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Abstract.

State-of-the-art global hydrological models (GHMs) exhibit large uncertainties in hydrological simulations due to the com-

plexity, diversity, and heterogeneity of the land surface and subsurface processes, as well as scale-dependency of these processes

and associated parameters. Recent progress in machine learning, fueled by relevant Earth observation data streams, may help

overcome these challenges. But machine learning methods are not bound by physical laws and their interpretability is limited5

by design.

In this study, we exemplify a hybrid approach to global hydrological modeling that exploits the data-adaptivity of neural

networks for representing uncertain processes within a model structure based on physical principles (e.g., mass conservation),

that form the basis of GHMs. This combination of machine learning and physical knowledge can potentially lead to data-driven,

yet physically consistent and partially interpretable hybrid models.10

The hybrid hydrological model (H2M), extended from Kraft et al. (2020), simulates the dynamics of snow, soil moisture,

and groundwater storage globally at 1◦ spatial resolution and daily time step. Water fluxes are simulated by an embedded

recurrent neural network. We trained the model simultaneously against observational products of terrestrial water storage

variations (TWS), grid cell runoff (Q), evapotranspiration (ET), and snow water equivalent (SWE) with a multi-task learning

approach.15

We find that the H2M is capable of reproducing key patterns of global water cycle components with model performances

being at least on par with four state-of-the-art GHMs, which provide a necessary benchmark for H2M. The neural network

learned hydrological responses of evapotranspiration and grid cell runoff to antecedent soil moisture states qualitatively con-

sistent with our understanding and theory. The simulated contributions of groundwater, soil moisture, and snowpack variability

to TWS variations are plausible and within the ranges of traditional GHMs. H2M identifies a somewhat stronger role of soil20

moisture for TWS variations in transitional and tropical regions compared to GHMs.

With the findings and analysis, we conclude that H2M provides a new data-driven perspective on modeling the global

hydrological cycle and physical responses with machine-learned parameters, that is consistent with and complementary to

existing global modeling frameworks. The hybrid modeling approaches have a large potential to better leverage ever-increasing

Earth observation data streams to advance our understandings of the Earth system and capabilities to monitor and model it.25
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1 Introduction

Physically-based global hydrological models (GHMs) are an essential tool to understand, monitor, and forecast the water

cycle with an array of societal implications (Jiménez Cisneros et al., 2014). Yet, GHMs and land-surface models face many

challenges related to process representations and parameterizations, resulting in large uncertainties (Schellekens et al., 2017).

The existing state-of-the-art GHMs still disagree across all spatial and temporal scales, which may be attributed to limited,30

biased, and uncertain data, the heterogeneity of considered processes, or a lack of process understanding (Haddeland et al.,

2011; Beck et al., 2017). While global water cycle observations are increasing rapidly, a thorough integration with a GHM to

overcome uncertainties is rarely facilitated due to the model complexity and computational expenses, even though some GHMs

use data, e.g., river discharge, to calibrate model parameters (e.g., Van Beek et al., 2011).

Different pathways have been proposed to utilize additional Earth observation data in hydrological modeling. For instance,35

physically-based models benefit from using spatially explicit parameters, which can be retrieved from Earth observation data.

It is, for example, common to use spatio-temporally varying leaf area index as a model parameter (e.g., Van Der Knijff

et al., 2010) to account for vegetation dynamics. Furthermore, upscaling of locally-estimated or measured parameters to global

scale—such as catchment parameters (Beck et al., 2016) or soil properties (Hengl et al., 2017)—can improve model accu-

racy. Using model-data-integration approaches, it has been shown that relatively simple conceptual hydrological models can40

yield state-of-the-art performance when calibrated simultaneously on multiple observational data constraints (Trautmann et al.,

2018), which opens new avenues for targeted, partially data-driven experiments to parameterize hydrological processes.

Other approaches to integrate additional observations and physically-based models have been developed in the domain of

data assimilation (McLaughlin, 2002; Reichle, 2008). While classic data assimilation aims to correct model states or provide

initial conditions using additional observational data (Sun et al., 2016), promising concepts exist to learn time-varying model45

parameters from data (Moradkhani et al., 2005; Geer, 2021). If system understanding and out-of-sample performance (e.g.,

long-term prediction) are not central, the use of (purely data-driven) deep learning approaches has been proposed and applied

recently in hydrology, and experimental methods for gaining (so far only qualitative) insights exist (Shen et al., 2018).

Recently, it has been proposed to fuse process models with machine learning into one end-to-end modeling system, in

the so-called hybrid modeling approaches (Reichstein et al., 2019). The hybrid approaches aim at harvesting the information50

in Earth observation data efficiently by replacing uncertain parameters and processes with a machine learning model, while

still maintaining model interpretability and physical consistency. Furthermore, the approach facilitates the incorporation and

integration of information from multiple data sources, which is a bottleneck in GHMs. Hybrid modeling can be employed

to improve the predictability of the Earth system or components thereof, such as sea surface temperature (de Bézenac et al.,

2019), or subgrid atmospheric processes (Rasp et al., 2018). Alternatively but not mutually exclusive, hybrid modeling can55

leverage the flexibility of machine learning models with the goal to retrieve data-driven, yet interpretable physical coefficients

and latent variables.

One of the key hydrological data products for diagnosing and understanding global land water cycle variations is total ter-

restrial water storage (TWS). The TWS is an observation-based rasterized product that integrates all water storage components

2



and is used for calibration and validation of process-based models (Güntner et al., 2007; Schellekens et al., 2017; Trautmann60

et al., 2018; Scanlon et al., 2019) and in data-driven studies (Humphrey et al., 2016; Andrew et al., 2017; Rodell et al., 2018).

An attribution of TWS variations to its components is still unclear as current model simulations do not produce consistent

spatio-temporal patterns due to uncertainties in the model structure and process description, forcing data, and parameter val-

ues (Güntner, 2008). Such attribution is not trivial, especially as contiguous observations of the storage components are not

available separately on a global scale (e.g., groundwater) or limited (e.g., soil moisture, where satellite observations are only65

representative of the top soil layers). Thus, decomposition of TWS components is either done with large-scale hydrological

modeling (Schellekens et al., 2017), locally using in-situ data (e.g., Swenson et al., 2008), or with data-driven approaches

without a strict constraint on physical consistency (Andrew et al., 2017).

This study aims to complement and bridge the previous global-scale hydrological modeling and observation-based syn-

theses by comprehensively evaluating the potential of hybrid modeling at the global scale. In particular, it provides a much-70

needed data-driven perspective on the global water cycle and its spatio-temporal variability based on carefully designed cross-

validation analysis, and that with a crucial consideration of the basic physical principle of mass conservation. To do so, we

have further developed the model proposed by Kraft et al. (2020), especially with regards to model robustness and physical

consistency. The overarching goal of this study is to provide a comprehensive description and assessment of the applicabil-

ity of the hybrid modeling approach as a potential novel avenue for global hydrological simulation. Particular emphasis are75

put on benchmarking against and complementing state-of-the-art hydrological models and assessing the plausibility and inter-

pretability of the machine learning–based data-driven hydrological responses going beyond typical focus on predictive skills.

Furthermore, we examine the potential applications and limitations on a challenging use case of decomposing the contributions

of different water storage components to the variations of TWS.

We first describe the datasets used, the hybrid hydrological model (H2M), and the model training and evaluation approach80

in Section 2. We then show the H2M performance in Sect. 3.1 and present the benchmarking against a set of GHM simulations

from the eartH2Observe ensemble in Sect. 3.2. Section 3.3 provides the data-driven perspective on hydrological responses, fol-

lowed by Sect. 3.4 that focuses on the TWS decomposition. Additional plausibility and interpretability of the H2M simulations

are presented in Sect. 4.1 and Sect. 4.2. Lastly, we provide a more general assessment of the challenges and opportunities of

the hybrid approach in Sect. 4.3.85

2 Data and methods

2.1 Datasets

2.1.1 Meteorological forcing

Three time-varying meteorological datasets were used to force H2M (Tab. 1):

i) Precipitation observations, obtained from the Global Precipitation Climatology Project dataset (GPCP-1DD) v1.2 (Huff-90

man et al., 2012).
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Table 1. Dataset overview: water cycle constraints, meteorological forcing and static variables with their native and aggregated spatial, as

well as their temporal resolution. We use upper case for state variables and lower case for fluxes in the mathematical notation.

Acr. Math. Spatial Temporal Dataset Resources

notation resolution resolution

Water cycle constraints Native Agg.

Terrestrial water storage TWS T 0.50◦ 1.00◦ Monthly GRACE Tellus JPL RL06M v1 Watkins et al. (2015), Wiese et al. (2018)

Evapotranspiration ET e 0.50◦ 1.00◦ Monthly FLUXCOM v1 Tramontana et al. (2016), Jung et al. (2019)

Grid cell runoff Q q 0.50◦ 1.00◦ Monthly GRUN v1 Ghiggi et al. (2019)

Snow water equivalent SWE S 0.25◦ 1.00◦ Daily GlobSnow v2 Takala et al. (2011), Luojus et al. (2014)

Meteorological forcing

Precipitation - p 1.00◦ 1.00◦ Daily GPCP 1dd v1.2 Huffman et al. (2012)

Net radiation - rnet 1.00◦ 1.00◦ Daily CERES SYN1deg Ed4A Wielicki et al. (1996), Doelling (2017)

Air temperature - Tair 0.50◦ 1.00◦ Daily CRUNCEP v8 Harris et al. (2014), Viovy (2018)

Static variables

Soil properties - - 1/120◦ 1/30◦ - Soilgrids v2 Hengl et al. (2017)

Land cover fractions - - 1/360◦ 1/30◦ - Globland30 v1 Chen et al. (2015)

Digital elevation model - - 1/120◦ 1/30◦ - GTOPO DOI/USGS/EROS (1997)

Wetlands - - 1/240◦ 1/30◦ - Tootchi Tootchi et al. (2019)

Arc.=acronym, Agg.=aggregated

ii) Net radiation, provided by the SYN1deg Ed3A product (Doelling, 2017) of the Clouds and the Earth’s Radiant Energy

Systems (CERES) program (Wielicki et al., 1996).

iii) Air temperature, obtained from CRUNCEP v8 dataset, a product of the observation-based Climate Research Unit (CRU)

and the National Center for Environmental Prediction (NCEP) reanalysis data (Harris et al., 2014; Viovy, 2018).95

To test the impact of the model forcings on the comparison with GHMs (Sect. 3.2), we carried out additional H2M simulation

with forcing datasets from the Watch Forcing Data-ERA Interim (WFDEI) dataset (Weedon et al., 2014) in an independent

setup (Appendix D).

2.1.2 Static variables

A set of temporally static variables was used to represent land surface characteristics (Tab. 1):100

i) Soil properties from the soilgrids dataset (Hengl et al., 2017): absolute depth to bedrock and the average (along depth) of

bulk density, coarse fragments, clay, silt, and sand (6 variables in total).

ii) Land cover fractions from the Globland30 dataset (Chen et al., 2015) for the 10 classes: water bodies, wetlands, artificial

surfaces, tundra, permanent snow and ice, grasslands, barren, cultivated land, shrublands, and forests.
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iii) Digital elevation model from GTOPO30 (DOI/USGS/EROS, 1997).105

iv) Fractions of groundwater-driven wetlands, regularly flooded wetlands, and the intersection of them (Tootchi et al.,

2019), i.e., a total of 3 variables.

These 20 static variables were spatially aggregated from their finer resolution to 1/30◦ to maintain sub-grid variations,

yielding a block of 30 latitude cells times 30 longitude cells times 20 variables, i.e., a total of 18 000 values per 1◦ grid cell,

the spatial resolution of the forcing data. Due to the high dimensionality of the static variables, the data was compressed in a110

pre-processing step using a simple convolutional autoencoder, consisting of an encoder, a bottleneck layer, and a decoder. The

decoder is a stack of consecutively smaller convolutional neural network (CNN) layers that reduce the input block to a vector

of size 30, the bottleneck layer. This process is then reverted in the decoder model, mapping the vector back to the input data.

The CNN model is optimized to reconstruct the input data but is forced to find a low-dimensional representation enforced by

the bottleneck (e.g., Goodfellow et al., 2016). The resulting compressed dataset consists of 30 latent variables per grid cell115

that encode the original high-dimensional data (18 000), which is then used as an input to H2M (Section 2.2.2). Note that this

pre-processing step was done independently from the training of H2M.

2.1.3 Observational constraints

Four observational hydrological variables were used to constrain H2M. The datasets were aggregated to a common spatial

resolution of 1◦ (Tab. 1). Due to differences in temporal coverage of the data products, a common period of February 2002 to120

December 2014 was selected.

i) The monthly TWS observations from the Gravity Recovery and Climate Experiment (GRACE) Mascon Equivalent Water

Height RL06 with Coastal Resolution Improvement (CRI) v1 (Watkins et al., 2015; Wiese et al., 2016, 2018) reflect vertically

integrated variations in the water storage. These include the total variations of all storage components including groundwater,

soil moisture, surface water, biosphere-bound water, snow, and ice. To minimize the effect of outliers on the H2M performance,125

the TWS observations outside the range of -500 to 500 mm were excluded.

ii) Monthly ET estimates were obtained from the global FLUXCOM-RS product (Tramontana et al., 2016; Jung et al.,

2019), which is based on machine learning–driven estimates that are upscaled from site-level FLUXNET eddy covariance

measurements (Baldocchi et al., 2001) to a global scale using a range of satellite-based drivers. ET was converted from latent

energy estimates assuming a constant latent heat of vaporization of 2.45 MJ mm-1 m-2.130

iii) Monthly Q estimates were obtained from the GRUN v1 dataset (Ghiggi et al., 2019). GRUN is based on an upscaling

approach that correlates small catchment observations of Q to climate variability. The machine-learned relationships are then

generalized to global scale. Note that only catchments with an area similar to the spatial resolution of the meteorological

forcings were used for the prediction and thus, Q does not include larger routed streamflows and provides an estimate of

gridded runoff.135

iv) The daily SWE observations were obtained from the GlobSnow v2 product (Takala et al., 2011; Luojus et al., 2014).

GlobSnow provides snow water equivalent in the Northern Hemisphere above 40◦N, while the mostly snow-free Southern

Hemisphere is not covered. In GlobSnow, the time steps with no snow are encoded as missing values. Thus, we gap-filled the
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Table 2. The terrestrial water storage (TWS) components as represented by the selected process models. While the hybrid hydrological model

(H2M) represents snow water equivalent (SWE) explicitly, like the process models, the remaining TWS components are partitioned into soil

cumulative water deficit (CWD) and groundwater (GW), which can be interpreted as fast and slow storage. To compare these components

to the global hydrological models (GHMs), we calculated the storage as soil moisture plus canopy interception (CInt) if available and

groundwater plus surface storage (SStor) if available, respectively. Note that CWD represents a deficit and thus, it corresponds to negative

soil water storage.

−CWD (fast storage) GW (slow storage)

SWE SM CInt GW SStor

Model

LISFLOOD 3 3 7 3 7

W3RA 3 3 7 3 7

PCR-GLOBWB 3 3 3 3 3

SURFEX-TRIP 3 3 3 3 3

SWE=soil water equivalent, CWD=cumulative soil water deficit, GW=groundwater,

SM=soil moisture, CInt=canopy interception, SStor=surface storage

GlobSnow product, but only with zero values if a) the snow cover fraction from MODIS (Hall and Riggs, 2016) was below

10 % and b) the GlobSnow product had missing values in a window of ± 12 d. The remaining missing values were not altered.140

2.1.4 Global hydrological model ensemble

To evaluate the H2M simulations of TWS and its components, we selected the GHMs from the eartH2Observe ensem-

ble (Schellekens et al., 2017), version WWR1. From the ten available model simulations, we selected those including ground-

water storage: LISFLOOD (Van Der Knijff et al., 2010), W3RA (Van Dijk and Warren, 2010; Van Dijk et al., 2014), PCR-

GLOBWB (Van Beek et al., 2011; Wada et al., 2014), and SURFEX-TRIP (Decharme et al., 2010, 2013).145

As the models represent different water storages (Tab. 2), they were combined to conceptually match storages modeled

in the H2M (see Sect. 2.2.1): Snow water equivalent (SWE) is available in all models, and was used as is. Groundwater

(GW) storage, conceptualized as all delayed storage components, is the sum of groundwater and surface storage (SStor), if

available for a model. Soil moisture (SM) was combined with canopy interception (CInt), if available. Note that the H2M does

not represent SM directly but the cumulative soil water deficit (CWD), but we consider the dynamics of negative CWD to150

correspond to SM, and thus, the terms are used interchangeably when talking about soil moisture dynamics.

The GHMs were aggregated spatially from 0.5◦ to match the 1.0◦ resolution of our simulations. Such spatial aggregations for

model comparison are common practice in model inter-comparison studies (e.g., Taylor et al., 2012). We expect the variations

within four 0.5◦ cells to be small and thus assume that the 1.0◦ aggregation does not distort the modeled large-scale spatial

patterns.155
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2.1.5 Data filtering

The data used for H2M were additionally filtered to remove regions with low variations in the hydrological cycle, high anthro-

pogenic impact, and with known data limitations using the following criteria:

1. Grid cells with more than 50 % water bodies, more than 90 % permanent snow or ice, or more than 90 % bare land.

2. Regions with more than 90 % artificial built-up surfaces.160

3. Regions with large groundwater withdrawals labeled as “Groundwater depletion” under anthropogenic influence in Rodell

et al. (2018).

4. Grid cells with more than 50 % missing values in any of the time series of the observational constraints.

5. Mountainous areas, which are masked in GlobSnow.

After applying the filters, a total of 12 084 of 1◦grid cells, covering roughly 80 % of the global land area, were selected.165

2.2 The hybrid hydrological model (H2M)

The H2M consists of a dynamic neural network and a simple hydrological framework that represent the major water fluxes

and changes in water storage (Fig. 1). The H2M is set up as a “global” model, i.e., the same model is used to predict the

full spatio-temporal domain, in contrast to separate models for each grid cell in a “local” setup. The H2M only considers the

vertical flow/transport of the water through the system and does not include the lateral flow of either surface (river routing) or170

sub-surface water (groundwater flow).

The neural network (Sect. 2.2.2) yields a set of time-varying coefficients conditioned on the meteorological forcing and

spatial properties derived from the static input variables. These coefficients (e.g., snowmelt factor) are then used in a set of

hydrological equations that are introduced in Sect. 2.2.1. For inference (after the optimization of the neural network), the model

can be applied to unseen data like any forward simulation model without further model tuning.175

For the sake of consistency and clarity, α denotes the time-varying coefficients that are directly estimated by the neural

network, and β denotes the global parameters that are learned as spatially constant. Throughout the manuscript, t is used

as time index and i as the grid cell index. Uppercase variables are used for physical state variables. The code is available

online (see “Code and data availability”).

2.2.1 Hydrological components180

In this section, we introduce the main hydrological components of the H2M.

Snow

Snow water equivalent is one of the water storages simulated by the H2M, and it is also constrained by the corresponding

observation during model training.
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Figure 1. In the H2M, a (b) dynamic neural network (NN) simulates a set of time-varying coefficients that are used in a simple (c) hydro-

logical model. The meteorological forcings xmet,t at time t are used as input (a) to the NN and to the physical equations. The NN contains

a long short-term memory (LSTM) layer and two fully connected networks (FCNN). The model maintains two sets of states: the (phys-

ical) water storages xstor and the LSTM’s internal (non-physical) state h (cell state omitted here). It is conditioned on additional inputs

representing static land surface and soil properties ρ and the previous water storages xstor,t−1. The NN module yields five time-varying

coefficients (α) which are used in the balance equations. Two global parameters (β) are estimated independently from the data input directly

by the optimizer. The location of usage in the balance equations is indicated in parentheses, (̂·) denotes the variables that are constrained

with observations, and upper case variables are storages. Forcings (cyan): p: precipitation, Tair: air temperature, rnet: net radiation. Water

storages (purple): Ŝ: snow water equivalent, C: cumulative soil water deficit, G: groundwater. Time-varying coefficients (red): αsoil: soil

recharge fraction, αgw: groundwater recharge fraction, αsurf: surface runoff fraction, αsmelt: snowmelt coefficient, αet: evaporative fraction.

Learned global constants (blue): βsnow: snow undercatch correction constant, βgw: baseflow constant. Water fluxes: r: rainfall, sacc: snow ac-

cumulation, smelt: snowmelt,win: liquid phase water input, rsoil: soil recharge, rgw: groundwater recharge, ê: evapotranspiration, cof: overflow,

qsurf: surface runoff, qbase: baseflow, q̂: total runoff.

Snow accumulation185

sacc,t,i = pt,i · [Tair,t,i ≤ 0] ·βsnow (in mm d-1) (1)
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is precipitation p with air temperatures Tair ≤ 0◦C. The accumulation is scaled by a learned (optimized) global constant 0<

βsnow < 1. The correction accounts for the known overestimation of solid precipitation due to over-correction for under catch

of snowfall in gauge measurements (Decharme and Douville, 2006). Potential snowmelt

smelt,t,i = αsmelt,t,i ·max(Tair,t,i,0) (in mm d-1) (2)190

is then calculated using a degree-day approach. Opposite to snow accumulation, smelt occurs under the condition of Tair > 0◦C.

The time-varying snowmelt coefficient αsmelt is estimated by the neural network module and mapped to positive values by

applying the softplus activation function; Softplus(x) = log(1 + ex). The snow water equivalent

St,i = max(St−1,i + sacc,t,i− smelt,t,i,0) (in mm) (3)

is then updated using snow accumulation and melt. Positive values of S are enforced by truncating negative values.195

The temperature constraints on snowmelt and accumulation were introduced to avoid compensation effects between sacc and

smelt. It must be noted that such constraints are needed despite the fact that the relationship between snowfall or snowmelt

and air temperature at 2 m may not always be realistic due to the corresponding associations with atmospheric (for snowfall)

and land surface conditions (for snowmelt). We argue that the constraint will reduce or ideally remove equifinality among the

parameters, and thus increase identifiability. This would allow for a physical interpretation of the parameters and processes.200

Soil recharge, groundwater recharge, and surface runoff

The water input (in liquid form) win (mm d-1) is the sum of snowmelt and rainfall. It is partitioned into three fluxes: surface

runoff, qsurf; soil recharge, rsoil; and groundwater recharge rgw.

The coefficients for the partitioning are estimated by the neural network module and mapped to the range (0,1) and naturally

constrained to the sum of 1 by applying the softmax transformation; Softmax(xj) = exj /
∑K
k e

x
k for the element j of K ele-205

ments. The softmax transformation generalizes the logistic function to multiple dimensions. Note that the constrained training

of parameters to 1 ensures that the incoming water is neither lost or generated during the partitioning respecting the physical

law for the conservation of mass.

From the partitioning coefficients, soil recharge rsoil, groundwater recharge rgw, and surface runoff qsurf fluxes are then

calculated as210

rsoil,t,i = αsoil,t,i ·win,t,i (in mm d-1), (4)

rgw,t,i = αgw,t,i ·win,t,i (in mm d-1), and (5)

qsurf,t,i = αsurf,t,i ·win,t,i (in mm d-1), (6)

respectively, where αsoil, αgw, αsurf are the partitioning coefficients of the total incoming water win. All partitioning parameters

vary in both space and time.215
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Evapotranspiration and soil moisture

The total evapotranspiration

et,i = αet,t,i ·
rnet,t,i

2.45
(in mm d-1) (7)

is calculated as the product of the evaporative fraction αet and net radiation rnet (MJ d-1 m-2) converted to mm d-1 assuming a

latent heat of vaporization of 2.45 MJ mm-1 m-2. The evaporative fraction is learned by the neural network and mapped to the220

range (0,1) by applying the sigmoid activation function; σ(x) = 1/(1 + e−x). Note that evapotranspiration is constrained by

the corresponding observation during model training.

Once the evapotranspiration and soil recharge are calculated, the soil moisture is parameterized as the cumulative soil water

deficit C ≥ 0 as

C∗t,i = Ct−1,i + rsoil,t,i− et,i (in mm), (8)225

cof,t,i = Softplus(C∗t,i) (in mm d-1), and (9)

Ct,i = C∗t,i− cof,t,i (in mm), (10)

which has the benefit of having a physical saturation limit of 0. For the comparison with the GHMs (Sect. 3.2), we calculate

soil moisture (mm) dynamics as M =−C. The state C is updated by addition of the soil recharge rsoil, subtraction of evapo-

transpiration e (Eq. 8), and leveling by the overflow mechanism (Eq. 9–10): If C approaches 0, an overflow mechanism allows230

for direct discharge of excess soil moisture into the deeper groundwater storage. Due to the heterogeneity within a model cell,

the overflow cof starts already at values close to 0, which is achieved by using the softplus function.

Baseflow and Groundwater

The baseflow

qbase,t,i =Gt−1,i ·βgw (in mm d-1) (11)235

is calculated as fraction of the past groundwater storage Gt−1 via the learned global baseflow constant βgw with the range

(0,1). Once the baseflow, groundwater recharge, and overflow of soil storage are calculated, the groundwater storage

Gt,i =Gt−1,i + cof,t,i + rgw,t,i− qbase,t,i (in mm) (12)

can be updated using a simple water balance. In H2M, G represents an unconfined aquifer with an unlimited storage capacity.

Total Runoff240

The total runoff

qt,i = qsurf,t,i + qbase,t,i (in mm d-1) (13)
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is simply calculated as the sum of the surface runoff qsurf (Eq. 6) and the baseflow qbase (Eq. 11). We emphasize here that

the neural network receives the state of water storage as inputs and is, thus, able to learn interactions of the water storages,

the input variables, and the corresponding hydrological partitioning and outflow coefficients. Thus, the runoff generation and245

evapotranspiration processes do not only depend on the current and past meteorological condition and static variables, but

also on hydrological state, e.g., the soil water deficit. Therefore, we additionally use runoff as a data constraint during model

training.

H2M storage components

For model training against GRACE, the variations of the modeled terrestrial water storage components are added to calculate250

the total terrestrial water storage

T ∗t,i = St,i +Gt,i + (−Ct,i) (in mm). (14)

Note that −C is used in Eq. 14 as C itself is defined as the water deficit. As the observations of the terrestrial water storage

from GRACE represent the temporal variations, the mean of simulated storage were removed from each grid cell as

Tt,i = T ∗t,i−
1

T
·
T∑
k=1

T ∗k,i (in mm), (15)255

where k is the time step of T total steps. The TWS is constrained by observations during model training.

Note that H2M does not represent surface water storage—a fourth major component of TWS, dominant especially in and

around large surface water bodies like rivers and lakes—explicitly. This will be considered in the discussion of the results.

Compared to physically-based models, the H2M does not explicitly partition the sub-surface storages as soil moisture and

groundwater storages. Rather, it is represented as GW and CWD. The partition is an emergent behavior of H2M constraints by260

the major hydrological fluxes. Negative CWD is loosely and conceptually interpreted as root zone soil moisture, as it serves

as the moisture source for evapotranspiration. This is in fact consistent with the physical models, even though CWD does not

have a continuous interaction with GW storage except during overflow in H2M.

GW storage represents all delayed residual liquid water storage with infinite capacity. It is constrained by the baseflow

fraction and subsequently temporal variation of total runoff (Eq. 11), which leads to a delayed dynamics compared to CWD.265

2.2.2 The neural network (NN) module

The NN module (Fig. 1b) consists of three consecutively arranged sub-modules employed for extractions of different features.

Overall, the NN module learns spatio-temporally varying coefficients of the hydrological model using meteorological and

dimensionality-reduced static variables of land (sub)surface characteristics. The pseudo-code of the NN module is presented

in Appendix E, while the sub-modules are introduced here.270

The first feed-forward (i.e., non-temporal) sub-module learns a compressed representation of the static variables (Eq. 16).

This representation, together with meteorological input, is then fed into the second sub-module, a recursive long short-term
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memory (LSTM) model (Hochreiter and Schmidhuber, 1997), shown in Eq. 17. The third sub-module (Eq. 18) transforms the

outputs of the LSTM to a set of coefficients, which are then fed into the hydrological components. As the model weights are

shared across all grid cells, the NN module learns from the global dynamics and not exclusively from each grid cell. For a275

comprehensive overview of the neural network architectures, see Goodfellow et al. (2016).

The first sub-module

ρenc,i = fFCNN1(ρi) (16)

is a fully-connected neural network (FCNN1 in Fig. 1) with a single hidden layer and 150 nodes. It takes the static encodings

ρ (see Sect. 2.1.2) as inputs and transforms them into a more condensed form (ρenc). This reduces the high dimensionality280

of static inputs from 30 to 12 values. Ideally, this lower-dimensional representation describes the most significant gradients

of the land characteristics at the sub-grid scale (visualized in Fig. C2, Appendix C). Note that the static variables have al-

ready been compressed in a pre-processing step, and the transformation in this sub-module is optimized specifically for the

parameterization of the hydrological components.

The second sub-module is an LSTM, a recurrent neural network (RNN) variant that updates its states dynamically using285

the previous states and the current input. LSTMs are broadly used in the Earth sciences due to their ability to learn temporal

dynamics (Körner and Rußwurm, 2021), i.e., to represent memory effects that are present in hydrological observations (Kraft

et al., 2019, 2021; Humphrey et al., 2016). It has a hidden (in the sense of “latent”) state vector h whose length (100 in H2M)

is a tunable hyper-parameter. The hidden state

hi,t = fRNN(hi,t−1,xt,i) (17)290

is updated at each time step by using interactions of the previous states ht−1 and the current input xt,i. In H2M, xt,i is a

multivariate input consisting of concatenated current meteorological conditions xmet,t,i, antecedent physical states from the

hydrological model xstor,t−1,i, and the static features ρenc,i from Eq. 16. The input allows the LSTM to learn interactions

among the variables conditioned on static land properties like land cover type or elevation. In the optimization process, the

RNN learns to maintain a memory of information from past time steps and is capable of updating, removing, and extracting295

information from its state.

In summary, the LSTM sub-module is similar to a physically-based model—it takes the current inputs and static character-

istics, and updates the system state based on their interactions with the past state. It should be noted that neither its hidden state

nor the update function is physically interpretable.

Lastly, the third sub-module300

αt,i = fFCNN2(ht) (18)

linearly maps the LSTM output ht to the coefficients α of the hydrological components (FCNN2 in Fig. 1). The vector α

contains five time-varying scalars corresponding to soil recharge fraction αsoil, groundwater recharge fraction αgw, surface

runoff fraction αsurf, snowmelt coefficient αsmelt, and evaporative fraction αet.
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2.3 Model training305

This section introduces the necessary aspects of the model training and validation. First, we introduce the cross-validation

setup, followed by the model training and the loss function.

2.3.1 Cross-validation setup

We use k-fold cross-validation to validate the H2M against observations that were withheld during the training. In the cross-

validation, the model is optimized first on a set of training grid cells and applied to a different set of test grid cells, i.e., spatial310

splitting. Specifically, the grid cells were first split into four sets of grids gl, l ∈ {1,2,3,4}, each consisting of every second grid

cell in latitude and longitude direction with an offset Ol. The offsets of O = {(0,0),(0,1),(1,0),(1,1)} are chosen such that

the selected grids did not overlap while covering the full spatial domain. This procedure asserts a minimum distance needed to

avoid potential issues of spatial autocorrelation (Roberts et al., 2017) within each grid. Each grid was then randomly subdivided

into five folds for cross-validation: three folds for training, and one each for validation and testing. The validation subset was315

used in early stopping, i.e., to stop the training after the validation loss increases over several consecutive iterations. After the

training stop, the best model parameters are loaded and predictions are made on the test subset which are used as the final

prediction. In the iteration through the folds, every fold is used once in the test set, and as such, a complete set of predictions

for a grid cell that was not informed by its own observation is obtained for the respective grid.

In addition to the spatial splitting, the data were also split into calibration and validation time periods akin to the traditional320

approach. To do so, February 2002 to December 2008 was used for calibration, and January 2009 to December 2014 was used

for validation and testing.

The hyper-parameters of the NN (i.e., the number of layers and hidden nodes in the neural networks, the learning rate, weight

decay, dropout, and gradient clipping) are determined on a single grid, and the cross-validation is only applied on the remaining

three grids. For hyper-parameter tuning, we employed the Bayesian optimization hyper-band (BOHB) algorithm (Falkner et al.,325

2018) as implemented in the ray.tune framework (Liaw et al., 2018).

This setup was chosen to avoid over-fitting, which is needed due to the data adaptivity of neural networks. Note that the

spatial splitting reduces the dependency between the cross-validation sets, but does not completely remove it. In addition to the

spatial and temporal splitting and the early stopping, we used weight decay (Loshchilov and Hutter, 2017) for regularization.

2.3.2 Training setup330

As the neural networks and the hydrological equations are differentiable, standard gradient descent approaches with back-

propagation can be used for optimizing the H2M (Goodfellow et al., 2016). We use a multi-task loss as optimization objective

which is a recent concept in deep learning for multi-criteria model calibration (see below), and AdamW (Loshchilov and Hutter,

2017) as the optimizer.

Following a common practice in machine learning, the input variables and the observational data constraints are each z-335

transformed individually to follow a standard normal distribution using the pre-computed mean and standard deviations from
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the training set. For physical consistency, the corresponding non-transformed variables are used for the hydrological balance

equations (see Sect. 2.2).

To obtain an equilibrium of physical and hidden states of H2M, a model spin up is carried out with spin up data of five years

duration, with each full year selected randomly from the training set. In each optimization iteration, the model is first forced340

by the spinup data to retrieve steady states, which are then used as initial conditions during the full forward run with parameter

updates (see pseudo-code in Appendix E).

2.3.3 Multi-task loss

The goal of the model optimization is to minimize the total loss, which consists of two major aspects:

1) The loss term345

Lv(x,y;φ,β) =

T∑
t=1

I∑
i=1

||yv,t,i− ŷv,t,i||2 ,v ∈ {T,S,e,q} (19)

is calculated as the sum of squared residuals for each z-transformed observational data constraint. Here, yv,t,i and ŷv,t,i are the

observed and predicted values of the variable v, respectively. The predictions depend on the input data x, the neural network

parameters φ, as well as the learned global constants β. An additional loss term is employed to promote parameters that would

lead to near zero cumulative soil water deficit C (soil becomes saturated) at least occasionally:350

LC(x;φ,β) =

T∑
t=1

I∑
i=1

(p10(Ĉt,i) + bc) ·wc . (20)

This term pushes the lower 10 percentile p10 of C towards zero. It was needed to reduce the state drift mostly related to spinup

with random years of data that resulted in non-interepretable offsets in C (Kraft et al., 2020). A bias bc = 0.1 was added to

prevent the loss from becoming zero, which would interfere with the multitask loss weighting described below. The loss weight

wc was lowered consecutively during training such that the loss LC had only an impact during the early training phase.355

2) A task uncertainty term σ, weighting the individual losses dynamically:

Ltotal(x,y;φ,β,σ) =
∑

v∈{T,S,e,q,C}

1

2 ·σ2
v

Lv + log(σv) , (21)

where σ is a vector of task-specific uncertainties used to give more or less weight to a particular loss term. The task-specific

uncertainties are trained during optimization such that the emphasis on a specific task changes dynamically over the course

of the model optimization. Note that log(σv) prevents the uncertainties from diverging to infinity. This approach, called self-360

paced multi-task weighting (Kendall et al., 2018), is advantageous as the weights do not need to be subjectively predefined.

The weights are visualized in Fig. C1, Appendix C.

Hence, the global optimization problem can be expressed as

θ∗ = arg min
θ=(φ,β,σ)

Ltotal(fφ,β,x,y,σ) , (22)

in which the parameters of the neural network φ, the global constants β, and the task weights σ are all concurrently and365

simultaneously optimized.
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2.4 Model evaluation and analysis

This section introduces the performance metrics, the spatial and temporal scales, and the methods used to decompose the TWS

components.

2.4.1 Performance metrics370

The quality of the model predictions was mainly assessed using the Nash–Sutcliffe model efficiency coefficient (NSE)

eNSE = 1−
∑N
i=1 (mi− oi)2∑N
i=1 (oi− ō)2

, (23)

wheremi is the modeled and oi the observed value,N is the total number of data points, and ō is the mean of observations (Nash

and Sutcliffe, 1970). An NSE of eNSE = 1 indicates a perfect fit, while an NSE of eNSE = 0 (eNSE < 0) indicates that the

predictive performance of the model is the same as (worse than) that of the mean. Additionally, the root mean square error375

(RMSE), the Pearson correlation coefficient (r), and the ratio of modeled and observed standard deviation (SDR) were used

for model performance evaluation.

2.4.2 Temporal and spatial scales

The performance of H2M was evaluated across different temporal scales. To do so, the observed and modeled time series were

decomposed into the mean seasonal cycle (MSC) and the interannual variability (IAV) as380

vMSC,m =
1

Y

Y∑
y=1

vm,y , and (24)

vIAV,m,y = vm,y − vMSC,m , (25)

where v is the observed or modeled time series, m is the month, and y is the year out of Y total years. Before calculating the

model performance metrics for MSC and IAV, the linear trends were removed from the time series.

Spatially, the model performance is also evaluated across several scales to investigate robustness of the model for local to385

global scale variations. For the regional-scale analysis, we use continent-wise hydroclimatic biomes from Papagiannopoulou

et al. (2018), a machine learning–based dataset that accounts for climate-vegetation interactions. The number of classes was

reduced by combining some of the similar sub-regions, e.g., transitional water-driven and transitional energy-driven or subtypes

of boreal regions (Fig. 2). While aggregating the modeled variables to a regional scale, an area-weighted method was used to

accommodate for differences in the grid-area across the latitude.390

For the global-scale performance we calculate the metrics in two different ways that produce a single metric by a mapping

function fperf : RT ×RT 7→ R that compares two sequences of length T . The first, which we call the global performance

Mglobal = fperf
({
µm,t

}
t=1,...,T ,

{
µo,t
}
t=1,...,T

)
(26)
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Figure 2. Continental hydro-climatic regions, adapted from Papagiannopoulou et al. (2018). Boreal: North America (B1) and Eurasia (B2).

Temperate: North America (M1), Europe (M2), and Asia (M3). Transitional: North and Central America (N1), South America (S2), Africa

(N3), Eurasia and North Africa (N4), Southeast Asia (N5), and Australia (N6). Subtropical: Africa (S1) and Australia (S2). Tropical: South

America (T1) and Africa (T2).

represents the performance of the globally-aggregated variables. The variables µm,t and µo,t represent the modeled and the

observed weighted spatial mean for one time step t, respectively. Similar to regional-scale evaluations, these metrics reflect395

how the area-weighted globally aggregated time-series compare. The global-scale signal are themselves useful indicators, as

they are often used to characterize the Earth system and land surface processes, e.g., climatic changes (Pachauri et al., 2014),

or to evaluate water-carbon relations (Jung et al., 2017; Humphrey et al., 2016).

In contrast, global summary of the local performance

Mlocal = median
({
fperf(mt,i,ot,i)

}
i=1,...,I

)
(27)400

is indicative of how the model performs locally all over the globe. Here, the performance is first calculated for the modeled (m)

versus observed (o) time series per grid cell i. The resulting cell-wise metric is then reduced using the area-weighted median.

The local metrics are useful because the positive and negative model errors and tendencies can compensate when aggregated

over a large spatial extent (e.g., Jung et al., 2017).

2.4.3 Terrestrial water storage variations and decomposition405

For the analysis on the decomposition of TWS (Sect. 3.4 and Sect. 4.2.2), we use the simulated variables SWE, GW, and CWD

to assess their contributions to the TWS dynamics, seasonality, and interannual variability. Note that CWD represents a deficit

of water in the soil. As a consequence, CWD shows opposite dynamics to water storages. We calculate the absolute

Av =

T∑
t=1

|vt− v̄|, v ∈ {−C,G,S} (28)
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and relative contribution (hereinafter simply contribution)410

Cv =
Av∑

w∈{−C,G,S}Aw
v ∈ {−C,G,S} (29)

for each component v following Getirana et al. (2017). Here, v̄ is the mean over the time series v. The contributions are

calculated per grid cell for the time series and their MSC and IAV.

3 Results

We first assess the performance of H2M simulations against the four observational data constraints (TWS, SWE, Q, and ET)415

at different spatial and temporal scales. This is followed by a comparison and benchmarking of model performance of H2M

TWS and SWE against the simulations from four GHMs in the eartH2Observe ensemble. As the hybrid modeling framework

has been significantly developed since Kraft et al. (2020), the H2M performance needs to be re-evaluated here. After the

evaluations, we present a closer analysis and interpretation of the parameters estimated by the neural network that define the

hydrological responses and generation of key hydrological fluxes in H2M. Finally, we present and compare the partitioning of420

TWS components.

An optimization run of a single cross-validation iteration takes 6 hours, a forward run for all grid-cells and the entire period

from 2002 to 2014 takes about 15 minutes. Each model was run on a NVIDIA Tesla Volta V100 16 GB GPU with up to 10

CPUs (Intel(R) Xeon(R) @ 2.20GHz) for data buffering and background tasks.

3.1 General model performance425

For the assessment of the H2M performance, we only used grid cells from the test set and time steps from the test period of

2009 to 2014, which were not used during the model training, and hence not seen by the neural network component of H2M.

The model reproduced the patterns of the observed variables well (Tab. 3). In general, the global signal (global performance,

see Eq. 26) was reproduced better than the local cell-level signal (local performance, see Eq. 27). For both observational

constraint variables TWS and SWE an NSE eNSE > 0.8 and Pearson’s correlation r > 0.9 on the global and eNSE > 0.5 and r >430

0.8 for the local level was achieved. The seasonal signals of TWSMSC and SWEMSC were modeled with high accuracy (eNSE >

0.9 on global, eNSE = 0.7 on local level) while the interannual variability performance varied: The TWSIAV was reproduced

well with eNSE = 0.54 (r = 0.8) on global, and with eNSE = 0.26 (r = 0.67) on local level. The SWEIAV performance was

decent for the global signal (eNSE = 0.22, r = 0.87), but lower (eNSE = 0.15, r = 0.64) on local level.

Both ET and Q are machine learning model–based and not directly observed at global scale. The patterns were reproduced435

well in terms of the seasonality on the global level, while the local performance was lower. For the ETIAV, a low NSE (eNSE =

−0.17) on global, and on cell-level (eNSE =−0.65) is achieved, while the correlation is still relatively good with r = 0.67 on

global, and r = 0.6 on local level. The SDR, the ratio of modeled and observed standard deviation, indicates that on both global

and local level the variability of the simulated ETIAV signal is substantially larger than the reference data with SDR of 1.41

on global, and SDR of 1.65 on cell-level (see Fig. A2 in the Appendix for spatial patterns). For Q, the performance is decent440
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Table 3. The global (spatially averaged) and local (median cell-level) model performance for the observational constraint variables terrestrial

water storage (TWS), snow water equivalent (SWE), evapotranspiration (ET), and runoff (Q), and their decomposition into the mean seasonal

cycle (MSC) and interannual variability (IAV). The Nash–Sutcliffe model efficiency (NSE), Pearson correlation (r), root mean square error

(RMSE), and the ratio of modeled and observed standard deviation (SDR) are calculated for the test set, values represent the mean across the

15 cross-validation runs. Positive values of SDR indicate that the modeled variance is larger than the observed. Note that for the SWE, cells

with constant 0 were dropped. The values were calculated for the test set in the range 2009 to 2014 on monthly time scale.

TWS SWE ET Q

Metric MSC IAV MSC IAV MSC IAV MSC IAV

G
lo

ba
l

pe
rf

or
m

an
ce

NSE (-) 0.84 0.93 0.54 0.96 0.96 0.22 0.96 0.96 -0.11 0.75 0.78 0.47

Pearson’s r (-) 0.94 0.97 0.80 0.98 0.98 0.87 1.00 1.00 0.67 0.93 0.97 0.81

SDR (-) 1.15 1.10 1.09 1.02 1.01 1.57 0.99 0.99 1.41 0.93 0.87 1.13

RMSE (mm) 7.33 4.97 3.27 5.22 5.98 2.16 0.07 0.07 0.02 0.06 0.05 0.03

L
oc

al

pe
rf

or
m

an
ce

NSE (-) 0.54 0.70 0.26 0.58 0.74 0.15 0.79 0.87 -0.77 0.20 0.17 0.07

Pearson’s r (-) 0.82 0.93 0.67 0.89 0.96 0.64 0.95 0.98 0.60 0.80 0.91 0.62

SDR (-) 0.98 1.09 0.95 0.91 0.92 0.97 1.03 1.01 1.65 0.98 0.97 1.04

RMSE (mm) 42.80 22.59 28.72 15.49 13.13 10.60 0.27 0.22 0.14 0.44 0.31 0.27

on the global level and lower on the local cell-level. Also here, low values in terms of NSE are accompanied by relatively

good correlation. Because the independent data for ET and Q are not direct observations, we focus on TWS and SWE in the

following. Maps of mean simulated versus observed fluxes and the spatial patterns of the model performance are provided in

Appendix A.

3.2 Benchmarking H2M against GHMs445

For the quantitative benchmarking of H2M performance with the state-of-the-art GHMs from eartH2Observe (see Sect. 2.1.4),

we use the common time period of 2009 to 2012 (not 2009-2014 as in the previous section) but all common grid cells between

the GHMs and H2M. This is justified as H2M has a negligible generalization error in space, i.e., the H2M performance is

not systematically better in training grid cells. Similarly, we use the entire common time period (including the training data)

for the qualitative assessment of the water cycle dynamics, as also in time, the generalization error was small. We note here450

that H2M was optimized with the datasets used for evaluation, while the GHMs have either been calibrated using catchment-

level observational runoff data (LISFLOOD) or rely on prior parameter estimation (W3RA, SURFEX-TRIP, PCR-GLOBWB)

alone (Schellekens et al., 2017). The comparison presented here serves the purpose of performance benchmarking of the hybrid

modeling approach rather than finding the “best” model.

The H2M modeling efficiency (i.e., the NSE) falls within the range of the GHMs in terms of the global performance (� in455

Fig. 3), although the performance varies less across the variables and temporal scales. However, H2M achieves a consistently
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Figure 3. Global and local grid cell–level Nash–Sutcliffe model efficiency coefficient (NSE) of the hybrid hydrological model (H2M) and

the process-based global hydrological models (GHMs) for the terrestrial water storage (TWS) on top and the snow water equivalent (SWE)

at the bottom. The gray bars represent individual cross-validation runs. The �-markers show the global (spatially averaged signal) model

performance, the boxes represent the spatial variability of the local cell-level performance. The y-axis was cut at -1 due to some large

negative NSE values. The panels show the model performance in respect to the full-time series, the mean seasonal cycle (MSC), and the

interannual variability (IAV). Note that for SWE, only grid cells with at least one day of snow are shown, as the NSE is not defined if

the observations are constant zero, which would lead to a comparison of different grid cells. The metrics are calculated from the complete

common time range from 2009 to 2012 on monthly time scale. Note that deviations from the numbers reported in Tab. 3 are due to different

time ranges.

higher local performance (boxes in Fig. 3). The TWS is reproduced slightly better by the PCR-GLOBWB, which, however,

has a relatively low performance on the local scale. All models struggle to reproduce the SWEIAV signal: The median NSE of

H2M is on a par with W3RA and SURFEX-TRIP, while the performance on spatially aggregated level is lower. A comparison

of the model performance using the same forcings as in the eartH2Observe ensemble is provided in Appendix D, Fig. D1.460

While all models reproduce the global monthly and seasonal TWS (Fig. 4) relatively well, the results vary more substantially

for the TWSIAV. Here, the H2M, WR3A, and LISFLOOD models show the best agreement with the TWS observations (also

see Fig. 3 of model performance). The lower agreement of SURFEX-TRIP and PCR-GLOBWB on the global interannual

scale can be attributed to the time periods 2005–2006 and 2008–2010, respectively. From Fig. B1 of the regional averages

(Appendix B), it becomes evident that this low agreement on global level is mainly due to a low agreement in the tropical465

regions (T1: S-AM tropical and T2: AFR tropical).

The global SWE was well reproduced by H2M, especially the seasonal cycle showed better agreement than the GHMs, where

the latter agreed well with the timing, but not the magnitude (Fig. 5). The global interannual variability was not reproduced
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Figure 4. Comparison of the hybrid hydrological model (H2M) and a set of process-based global hydrological models (GHMs) of the

terrestrial water storage (TWS), its mean seasonal cycle (TWSMSC) and its interannual variability (TWSIAV) for the global signal. The time

series were aggregated using the cell size weighted mean across all grid cells. The regional time series are show in Appendix B, Fig. B1.
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Figure 5. Comparison of the hybrid hydrological model (H2M) and a set of process-based global hydrological models (GHMs) of the snow

water equivalent (SWE), its mean seasonal cycle (SWEMSC) and its interannual variability (SWEIAV) for the global signal. The time series

were aggregated using the cell size weighted mean across all grid cells. The regional time series are show in Appendix B, Fig. B2.

well by the H2M, LISFLOOD, and PCR-GLOBWB. Interestingly, H2M performed best when forced by the same WFDEI data

as in the GHM simulations (Fig. D1 in Appendix D). Regional model comparison of the time series are provided in Fig. B1470

and B2, Appendix B.
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Figure 6. Relationship between the water input partitioning fractions for soil (αsoil, left), groundwater (αgw, middle), and surface runoff

(αsurf, right), and the cumulative soil water deficit (CWD) as learned by the neural network. The figure shows the respective percentiles of the

spatio-temporal conditional distribution P (α | C ∈Bi), where C is the cumulative soil water deficit on the x-axis discretized into N = 10

bins B =
{

[0,40), . . . , [360,400)
}
i=1,...,N

. The colored lines show the percentiles per cross-validation run, the black dashed lines show the

mean across the colored lines. The CWD dynamics correspond to negative soil moisture, i.e., larger CWD for dryer soils, and thus a larger

CWD corresponds to smaller soil moisture. The plots are based on global daily cell time steps from 2009 to 2014. Note the differences in

y-scale.

3.3 Hydrological responses in H2M

For the qualitative assessment of the hydrological responses, we use all grid cells, like in the previous section, and show

the time range from 2003 to 2014 in time series plots. This involves the training data, but the impact is minimal due to a

negligible generalization error. The H2M yields a set of data-driven, spatio-temporally varying coefficients that define the475

hydrological responses and generation of key hydrological fluxes. In particular, we focus on four parameters: αsoil, the fraction

of throughfall that percolates into the soil; αgw, the fraction that recharges the groundwater, αsurf; the fraction that runs off as

surface runoff component; and αet, the evaporative fraction (ratio of evapotranspiration to net radiation). Here, we analyze the

spatio-temporal variability of the parameters and how they are associated with soil moisture condition defined by soil water

deficit. In essence, these are analogous to stage-discharge relationships (Kumar, 2011) that are commonly used to characterize480

hydrological responses of river discharge at the catchment scale.

The partitioning of the liquid water input winp (rainfall plus snowmelt) by the fractions for soil recharge (αsoil), groundwater

recharge (αgw), and surface runoff (αsurf) was robust across cross-validation runs and showed a clear relationship to CWD

(Fig. 6). With an increasing soil water deficit (larger CWD, dryer soil), the soil recharge increases, while the groundwater

recharge and surface runoff decrease. For a CWD below 200 mm, we observe a large spatio-temporal variation in the partition-485

ing, evident through the relatively large difference between the 20th and 80th percentiles. The transition from larger soil recharge

to larger groundwater recharge and surface runoff is exponentially decreasing, i.e., the change is faster with lower CWD (wetter

soil). Above a CWD of 200 mm (dry soil), the partitioning is constant in space and time with αsoil converging to 1, while αgw

and αsurf converge to 0. The relatively large variation under wet conditions (low CWD) in Fig. 6 can be attributed about equally

to temporal and spatial variability. The groundwater recharge fraction αgw shows a slightly larger temporal variability than the490

other fractions, and the contribution of the temporal component was generally a bit lower in the transitional regions.
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Figure 7. Relationship between evaporative fraction (αet) and cumulative soil water deficit (CWD) for different hydroclimatic regions. The

lines shows the respective percentiles of the spatio-temporal conditional distribution P (αet | C ∈Bi), where C is the cumulative soil water

deficit on the x-axis discretized into N = 10 bins B =
{

[0,40), . . . , [360,400)
}
i=1,...,N

. The lines represent the median, and the 10 to 90th

percentile is displayed as shaded area. The red colors depict conditions without water input, P (αet | C ∈Bi,win = 0), i.e., no precipitation

or snowmelt, and green colors represent high water input larger than 5 mm, P (αet | C ∈Bi,win > 5). Note that the CWD minimum was

subtracted per grid cell. To exclude cells with a low CWD variability, only the cells in the top 60 percent maximum CWD were used. The

CWD dynamics correspond to negative soil moisture, i.e., a larger CWD implies dryer soils. The plots are based on global daily cell time

steps from 2009 to 2014.

In most hydroclimatic regions, αet showed a negative relationship to CWD under dry conditions (magenta lines in Fig. 7),

and no relationship in presence of precipitation or snowmelt (green lines in Fig. 7). The high latitude and tropical regions

showed a less clear relationship and less variation in CWD in general. In all regions, αet was close to 1 with large water input

(win > 5 mm). In arid (S1-2) and semiarid (N1-5) climates, αet exhibits a large range with steep gradients given low water495

input (win = 0 mm), decreasing with larger CWD (dryer soil). The 10–90th percentile spread is large in most cases, which

indicates that the relationship is modeled with a large spatio-temporal variability.

The H2M shows a large water balance surplus of 12.9 and 21.4 mm yr-1, respectively, depending on the forcing dataset used

(Tab. 4). The values are robust across cross-validation runs. The largest surplus occurs with the GPCP precipitation product,

which is 9 mm yr-1 larger than WFDEI. The GHMs all show a lower ET and a larger Q trend than H2M.500
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Table 4. Global yearly evapotranspiration (ET), grid cell runoff (Q), precipitation (Precip.), and storage change (∆ Storage) over the period

from 2003 to 2012 for the hybrid hydrological model (H2M) and a set of physically-based global hydrological models (GHMs). The H2M

was forced with the GPCP precipitation product (“H2M”) and the WFDEI data (“H2M (WFDEI)”) independently. The latter dataset is also

used by the GHMs. The values for H2M and H2M (WFDEI) represent the mean ± the standard deviation across all cross-validation runs.

Values from the common land-mask of all models were considered.

ET Q Precip.* ∆ Storage

Model (mm yr-1) (mm yr-1) (mm yr-1) (mm yr-1)

H2M 564 ± 6.7 274 ± 6.5 860 21.4 ± 1.1

H2M (WFDEI) 553 ± 6.0 285 ± 6.5 851 12.9 ± 1.0

W3RA 515 332 851 2.5

LISFLOOD 468 397 851 -14.3

SURFEX-TRIP 552 296 851 2.3

PCR-GLOBWB 504 348 851 -1.3

*GPCP for H2M, else WFDEI.

The global parameters (β) were both estimated robustly, with a mean baseflow constant βgw = 0.008 and a mean snow

undercatch correction constant βsnow = 0.77 and a relative standard deviation of 6 % and 2 % across the 15 cross-validation

runs, respectively.

3.4 Terrestrial water storage composition

In this section, we show the TWS partitioning into snow, soil moisture, and groundwater variations as simulated by H2M and505

compare it with the corresponding partitioning from the GHMs.

The spatial patterns of the TWS partitioning vary strongly among the models (Fig. 8). Some patterns are consistent, though:

The TWS seasonality (Fig. 8, top) is dominated by SWE in the high latitudes in all model simulations. Furthermore, all models

tend to attribute the TWS variability to soil moisture in hot arid and semiarid climates. In other regions, the models diverge

substantially. Both W3RA and PCR-GLOBWB attribute stronger groundwater contributions in most tropical and mild climates,510

while LISFLOOD and SURFEX-TRIP do not show much variation outside cold, semiarid, and arid regions. In H2M, only the

humid Amazon and Southeastern Asia show a distinct contribution from groundwater. For the TWSIAV decomposition (Fig. 8,

bottom), we see a rough agreement between the H2M, LISFLOOD, W3RA, and PCR-GLOBWB model in North America,

Europa, and northern and central Asia. The latter two again show a stronger groundwater contribution, which extends to

southern tropical and mild climates. The largest difference between H2M and the GHMs is the low H2M contribution of515

groundwater to TWSIAV in Africa, which could also be seen in the TWSMSC decomposition (Fig. 8, top).

Not only the spatial patterns of the TWS partitioning show large variations. Figure 9 illustrates the differences in amplitude

and timing for the global time series and their decomposition into MSC and IAV. For the seasonal TWS signal, the amplitudes

are qualitatively similar, and the main contribution comes from the snow. H2M, SURFEX-TRIP, and PCR-GLOBWB show a
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Figure 8. Terrestrial water storage (TWS) variation partitioning into soil moisture (SM, corresponding to negative modeled cumulative water

deficit, CWD), groundwater (GW), and snow water equivalent (SWE) by the hybrid hydrological model (H2M) and a set of process-based

global hydrological models (GHMs). The top panels show the partitioning of the mean seasonal cycle (MSC), the bottom the interannual

variability (IAV). The map colors correspond to the mixture of the contributions of the three variables, the inset ternary plots reflect the

density of the map points projected onto the components. The contribution is calculated as the sum of the bias-removed absolute deviance

of a component from the mean, divided by the contribution of all components. Note that surface storage is included in the groundwater

component for the models SURFEX-TRIP and PCR-GLOBWB. The decomposition is done based on the years 2003 to 2012.

soil moisture slightly delayed to the snow seasonality, and the groundwater peak setting in in the late northern spring. W3RA520

shows very similar soil moisture and groundwater curves, being slightly delayed to the snow seasonality, and LISFLOOD

simulates groundwater and soil moisture in alternating cycles with only little variability. The IAV timings of the components

are more consistent, but the amplitudes differ significantly across the models. The H2M attributes most TWSIAV to variations

in soil moisture, while groundwater dominates the signal for PCR-GLOBWB. Note that the groundwater component also

includes the surface water storage for the latter. Also, SURFEX-TRIP and PCR-GLOBWB both show a large global negative525

IAV anomaly from 2005 to 2006 and a positive one from 2008 to 2010, which are not observed by GRACE.
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Figure 9. Global variability of the terrestrial water storage (TWS) and the components snow water equivalent (SWE), soil moisture (SM),

and groundwater (GW) for the hybrid hydrological model (H2M) and the process-based global hydrological models (rows). Note that SM

corresponds to negative modeled cumulative water deficit (CWD) in H2M. For reference, the TWS observations are shown (TWS OBS).

The monthly signal (left) and its decomposition into the mean seasonal cycle (MSC, center) and the interannual variability (IAV, right)

are arranged in columns. The time series represent the global signal, i.e., the data were aggregated using the cell size weighted average

per time step, only cell time steps present in all model simulations were used. The y-scale is consistent in columns but varies across the

signal components. The training and test period is shown for the complete years 2003 to 2012. Note that surface storage is included in the

groundwater component for the models SURFEX-TRIP and PCR-GLOBWB.

4 Discussion

In this section, we briefly discuss the model performance and then assess the plausibility of a set of hydrological responses in

H2M. We discuss the machine-learned relationship between CWD and runoff generating processes, followed by an analysis of

the CWD-αet (evaporative fraction) relationship. Then, we shed some light on the contrast of TWS composition between H2M530

and GHM simulations. Finally, we discuss general challenges and opportunities of the hybrid approach.
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4.1 Model performance

The H2M simulations have a good agreement with the TWS and SWE observations despite the data biases. While some GHMs

performed well at the global scale, H2M shows evidences of data-adaptability at the local scale. This can be attributed to the

data-driven patterns injected through the neural networks.535

The TWS seasonality was reproduced well by H2M, except for extremely arid climates, with a low signal-to-noise ratio

in observation, resulting in poor NSE values but also small RMSE and decent Pearson’s correlation. The largest errors occur

in humid regions with a stark TWS seasonality and large runoff rates, e.g., the Amazon basin, central Africa, and Southeast

Asia (Fig. A1). This may be related to the missing representations of lateral flow or surface water storage variations in general,

which can be important TWS contributions in humid environments (Kim et al., 2009; Scanlon et al., 2019), but also to data540

biases. A near-perfect fit was achieved for the globally averaged SWE seasonality (Fig. 5) while the local performance varied

strongly across regions with the poorest performance in extremely cold tundra (Fig. B2). The SWEIAV is highly sensitive to the

precipitation forcing data, which is highlighted by substantially better agreement with GlobSnow when H2M was forced with

the WFDEI dataset (Fig. D1 in Appendix D).

In the hybrid modeling framework, the quality of the observational constraints is a major source of uncertainty. The data used545

in this study have well-documented deficiencies: The precipitation product, for example, shows large uncertainties in Africa

due to limitations in density and quality of measurement sites (Sylla et al., 2013) and exhibits biases in snowfall estimates in

the Northern Hemisphere due to over-correction of snowfall under catch (Behrangi et al., 2016; Panahi and Behrangi, 2019).

The GlobSnow SWE saturates above 120 mm and underestimates the interannual variability (Luojus et al., 2010). TWS quality

is generally difficult to quantify as an equivalent ground-based measurement does not exist, and its complex preprocessing has550

known impacts on the data quality (Scanlon et al., 2016). The machine learning–based constraints of Q and ET are not directly

observed and thus, they are expected to have considerable global and regional uncertainties and biases (Ghiggi et al., 2019; Jung

et al., 2020). This could lead to inconsistencies in the water balance~(Trautmann et al., 2021). However, the multi-objective

optimization may dampen negative effects of biases, as the model can trade off the different constraints.

4.2 Model interpretability555

In this section, we assess the model interpretability, i.e., the plausibility of the hydrological responses that emerge from the

machine learned coefficients which have not been prescribed a-priori. We discuss the partitioning of water fluxes and their

dependence on antecedent soil moisture condition and then evaluate the partitioning of water storage contributing to TWS

dynamics.

4.2.1 Hydrological responses560

The H2M learned hydrological responses to soil moisture states that are consistent with the hydrological understanding, and

the learned coefficients are estimated robustly across cross-validation runs. The fact that these patterns are an emerging be-
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havior constrained by a basic physical constraint of mass balance, i.e., the relationships were not explicitly predefined, is an

encouraging finding that justifies the usage and further investigation of the hybrid approach, in general.

The partitioning of incoming water into surface runoff and recharge of the soil and groundwater shows a clear non-linear565

response to soil dryness (Fig. 6). The fraction of surface runoff (αsurf) decreases rapidly with increasing dryness while soil

recharge (αsoil) increases correspondingly. Groundwater recharge occurs under wet conditions and approaches zero with in-

creasing soil dryness. This runoff generating process response to soil moisture qualitatively matches the expected behavior

implemented in GHMs (Bergström, 1995).

The H2M predicts a large spatial-temporal variability of the soil moisture dependent runoff-recharge partitioning as indicated570

by different percentiles in Fig. 6. For example, under moist conditions, more than 50 % of water input (blue lines in Fig. 6) or

hardly anything (yellow lines) can be directed to surface runoff. Such large variability in the response can be expected due to

large variations of topography, soil, and vegetation properties that control the infiltration-runoff response. The H2M approach,

therefore, appears to offer perspectives in capturing the large natural variability of the effective runoff generating process

response. Note that these processes have been challenging to parameterize in traditional GHMs (Döll and Flörke, 2005; Beck575

et al., 2016, 2017; Koirala et al., 2017), and thus, the hybrid approach can fill in critical process gaps and long-standing physical

modeling challenges.

The learned relationship between evaporative fraction (αet) and soil dryness (Fig. 7) is generally consistent with the “demand-

supply” framework for evapotranspiration (Budyko, 1974). Under wet conditions, ET scales with atmospheric demand repre-

sented by net radiation, while evaporative fraction declines with increasing dryness which is most clearly seen in the semi-arid580

regions of Australia and Africa. The learned relationship between αet and soil moisture response functions appear to be rather

gradual as opposed to an idealized piece-wise function with a clear soil moisture threshold that is still frequently employed in

process models (Seneviratne et al., 2010; Schwingshackl et al., 2017). However, an about constant potential evaporative frac-

tion was predicted when there was substantial rain (or snowmelt), independent of the soil moisture state (green lines in Fig. 7).

This shows that the model implicitly accounts for wetting of the top soil layers, which alleviates water stress even though it585

represents soil moisture (expressed as negative CWD) as a single bucket. The specific response of evaporative fraction pre-

dicted by H2M varies substantially between regions and within regions indicated by the shading in Fig. 7. Vegetation storage

capacity has long been identified as a key uncertainty in process models in controlling soil moisture stress responses (Ichii

et al., 2009). Our approach in H2M avoids such explicit parameterizations of relatively less understood physical processes, and

its effectiveness is supported by better performance of H2M in simulating TWS variations in tropical and subtropical regions590

compared to GHMs (Sect. 3.2) despite its simple overall structure.

4.2.2 Terrestrial water storage composition

As reported previously (Andrew et al., 2017) and as presented here, the attribution of TWS variations is an outstanding chal-

lenge in global hydrology. The fact that all models disagree largely in respect to the decomposition was the main motivation

to use an alternative, data-driven hybrid approach. The decomposition patterns simulated by H2M are reasonable, although the595

ground truth for a quantitative assertion is missing. The H2M simulations agree with the GHM especially in regions where
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the decomposition is well constrained, which is an encouraging finding. In the tropical and semi-arid to arid regions, the de-

composition is less clear. Here, all models disagree, although the larger soil moisture variations versus smaller groundwater

variation is a unique feature of the H2M simulations. This may indicate that H2M is underconstrained in these regions. Or,

the differences could result from a more accurate representation of the involved processes due to the local adaptivity of H2M.600

Most likely, it is a combination of both.

The dominant contribution of the SWE to seasonal cycle of TWS in the high latitudes (Fig. 8 & 9), but a lower contribution

to the interannual variability is consistent across models, and also has been previously reported (e.g., Rangelova et al., 2007;

Trautmann et al., 2018). It should be noted that the SWEIAV was reproduced poorly by all models, reflecting large uncertainties

in the input precipitation and SWE observations. Despite regional differences, the models also consistently attribute most605

of the TWS seasonal and interannual variability to soil moisture in arid and semi-arid regions (Fig. 8). The dominance of

soil moisture is plausible in these regions, as the potential evapotranspiration is high and precipitation is low and infrequent

or strongly seasonal (Nicholson, 2011). Given the absence of secondary moisture sources such as lateral flow and a lack of

deep-rooted plants, most of the storage variations occur within a shallow soil depth (Grayson et al., 2006).

In other regions, the partitioning between groundwater and soil moisture variability is less clear. On both the seasonal and610

interannual scales, groundwater contributions to TWS correlate with humidity at the global scale (c.f., Feddema, 2005). In the

boreal humid regions of northwestern North America, Scandinavia, and northwestern Russia, as well as the northeastern Asian

coast, the groundwater contribution to TWS is larger than that of soil moisture. Here, groundwater recharge is concentrated

in spring with large snowmelt (Fig. 9) co-occurring with low evaporative demand due to low temperatures, irradiation, and

vegetation productivity, which results in a large water surplus (Jasechko et al., 2014). The boreal regions with stronger soil615

moisture contribution are the ones affected by permafrost, where most of the vertical movement is limited to the thawed top

soil and horizontal baseflow is usually lower than in non-permafrost soils (Bui et al., 2020). Thus, the patterns diagnosed by

H2M are plausible. It must be noted, however, that significant drainage of the surplus water happens via river flows and lateral

transport, which are not represented in H2M.

The large groundwater contribution on both seasonal and interannual scales in humid regions has been diagnosed by all620

models. In the tropics, the largest difference between H2M and the GHMs is the larger soil moisture contribution in the

African rainforest simulated by H2M. The lower groundwater variability is—to a certain extent—reasonable, as the central

Amazon and Southeast Asia rainforests are the most humid regions globally with the largest annual precipitation (Zelazowski

et al., 2011) and a shallow plant rooting depth, while the African rainforest is relatively drier and has deeper plant roots (Yang

et al., 2016; Fan et al., 2017). However, the soil moisture variability is only marginally larger in H2M, while it is mainly the625

low groundwater amplitude that makes the difference (Fig. B3 in Appendix B).

In the arid-to-wet transition regions of Africa, H2M diagnoses only marginal groundwater variability compared to larger

amplitudes in the GHMs. The H2M resolves the water balance mainly using soil moisture variations, i.e., through soil recharge

and evapotranspiration, while the soil overflow was negligible. While the patterns found by H2M are within those of GHMs

in most regions, the notable strong soil moisture contribution in tropical savanna and humid subtropical climates is unique in630

H2M.
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GHMs require a large number of parameters that are either empirically derived or based on remote sensing or statistical

datasets, e.g., plant functional types, root zone depth, soil texture maps, or soil thermal and hydraulic properties. Often, the

said parameters are uncertain and may not necessarily represent a process at spatial scale of GHMs (scale mismatch) or

within grid or catchment variabilities (sub-grid to local heterogeneity). Thus, simple heuristics have been used to parameterize635

hydrological processes, which can, in reality, be of high complexity (Beck et al., 2016). It has been suggested that GHMs

underestimate the land water storage capacity in general and that especially the variability in deeper soil is too low (Zeng et al.,

2008). In addition, the link between deeper soil layers and plant transpiration through root water uptake is often not represented

adequately in GHMs (Jackson et al., 2000), although such effects have been found to play an important role in below-surface

water variability (e.g., Kleidon and Heimann, 2000; Koirala et al., 2017). Compared to the GHMs, H2M provides a novel640

avenue on which storage variations are less bound by presumably ad-hoc prescription of the size of soil and other storages. The

diagnosed patterns of soil and groundwater variations, therefore, emerge from observation-based variations of water storage

and fluxes. The H2M approach that also implicitly learns layering of the soil, thus, can be used to address uncertainties in the

moisture storage capacities (Zeng et al., 2008; Scanlon et al., 2019) and plant rooting depth (Yang et al., 2016) used in GHMs,

that are likely to have a strong influence on the TWS partitioning.645

The smaller groundwater contribution in H2M is also potentially related to the missing mechanisms of capillary rise and root

water uptake from the groundwater. Thus, the cumulative water deficit dynamics implicitly represent all the below-ground water

that will be returned to the atmosphere by root water uptake and transpiration at some point. As a possible consequence, H2M

diagnoses larger soil moisture in transitional and especially in the subtropical regions, but more evidently, smaller groundwater

variability.650

Finally, the missing (explicit) representation of surface water and river storage may cause biases in H2M simulations. Surface

storage has been found to contribute significantly to the TWS variations (Güntner et al., 2007; Scanlon et al., 2019) and a proper

representation thereof is desirable. Furthermore, lateral water influx across a cell via rivers is not represented and may have a

significant impact on the TWS composition (Kim et al., 2009).

4.3 Challenges and opportunities655

The data-driven character of the H2M offers a set of opportunities but is accompanied by challenges. The H2M makes use of

observational data streams that are not typically used in GHMs. However, to retain interpretability of the predicted coefficients,

the model structure must be kept simple; the model flexibility needs to be compensated with a simple causal model structure.

Still, the H2M offers a great opportunity to study the hydrological cycle from a different viewpoint that is strongly footed on

the observation-based datasets, which are growing in availability at an unprecedented rate in the era of Earth observation.660

The hydrological pathways in H2M are rather simple compared to GHMs, but the model still expresses a high data-adaptivity

as demonstrated. While GHMs usually represent a wide range of hydrological sub-processes (e.g., infiltration, preferential

flow, topographical runoff-runon), the hybrid model integrates them to a few response functions and the model complexity

and interactions within is, so to speak, outsourced to the neural network. Still, missing representations of storage components

(e.g., surface storage) and hydrological pathways (e.g., streamflows) limit the model flexibility and can, to a certain extent,665
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corrupt the other latent variables as the model tries to accommodate for missing processes. Thus, the estimated coefficients in

the current H2M implementation should be treated with some skepticism. At the same time, the relaxation of assumptions can

be seen as an opportunity, as the prior knowledge used in GHMs may be wrong or incomplete. The impact of trading prior

knowledge and model complexity with more flexibility and data-drivenness on model uncertainties is a key aspect that needs

further investigation.670

As the model behavior emerges largely from the observational data constraints, the hybrid approach constitutes a novel

technique for studying TWS variations. While purely data-driven approaches (see Andrew et al. (2017) for an overview) are

generally useful as they provide insights independent from GHMs, they are based on strong qualitative assumptions (e.g., the

temporal characteristics of the components at different depths) and do not allow to incorporate physical knowledge, principles,

and constraints. GHMs themselves largely rely on prior knowledge, which may be false or incomplete, and the model parame-675

terization is usually not resolved regionally, resulting in model uncertainties (Beck et al., 2016) which are eventually expressed

in the disagreement among model simulations. The hybrid model can be seen as a compromise between the purely data-driven

and the physically-based approaches, as physical principles (e.g., mass conservation) are respected, but qualitative assumptions

on the processes are still used.

Global hydrological models are often used for different tasks such as the assessment of the water cycle at past and present,680

predictions for the future, for evaluating implications of, e.g., land use changes by scenarios, and to gain process-understanding.

In principle and technically, a global hybrid hydrological model can be applied for the same tasks while related simulations

need to be interpreted with care. The strongest use case of H2M is the assessment of recent variations of the water cycle since

it can act as a physically consistent yet data-adaptive bridge between heterogeneous global data streams and complements

traditional data assimilation approaches. Interpreting predictions too far into the past or future can be risky when factors that685

are not represented physically play a role that had little impact during the training period (e.g., permafrost melting, CO2

fertilization of water use efficiency). Likewise, scenarios of, for example, different land use could make sense to conduct if the

conditions represented by the scenarios have been represented during learning in some way while there always remains the

danger that learned relationships by the neural network are just statistical associations rather than causal relationships (“shortcut

learning”, Geirhos et al., 2020). As we could show, gaining process understanding from the hybrid model can be feasible as the690

spatially and temporally varying coefficients learned by the neural network are plausible and partly very interesting. However,

such uncovered patterns may rather represent hypotheses that should be tested with complementary approaches like physical

process modeling, direct observations, or experiments.

Improving the model through a better representation of the process complexity is an obvious next step. Several processes

were not explicitly represented, such as overland flow, soil moisture recharge from the groundwater through capillary rise,695

or snow sublimation. The under-complex representation of certain processes leads to biases and uncertainties. For example,

estimating the baseflow parameterization on cell-level could improve the representative power of the model, as has been shown

by Beck et al. (2013). This is, however, challenging as an increasingly complex model needs to be complemented by additional

data constraints or better physical processes in order to avoid parameter equifinality issues that lead to the same or similar

model responses across a large range of parameter values. It is well possible that the decomposition into CWD and GW is not700
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properly constrained under some circumstances, e.g., in ecosystems that are not water limited. Here, either the groundwater

or the soil moisture may be restored as needed (due to frequent precipitation) to match the observation of terrestrial water

storage. More research is needed to address these problems. In particular, a complementary development of application-based

models as presented in this study, and smaller-scale, better constrained exercises to advance hybrid modeling can be a viable

alternative.705

Closely related to equifinality is the quantification of model (epistemic) and data (aleatoric) uncertainties. A proper repre-

sentation of model uncertainties would enable a direct identification of equifinality and allow a targeted model development for

uncertain processes. The implementation of such a mechanism could be built into the neural network, e.g., by using Bayesian

deep learning (Wang and Yeung, 2020) or deep generative models (Goodfellow et al., 2016). Explicit consideration of data

uncertainty will also be beneficial, either to propagate forcing data uncertainties through the model or to model the uncer-710

tainties of the observational constraint variables, which is not always provided. Data assimilation is a framework that allows

representing such uncertainties (Reichle, 2008) and can even be extended to incorporate model parameter estimation (Morad-

khani et al., 2005), i.e., learning physical processes as in the hybrid approach presented here. In contrast to data assimilation

that often targets improving prediction skills, the goal of hybrid modeling is to develop a generalizable model, which can be

applied beyond the specific forecasting task in data assimilation. Nevertheless, non-parametric machine learning approaches715

can also be included into data assimilation as discussed in Geer (2021).

The rapid development of novel products opens interesting opportunities, like a daily TWS product (Kvas et al., 2019)

can help to better constrain sub-monthly water processes. Furthermore, the upcoming Surface Water and Ocean Topography

(SWOT) mission, which is targeted at observing surface water storage variations (Biancamaria et al., 2016), could be useful to

solve current shortcomings of the H2M. In addition, parameters estimated by other approaches, such as the upscaled baseflow720

index (Beck et al., 2013), offer interesting independent constraints that allow adding further complexity to the model without

increasing the uncertainty.

Finally, incorporating lateral interactions and flow between grid cells (e.g., large-scale groundwater flow, river routing)

are outstanding but relevant challenges, as the paradigm of optimizing neural networks with randomized samples that are

independent will likely not be sufficient in modeling connections and interactions between regions. Such endeavors would also725

allow for bringing in established global datasets of river discharge measurements such as provided by the Global Runoff Data

Centre (GRDC, Fekete et al., 1999).

5 Conclusions

The present study demonstrates the strengths of combining machine learning and physical process understanding for global

hydrological modeling. The main conclusions of this study are:730

1. The hybrid model is capable of obtaining similar performance to physically-based models at global level but achieved

better local adaptivity. This highlights the strengths of the hybrid approach, which can replace complex physical pro-

cesses, integrate different datasets, and is highly data-adaptive due to the model parameterization by a neural network.
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2. The model simulations were plausible and followed basic hydrological principles. This is partially due to the physical

constraints, which force the model into physical consistency (e.g., conservation of mass), but is also emerging from the735

multiple data constraints.

3. The hybrid model partitioning of the terrestrial water storage into its components yielded plausible and interesting

patterns. The agreement of the decomposition is generally high in regions where the physically-based models are more

consistent (e.g., temperate, semi-arid, and arid regions), but generally the hybrid model shows a larger contribution by

soil moisture.740

4. Key opportunities and challenges in hybrid modeling to be addressed in the future are identification of equifinality,

quantification of uncertainties, integration of multi-resolution datasets, and representation of cell-neighborhood effects,

such as lateral fluxes.

Hybrid modeling has the potential to advance the Earth sciences by providing an alternative perspective to knowledge-driven

approaches. The data-adaptivity can reveal weaknesses and strengths of process-based models and provide important insights745

for water cycle attribution and diagnostics. The findings and methods of this study can be generalized to other spheres and

scales across the Earth system, as long as sufficient data and process knowledge are available.

Code and data availability. The H2M and its training are implemented in PyTorch 1.5 (Paszke et al., 2017), an open-source deep learning

framework for the Python programming language. The simulated hydrological data and the code are available here: https://dx.doi.org/10.

17617/3.65. The code is also available on github: https://github.com/bask0/h2m. Note that we cannot share the data used as model input, but750

all datasets are referenced in the manuscript.

Appendix A: Spatial model performance

Overall, high NSE of TWSMSC is achieved in most regions (Fig. A1). Low TWSNSE hotspots are primarily found in some

arid regions with little overall TWS variability, e.g., the Namib Desert in southern Africa or the Gobi Desert in eastern Asia.

In terms of the RMSE, regions with larger variations in TWS dominate with the largest MSC error in the Amazon and less755

expressed in southeastern Asia. The correlation (r) was constantly well above 0.5 for TWSMSC except for the Gobi Desert,

where the TWS variations are minimal. The TWSIAV was also reproduced well in terms of r.

The SWEMSC is reproduced well in terms of NSE and r, while NSE for SWEIAV is low especially in tundra regions (Fig. A1).

The RMSE is also larger in high latitudes but more concentrated in regions with large seasonal amplitudes.

The average patterns of states (TWS and SWE) and fluxes (ET and Q) were reproduced well in general (Fig. A2). The model760

underestimates the variability of TWS in central Amazon, West Africa, and India. These patterns align well with the occurrence

of large rivers (e.g., Amazon, Ganges, Mississippi, Niger, or Yenisei) and may be caused by missing representation of river

routing. The SWE is overestimated in the extremely cold regions of North America and Northeast Asia, and underestimated
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Figure A1. Local model performance for terrestrial water storage (TWS) and snow water equivalent (SWE) on the mean seasonal cycle

(MSC) and the interannual variability (IAV) within the test period (2009 to 2014). The Nash–Sutcliffe model efficiency (NSE), Pearson

correlation (r) and Root Mean Square Error (RMSE) are shown. The inset plots show the cell area–weighted histogram of the map values.

in Tundra regions. Average Q is largely underestimated in Central Africa, and slightly overestimated in northwestern Eurasia,

central Amazon, and coastal regions of Australia and East Asia. ET, finally, is underestimated by the model, prominently in765

most of Subsaharan Africa and East Brazil, while no major biases are present in other regions.

Appendix B: Regional comparison of simulated time series

On regional scale, most models reproduced the TWSMSC well (eNSE > 0.5), while the TWSIAV performance varied (eNSE < 0.5)

(Fig. B1). The variation between models was larger in terms of IAV, especially in transitional and tropical zones. Especially the

TWSIAV seems to be reproduced poorly in certain regions by all models, e.g., temperate Asia (M3), transitional Africa (N3),770

Eurasia (N4), Southeast Asia (N5). In the high latitudes, we observe a phase difference of the simulated TWS compared to the

observations for all models except the PCR-GLOBWB.
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Figure A2. Mean a) simulated, b) observed, and c) difference of simulated minus observed (positive means simulated is larger) terrestrial

water storage (TWS, 1a–c), snow water equivalent (SWE, 2a–c), total runoff (Q, 3a–c), and evapotranspiration (ET, 4a–c). Note that for

the TWS, the standard deviation is shown as the values represent variations around the mean. The inset histograms represent the map value

distributions, the mean for the test period (2009 to 2014) is shown.

Most models manage to reproduce the SWEMSC well with an eNSE > 0.5, while the SWEIAV performance is more variant and

lower in general (Fig. B2). We note a phase difference between the model simulations and observations that is most notable in

the boreal regions, indicating that the models either accumulate too much snow during winter or do not manage to discharge it775

in spring or both. The phase difference is less expressed in H2M and lowest in PCR-GLOBWB. The SWEIAV varies strongly

across different regions. The SWEIAV has strong seasonal variations, with opposite patterns in different regions that cancel each

other out on global level. This is evident on the regional anomalies and results in low variability at the global scale. In general,

all models reproduce the sign of anomalies better than the amplitudes.

The regional scale seasonal anomalies of simulated soil moisture (corresponding to negative CWD in H2M) and GW show a780

more detailed picture of the model variabilities (Fig. B3). The global scale SM amplitude of H2M is larger than the one of the

GHMs (although close to the SURFEX-TRIP model) while the GW variations are smaller in H2M. The largest discrepancies

between H2M and the GHMs are in the North (N1) and South (N2) America transitional, the Australia subtropical (S2), and

Africa tropical (T2) regions. However, also the within GHM variation is large in most regions. The model simulations agree

relatively well in the temperate regions (M1-3) as well as in the Africa (N3), Eurasia (N4), and Australia (N6) transitional785

zones.
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Figure B1. Comparison of the hybrid hydrological model (H2M) and a set of process-based global hydrological models (GHMs) of the

terrestrial water storage mean seasonal cycle (TWSMSC, outer columns) and interannual variability (TWSIAV, center columns) in mm for

hydro-climatic regions (Fig. 2). The time series were aggregated using the cell size weighted mean across all grid cells in the respective

region. The inset axes show the Nash–Sutcliffe model efficiency (NSE) of each model with the same color-coding as the time series. Note

that the y-scale differs between plots.
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Figure B2. Comparison of the hybrid hydrological model (H2M) and a set of process-based global hydrological models (GHMs) of the snow

water equivalent mean seasonal cycle (SWEMSC, outer columns) and interannual variability (SWEIAV, center columns) in mm for hydro-

climatic regions (Fig. 2). The time series were aggregated using the cell size weighted mean across all grid cells in the respective region. The

inset axes show the Nash–Sutcliffe model efficiency (NSE) of each model with the same color-coding as the time series. Note that regions

without snow dynamics are not included. The y-scale differs between plots.
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Figure B3. Global and regional mean seasonal anomalies of soil moisture (SM) and groundwater (GW) for the hybrid model (H2M) and the

process-based global hydrological models. Note that SM corresponds to negative modeled cumulative water deficit (CWD). Ranges from the

minimum to the maximum value per model are shown next to the seasonal cycle as vertical lines. The regions are shown in Figure 2. Surface

storage is included in the groundwater component for the models SURFEX-TRIP and PCR-GLOBWB. The plots are based on global daily

cell time steps from 2009 to 2014. Note that the y-scale is consistent within, but differs across regions.
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Figure C1. Model training process for the cross-validation runs. The left and central columns represent the unweighted total and variable-

specific MSE loss. The right column shows how the task weights developed over training time. The x-axis represents the number of iterations

through the training set (“epochs”). The bottom row contains the column-wise distribution of the variables losses (or weights) at the end of

the model optimization. Note that for the soft constraint on CWD, a bias of 0.1 was added, i.e., 0.1 is the optimum.

Appendix C: Model optimization

The model optimization within the cross-validation setting is shown in Fig. C1. The learning process was stable in most cases

and a smooth model convergence was achieved. Only one run (fold 2, CV2) was unstable as the training collapsed. Due to the

early stopping mechanism, however, the model from the best validation loss is restored and used for the test set prediction. The790

loss and weight (w = 1
2σ2 , where σ is the task uncertainty, see Sect. 2.3.3) distributions at optimum across cross-validation runs

were stable (bottom row of boxplots in Fig. C1). The generalization loss from the training to the validation loss is minimal,

although a slightly larger spread of the validation losses can be observed. The larges generalization error occurred with SWE.

Note that the training and validation sets are not only split in space, but also in time. This could indicate that snow dynamics

are less stable over time and change due to, for example, a warming climate.795

The task weights were stable across cross-validation runs. The weights are difficult to interpret, as they do not directly

translate to inverse variable uncertainty (Kendall et al., 2018) but also depend on the variable variance (although the loss is

calculated on standardized data). From the boxplots in Fig. C1, we can see that variables with a lower loss are given more
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Figure C2. The t-distributed stochastic neighbor (t-SNE) reduction to three dimensions (C1-3) of static variable encoding (originally 12

dimensions, ρenc in Fig. 1) of one cross-validation run. The encoding is a low-level representation of the static inputs, i.e., soil and land-cover

properties, learned by a neural network. The inset ternary plots show the distribution of the map values.

weight, except for the CWD loss (a soft constraint that avoids CWD drift in early training), which reaches the optimum at 0.1

relatively quickly. It is possible that the lower weight of TWS is caused by its dependency on the other variables, i.e., if the800

model tries too hard to improve TWS, other variable losses decrease.

Part of the model tuning involved optimization of the sub-network FCNN1 (Fig. 1), extracting features from the static

variables which are then fed into the recurrent neural network. We visualized the outputs (ρenc in Fig. 1) of the FCNN1 to get

an impression of the most relevant gradients within the static variables. For visualization, the twelve activations were reduced to

three dimensions using t-SNE (Hinton and Roweis, 2002). The resulting map (Fig. C2) reveals patterns that seem very familiar:805

the components align with patterns of biomass, vegetation type and aridity. Note that the t-SNE algorithm is non-deterministic

and can yield vastly different results depending on chosen hyper-parameters. Also, the reduction to three dimensions only

reveals the major gradients and does not represent the entire variability.

Appendix D: Model forcing with WFDEI

To test the impact of the forcing datasets, the model was trained on the WFDEI forcings (Weedon et al., 2014) as used in the810

eartH2Observe ensemble. The performance (Fig. D1) in respect to TWS was almost identical with slightly larger NSE on the

global signal and lower NSE on local level when using WFDEI. The NSE of SWE was larger with WFDEI, especially for the

IAV. Due to the similar performance, we conclude that the impact of the forcings is negligible and the results are robust in

regards to them.
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Figure D1. Global and local grid cell–level Nash–Sutcliffe model efficiency coefficient (NSE) of the hybrid hydrological model (H2M) and

the process-based global hydrological models (GHMs) for the terrestrial water storage (TWS) on top and the snow water equivalent (SWE) at

the bottom. The gray bars represent the cross-validation runs using the forcings described in Section 2.1.1 (dark grey, “H2M”), and using the

WFDEI forcings as used in the eartH2Observe ensemble (light grey, “H2M (WFDEI)”). The �-markers show the global (spatially averaged

signal) model performance, the boxes represent the spatial variability of the local cell-level performance. The y-axis was cut at -1 due to

some large negative NSE values. The panels show the model performance in respect to the full-time series, the mean seasonal cycle (MSC),

and the interannual variability (IAV). Note that for SWE, only grid cells with at least one day of snow are shown, as the NSE is not defined

if the observations are constant zero, which would lead to a comparison of different grid cells. The metrics are calculated from the complete

common time range from 2009 to 2012 on monthly time scale. Note that deviations from the numbers reported in Tab. 3 are due to different

time ranges.
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1: φ,β,σ← initialize() # Initialize model weights φ, global constants β, task uncertainties σ

2: while not converged do

3: cells← samplecells(gridcells,n) # sample n gridcells

4: msim←meteo[cells] # select cells from forcings

5: mspinup← samplespinup(msim,5) # sample 5 random years

6: m← concat(mspinup,msim) # concatenate

7: ρ← static[cells] # select cells from static

8: y← target[cells] # select cells from targets

9: c,h← zeros(100) # initialize LSTM hidden states

10: s← zeros(3) # initialize physical storages

11: loss← 0.0 # initialize loss

12: ρenc← FCNN1(ρ) # compress static encodings

13: for t ∈ {1, . . . ,T} do

14: c,h← LSTM(c,h,s,m[t],ρenc) # update LSTM states

15: α← FCNN2(h) # get coefficients

16: s,f ← hydro(s,m[t],α,β) # run phys. model, get storages s and fluxes f

17: ŷ← collect(s,f) # collect target variables

18: if t 6∈ spinup then

19: loss← loss+MSE(ŷ,y[t],σ) # add weighted loss to previous loss

20: end if

21: end for

22: φ,β,σ← update(φ,β,σ, loss) # update parameters

23: end while

Figure E1. The training loop of the hybrid hydrological model.

Appendix E: Model pseudo-code815

The pseudo-code in Fig. E1 shows the model optimization process.
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