²] area RHT Increased Tp due to 

greater thermal exchange 

Hrachowitz et al., 2010; 

Imholt et al., 2013 ; 

Isaak et al., 2017 

Mean slope of the catchment 

[m km−1] 

slope RHT Reduced Tp via reduced 

insolation exposure time 

Daigle et al., 2010 

Riparian vegetation cover ratio 

in 10 meters buffer (%)** 

veg SYRAH Reduced Tp via shading Moore et al., 2005 

Linear weir density upstream 

of stations (# km-1)** 

weirs SYRAH Increased Tp via 

warming 

Chandesris et al., 2019 

Areal weir density upstream of 

stations (# km-2)** 

weir area SYRAH Increased Tp via 

warming 

Chandesris et al., 2019 

Pond cover ratio upstream of 

stations (%)** 

ponds SYRAH Increased Tp via 

warming 

Seyedhashemi et al., 

2021 

Stream incision class ** SI SYRAH Reduced Tp for greater 

incision  

Webb et al., 2008 

aall climate variables are calculated on data from 2009–2017 
bsummer refers to July–August 

*determined by geostatistical interpolation on the RHT network (Sauquet et al., 2000) with return period of five years 
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†ratio of flow duration quantiles Q10-Q99/Q1-Q99, as defined by Sauquet and Catalogne (2011) 

‡classes from 1–12 with pluvial regimes from 1–6, transition regimes from 7–8; and glacial and snow melting regimes from 9–12 (Sauquet et al., 2008) 

**Detailed description of these variables in Valette et al. (2012). 

 

 
 

 

2.4.2 Multiple regression 205 

We first fit a multiple linear regression model between Tp and explanatory variables using all possible variables 

characterized in Table 3. Prior to fitting, we scaled the explanatory variables so that their fitted coefficients could 

be compared in terms of relative importance. We did not use any variable selection techniques in the multiple 

regression approach because our goal was to compare across the four modeling approaches (regression, ANN, 

random forest, and multi-model) that use the same independent variables. In other words, we did seek to have the 210 

most parsimonious multiple regression model, but instead used all 16 variables (Table 3) to create the model. Each 

of these variables was previously assessed for multicollinearity (Fig. A3), and variance inflation factors were all 

less than 3. 

2.4.3 Artificial neural network 

We then used an ANN—specifically a feed‐forward neural network with one hidden layer (R package nnet; 215 

Venables and Ripley 2002)—to estimate Tp as a potentially non‐linear function of covariates. We included a direct 

connection between covariate inputs and outputs so that the case with zero hidden units corresponded to a linear 

relationship. We used weight decay regularization, also known as ridge regression, to control overfitting by 

decreasing less relevant coefficients. Both the number of hidden units and the amount of weight decay were 

selected with a first cross‐validation procedure (Bishop, 2006). To quantify the importance of the different 220 

covariates, we used a connection weight approach (Olden and Jackson, 2002; Olden et al., 2004):  

�� = ∑  �,!"!
�!#
!$�      (6) 

where  

WV (-) = the relevance of covariate V,  

AV,h (-) = the ANN coefficients connecting hidden unit h to covariate V,  225 

Bh (-) = the ANN coefficients connecting hidden unit h to the output, and  

nhu = the number of hidden units 

2.4.4 Random forest 

We used a random forest for the third statistical model structure, using Breiman’s algorithm (Breiman, 2001) with 

the R package randomForest (Liaw and Wiener, 2002) allowing 500 trees. The importance of each predictor 230 

variable was provided as standard output by the randomForest package, which determines how much the mean 

square errors in prediction increases when that covariate is randomly permuted within the tree. 

2.4.5 Multi-model combination 

Finally, we used a multi-model combination approach to obtain a consensus estimation map of Tp,m. The 

temperature predictions from each previously described model were linearly combined to reduce the associated 235 

uncertainties through multiple linear regression. 
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�%,&&,' =  )�%,*++,' +  -�%,./,' + 0�%,.12,' + 3   (7) 

where:  

Tp,mm,i=multi-model Tp based on observed and reconstructed Tw,i for each observation station, i;  

Tp,ANN,i=Tp estimated by ANN for each observation station i;  240 

Tp,RF,i=Tp estimated by RF at each observation station i;  

Tp,REG,i=Tp estimated by multiple regression at each observation station i; and  

a, b, c, d=fitted regression coefficients. 

Temperature predictions made by the three models are used as multi-model independent variables and each model 

prediction is weighted with a coefficient to match the observations as closely as possible. Hence, the multi-model 245 

coefficients are calculated only in relation to observations at the 1700 stations. Then, using equation (7) with 

calculated coefficients, we extrapolate Tp along the river network. 

2.4.4 Model cross-validation and comparison with air temperature 

To assess each model’s performance prior to spatial extrapolation to the entire RHT network, we conducted a 

cross-validation on observed data from our 1700 stations. For each model, including Tp,air, we used 80% of stations 250 

(n = 1360) as training data to estimate model parameters. Using those model parameters, we estimated validation 

data Tp at the remaining 20% of stations (n=340) and cross-validated those estimates with Tp,obs. We conducted 

this cross-validation 100 times allowing for random selection of stations used in the training and validation data 

sets. We evaluated the results of the cross-validation with the Nash-Sutclife efficiency criterion (NSE, Nash and 

Sutcliffe, 1970), the RMSE (Root Mean Square Error) and biases between observed Tp,obs and Tp,m. We also 255 

conducted regressions of Tp,obs and Tp,m.  

We also compared all Tp model results with a thermal peak calculated using only Tair from SAFRAN reanalysis 

data, Tp,air. The goal was to evaluate model performance with the simplest and most widely available stream 

temperature proxy. 

2.4.4 Hypothesis testing 260 

We evaluated the hypothesis that spatial patterns across models would be consistent, but that drivers would depend 

on the modeling approach in two ways. First, we compared relative importance of the most important variables 

across models to see if the same variables emerged. Second, we visually compared maps of Tp,m and compared 

their distributions across watershed area and stream order. We evaluated our second hypothesis that stream size, 

air temperature, and groundwater contributions would emerge as important regardless of approach by comparing 265 

their relationships with Tp,m across modeling approaches using Kendall tau correlation. 

3. Results 

3.1 Validation of the climate correction approach 

Gap-filling Tw with our climate correction approach resulted in consistently lower absolute biases for Tp (i.e., Tp,fill) 

compared to only using available data (i.e., Tp,gap), regardless of the length of introduced annual gaps (Figure 2). 270 

This discrepancy in bias between uncorrected and corrected data increased exponentially with the number of 

introduced gaps, growing from a median of 0.03°C with one year of gaps to 0.25°C with eight years of gaps. 
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Climate corrected biases remained below 0.25°C for 75% of the stations with up to six years of introduced gaps. 

There was no systematic bias regardless of the years taken into account in the regressions. 

 275 

Figure 2. Improvement in absolute bias of thermal peaks across all reference sites (Tp,ref; n=30) when introduced 

annual gaps were filled with the climate correction procedure (|Tp,fill–Tp,ref|, red boxplots) compared to when gaps 

were unfilled (|Tp,gap–Tp,ref|, blue boxplots) regardless of the number of introduced gaps. 

3.2 Model cross-validation 

In cross validation, all four statistical models performed substantially better than air temperature at accurately 280 

predicting Tp (Figure 3). Indeed, Tp,air overestimates the observed Tp,ref by 2.5°C on average (Figure 3a), and the 

negative NSE for Tp,air indicates that using a simple mean of Tw observations is a better predictor of Tp than using 

Tair (Figure 3b). Overall, models tend to slightly underestimate Tp (Figure 3a), but mean biases are close to 0°C. 

The REG and ANN models had similar performance (median RMSE > 1.5°C; median NSE = 0.6), whereas the 

RF and MM models obtained the best performances (median RMSE < 1.5°C; median NSE = 0.7) with the MM 285 

slightly superior for NSE (Figure 3b,c). The models explain in cross-validation between 70% and 78% of the 

variation in Tp,obs with the best performances for RF and MM (Figure 3d-f). Sites with larger watershed areas had 

consistent positive bias (lighter colors in Figure 3d-g), but bias was more evenly distributed for sites with smaller 

watershed areas, thought the smallest watersheds tended to exhibit negative bias. We did not observe any strong 

spatial patterning in performance metrics, although sites with larger watershed areas tended to have positive bias 290 

(Figure 3d–h). 
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Figure 3. Cross validation performance metrics for modeled thermal peaks (Tp,m), where 80% of stations (n = 

1360) were training data and 20% of stations (n=340) were validation data. Violin plots show distributions of 100 

replicates of training-validation data for each model’s performance metrics: a) bias relative to Tp,ref; b) NSE; c) 295 

RMSE of Tp,m relative to observed Tp. Horizontal lines indicate sample medians and red points indicate sample 

means. d-f) Tp,m vs. Tp,obs for each model colored by watershed area at the site. Simple linear regression results (n 

= 1700) are shown in blue with comparison to a 1:1 line (dashed). 

3.3 Explanatory variables importance and effects in models 

Variable importance differed among modeling approaches, and the maximum importance value for any one 300 

variable was between 25–30% (Figure 4). The two most important variables were catchment area (area) and mean 

summer air temperature (Tsummer) for the RF and multiple regression models (Figure 4b,c). For the ANN model, 

minimum monthly specific discharge (qmin) and riparian vegetation cover (veg) were most important (Figure 4a; 

note that qmin is not correlated with area, Figure A3). Surprisingly, area and Tsummer obtained relative importances 

of less than 5% in ANN whereas they were the most important variables in the RF and the REG models. Across 305 

models, none of the three precipitation variables (Table 3) emerged as important, nor did the stream incision class. 

The cumulative importance of the four most relevant variables of the REG and ANN models is respectively 92% 

and 81%, which means that the other variables have very little weight in the estimates. This sum is only 69% for 

RF, which indicates that the relative importance of the explanatory variables are more distributed and the other 

explanatory variables have a significant weight in the estimates which could explain the best performances in cross 310 

validation of RF. In particular, linear and areal weir density upstream of stations occupied a cumulative 7% relative 

importance. These variables also occupied the two next greatest importance rankings (at 1.7% and 0.9% relative 

importance, respectively) for the multiple regression model after those shown in Figure 4. 
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Figure 4. Relative importance of top four explanatory variables calculated in cross validation for the estimation 315 

of Tp with the models: a) ANN; b) REG and c) RF. To compare the relative importance of each variable for each 

model, all variables were centered and scaled. Text in the upper right of each panel refers to the sum of the relative 

importances of the first four explanatory variables in each model; colors indicate the explanatory variable. 

 

The direction and magnitude of effects from the hypothesized variables (area, groundwater contributions, and 320 

summer air temperature) did not systematically differ across modelling approaches (Figure 5). However, there 

were minor differences in that the RF model tended towards higher Tp,m than ANN and REG models at small 

watershed areas and tended towards lower Tp,m than ANN and REG models at larger watershed areas (compare 

Fig. 5g with 5a and 5d). The RF model was also less sensitive to Tsummer, with RF producing lower Tp,m than ANN 

and REG models at sites with cooler summer temperatures and lower Tp,m than ANN and REG models at sites 325 

with warmer summer temperatures (compare Fig. 5i with 5c and 5f). 
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Figure 5. Modeled Tp at each of the 1700 observation stations as a function of the variables hypothesized to be 

equally important across approaches. Rows indicate the model used (points also colored accordingly) and columns 

are separated by area, qmin, and Tsummer; area and qmin are natural-log transformed. Lines indicate best-fit smoothers 330 

using a generalized additive model and text indicates Kendall tau correlation values (all p<0.001). There was no 

systematic difference in variable effects on Tp,m. 

3.4 Spatial extrapolation of thermal peaks and comparison with air temperature 

The statistical models could extrapolate Tp to 92% (105,800 reaches) of the RHT network, and the resulting spatial 

structure of the extrapolations was consistent across models (Figure 6). On average, Tp was 18.2°C and ranged 335 

between 6.3°C and 27.0°C.  The highest Tp,m (i.e., Tp > 22°C) were generally found on the largest rivers located in 

the southeast and in the sedimentary plains. The lowest Tp,m are found in the mountain streams of the Alps, 

Pyrenees and Massif Central, and in the northwest. Although the distribution Tp,m is consistent among models 

(Figure 6), there are some clear disparities, particularly at the extremes. The ANN model simulates lower Tp,m  

(20% of reaches Tp,m<15°C) compared to the RF and mulit-model (< 10%; Fig A4a). Application of the climate 340 

correction prior to model fitting and subsequent extrapolation showed that differences at the RHT are less than 
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0.5°C at 89% of the reaches (Fig A4b). Still, 10% of the reaches exhibited Tp,m differences greater than 0.5°C, and 

the vast majority of these differences are negative (9.4% vs. 1.6%), suggesting that climate correction more often 

than not reduces overestimates in Tp. 

Estimating Tp with air temperature (i.e., Tp,air) led to consistently higher values than were obtained with statistical 345 

models, with Tp,air greater than 20°C for more than 70% of the reaches (Figure 6a, Fig A4a). Indeed, depending on 

the model, 94–97% of reaches, have Tp,m lower than Tp,air (Figure 6) and more than 95% of these were in reaches 

with watershed areas less than 1000 km2. Tp,air exhibited its greatest overestimations in the smallest watersheds 

(Figure 7a) and switched from overestimation to underestimation relative to Tp,m at reaches with watershed areas 

between 2000–5000 km2. While this behavior was similar across models, the REG and ANN models tended to be 350 

produce lower Tp,m for small areas and higher Tp,m for large areas compared to RF and MM models, suggesting 

their increased sensitivity to this variable. Tp,air also increased its overestimations relative to Tp,m in reaches with 

the most groundwater contributions (Figure 7b). Similar to watershed area, the REG and ANN models tended to 

be produce higher Tp,m for low qmin and lower Tp,m for high qmin than the RF and MM models, suggesting higher 

sensitivity to this variable. In other words, in small watesheds with low baseflow, Tp,m from REG and ANN models 355 

were 2–3°C less than from RF and MM models, but in large watersheds with high baseflow, Tp,m from REG and 

ANN models were 3–5°C greater than from RF and MM models. 

 

Figure 6. Thermal peaks (Tp) of stream water extrapolated to all reaches of the French hydrographical network 

RHT with the different predictive model structures: a) air temperature (Tair), b) multiple regression (REG), c) 360 

artificial neural network (ANN), d) random forest (RF), and e) multi-model combination of all previous models 

(MM). All reaches are colored by their modeled range of Tp and colors are chosen to improve visualization. 
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Figure 7. Differences between stream thermal peaks estimated by air temperature and models depending 

on a) watershed area, and b) minimum monthly specific discharge. To simplify visualization across the 114,600 365 

reaches, points were summarized across 5% bins in the x-axis; points indicate mean values at each bin, with 

vertical error bars indicating standard error. a) As watershed area increases, Tair shifts from overestimation to 

underestimation relative to Tp,m, with a shift in sign between 2,000 and 5,000 km2. b) As minimum monthly 

specific discharge increases, Tair tends to increase its overestimation relative to Tp,m, especially for catchment 

size greater than 100 km² (colors). Only results for RF model are shown. 370 

4. Discussion 

We compiled one of the largest regional summertime stream temperature datasets to address the growing need to 

understand stream thermal regimes in the context of climate change. This database is available for use at the 

following website: https://thermie_rivieres.inrae.fr. Using this database, we demonstrate that a simple, 

ecologically meaningful metric, which we term the thermal peak (Tp), can be reliably estimated at the regional 375 

scale using a few easily accessible explanatory variables. 

4.1 Horizons and limitations in estimating large-scale stream thermal metrics 

Spatiotemporally comprehensive stream temperature datasets are rare because interest in these data is relatively 

recent and there is little money to support instrumentation at regional or national scales. This lack of data has been 

recognized as a major limitation for understanding thermal regimes of riverine ecosystems (Arismendi et al., 2012; 380 

Ouellet et al., 2020). Existing data typically come from different entities and are not managed according to a 

predefined regional strategy, precluding broad-scale synthesis and understanding of controls on stream 

temperature and its subsequent effects on ecosystems and society. To overcome these barriers, we employed a 

combined empirical approach that allowed us to identify, at the regional scale, a map of summer stream 

temperature maxima with important implications for aquatic species distributions under climate change. We note 385 
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here that the more detailed computation of Tp (i.e., rolling window of 30-days) could be simplified with a mean of 

August stream temperature data, as we observed this to regularly be the hottest month across all observable data. 

We observed the hottest Tp along major rivers and the coldest Tp along small rivers and in mountainous regions 

(Fig. 6). The downside of the current approach is that it remains based on interannual metrics. Indeed, the non-

concomitance of the time series does not allow us to compare extreme years (hot vs. cold). However, the stream 390 

temperature dataset used here contains benchmark information, which could be used to calibrate models and asses 

the impact of climate change on thermal regimes  (cf. Isaak et al., 2017, 2020).This map can presently be used to 

predict and manage future cold-water habitat streams, with potential for regular multi-annual updates. 

To enable unbiased comparison among stations from time series with gaps, we used a climate correction of Tw 

based on regression with Tair. The efficacy of regressions between Tw and Tair is well understood (Ducharne, 2008; 395 

Segura et al., 2015, Moatar and Gailhard, 2006), and the approach can be easily transferred to other stations and 

regions. On the other hand, a cautious approach is required for such regressions, because they assume seasonal 

correlation between Tair and Tw, and can therefore only apply to rivers having natural seasonal dynamics, without 

dam release, thermal peaking, or major weirs regulating the flow of streams  (Bruno et al., 2013; Chandesris et al., 

2019; Seyedhashemi et al., 2021; Casado et al., 2013). Moreover, our rolling window approach to Tw–Tair 400 

regression suggests that the watershed size may be an important factor in developing these relationships, with 

regressions for larger rivers benefitting from longer lags in Tair (Fig. A2). However, where possible, climate 

correction makes it possible to significantly reduce the biases in Tp estimates when compared those made using 

observed data without climate corrections (Figs. 2 and 3). The biases are reduced when the number of years of 

observation available is less than four. Beyond this limit, the meteorological variability specific to each year is 405 

sufficient to estimate Tp, which confirms results obtained by (Jones and Schmidt, 2018). Moreover, climate 

correction reduces overestimation of Tp, reinforcing the importance of taking into account these climatic 

corrections of temperature metrics even if it only slightly affects the majority of rivers (Isaak et al., 2017)  

4.2 Spatial extrapolation of Tp is consistent and best predicted with a random forest model 

All four statistical models achieved similar predictive performance, but the RF model exhibited marginal 410 

improvements over the others (Fig. 3). The MM approach only slightly improves performance in cross-validation 

in comparison with RF (vis-à-vis the NSE criterion), so it is unlikely to be a useful approach in future applications 

due to its complexity. Moreover, whereas the multi-model has the best performance, it lacks the explanatory power 

and relative simplicity of the other approaches. In contrast, a potential benefit of the multi-model approach is that 

by leveraging multiple approaches, it can compensate for errors particular to individual models. 415 

Overall, our model performances (NSE = 0.75, RMSE <2) were of the same order as other large scale stream 

temperature studies found in the literature (cf. Segura et al., 2015; Daigle et al., 2010; Wehrly et al., 2009), 

suggesting that our approach is reasonable and broadly applicable. Indeed, literature ranges of RMSE for monthly 

stream thermal maxima are consistent with values we obtained here (e.g., 0.9–2.1°C for 16 sites across Canada 

(Daigle et al. 2010) and 2.0–2.3°C for 1131 sites across USA (Wehrly et al., 2009)), suggesting a general accuracy 420 

limit to current modeling approaches. This is likely because RF models can be prone to overfitting such that they 

can accurately predict a set of observations, but their performance may decline when predictions are made at 

unsampled locations. They also have less robust means of model selection and significance testing than the much 

simpler multiple linear regression approach. 
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In spatial extrapolation, the Tp estimates are globally consistent between the models and the same spatial structures 425 

are found regardless of the approach used (Figure 6). We observed divergences between the models in particular 

for Tp less than 14°C where ANN tends to simulate coldest Tp for more reaches compared to other models (Fig. 

A4). Still, because our analysis is limited to 2009–2017, these model differences may diminish as Tw measurements 

grow in time and space. We further note that the performance of the modeling techniques used here was less than 

that of spatial stream-network models (SSNs) applied to similar temperature datasets, which typically have 430 

R2~0.90 and RMSE~1.0°C (Issak et al. 2020). A SSN model was tested on a small region well covered by data 

(9000 km², 92 stations) for a robust estimation of parameters with the R package SSN (see Fig. A5 and Table A1)., 

and indeed; SSN had reduced bias relative to than random forest model (absolute bias decreased by 0.2°C). By 

comparing the observed and estimated values, we can see that compared to the SSN, the RF model tends to 

underestimate the high values (on major rivers) and to overestimate the low values (on smaller reaches). Still, the 435 

spatial patterns are very consistent among the two approaches, though there are important differences between the 

SSN and RF model estimates which can be +/- 2°C. However, SSNs are labor intensive to apply in comparison to 

non-geospatial techniques and require specialized geospatial algorithms for fitting. Hence, despite lower accuracy, 

the approaches used here may be useful in more generic use cases when geospatial data and computing time are 

limiting. Overall, while the presented models may not be optimal, we are confident in the predicted spatial patterns. 440 

4.3 Drivers of thermal peak depend on model structure 

We observed clear divergence of variable importance for the estimation of Tp among the ANN, RF, and REG 

models. The two most relevant variables in RF and REG were catchment area  and mean summer air temperature, 

consistent with other studies (Laanaya et al., 2017; McGarvey et al., 2018). The importance of mean summer air 

temperature on Tp is consistent with other studies (Moore et al, 2010, 2013). Drainage area also emerged as one 445 

of the most important variables driving thermal peaks, behind catchment elevation and slope, in a recent regional 

study (Johnson et al, 2020). Likewise, distance from source and Strahler order, which directly correlate with 

drainage area, are known to be important drivers of thermal peaks (Hrachowitz et al, 2010; Imholt et al, 2013; 

Ducharne, 2008, Mohseni et Stephan, 1999). The clear rationale for this common effect is that longer water travel 

times in large rivers allow more time for temperature equilibration with the atmosphere compared to small rivers 450 

(Beaufort et al., 2019; Mohseni et al., 1998). Large rivers are also less shaded by riparian vegetation and are less 

influenced by groundwater inflows, which compounds residence time effects. 

Importantly, RF had a much more even distribution of variable importances relative to the other models structures, 

which is likely due to its non‐linear structure. In contrast, for ANN, the most important variables were minimum 

monthly specific discharge (43%) followed by riparian vegetation cover (23%). Higher minimum flows imply a 455 

consistent groundwater supply, leading to cool surface waters in summer (Hannah et al., 2004; Kelleher et al., 

2012; Lalot et al., 2015). Similarly, more riparian vegetation implies greater shading and reduced temperature 

increases from solar radiation (Dugdale et al., 2018; Loicq et al., 2018; Moore et al., 2013). These differences in 

relevance between the variables for each model underlines the importance of using several approaches and shows 

that the multi-model approach makes it possible to take into account all these across-model divergences. We 460 

caution however, that while predictability may increase, interpretation of variable importance in multi-models is 

complex, and their utility may therefore decrease when project goals are focused on critical variables for stream 

temperature habitat restoration. 
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4.4 Air temperature is not an appropriate proxy for stream temperature 

Estimates of Tp produced by stream temperature were clearly more accurate than those produced by air temperature 465 

(Figures 3 and 5). In cross-validation, Tp,air overestimated observed Tp by more than 2°C, could not differentiate 

stream temperature among regions (Figs. 6 and 7), and could not differentiate large rivers from small rivers. Our 

results further demonstrated that this overestimation of Tp,air was greatest in smaller rivers, and that these biases 

were amplified in streams with significant groundwater contribution (Fig. 7), implying that groundwater buffers 

effects of increasing Tair. This aligns with recent results that found sites with deep groundwater contributions can 470 

buffer are much less likely to exhibit increasing summer stream temperatures compared to sites with shallow 

groundwater contributions (Hare et al. 2021). However, we note that the influence of qmin on Tp,air–Tp,w is weak up 

to values of approximately 5 L s-1 km-2 (Fig. 7b), which is in accordance with recent work in the same region 

(Beaufort et al., 2019). This small effect may in part be because qmin is not an effective proxy for groundwater 

contributions; the base flow index is likely more appropriate (Kelleher et al, 2012; O’Driscoll & DeWalle, 2004, 475 

Hare et al, 2021; Johnson et al, 2020), but we were unable to obtain this parameter in this work at a national scale. 

Overall, this work clearly demonstrates that Tair is an inappropriate proxy for Tw, with important implications for 

ecological studies, especially those that consider temperature tolerance thresholds of aquatic species. Species 

distribution models may need to use Tair instead of Tw because data from Tw are not sufficient in the regions studied 

(McGarvey et al., 2018). It is therefore important to introduce Tw in input of these models rather than Tair in order 480 

to limit the biases linked to the poor spatial representation of Tair.  

This research further emphasizes the importance of spatial scale and heterogeneity for water temperature studies. 

As streams increase in size, they become more coupled to air temperature dynamics. Hence, smaller reaches more 

influenced by groundwater inputs and vegetation may serve as “climate refugia” for ectotherms species especially 

in the context of climate change. Therefore, choosing the best predictors at a spatial scale for thermal peaks and 485 

other thermal regime metrics is essential to accurately predict and manage future stream cold-water habitat. 

Groundwater and shading proxies could be good candidates. 

4. Conclusion 

Stream thermal regimes are essential controls on aquatic ecosystems, but our understanding of these regimes and 

thus our ability to adequately manage them accordingly in the context of climate change is limited by data 490 

availability and simple metrics applicable at large scales. To address these gaps, we created a publicly available, 

harmonized dataset of stream temperature that can used by ecologists in France and scientists more broadly. We 

then developed a simple, ecologically relevant metric–the thermal peak, Tp– that can be extrapolated at large scales, 

even when data are sparse. We developed an innovative climate correction method to reduce biases related to such 

data sparseness, when applied to summer data. The Tp provides an important perspective on the magnitude of 495 

thermal extremes during summer, but development of additional metrics such as threshold exceedance frequency, 

duration, and timing will continue to grow our understanding of stream temperature behavior under climate 

change. However, development of these metrics will require longer and more spatially explicit time series. Hence, 

we argue that to improve our capacity to manage and benefit from aquatic ecosystems, it is critical to continue and 

expand our stream temperature measurement networks. 500 
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5. Appendix A 

 

Figure A1. Histogram of the median date for the hottest 30-day periods across all sites that had annual data. 

Thirty day rolling windows of mean daily stream temperature were calculated across the entire time series and for 

each site, and the 30-day windows with the maximum values were selected here. The median date here refers to 505 

day 15 in the 30 day period. 



20 

 

 

Figure A2. Daily lags for Tair that produce the highest R2 (colors) for a regression between Tw and a right-

aligned moving average of Tair at each site as a function of watershed area. The moving average lag whose 

regression produced the highest R2 was used to fill gaps in the time series of Tw for each station. Each point 510 

represents a station, with the x-axis being the watershed area at that station, the y-axis being the lag in Tair that 

produced the best regression. Points are jittered for visual clarity; only integer lag values were possible. Black 

points indicate the mean and standard error (horizontal bars) of watershed areas within each possible lag (2–10 

days). 
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 515 

Figure A3. Correlation matrix of all 16 considered environmental variables prior to selection in the thermal 

peak analysis. All variables had collinearity values less than 0.6 or greater than -0.6. 

 

Figure A4. Distributions of Tp,m extrapolated to all RHT network reaches. a) Histogram of models (10 bins equally 

spaced between 0°C and 30°C) according their extrapolated Tp value, colored by model, and b) differences between 520 

Tp,m calculated with and without climate corrections on the 1,630 stations with gaps in their data. 
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Figure A5. Figure comparing modeled thermal peak (Tp,m) estimates from (a) SSN, (b) RF, and (c) the 

difference between RF and SSN. The SSN model here is from a benchmark test on a small region well covered 

by data (9000 km², 92 stations) for a robust estimation of parameters with the R package SSN. SSN had reduced 525 

bias relative to than random forest model (absolute bias decreased by 0.2°C). Additionally, by comparing the 

observed and estimated values, we can see that RF tends to underestimate the high values and to overestimate the 

low values. Unfortunately, due to the lack of an RHT with upstream-downstream information, we could not 

apply at the scale of the whole catchment. Still, the spatial patterns are very consistent among the two 

approaches, though there are important differences between the SSN and RF model estimates which can be +/- 530 

2°C. The estimates of the SSN model are generally warmer than those of RF on the main major river axes and 

colder on the small tributaries. This is consistent also with observations. So, while the presented models may not 

be optimal, we are confident the spatial patterns are correct. 

 

Table A1. Comparison of model performance metrics for the region tested in Figure A5 

 Model RMSE (-) NSE (-) Bias (°C) Absolute bias (°C) 

RF  1.24 0.44 0.01 0.95 

SSN 0.99 0.81 0.05 0.76 
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