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Abstract. Drought affects many regions worldwide and future climate projections imply that drought severity and frequency

will increase. Hence, the impacts of drought on the environment and society will also increase considerably. Monitoring and

early warning systems for drought rely on several indicators; however, assessments on how these indicators are linked to

impacts are still lacking. Here, we explore the links between different drought indicators and drought impacts within six sub-

regions in Spain. We used impact data from the European Drought Impact Report Inventory database, and provide a new case5

study to evaluate these links. We provide evidence that a region with a small sample size of impact data can still provide

useful insights regarding indicator-impact links. As meteorological drought indicators, we use the Standardised Precipitation

Index and the Standardised Precipitation-Evapotranspiration Index, as agricultural and hydrological drought indicators we use

a Standardised Soil Water Index and, a Standardised Streamflow Index and a Standardised Reservoir Storage Index. We also

explore the links between drought impacts and teleconnection patterns and surface temperature by conducting a correlation10

analysis and then test the predictability of drought impacts using a Random Forest model. Our results show meteorological

indices are best linked to impact occurrences overall, and at long time scales between 15 and 33 months. However, we also find

robust links for agricultural and hydrological drought indices, depending on the sub-region. The Arctic Oscillation, Western

Mediterranean Oscillation and the North Atlantic Oscillation at long accumulation periods (15 to 48 months), are top predictors

of impacts in the northwest and northeast regions, the Community of Madrid, and the south regions of Spain respectively. We15

also find links between temperature and drought impacts. The Random Forest model produces skillful models for most sub-

regions. When assessed using a cross-validation analysis, the models in all regions show precision, recall, or R2 values higher

than 0.97, 0.62 and 0.68 respectively. Thus, our Random Forest models are skillful in predicting drought impacts and could

potentially be used as part of an early warning system.

1 Introduction20

Drought, as defined by Wilhite and Glantz (1985), “is a condition relative to some long-term average condition of balance

between rainfall and evapotranspiration in a particular area, a condition often perceived as ‘normal’”. The prediction of drought

onset or end is a complex task. Drought severity is also difficult to measure or quantify. This is because drought depends on
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several factors, for instance, the duration, intensity and the geographical extent of the event. Additional factors specific to each

region also play a large role, such as the water demand with respect to water supply. All of these characteristics make drought25

difficult to identify and quantify. Drought has far-reaching impacts on society and the environment that may last for long time

periods (Wilhite and Glantz, 1985).

There is not a common and straightforward definition of drought, however, all types of drought originate from a lack of

precipitation. Many different definitions of drought have been developed by different disciplines. There are four main types

of disciplinary definitions: meteorological, agricultural, hydrological, and socioeconomic. Meteorological drought often uses30

precipitation as its atmospheric parameter. Agricultural drought considers links between meteorological drought and its impacts

on agriculture. Hydrological drought accounts for the repercussions of dry periods on surface and subsurface hydrology, for

instance, on streamflow, groundwater and reservoirs. Finally, socioeconomic drought considers the effects that drought has on

the supply and demand of economic goods (Wilhite and Glantz, 1985).

There is already evidence that climate change, as a result of anthropogenic actions, has increased the risk of meteorological35

drought in Southern Europe (Gudmundsson and Seneviratne, 2016). Similarly, warmer temperatures have increased atmo-

spheric evaporative demand, which have in turn increased drought severity over the past 50 years (Vicente-Serrano et al.,

2014b). Climate change projections point towards a reduction in the water resources in Spain. Hydraulic infrastructures have

been designed with safety margins; however, these may be surpassed due to the effects of climate change. Increased evap-

otranspiration, as a result of increased temperatures, together with a possible increase in the length of the irrigation period,40

might increase the water demand for irrigation and for agricultural use, which currently accounts for more than 70% of total

water demand. In addition, the energy sector is also dependent on the availability of water, which also makes it vulnerable to

increased drought risk (Ministerio para la Transición Ecológica y el Reto Demográfico, 2020). Vulnerability to water scarcity

and drought is also likely to increase due to challenges such as a growing population, population migration to more arid regions,

urbanization, increasing tourism and pollution (Rossi and Cancelliere, 2013). As a result, the consequences of drought on the45

environment and society are becoming more important. Spain is a country that already has an intense use of water resources;

hence, it is crucial to reinforce water management to provide future water security.

In order to lessen the impacts of drought on society and the environment, efficient mitigation measures are necessary. This

means that effective drought monitoring and early warning systems (DEWS) are essential. DEWS reduce societal vulnerability

to drought by maximizing the lead time of early warnings to allow more time for the implementation of mitigation measures50

(Pozzi et al., 2013). These systems usually rely on different drought indicators that represent different parts of the water cycle.

Drought indicators describe drought conditions, and examples of commonly used variables are: precipitation, temperature,

streamflow, groundwater and reservoir levels, soil moisture and snowpack (Svoboda et al., 2016). DEWS use a large variety of

drought indicators, and the most commonly used one is the Standardised Precipitation Index (SPI) (McKee et al., 1993). DEWS

usually use indicators based on variables that can be measured with ease and that are readily obtainable in time (Bachmair et al.,55

2016a). However, Bachmair et al. (2016a) revealed that although there has been increasing efforts on research and practice of

drought indicators, DEWS are still not well linked with assessments on how drought impacts the environment and society. This

is because links between drought indicators and impacts have not been sufficiently studied. This means impact data are not
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being used to determine whether indicators are linked to the impacts of drought. The authors call for drought to be framed as a

coupled dynamical system of the environment and society to fully understand drought impacts.60

Drought-related impacts are complex to study and document because many sectors depend on water availability to pro-

duce goods and provide services. Bachmair et al. (2016a) also revealed that there are very few systematic approaches for the

collection of impact data, except for agricultural drought. A good example of efforts to improve such documentation exists

in Europe, where a drought impact inventory has been created: the European Drought Impact Report Inventory (EDII) (Stahl

et al., 2016). This database collects reported drought impacts for different European countries. Impacts are classified into major65

impact categories (e.g., agriculture and livestock farming, wildfires, public water supply, forestry. . . ), and each category has

several sub-types. Also, each drought impact event has at least information on; the source of information, location, duration

and impact category and has a description.

Here, we investigate the links between different drought indicators and reported impacts from the EDII database for Spain.

The time period studied is from August 1975 to May 2013. We aim to assess two meteorological indicators, the SPI and the70

Standardised Precipitation-Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010), two hydrological indicators, from

streamflow and reservoir storage levels, and an agricultural indicator, from soil water content. The main motivation for this

study is to provide a new case study for the evaluation of these links, and to test the usefulness of impact data in this region.

Impact data from the EDII has already shown linkages with drought indicators in similar studies (Bachmair et al., 2015, 2016b;

Stagge et al., 2015).75

The first objective of the study is to investigate how strong and robust the link between drought indicators and drought

impacts is. We conduct a correlation analysis and to further examine these indicator-impact links we then use machine learning

(a Random Forest model) to model and predict drought impact occurrences. Another goal of this analysis is to test the potential

of such a method, with the available data, to predict future impacts. We aim to determine whether drought impacts can be

skillfully predicted in this region.80

To our knowledge, links between teleconnection patterns or temperature and drought impacts using the EDII database have

not been studied before. We therefore investigate five teleconnection patterns (Feldstein and Franzke, 2017), the El Niño

Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the East Atlantic (EA) pattern, the Western Mediter-

ranean Oscillation (WeMO) and the Arctic Oscillation (AO), as well as a surface temperature index, as possible predictors of

drought impact occurrences. We aim to investigate whether these climate indices show links and are better predictors of im-85

pacts than the previously presented drought indicators. Our next objective is to determine what type of indicators are the best

predictors of impacts in each sub-region. Lastly, the incompleteness of the impact reports from the EDII database challenges

the quantification of impact occurrences, hence, we also investigate different ways to take incomplete reports into account. We

investigate whether different impact quantification methods change the results in a significant way, and if so, how.

Our manuscript is structured as follows: in Sect. 2 we introduce the study area, the drought indicators, climate indices and90

vulnerability factors used and their data sets. Also, how we deal with incomplete impact data and the methods for the data

analysis. In Sect. 3 we present the results of our correlation and Random Forest analyses. In Sect. 4 we provide a discussion of

our results and conclude.
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2 Methods and data

2.1 Study area95

Spain is located in a geographical area with a high recurrence of drought events due to it being in a transition zone between

polar and subtropical atmospheric circulation influences (Sivakumar et al., 2011). Its precipitation and runoff patterns are

highly diverse and complex, which is characteristic of the Mediterranean area. As described by Vide (1994), the characteristic

climate of Spain has:

– modest rainfall overall,100

– high interannual variability, with a high amount of rainfall occurring during relatively few days,

– long dry periods,

– an arid climate, meaning the amount of potential evapotranspiration is greater than rainfall,

– large regional variations in seasonal rainfall patterns, and

– anomalies that may be related to atmospheric teleconnection patterns.105

Because of the chaotic patterns of precipitation, Spaniards have been attempting to increase water availability for at least the

last 2000 years (del Moral and Saurí, 1999). Water scarcity and frequent droughts are recurrent problems that Spain suffers,

and this is mainly because the spatial and temporal distribution of its water resources is irregular. Also, because water demands

are highest in the more water scarce areas and during the seasons when precipitation is the lowest and evapotranspiration the

highest. Climate change will most likely exacerbate the existing problems with water resources (Estrela and Vargas, 2012;110

Ministerio de Medio Ambiente, 2005).

Droughts cause extensive impacts in Spain, for instance, during a very intense drought event in 1991-1995, water supply

was restricted for more than 25% of the total population (12 million people). In the most affected regions, evacuation plans

were activated. Agricultural production was also severely affected (del Moral and Hernandez-Mora, 2015). The following

major drought event in 2004-2005 led to social unrest and created disputes over future water infrastructure (Iglesias et al.,115

2009). Drought periods can impose significant costs on farmers and affect crop productivity (e.g. Iglesias et al., 2003; Austin

et al., 1998; Páscoa et al., 2017; Peña-Gallardo et al., 2019). Moreover, vegetation activity has been shown to be linked to the

interannual variability of drought (Vicente-Serrano et al., 2019), and drought has been related to burned areas from wildfires

(Russo et al., 2017). Drought events have also shown links with daily mortality across Spain (Salvador et al., 2020). Overall, the

economic damages of drought are severe: according to the international Emergency Events Database (EM-DAT) (Guha-Sapir120

et al., 2016), Spain ranked fourth worldwide and first in Europe on total economic damages resulting from drought events from

1990 to 2018 (US$7.7 billion).

We chose to perform this study in the specific region of Spain because this region is severely impacted by droughts, hence, a

better understanding of indicator-impact links here is urgently needed. Such links have been already been successfully investi-
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gated in five other European regions (Bachmair et al., 2015, 2016b; Stagge et al., 2015). We focus on characterising these links125

in six sub-regions within Spain because studying a small region means that indicator-impact links can be better detected and

quantified (Blauhut et al., 2016).

We also chose this region to investigate indicator-impact links in a region that has a very dense network of reservoirs and

to investigate the time scales at which drought conditions lead to drought impacts. As described by González-Hidalgo et al.

(2018), Spain has a high density of hydraulic reservoirs. Spain has, after China, the second largest number of dams in the130

world. This is because Spain’s climate is characterised by dry summers and high interannual variability. Such a dense network

increases Spain’s resilience to short-term droughts by guaranteeing water supply during these. However, at longer time scales,

drought conditions still produce severe drought impacts to water supply; conditions that last more than two or three years have

been shown to reach the limits of the capacity of these infrastructures (González-Hidalgo et al., 2018).

2.2 Drought indicators and data sets135

As drought indicators we considered the SPI, the SPEI and a streamflow index because these are commonly used in DEWS

(Bachmair et al., 2016a). The SPI and especially SPEI, have also shown higher correlations than other drought indices with crop

yields in Spain (Peña-Gallardo et al., 2019). Furthermore, we included an additional hydrological indicator (using reservoir

storage data), and an agricultural drought index (using soil water content data) to compare their performance against the other

types. Soil moisture has been found to be an important factor when studying drought impacts on the productivity of some140

agricultural crops in Spain (Sainz de la Maza and Del Jesús, 2020). Furthermore, the multi-scalar nature of all these drought

indicators is useful when assessing the time scales of drought impacts. We also explored the use of several teleconnection

patterns (Feldstein and Franzke, 2017) as predictors of drought impacts.

The SPI is a commonly used drought index that is simple to compute. It can be used to compare droughts in different regions

and it can be temporally aggregated over different time scales (Guttman, 1999). It calculates "the precipitation deviation for145

a normally distributed probability density with a mean of zero and standard deviation of unity" (McKee et al., 1993). It is

computed by fitting precipitation data to a distribution and then transforming it to a normal distribution (McKee et al., 1993).

In this study, we calculated the SPI using the “SPEI” R package (Vicente-Serrano et al., 2010; Beguería et al., 2014). We used

a Gamma probability distribution to model the observed precipitation values.

The SPEI is a similar index to the SPI, but instead of being computed with precipitation values only, it is based on climatic150

water balance. The climatic water balance is a monthly difference between precipitation and potential evapotranspiration (PET)

at different time scales. This provides a measure of the accumulated water surplus or deficit. We used the approach of Vicente-

Serrano et al. (2014b) to calculate the PET; this is a simple approach that only requires data for monthly-mean temperature and

uses the Thornthwaite equation (Thornthwaite, 1948). To obtain the final index, the same procedure as for the SPI was followed,

however, a log-logistic probability distribution was used to model the precipitation–PET values. We calculated the SPEI also155

with the “SPEI” R package. This index accounts for the effects of temperature variability on drought. The advantages of this

index, especially under global warming conditions, are that it identifies increased drought severity when the water demand is
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higher as a result of increased evapotranspiration. In addition, its multi-scalar nature allows its use for drought analysis and

monitoring (Vicente-Serrano et al., 2010).

Volumetric soil water is the volume of water (m3) in a soil layer (m3). We used this variable to create an agricultural drought160

indicator, a Standardised Soil Water Index (SSWI), using the Standardised Drought Analysis Toolbox (Hao and AghaKouchak,

2014; Farahmand and AghaKouchak, 2015). This toolbox provides a generalised framework for deriving nonparametric uni-

variate indices that can be interpreted similarly to the rest of the indices used in this study. This index was calculated at four

different soil depths (defined by the data set used), hereafter referred to as SSWI1, SSWI2, SSWI3 and SSWI4. To create a

Standardised Streamflow Index (SSFI) and a Standardised Reservoir Storage Index (SRSI), we standardised streamflow and165

reservoir values using the same methodology as for SPI. We also computed a Standardised Temperature Index (STI) using the

same methodology, with surface temperature data only.

All of the indices were aggregated over different time scales. The aggregation of the SPI, SPEI, SSFI and SRSI was done

prior to fitting them to a distribution and transforming to the normal distribution. This means the data for the current month and

past X months was used to compute the value for a given month The aggregation period is hereafter labelled with ‘-X’ (e.g.170

SPI-X). Similarly, for the SWSI, the aggregation was done prior to computing the empirical distribution.

We chose teleconnection patterns that could potentially be relevant as drought predictors. The chosen climate indices have

shown correlations with precipitation in Spain (e.g. Rodó et al., 1997; Martinez-Artigas et al., 2021; Ríos-Cornejo et al., 2015)

and the NAO, EA, AO and WeMO have also shown links with the drought index, SPEI (Manzano et al., 2019). The effects

of the NAO on droughts using the SPI and/or SPEI at the European-scale are also well studied (Vicente-Serrano et al., 2011;175

Kingston et al., 2015). Furthermore, empirical links between drought impacts and ENSO and NAO in Spain have already been

established. For instance, Gimeno et al. (2002) looked at the influence of ENSO and the NAO on the most important Spanish

crops. They detected significant effects on yield for most of these crops. They found low yields during La Niña years and

higher yields during positive NAO phases. All of the climate indices were aggregated by computing a moving average over X

months.180

We used the Iberia01 daily precipitation and temperature observational gridded data set to calculate the SPI and SPEI

(available at: http://hdl.handle.net/10261/183071) (Gutiérrez et al., 2019; Herrera et al., 2019). This is a high-resolution data set

produced using a dense network of stations over the Iberian Peninsula: 3481 and 276 stations for precipitation and temperature,

respectively. Gridded values are provided at a spatial resolution of 0.1º, and they cover the entire time period studied here.

This data set has been shown to produce more realistic patterns in the case of precipitation than other frequently used data185

sets. We used data from individual streamflow and reservoir level monitoring stations from Ministerio para la Transición

Ecológica y el Reto Demográfico to calculate the SSFI and SRSI. There were a total of 1447 and 367 streamflow and reservoir

storage monitoring stations respectively, however, after removing stations with more than 20% missing data, data from 786

and 322 stations remained. We obtained volumetric soil water content data from the ERA5-Land data set (Muñoz Sabater,

2019). This is a reanalysis data set that provides estimates for land variables. It has a horizontal spatial resolution of 0.1º190

x0.1º and has a vertical resolution that consists of four levels of surface: layer 1: 0-7cm, layer 2: 7-28cm, layer 3: 28-100cm

and layer 4: 100-289cm. We obtained data for the NAO, EA, AO and ENSO from the NOAA Climate Prediction Center
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(available at: https://psl.noaa.gov/data/climateindices/list/ and https://www.cpc.ncep.noaa.gov/data/teledoc/ea.shtml) and data

for the WeMO (Martin-Vide and Lopez-Bustins, 2006) (available at: http://www.ub.edu/gc/wemo/). We used data from these

datasets for the period 1975-2013, except for volumetric soil water content data, where we used data from 1981-2013, since195

data were only available starting from 1981. We also aggregated all the indices over a range of time scales, these ranges differed

depending on up to what timescales the indicator-impact correlation strengths were greatest. These were; 1-33 months for the

SPI, SPEI and SRSI, and 1-48 months for the SSWI, STI and teleconnection patterns.

The Nomenclature of Territorial Units for Statistics (NUTS) classification divides economic territories of the European

Union (Eurostat). NUTS-1 regions represent major socioeconomic regions, and these were the sub-regions we considered in200

this study. These were: the Northwest (NW), Northeast (NE), Community of Madrid (MA), Centre (CE), East (E) and South

(S). The Canary Islands were excluded due to a lack of impact data in this region. We aggregated all of the indicators studied

over each NUTS-1 region and produced a mean monthly time series for each sub-region using the R package ‘panas’ (De Felice,

2020).

2.3 Drought vulnerability and data sets205

To understand how a region is impacted by drought, drought risk needs to be considered as a function of the hazard, vul-

nerability and exposure to drought events. “Vulnerability refers to the propensity of exposed elements such as human beings,

their livelihoods, and assets to suffer adverse effects when impacted by hazard events” and “exposure refers to the inventory

of elements in an area in which hazard events may occur” (Cardona et al., 2012). Exposure varies spatially and vulnerability

depends on social and economic factors of a region, which can greatly change over time (Wilhite, 2000).210

To explain drought impacts beyond the hazard, we also investigated whether adding vulnerability factors as drought impact

predictors would increase the predictability of drought impact models. We used data for public water supply, unemployment

rate, population density, GDP per capita, and gross value added (GVA) by industry (except construction), by agriculture,

forestry and fishing, and by all Statistical Classification of Economic Activities in the European Community (NACE) activities.

We also used landcover data from the Corine land cover data set and calculated the percentage of each landcover class per215

NUTS-1 region. A monthly time series was created for each vulnerability factor from yearly or six-year data by linearly

interpolating the data points. We obtained the data from the Instituto Nacional de Estadística (available at: https://www.ine.

es), Eurostat (available at: https://ec.europa.eu/eurostat/) and the CORINE Land Cover data set (available at: https://land.

copernicus.eu/pan-european/corine-land-cover). Most of these factors have been reviewed and tested as drought vulnerability

factors by Blauhut et al. (2016).220

2.4 Drought impact data

We retrieved drought impact information from the EDII. This database had 388 impact report entries for Spain, which covered

the time period from August 1975 to May 2013. Each reported impact has three spatial references which correspond to the

three levels of the NUTS regions. We aggregated impact information by NUTS-1 region and did not differentiate impact types

from one another, hence, treated all impacts as equal and of a general type. The impact categories considered in the EDII were:225
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– Agriculture and Livestock Farming

– Forestry

– Freshwater Aquaculture and Fisheries

– Energy and Industry

– Waterborne transportation230

– Tourism and Recreation

– Public Water Supply

– Water Quality

– Freshwater Ecosystem: Habitats, Plants and Wildlife

– Terrestrial Ecosystem: Habitats, Plants and Wildlife235

– Soil System

– Wildfires

– Air Quality

– Human Health and Public Safety

– Conflicts240

In order to evaluate links between indicators and impacts we mainly followed the methodology by Bachmair et al. (2015, 2016b),

who assessed links between hydro-meteorological indicators and impacts for Germany and the UK. We first explored correla-

tions between indicators and impacts and we then used a Random Forest model to evaluate the predictive potential and predictor

importance of the different indicators. Before conducting the analysis, we first converted impact reports into a monthly time

series of the number of drought impact occurrences for each sub-region. To do this, we imposed criteria to convert a single245

‘drought impact report’ (an entry from the EDII) into a ‘drought impact occurrence’, which will be referred to as ‘DIO’. We

converted impact reports into a monthly time series by creating a DIO for every month in between the start and end date.

However, a large proportion of the reports were incomplete. The data had the following five main problems:

1. the specific sub-region affected was not indicated,

2. the start and the end year were indicated, but there was no indication of the start and end month,250

3. the start year was indicated, but there was no indication of the end year, start and end month,

8



CM1 CM4

NW NE MA CE E S SPAIN NW NE MA CE E S SPAIN
0

25

50

75

100

Region

P
er

ce
nt

 o
f t

ot
al

 im
pa

ct
s

Agriculture and Livestock Farming Public Water Supply

Freshwater Ecosystem: Habitats, Plants and Wildlife Air Quality

Wildfires Terrestrial Ecosystem: Habitats, Plants and Wildlife

Human Health and Public Safety Conflicts

Energy and Industry Forestry

Water Quality Tourism and Recreation

NA

Figure 1. Distribution of impact types for Spain and the sub-regions studied. Results for the most and least censoring counting methods

(CM1 and CM4) are shown.

4. the start month was indicated, but there was no indication of the end month and year, and

5. the start month and the end year were indicated, but there was no indication of the end month.

24% of the reports had problem 1, 33% had problem 2, 37% had problem 3, 9% had problem 4 and 3% had problem 5.

Therefore, to overcome and estimate the uncertainty in our analysis as a result of the incompleteness of the data, we developed255

different ‘counting methods’. This meant that we tested the effects of including or excluding reports with these problems. The

counting methods (CM) are described in Table 1.

We visually examined impact reports, specifically their durations and descriptions, to make sure that their quantification to

impact occurrences was sensible regarding the nature of each impact. For instance, we made sure that impacts that usually do

not last more than one month by nature, were reported in such a way. Some of these impact types were wildfires, air quality,260

human health and public safety. Quantifying more long-lasting impacts, such as impacts on agricultural and livestock, and

freshwater and terrestrial ecosystems, was more challenging since determining their exact start and end dates is not possible.

However, we still used the start and end dates of these reports since we believe that these represent the period during which

sectors were most affected by drought impacts. For example, for a report that stated “livestock farming economic losses are

estimated in 393,72 million Euros for the period November 1, 2004 - April 30, 2005”, we assumed the occurrence of these265

economic losses corresponds to the period during which the sector was most affected by drought impacts.
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Table 1. How drought impact occurrences (DIOs) are counted in each counting method.

CM1 CM2 CM3 CM4

Problem 1 Not included Not included Not included DIOs created for all

NUTS-1 regions

Problem 2 Not included Not included Monthly DIOs created

until December of the

end year

Monthly DIOs created

until December of the

end year

Problem 3 Not included Not included Monthly DIOs created

for the start year

Monthly DIOs created

for the start year

Problem 4 A DIO created for the

specified month only

A DIO created for the

specified month only

A DIO created for the

specified month only

A DIO created for the

specified month only

Problem 5 If start and end is

in the same year, a

DIO is created at the

start month only, other-

wise, monthly DIOs are

created until December

of the previous-to-last

year

If start and end is in

the same year, a DIO

is created at the start

month only, otherwise,

monthly DIOs are cre-

ated until December of

the end year

Monthly DIOs created

until December of the

end year

Monthly DIOs created

until December of the

end year

Figure 1 shows the distribution of impacts types for each NUTS-1 region and for the whole of Spain using the most and least

censoring counting methods. It shows that most of the impacts recorded in the EDII for Spain were on agriculture and livestock

farming, public water supply and freshwater ecosystems. Also, depending on the censoring criteria, the distribution of impact

types varied slightly. For instance, the most censoring counting methods showed a larger proportion of impacts on terrestrial270

ecosystems in the S region and for the whole of Spain. The least censoring methods also had a larger variety of impact types.

Aggregating all impact types to a single category is not an optimal choice, since focusing on sector-specific drought impact

occurrences separately would produce more informative results. However, each sub-region contains three or less types of

impact categories, except the S region that contains eight (Fig. 1, CM1). This meant that there were not enough data points to

investigate categories separately.275

Figure 2 shows the time series of total DIOs for Spain and also shows identified precipitation deficit episodes where Spain

has suffered major impacts due to severe drought and water scarcity events (Hervás-Gámez and Delgado-Ramos, 2019; Min-

isterio de Agricultura, Pesca y Alimentación). Historical drought periods identified by Sainz de la Maza and Del Jesús (2020),

determined from economic impacts of past droughts are also shown. The latter authors identified these by using data from the

EM-DAT and from another study (Ollero Lara et al., 2018) that used insurance data by the Entidad Estatal de Seguros Agrarios280

(National agricultural insurance agency). Figure 2 shows that most of the DIOs occurred during the identified historical drought

periods by the authors mentioned. A slight disagreement occurs in 2008 until late 2009, where DIOs continue to occur even
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Figure 2. Total monthly DIOs in Spain (bars) from 1975 to 2013 using different counting methods (CM1-CM4). Important historical drought

periods identified in other studies are highlighted.

Table 2. Information on DIOs for the different sub-regions and the length of the time series for analysis for the most censoring counting

method (CM1).

NUTS-1 region Number of DIOs Length of censored time series (months)

NW 25 36

NE 76 84

MA 13 36

CE 109 72

E 83 84

S 289 156

though the reported drought episodes end in 2007. Moreover, Fig. 3 shows the time series of DIOs for all sub-regions (see Fig.

S1 for DIOs when using the two least censoring counting methods). We observe that during each drought episode, DIOs do not

always occur in all sub-regions and that the amounts and patterns of DIOs do change between counting methods, depending285

on the harshness of the censoring criteria.

2.5 Correlation analysis

For each NUTS-1 region, we selected a subset of years from August 1975 to December 2013 for the analysis. This selection

excluded years where there were no impact occurrences reported. We then included each month of each selected year in a
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Figure 3. Monthly DIOs (bars) in each sub-region from 1975 to 2013 using the most censoring counting methods (CM1 and CM2). Important

historical drought periods identified in other studies are highlighted.

censored time series. We did this to exclude years where regions may have experienced drought impacts but may not have been290

recorded in the EDII. The lengths of the censored time series are shown in Table 2. To determine the relationship between

drought indicators and drought impacts, we first conducted a cross-correlation analysis. We calculated Spearman Rank corre-

lation coefficients (Spearman, 1961) and significance levels for the time series of different indicator versus the time series of

DIOs for each NUTS-1 region. For each indicator, we spatially aggregated the indicators over each NUTS-1 region using their

mean.295
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2.6 Random Forest analysis

A Random Forest (Breiman, 1999) is a machine learning approach that uses ensemble trees. This approach has already been

used to link drought indicators to impacts (Bachmair et al., 2016b, 2017) and even to forecast drought impacts (Sutanto et al.,

2019). A Random Forest is a tree-based ensemble; each tree depends on a random sample of predictor variables and a random

response variable. The model then creates a prediction function to predict the response variable by constructing ensembles of300

trees. The predictions over all trees are combined by being averaged (in regression models) or by selecting the class that is more

frequently predicted (in classification models) (Cutler et al., 2012). Random Forest models are appealing because the predictor

and response variables can either be continuous or categorical variables. It is a fast model to run computationally, and very

few tuning parameters are required. Apart from training and making predictions, they can also provide variable importance

measures. Random Forest models also require minimal human supervision (Cutler et al., 2012).305

In this study, we used Random Forest models to model drought impacts, using the R package “randomForest” (Liaw and

Wiener, 2002). We trained two models for each NUTS-1 region: a regression and a classification model. For the regression

models, we used a time series of normalised DIOs as the response variable and the monthly time series of drought indicators as

predictors. The number of DIOs was normalised by dividing them by the total number of DIOs for each region. This allowed

for a fair comparison of the model errors between regions and counting methods. For the classification models, we used a310

binary time series of impacts, which was constructed by categorizing the response variable by setting DIO = 0 to “no impact”

and DIO > 0 to “impact”. Including this binary signal time series also considered the fact that the reporting of drought impacts

might have changed over the years due to improvements in reporting and data collection. For instance, it excluded a potential

bias in DIOs (upward trend observable in Fig. 2).

Unlike for the correlation analysis, the DIO time series were not censored in this analysis. As predictors, we included all the315

indicators mentioned earlier aggregated over the different time scales. We identified the “best” predictors for each region using

the variable importance feature. The algorithm estimates variable importance by examining by how much the prediction error

increases when that variable is excluded from the model (Liaw and Wiener, 2002).

The main input parameters in a Random Forest model are the number of trees ntree and the number of variables randomly

sampled at each split mtry. As Breiman (1999) mentions, for a large number of trees, and as the number of trees increases,320

the generalisation error converges to its limiting value. We set ntree = 1000. In order to select the optimal mtry parameter

for each model, we used the R package “caret” (Kuhn, 2008) for tuning the models. We also used this package to perform a

cross-validation analysis.

To assess the predictive potential of the Random Forest models, we first conducted a 10-fold cross-validation analysis using

all of the available data (June 1983 to December 2013), repeated five times. We used the root mean squared error (RMSE) and325

R2 performance metrics to evaluate the regression models. To assess the classification models, we used Receiver Operating

Characteristics (ROC) curves and area under the ROC curve (AUC). The AUC assesses the quality of a forecast of binary

outcomes. These measures consider the proportion of impact occurrences correctly predicted and the proportion of (wrongly)

predicted occurrences when there were none (Mason and Graham, 2002). Because we found large imbalances in the event
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classes (a large number of “no impact” events with respect to "impact" events) we also used precision, recall and F-score330

metrics to assess the models. These metrics better assess model performance in this case (Davis and Goadrich, 2006). Precision

is the number of impact occurrences correctly predicted as a proportion of the total impact occurrence predictions made, and

recall is the proportion of impact occurrences correctly predicted (Davis and Goadrich, 2006). The F-score is a combination of

precision and recall as their harmonic mean (Hripcsak and Rothschild, 2005).

In order to further evaluate the performance of the models, we randomly partitioned the data into a training and testing part,335

with a 75:25 split. We tuned and trained the models (using a 10-fold repeated cross-validation) to then predict the testing set.

In this analysis, we also compared the two types of models: classification and regression. We did this by converting the outputs

of the regression model into binary classes. The threshold to classify the outputs was set to 0.5, 1, 1.25 and 1.5; outputs below

each threshold were classified as “no impact”, and outputs above each threshold, as “impact”. These thresholds were then

normalised by dividing by the total number of impact occurrences in each region.340

3 Results

3.1 Correlation analysis

Figure 4 shows significant correlations for the indicators in most regions. This indicates there are clear links between drought

indicators and impact occurrences for most regions. Overall, the results from this analysis show that drought impact occurrences

are negatively correlated to the drought indicators studied and when not, the correlation values were usually weak or not345

significant. Drought indices are negative during a period of drought, this means that when the drought indicator severity

increases, impact occurrences tend to increase, and vice versa. The NE and CE regions show the lowest correlations for all

indicators, this indicates that these regions show the weakest links with impact occurrences. In this analysis, neither the total

number of impact occurrences nor the length of the censored time series (see Table 2) seemed to be related to correlation

strength. For instance, these two regions were the regions with the fourth most and second most number of impact occurrences350

respectively, but they showed the weakest links. As mentioned earlier, drought risk is also affected by a region’s exposure to

drought. This could explain why we find the weakest hazard-impact correlations in two of the least populated regions (NE and

CE), since impacts are reported by a region only when it has been exposed to the hazard and has been vulnerable to it.

The SPI and SPEI showed a similar performance to one another, with the exception of the S region, where the SPI showed

a larger number of significant and strong correlations. Aggregations over time scales of 18-21 months showed the highest355

correlations for both indicators. Moreover, the agricultural indicator, SSWI3 showed the greatest number of significant and

strong correlations out of the remaining soil layers. SSWI4 outperformed SPI and SPEI in the S region at a time scale of 18

months; however, its overall performance was lower, especially in the CE and NE regions. The hydrological indicator, SSFI,

showed strong and significant correlations in most regions but under-performed in the CE region, when compared to the SPI

and SPEI. It also showed very similar patterns to the SSWI but with a slightly better performance in the NE region. SRSI360

showed strong significant correlations in the MA and S regions, and of slightly lower strength in the NE and E regions.
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Figure 4. Correlation coefficients (ρ) between time series of drought indicators and impact occurrences for each sub-region using one of the

most censoring counting methods (CM1). Stars indicate significance (p < 0.05).

When comparing the correlation patterns across different counting methods we found that overall, the two most censoring

counting methods had the highest average correlation coefficients and smallest average p-values over all regions, indicators

and aggregation time scales. Correlation patterns remained very similar for the two most censoring counting methods, except

for the SRSI, that one method showed significant correlations in one region (NW) and did not show this when using the other365

method. The two least censoring methods showed similar patterns to the two other methods in four sub-regions (MA, CE, E

and S), however, most significant correlations disappeared in the remaining two regions (NW and NE) (see Fig. S2). We found

that generally, the less censoring the method, the lower the correlation strengths. These results indicate that counting methods

do, to some extent, affect correlation patterns and strengths between indicators and impact occurrences. The results obtained

here indicate that it is important to investigate different counting methods when working with incomplete impact data. In the370

following, we will use the two most censoring counting methods to determine the links between indicators and impacts, since

the results were most consistent using these two counting methods. The predictors that showed the highest correlation strengths

using these counting methods are displayed in Table 3a and 3b. A comparison of the correlations of CM1 and CM2 in Table

3a and 3b, shows that correlations are usually very close in value. The two counting methods also show similar results since

the same indicators are usually present in both columns, especially for the drought indices.375
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Table 3a. Correlation coefficients (ρ) between drought indicators and climate indices, and impact occurrences for the two most censoring

counting methods (CM1 and CM2). The indices are ordered by decreasing correlation strength and the time scale at which the indices are

aggregated (sc) is shown.

CM1 CM2 CM1 CM2

Region Indicator sc ρ Indicator sc ρ Indicator sc ρ Indicator sc ρ

NW SPEI 18 -0.684 SSWI4 39 0.826 ENSO 27 -0.680 EA 24 -0.669

SPI 18 -0.674 SSWI4 3 -0.687 NAO 12 0.679 EA 27 -0.576

SSWI1 9 -0.674 SSWI4 6 -0.676 EA 39 -0.676 WeMO 12 -0.536

SSWI2 9 -0.674 SPI 21 -0.653 NAO 18 0.660 STI 3 0.534

SPEI 21 -0.662 SSWI1 9 -0.647 NAO 48 0.657 WeMO 9 -0.533

SPI 24 -0.651 SSWI1 6 -0.644 NAO 15 0.650 WeMO 6 -0.494

SPI 21 -0.651 SSWI4 1 -0.638 ENSO 18 -0.642 STI 30 -0.491

SSFI 15 -0.647 SRSI 18 -0.630 NAO 9 0.635 EA 39 -0.482

SSFI 9 -0.644 SSWI4 9 -0.627 NAO 30 0.633 EA 30 -0.453

SSFI 18 -0.641 SPEI 9 -0.622 AO 15 0.625 NAO 48 0.438

NE SRSI 54 -0.456 SRSI 27 -0.519 STI 6 0.555 AO 39 0.550

SSWI2 48 0.428 SRSI 24 -0.509 AO 42 0.546 AO 42 0.550

SSWI1 48 0.410 SRSI 30 -0.507 AO 39 0.540 STI 12 0.541

SSWI3 45 0.410 SRSI 39 -0.476 AO 48 0.538 STI 9 0.528

SSWI3 48 0.391 SRSI 33 -0.475 AO 45 0.527 AO 45 0.508

SRSI 15 -0.390 SRSI 36 -0.458 STI 9 0.498 AO 33 0.508

SRSI 21 -0.388 SRSI 21 -0.453 AO 33 0.492 AO 48 0.507

SRSI 24 -0.385 SRSI 42 -0.414 NAO 12 0.491 AO 12 0.506

SRSI 51 -0.380 SRSI 18 -0.384 AO 36 0.485 AO 36 0.498

SRSI 18 -0.376 SSWI3 6 0.361 AO 30 0.483 AO 30 0.492

MA SSFI 18 -0.782 SSFI 18 -0.782 EA 27 -0.732 EA 27 -0.732

SSFI 15 -0.777 SSFI 15 -0.777 AO 9 -0.688 AO 9 -0.688

SSWI2 18 -0.777 SSWI2 18 -0.777 STI 27 -0.649 STI 27 -0.649

SSWI3 18 -0.765 SSWI3 18 -0.765 EA 30 -0.610 EA 30 -0.610

SRSI 6 -0.760 SRSI 6 -0.760 EA 42 -0.571 EA 42 -0.571

SSWI1 18 -0.749 SSWI1 18 -0.749 STI 30 -0.565 STI 30 -0.565

SSWI3 15 -0.743 SSWI3 15 -0.743 EA 33 -0.515 EA 33 -0.515

SRSI 9 -0.732 SRSI 9 -0.732 EA 24 -0.482 EA 24 -0.482

SPI 18 -0.721 SPI 18 -0.721 STI 24 -0.470 STI 24 -0.470

SSWI1 21 -0.721 SSWI1 21 -0.721 NAO 36 0.465 NAO 36 0.465
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Table 3b. Correlation coefficients (ρ) between drought indicators and climate indices, and impact occurrences for the two most censoring

counting methods (CM1 and CM2). The indices are ordered by decreasing correlation strength and the time scale at which the indices are

aggregated (sc) is shown.

CM1 CM2 CM1 CM2

Region Indicator sc ρ Indicator sc ρ Indicator sc ρ Indicator sc ρ

CE SPEI 24 -0.554 SPEI 24 -0.567 WeMO 15 -0.701 WeMO 15 -0.711

SPEI 21 -0.540 SPEI 21 -0.567 AO 30 -0.687 AO 30 -0.684

SPEI 18 -0.494 SPEI 18 -0.523 AO 33 -0.645 WeMO 18 -0.649

SPEI 27 -0.482 SPEI 15 -0.508 WeMO 18 -0.641 AO 39 -0.648

SPEI 15 -0.470 SPEI 12 -0.500 WeMO 24 -0.633 AO 33 -0.647

SPEI 12 -0.458 SPEI 27 -0.496 WeMO 12 -0.628 WeMO 12 -0.645

SRSI 36 0.431 SPEI 30 -0.461 WeMO 21 -0.622 WeMO 24 -0.637

SPEI 30 -0.430 SRSI 36 0.457 WeMO 27 -0.614 AO 36 -0.630

SPEI 33 -0.412 SPEI 33 -0.431 AO 39 -0.610 WeMO 21 -0.630

SRSI 33 0.402 SPEI 9 -0.427 AO 36 -0.605 WeMO 9 -0.625

E SSWI3 36 -0.772 SSWI3 36 -0.847 WeMO 33 -0.653 WeMO 33 -0.635

SSWI3 33 -0.751 SSWI3 33 -0.839 WeMO 36 -0.628 WeMO 30 -0.613

SSWI3 39 -0.743 SSWI3 39 -0.803 WeMO 30 -0.615 WeMO 36 -0.609

SSWI3 30 -0.720 SSWI2 36 -0.797 WeMO 27 -0.612 WeMO 27 -0.607

SSWI2 33 -0.720 SSWI2 33 -0.794 WeMO 12 -0.593 WeMO 24 -0.568

SSWI4 9 -0.718 SSWI3 30 -0.790 WeMO 24 -0.584 EA 21 0.559

SSWI2 39 -0.716 SSWI2 39 -0.790 WeMO 9 -0.580 EA 24 0.551

SSWI2 36 -0.713 SSWI1 36 -0.777 WeMO 39 -0.569 WeMO 39 -0.545

SSWI4 6 -0.712 SSWI4 9 -0.773 WeMO 15 -0.540 EA 12 0.538

SSWI4 12 -0.709 SSWI1 39 -0.769 WeMO 6 -0.525 EA 18 0.531

S SRSI 1 -0.714 SRSI 1 -0.732 ENSO 33 0.685 ENSO 33 0.683

SRSI 3 -0.712 SRSI 3 -0.730 ENSO 36 0.682 ENSO 36 0.683

SRSI 6 -0.707 SRSI 6 -0.726 ENSO 30 0.676 ENSO 30 0.676

SRSI 9 -0.700 SRSI 9 -0.720 STI 27 -0.673 NAO 48 0.673

SRSI 12 -0.697 SRSI 12 -0.717 STI 30 -0.670 STI 30 -0.664

SRSI 15 -0.680 SRSI 15 -0.700 NAO 48 0.667 STI 27 -0.663

SRSI 18 -0.660 SRSI 18 -0.681 STI 33 -0.659 ENSO 27 0.658

SRSI 21 -0.644 SRSI 21 -0.666 ENSO 27 0.656 STI 33 -0.657

SSFI 1 -0.635 SSWI3 15 -0.651 STI 24 -0.653 ENSO 39 0.655

SSFI 6 -0.623 SSWI3 18 -0.651 ENSO 39 0.644 ENSO 24 0.641
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Figure 5. Correlation coefficients (ρ) between time series of climate indices and impact occurrences for each sub-region using one of the

most (CM1) and third most (CM3) censoring counting methods. Stars indicate significance (p < 0.05).

Overall, the teleconnection patterns and STI (Fig. 5) showed strong and significant correlations with impact occurrences

for many sub-regions and time scale aggregations, when using the two most censoring counting methods. However, the main

difference when compared to the correlation patterns with the drought indicators in Fig. 4 and S2, is that the correlation

directions varied across the different sub-regions and counting methods here. This behavior can be due to there being a negative

linear relationship between the two variables or due to a lag between indices and impact occurrences. For example, although380

STI correlated negatively with impacts in the MA region, when we compared both time series (not shown) we saw that impact

occurrences appeared during an abnormally hot period but appeared at a time where there was a short period of decreasing

temperatures. This suggests that there is lag between elevated temperatures and impact occurrences in this region. Excluding
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the MA and S regions, STI and impact occurrences showed positive correlations. This suggests that there is a positive-linear

relationship between temperature anomalies and drought impact occurrences.385

The correlation patterns using the two most censoring counting methods (Fig. 5) showed that EA at 24-39 months has the

strongest correlations in the NW region, AO at 39-48 months and STI at 6-12 months in the NE region, EA at 27-39 months,

AO at 9 months and STI at 27-30 months in the MA region, WeMO at 12-24 months and AO at 30-39 months in the CE region,

WeMO at 27-36 months in the E region, and ENSO at 30-36 months, STI at 27-30 months and NAO at 48 months in the S

region. These results are also displayed in Table 3a and 3b. Out of all the teleconnection patterns, the NAO and AO showed390

very similar correlation patterns to each other; which is to be expected since both are dynamically related (?).

The third most censoring counting method showed similar patterns to the two most censoring methods, except for two

sub-regions (NW and NE), where most significant correlation patterns disappeared or changed direction. The least censoring

method overall still showed significant correlations but with decreased strength. Therefore, we again find that counting methods

sometimes affected correlation patterns. We must also take into account that a correlation analysis only assesses links between395

two variables; however, the pathways by which these patterns affect drought conditions and the propagation to impacts are

usually complex. Possible interactions between different teleconnection patterns or other atmospheric phenomena were not

modeled in this analysis due to its bivariate nature.

3.2 Random Forest analysis

3.2.1 Cross-validation analysis400

The performance of the regression Random Forest models is shown in Fig. 6. RMSE values ranged from 0.0008 to 0.007

across all counting methods. Since impact occurrences were normalised in this analysis, these values should be interpreted as

a fraction of the total number of the impact occurrences for each model. Overall, R2 values ranged from 0.68 to 0.97; this

meant the models explained the variance observed relatively well. However, when interpreting these results, one must note

that a metric such as RMSE is expected to be small. This is because (as explained further in this section) the models tended405

to underpredict the number of DIOs. We need to consider that the time series of occurrences does not contain a lot of DIOs

compared to the (larger) number of time steps with zero DIOs. The RMSE is expected to be relatively small especially because

the model is good at not predicting DIOs when there are none (high specificity) and because there were more actual DIOs than

those predicted.

In Fig. 7 we assess the performance of the classification Random Forests. The classification model outputs predictions as410

either probabilities for each class or directly outputs the class. For this reason, the performance measures are different than in

Fig. 6. We see that generally; the precision of all models was higher than the recall. This means that the models predicted fewer

than actual impact occurrences (low/moderate recall), but the predictions of impact occurrences were usually correct (high

precision). In other words, the model had a low false positive rate and a slightly higher false negative rate. Moreover, recall

generally appeared to be highest for the models with more balanced data sets; this was not the case for precision. AUC values415

were very high for all models (>0.95). However, this seems to be because specificity values were very high when compared to

19



CM1 CM2 CM3 CM4

0.000

0.003

0.006

0.009

NW NE MA CE E S NW NE MA CE E S NW NE MA CE E S NW NE MA CE E S

0.4

0.6

0.8

1.0

Region

R
M

S
E

R
2

Figure 6. Performance metrics (RMSE andR2) of the regression Random Forest model when performing a repeated 10-fold cross-validation

using all the data. All counting methods are shown. The error bars show the standard deviation of these metrics.

sensitivity values, and AUC is based on both of these measures. This means there were very few incorrect predictions of DIOs

and there were more DIOs than those predicted.

Precision values were very high for all the models; when the models predicted an impact occurrence, the predictions were

correct 97-100% of the time. Recall values varied more than precision between regions and the standard errors were higher.420

However, all models predicted at least 62% and up to 98% of the impact occurrences. Since the F-score metric combines both

precision and recall, we used this measure to conclude that the best performing counting method was the one with the least

censoring criteria. However, the rest of the methods had very similar average F-scores and their censoring level did not notably

affect their F-scores. Furthermore, the results from the two most censoring counting methods showed that the three regions

with the largest number of impact occurrences showed higher recall values than the rest of the regions. The precision across425

the different sub-regions did not show much variation. These regions also showed the best performance overall when using the

regression models (Fig. 6). This suggests that in order to have models with better skill and especially better recall, we need

datasets with a greater number of impact occurrences, which means longer impact time series. When interpreting the model

performance metrics in Fig. 6, 7 and 8, one must be aware that a new model was run each time (for each plot), which was tuned

using the corresponding performance metric (see Sect. S1 for further details).430

When comparing counting methods, we also found that a small sample size (low numbers of impact occurrences) limits

the model’s performance. We found that generally, the less strict the censoring criteria, the better the model performance, this

is displayed in Fig. 6 and 7. When using the classification models, the balance between the two class types affected model

performance; the more balanced, the better the performance. However, although the least censoring method shows the best
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Figure 7. Performance metrics (recall, precision, F-score and AUC) of the classification Random Forest model when performing a repeated

10-fold cross-validation using all the data. All counting methods are shown. The error bars show the standard deviation of these metrics.

performance, this method could be excluding specific indicator-impact links at the NUTS-1 level, since this method counts435

impacts that affected the whole country as impacts that occurred independently in all sub-regions. This shows that the choice

of a counting method is important when modelling impacts and can significantly affect model performance.

3.2.2 Comparison of regression and classification models using a train-test analysis

Figure 8 shows the performance of the regression and classification Random Forest models after being trained and tested on

75% and 25% of the data respectively. To do this, the regression model’s output was converted to the categorical classes:440

“impact” or “no impact”. We tested different thresholds to convert the model outputs and found that when the threshold was

lowered, the recall increased, and the precision decreased. The opposite happened when the threshold was increased. We

tested the thresholds: 0.5, 1, 1.25 and 1.5. Model performance in this analysis was found to be slightly worse than in the

cross-validation analysis. It is important to note that model performance for a region can vary depending on how the data are

partitioned for testing and training the model. Hence, model performance does not only depend on the strengths between the445

predictor and the response variable but also depends on the particular splitting. For instance, if an important event or pattern

remains in the testing set, it will not be used in the training of the model; hence it will decrease the model’s predictive ability.
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Figure 8. Performance metrics (recall, precision and F-score) of the Random Forest models when training and validating the models on 75%

and 25% of the data. All counting methods are shown. The regression model test predictions were converted into binary outcomes using a

threshold of 1.25 DIOs.

Although classification models appear to be better at predicting impact events in this analysis, these models did not contain

any information on impact severity, whereas regression models did. Since both the model-types performed well, we suggest

further evaluation of these to predict impacts. For example, using a classification model with more classes (to represent different450

impact severities) or using a different threshold to divide the two classes in this study. Also, similar to the previous cross-

validation analysis (Sect. 3.1), here we see more clearly that overall, regions with a higher number of total impact occurrences

performed best here; these are the S, CE and E regions.

3.3 Predictor importance

Figure 9 shows the predictor importance using the two most censoring counting methods and regression Random Forest models.455

The overall patterns of predictor importance did not change significantly when we compared them to the classification models

(not shown). This, and the fact that both regression and classification models showed similar performance (Sect. 3.2.2), also

confirms that the discussed potential bias in reporting culture over time does not seem to affect our Random Forest results. The

top predictors for each region are summarized in Fig. 10.
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Figure 9. Predictor importance when using the regression Random Forest models and the two most censoring counting methods. The top 10

predictors for each counting method and sub-region are shown.

Overall, the meteorological indicator, SPEI, was a top predictor in the CE and MA, at time scales between 24-33 and 15-18460

months respectively. In the E and in MA, agricultural indices were top predictors at time scales of 12-21 and 18 months respec-

tively. The hydrological indicator, SSFI, was a top predictor in the NW at a time scale of 21 months. The other hydrological

indicator, SRSI, was a top predictor in the S region, at timescales of 1-6 months. Out of all teleconnection patterns, AO, NAO

and WeMO were the top predictors. The AO in the NW and NE at timescales between 15-21 months, the NAO in the S region

between 36-48 months, and the WeMO in MA, aggregated at 12 months.465
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Figure 10. Map with the top four predictors for each sub-region when using the regression Random Forest models and the two most censoring

counting methods, in blue and black respectively. The “best” type of predictors for each sub-region are in red.

We found that both analyses (correlation strength and Random Forest variable importance), tended to show similar predictor

importance results in most sub-regions. When assessing the best drought indicators using both methods; MA, CE, E and S

regions showed similar results. For the climate indices; the NE, followed by the S showed the most agreement. These results

indicate that for these top predictors, the indicator-impact relationship is linear.

The results presented here are based on the most censoring counting methods (CM1 and CM2), since these showed the470

highest correlation strengths in the correlation analysis. Even though these two methods showed a lower predictive skill in the

Random Forest models, we attribute this to the reduced number of impact occurrences. If we compare these results to the ones

using CM3, the results remain mostly the same in half of the regions. We excluded CM4 from this analysis.

3.4 Drought vulnerability analysis

Including drought vulnerability factors when modeling drought impacts has been shown to increase model performance475

(Blauhut et al., 2016), however, because most of the vulnerability factors studied here (e.g. GDP per capita, public water

supply, unemployment, GVA by industry except construction, by agriculture, forestry and fishing, and by all NACE activities)

were only available starting from the years 1999 or 2000, models built with these factors were not as robust as the rest of our

models. Therefore, we cannot assume that the results found would reproduce themselves for the rest of the study period.

However, from an exploratory analysis, we find that vulnerability factors, in particular, the landcover types: ‘forest and480

seminatural areas’ and ‘agricultural areas’, and factors, such as, unemployment rate and GVA by industry (except construction),
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Figure 11. Predictor importance when using regression Random Forest models built with vulnerability factors in addition to the drought

indices. Counting method CM1 is used. Models are built with data from 2000-2012.

do increase the accuracy of the models when they are included in especially two regions (CE and E). Also, the exclusion of the

drought indices does not substantially decrease the model performance, in both the regression and classification Random Forest

models. Therefore, we conclude that including drought vulnerability factors, in some cases, does seem to improve the accuracy

of some models. This is shown in the the variable importance results (Fig. 11). Regions that had very few DIOs (NW and S)485

were not considered in this analysis. Since this analysis is limited by the availability of vulnerability data (the period studied

here missed the first two drought events), we cannot assume these conclusions hold true for our main results, considering these

models are not as robust.

4 Discussion and conclusion

In this study we systematically investigated the link between drought impacts in Spain and drought indicators and teleconnec-490

tion patterns. We also investigated the potential for vulnerability factors to be used as impact drivers. This means we used a

hybrid data approach, as defined by Blauhut (2020), to investigate drought risk as a function of hazard indicators, exposure

and vulnerability factors, and impact information using a statistical model. We found significant links between the drought

indicators and climate indices, and drought impact reports from the EDII database. We assessed these links by firstly using a

correlation analysis and secondly by modeling drought impacts using drought indicators and teleconnection patterns as pre-495
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dictors in a Random Forest model. While Random Forest models seemed to be limited by the amount of impact occurrence

data, they were skillful in predicting drought impact occurrences. Furthermore, we have shown that using drought impact re-

ports from the EDII with a Random Forest model for Spain, a region with a reduced number of impact report entries, already

provides good predictability of impacts for several sub-regions, making us confident in the robustness of our results. Drought

impact information from this database has already been successfully linked to drought hazards and shown to have potential for500

impact forecasting (Blauhut et al., 2015, 2016; Stagge et al., 2015; Sutanto et al., 2019; Bachmair et al., 2015, 2016b); it also

proves to be useful here when assessing links between different drought indicators and impacts.

We found strong and significant correlations between drought indicators and reported impacts in most regions. We also found

spatial differences in indicator-impact correlations. Out of all the indices, the SPI (followed by SPEI) showed the strongest

correlations overall and significant correlations in all regions. Therefore, we recommend the use of these indicators if only one505

indicator is to be used for predictive purposes. These meteorological indices have already been linked to drought impacts in

Spain or the Mediterranean region in several studies. For example, the SPI has been used to successfully forecast above normal

summer wildfire activity (Gudmundsson et al., 2014). The SPEI has been used to detect drought impacts on vegetation activity

(Gouveia et al., 2017), and the SPI has been correlated to tree ring widths to determine the impacts of drought on forest growth

(Pasho et al., 2011).510

When comparing the most important predictors from both analyses (correlation strength and Random Forest variable impor-

tance), we found a general agreement for most sub-regions. In the Random Forest analysis, the top predictors for each region

were: the SSFI and AO in the NW, AO in the NE, SSWI1-2, SPEI and WeMO in MA, SPEI in the CE, SSWI2-4 in the E and

SRSI and NAO in the S region (see Fig. 10). Our results show strong links between impacts and drought indices, as well as

teleconnection patterns. Drought and its links to teleconnection patterns is studied well in the literature (see Sect. 2.2), however515

links between EDII impacts and teleconnection patterns have not been investigated before, and here we show that in some

regions they are better predictors of drought impacts than commonly used drought indices.

By including the STI we also investigated links between temperature and impact occurrences. The correlation results showed

mainly positive and significant correlations, which suggest a relationship between these two variables. However, the STI did

not show the strongest correlations nor greatest variable importance (in the Random Forest analysis) when compared to other520

drought indicators or teleconnection patterns, except for the NE region, where it showed higher correlation strengths than the

rest of the indicators. Although we do not recommend the use of this index as a single drought predictor, we believe that its

observed connection to drought impacts is important and might become more important as temperatures in Spain continue to

increase. Especially, since there already is evidence on increasing trends in evapotranspiration in most meteorological stations

in Spain due to decreased relative humidity and increased maximum temperature since the 1960s (Vicente-Serrano et al.,525

2014a). Moreover, González-Hidalgo et al. (2018) pointed out that since 1990, the role of atmospheric evaporative demand has

been playing a large role in drought development. They state that drought is being driven by temperature conditions that affect

atmospheric evaporative demand, independently of precipitation evolution. In our study, the SPEI, which includes the effects

that temperature has on evapotranspiration, showed higher correlations than the SPI in four out of six regions (NW, NE, CE

and E), which again suggests that including the effects of temperature when investigating drought and its impacts is important.530
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Adequate drought management requires knowledge on the time that different drought types take to propagate through dif-

ferent water resource systems. Both our analyses mostly agreed on the time scales at which different types of drought started

to cause impacts. The time scales that showed the strongest links with impact occurrences depended on the sub-region and the

method for its analysis. However, using both analysis we overall found the strongest links to be at timescales between 15-33

months for the meteorological indices, between 6-33 months for the hydrological indicator SSFI, between 1-18 months for the535

hydrological indicator SRSI, and between 6-21 months for layers 1-3 of the agricultural index. For the deepest soil layer, the

correlation analysis showed strongest correlations at shorter timescales, from 1-9 months. The time scales at which the meteo-

rological indices showed the strongest links were usually longer than those found in Germany and similar to the UK (Bachmair

et al., 2016b). In these regions, SPI and SPEI showed the best links with impact occurrences at accumulation periods of 12–24

months for the UK, and at accumulation periods of 2–4 months for Germany. Stagge et al. (2015) found that Norway, Bulgaria,540

and Slovenia responded even more rapidly to meteorological drought than Germany and the UK, which shows that Spain has

the longest impact response out of these countries.

Furthermore, our results show that systems that respond to precipitation anomalies at the shortest time scales take longer to

propagate to impacts. For instance, we have shown that the meteorological indices correlated with impacts at long time scales.

The agricultural index in the top-three layers (1-3) showed correlations at long time scales. Differently, the hydrological index545

showed strong correlations overall at the earliest time scales. In our analysis, this indicates that drought impacts respond to

hydrological droughts faster than meteorological and shallow layer soil moisture droughts. This drought propagation chain

has been suggested by Van Loon and Laaha (2015), who detected propagation signals from meteorological to hydrological

droughts. Our results indicate that if we want to predict drought impacts at short time scales, we should use hydrological

drought indices.550

The agricultural index showed more significant and negative correlations in the two shallowest soil layers. A weaker link

between lower layer soil moisture and drought impacts can be explained by the fact that the soil moisture content of these layers,

which are usually below the root zone of most crops, has a slower and more aggregated behaviour. Aggregating these indices

then creates a more averaged time series with less anomalies, which then leads to lower correlations. The agricultural indicator

also revealed an anomalous pattern in the NE region; it showed positive and significant correlations at all soil depths. This555

may be explained by a lower exposure to drought due to lower population density, also explaining the weaker indicator-impact

correlations shown by the meteorological and hydrological drought indicators. However, this pattern may also be (partly)

explained by the fact that this region reported drought impact occurrences in July-October 2009 (see Fig. 3), a period where

there were no reports in other regions. A region can still be suffering from drought impacts during a period where precipitation

levels are above the climatological mean due to long-lasting impacts of a previous drought (e.g. Boletín Oficial del Estado,560

2009) and hence results in positive (or weak negative) correlations.

Spain’s resilience to short-term droughts, due to its extensive network of hydraulic reservoirs, could explain why we found

most indicator-impact links at long time scales (especially meteorological indicators and teleconnection patterns). We found

that most of the links between meteorological indicators and teleconnection patterns, and impact occurrences were strongest

at time scales between 1-3 years and 1-4 years respectively, depending on the specific indicator and sub-region. As mentioned565
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earlier, drought conditions that last more than two or three years have been shown to limit the capacity of Spain’s hydraulic

infrastructures (González-Hidalgo et al., 2018). In addition to reservoir systems, groundwater storage also provides resilience

(water supply to satisfy demands) during periods of drought. Therefore, groundwater droughts may play a role and be an

additional factor that contributes to these long accumulation periods. Especially since 15-20% of all water used in Spain is

provided by groundwater (Hernández-Mora et al., 2003).570

It is important to note that considering that there are not many drought events within the study period and that impacts are

often clustered due to the nature of drought events, the observed tendency for longer aggregation periods to show stronger links

to impacts can also be attributed to the methods used. This could be due to (or partly) aggregated indices being more smoothed

out and consequently extending the periods that are above and below the normal.

The most frequent types of reported impacts were agriculture and livestock farming, and public water supply (Fig. 1). Both575

of these sectors depend on reservoir systems for storing water, since irrigation and public water supply are the two sectors that

consume most of the stored water from reservoirs. Our results show that SRSI is the best predictor of impacts, outperforming

all other indicators, in the S region. The correlation analysis also showed strong and significant correlations between SRSI

and impacts for several regions. This suggests that drought impacts in Spain depend on reservoir resilience and this could

explain why it takes a long time for precipitation anomalies to propagate to impacts (and the response to less frequent but580

longer drought periods). Reservoir storage has been shown to respond to anomalies in SPI and SPEI at long timescales in some

Spanish regions (Vicente-Serrano and López-Moreno, 2005; Lorenzo-Lacruz et al., 2010). This further demonstrates that to

understand drought impacts at local scales, we need to consider the effects of local reservoirs systems, in addition to studying

other water resource systems.

The accuracy of our results is dependent on the accuracy of the impact data used, specifically, the method of quantification,585

the completeness of the data and potential sources of error. Since many impact reports were incomplete and their quantification

is subjective, we tested four different versions of counting methods and investigated whether they had an effect on the results.

We mainly tested; (1) whether to count an impact that affects the entire country equally as if it only occurred in one sub-

region and (2) whether and how to count impacts that lacked information on the start or end date of the impact report. In

the correlation analysis, different counting methods mainly produced differences in the strength of the correlations. The least590

censoring counting methods showed weaker correlations overall, and significant correlations disappeared in one-third of the

regions. However, in the Random Forest analysis, the least censoring counting methods produced models with higher predictive

skill than the more censoring counting methods. Regions with the most impact data also performed best. We infer this is because

the performance of a Random Forest model highly depends on the quantity of data used for its training. We therefore conclude

that when working with impact data, it is important to compare counting methods and to investigate their effect on the results595

to overcome potential biases due to subjectivity.

The vulnerability analysis revealed that some vulnerability factors may also be appropriate drought impact drivers. When

we compare our vulnerability analysis results to the results from Blauhut et al. (2016), who investigated drought risk in Europe

using vulnerability factors and drought hazard indices, we find some similarities. For instance, they found that for the Western

Mediterranean region, some of the best performing vulnerability factors included: area of agriculture, seminatural areas and600
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wetlands. These results agree with our findings (see Fig. 11). They also did not find factors such as GDP per capita or public

water supply to be good predictors. They also showed that overall, vulnerability factors improved model accuracy.

The results of this study are limited by the availability of drought impact data; because there was just a small number of

impact occurrences recorded for each drought event (when compared to other countries) and because the data used only covered

events until 2013. A later major drought event (2017-2018) was not included, because those data are so far not publicly available605

and quality checked. Therefore, we encourage future studies to (1) focus on conducting sector-specific analyses of impacts (e.g.

Blauhut et al., 2015, 2016; Stagge et al., 2015; Bachmair et al., 2016b), (2) explore different types of impact data, for instance,

agricultural and economic data (e.g. Sainz de la Maza and Del Jesús, 2020), and (3) model exposure and vulnerability (in

addition to drought hazard) to understand how future drought risk will change (Blauhut, 2020).

Code and data availability. The R package “randomForest” (Liaw and Wiener, 2002) is available at: https://cran.r-project.org/web/packages/610

randomForest/randomForest.pdf. The R package “caret” (Kuhn, 2008) is available at: https://github.com/topepo/caret/. The R package

“panas” (De Felice, 2020) is available at: https://github.com/matteodefelice/panas/. The R package “SPEI” (Vicente-Serrano et al., 2010;

Beguería et al., 2014) is available at: http://sac.csic.es/spei. The Standardized Drought Analysis Toolbox (SDAT) (Hao et al., 2014; Farah-

mand and AghaKouchak, 2015) is available at: http://amir.eng.uci.edu/software.php. The research data used in this study are all pub-

licly accessible. The precipitation and temperature data sets used are available at: http://hdl.handle.net/10261/183071) (Gutiérrez et al.,615

2019; Herrera et al., 2019). Data for streamflow and reservoir levels are available at: https://sig.mapama.gob.es/redes-seguimiento/index.

html?herramienta=Aforos (Ministerio para la Transición Ecológica y el Reto Demográfico). Volumetric soil water content data from the

ERA5-Land data set (Muñoz Sabater, 2019) are available at: https://doi.org/10.24381/cds.68d2bb30. Data for the climate indices: NAO,

EA, AO and ENSO, from the NOAA Climate Prediction Center are available at: https://psl.noaa.gov/data/climateindices/list/ and https:

//www.cpc.ncep.noaa.gov/data/teledoc/ea.shtml, and data for the WeMO are available at: http://www.ub.edu/gc/wemo/ (Martin-Vide and620

Lopez-Bustins, 2006). The data for the drought vulnerability factors are available at: https://www.ine.es, https://ec.europa.eu/eurostat/ and

https://land.copernicus.eu/pan-european/corine-land-cover). The results from the cross-validation analysis and an explanation on how to tune

the RF models can be obtained at: https://doi.org/10.5281/zenodo.6322803 (Torelló-Sentelles, 2022).
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