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Abstract. Low bottom water dissolved oxygen conditions (hypoxia) occur almost every summer in the northern 

Gulf of Mexico due to a combination of nutrient loadings and water column stratification. Several statistical and 

mechanistic models have been used to forecast the midsummer hypoxic area based on spring nitrogen loading 

from major rivers. However, sub-seasonal forecasts are needed to fully characterize the dynamics of hypoxia over 10 

the summer season, which is important for informing fisheries and ecosystem management. Here, we present an 

approach to forecast hypoxic conditions at daily resolution through Bayesian mechanistic modelling that allows 

for rigorous uncertainty quantification. Within this framework, we develop and test different representations and 

projections of hydrometeorological model inputs. We find that May precipitation over the Mississippi River Basin 

is a key predictor of summer discharge and loading that substantially improves forecast performance. Accounting 15 

for spring wind conditions also improves forecast performance, though to a lesser extent. The proposed approach 

generates forecasts for two different sections of the Louisiana–Texas shelf (east and west), and it explains about 

50% of the variability in total hypoxic area when tested against historical observations (1985−2016). Results also 

show how forecast uncertainties build over the summer season, with longer lead times from the nominal forecast 

release date of 1 June, due to increasing stochasticity in riverine and meteorological inputs. Consequently, the 20 

portion of overall forecast variance associated with uncertainties in data inputs increases from 26% to 41% from 

June–July to August–September, respectively. Overall, the study demonstrates a unique approach to assessing and 

reducing uncertainties in temporally resolved hypoxia forecasting. 

Introduction 

The Northern Gulf of Mexico has one of the largest hypoxic zones in the world, forming virtually every summer 25 

over the last three decades (Rabalais and Turner, 2019). Hypoxic or “dead” zones occur when dissolved oxygen 

concentrations fall below critical thresholds (e.g., 2 mg/L) threatening aquatic ecosystems (Craig, 2012; Craig and 

Crowder, 2005; Thronson and Quigg, 2008), fisheries (Purcell et al., 2017; Smith et al., 2017), and coastal 

economies (Díaz and Rosenberg, 2011). Two major causes of hypoxia in the Gulf are water column stratification 

and nutrient loadings (Krug, 2007; Obenour et al., 2012; Rabalais et al., 2002), which are both influenced by 30 

Mississippi and Atchafalaya River discharges. Additionally, wind controls both the structure of the river plume 

(Hetland, 2005) and the rates of oxygen supply to the water column (Fennel et al., 2013; Justić et al., 1996). 

Overall, a complex combination of biophysical factors including long-term accumulation of organic matter (Del 

Giudice et al., 2020; Turner et al., 2008) and short-term events like storms and droughts (Bianchi et al., 2010) 

control hypoxia dynamics in the northern Gulf. 35 
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Mathematical models are useful for elucidating important relationships between hypoxia and environmental 

drivers, and for evaluating the consequences of possible actions to improve water quality (Justić and Rose, 2017). 

The approaches developed to predict hypoxia in the Gulf of Mexico included statistical regressions (Forrest et al., 

2011; Greene et al., 2009; Turner et al., 2012), as well as both parsimonious (Obenour et al., 2015; Scavia et al., 

2013) and complex (Justić and Wang, 2014; Yu et al., 2015) mechanistic models. Among these alternatives, 40 

parsimonious process-based models attempt to balance biophysical detail with computational efficiency and 

resilience to overfitting. When embedded in a Bayesian framework, these models describe eutrophication 

processes and hypoxia formation while enabling data-driven parameter estimation and rigorous uncertainty 

analysis (Ménesguen and Lacroix, 2018). The latter is especially important for assessing our confidence in the 

potential outcomes of environmental change and management decisions (Reichert and Borsuk, 2005; Schuwirth 45 

et al., 2019).  

Currently, a probabilistic ensemble of four models is used to inform stakeholders and fishery managers about the 

expected extent of the northern Gulf hypoxic zone (Scavia et al., 2017). This ensemble provides predictions with 

estimates of uncertainty of the midsummer hypoxic area (HA). However, the forecast lacks dynamic oxygen 

predictions over the summer season. The lack of subseasonal information on dissolved oxygen variability has 50 

been identified as an important limitation in understanding how hypoxia affects fisheries in the region, which 

occur primarily during the summer season but are highly dynamic in space and time (Langseth et al., 2016; Purcell 

et al., 2017; Smith et al., 2014). Laurent and Fennel (2019) used a weighted aggregation of seasonal hindcasts 

generated by a three-dimensional model to produce spatially and temporally resolved seasonal hypoxia forecasts, 

but without accounting for uncertainties related to the model parameterization (Mattern et al., 2013). Further, the 55 

aforementioned forecasting approaches are informed only by observed spring nutrient loading, without 

considering variability in spring wind conditions (Obenour et al., 2015) or projected summer river discharge and 

loading.  

Here, we use an existing mechanistic model, calibrated within a Bayesian inference framework, to forecast the 

temporal dynamics of hypoxia in the northern Gulf over the summer season. The model was initially developed 60 

by Obenour et al. (2015) and later enhanced by Del Giudice et al. (2020) (hereafter referred to as DMO20). While 

the model performed well in hindcasting, its ability to forecast hypoxia forward in time has not been explored. In 

order to provide sufficient lead for environmental planning and fisheries management, we produce a June–

September hypoxia forecast based on data available at the end of May. The main objectives of this study are to: 

a) develop daily forecasted spatial-mean bottom water dissolved oxygen (BWDO) concentrations and HA 65 

estimates for targeted portions of the Louisiana–Texas Shelf with accompanying measures of uncertainty; b) 

understand the major sources of forecast uncertainty; c) characterize how forecast accuracy degrades over time; 

and d) explore how different applications of spring-summer riverine and meteorological data influence forecast 

performance. 

2 Methods 70 

We first outline the underlying model and required data inputs. Next, we describe the proposed forecasting 

procedure, along with regression models to project discharge and nitrogen loading over the summer. Third, we 

describe the approach to evaluate BWDO and HA forecast performance and analyse how the forecast varies in 

relation to alternative combinations of data inputs. 
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2.1 Bayesian mechanistic model and bias adjustment 75 

The hypoxia forecast is based on the model described in DMO20, which has a parsimonious mechanistic 

formulation and coarse spatial resolution. Specifically, the model represents the Louisiana–Texas shelf from 

Galveston Bay to the Mississippi River Delta, divided into four compartments. West and east sections are 

separated at the Atchafalaya River mouth (Fig. 1), while the water column of each section is divided by the 

pycnocline into two layers, assuming that discharge and nutrient loadings are transported within the top layer. 80 

Additionally, wind speed and direction control the distribution of flow and loadings between the east and west 

sections as well as the rate of reoxygenation across the pycnocline. The biogeochemistry is based on the 

transformation of bioavailable nitrogen (sum of nitrate, nitrite, ammonia, and 12% organic nitrogen (Obenour et 

al., 2015)) into organic matter, which settles to the bottom layer and is subject to aerobic decomposition. BWDO 

is depleted due to both near- and long-term oxygen demands, reflecting the effects of nitrogen loadings over 85 

different time scales. Therefore, the model uses both recent inputs of daily discharge, loading, and wind (up to 

90 d before the date of prediction) and long-term November–March loading. In addition, the Bayesian calibration 

framework provides systematic estimation of model parameters and their uncertainties (Table S1). All major 

equations of DMO20, including regressions to convert BWDO to HA, are presented in Section S1. Predictions of 

BWDO and HA generated by DMO20 using known nutrient and hydrometeorological inputs throughout the 90 

summer are hereinafter referred to as “hindcasts” (Fig. 2A).  

Prior to developing the daily forecast, we examined DMO20 hindcasts for systematic biases during specific 

months and found that predicted BWDO was (0–20%) lower than observations for the west section of the shelf in 

June. However, this discrepancy diminished toward the end of the month (Section S2). This apparent bias, which 

could be due to an overestimation of June oxygen demands or other structural limitation within DMO20, was 95 

corrected using a linear regression, with the day number (June 1 to June 30) as a predictor and the BWDO 

adjustment as the response (Fig. S2.1). This adjustment factor was applied to all June model predictions (hindcasts 

and forecasts) unless otherwise indicated. 

 

 100 

Figure 1: Map of the study area located in the Northern Gulf of Mexico. Mississippi and Atchafalaya River Basin 

(top left, light blue filled) is used in estimation of monthly precipitation and temperature. 
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2.2 Data 

The forecast utilized the same observational data inputs described in DMO20, including monthly discharge and 

nitrogen loading from the U.S. Geological Survey (USGS, 2019), daily discharge from the U.S. Army Corps of 105 

Engineers at Simmesport and Tarbert Landing (USACE, 2019), and wind velocities from the National Data Buoy 

Center (NDBC, 2019). Additionally, monthly precipitation and temperature were obtained from gridded data for 

the Mississippi River Basin (Hart and Bell, 2015; Schwartz, 2012). For both shelf sections, estimates of mean 

BWDO and HA with associated uncertainties were obtained using the space-time geostatistical model of Matli et 

al. (2018). This model relies on BWDO samples from ship-based monitoring cruises, and similar to DMO20, we 110 

only used the geostatistical estimates corresponding to times of these cruises (when uncertainty is typically 

lowest). At least one monitoring cruise was conducted every year of the study period (1985–2016) and there were 

a total of 149 cruises (34 in June, 63 in July, 35 in August, and 17 in September). 

2.3 Forecast procedure 

To capture the uncertainty in hydrometeorology, nutrient loading, model parameters, and residual error, the 115 

forecast for a given year was determined through 1000 Monte Carlo simulations (Fig. 2B) implemented in R (R 

Core Team, 2019). Each simulation included a random draw from the Bayesian joint posterior parameter and error 

distribution of the mechanistic model (DMO20), and the uncertainty in the regressions for bias correction and for 

converting BWDO to HA. The simulations used actual November–May riverine and meteorological inputs for the 

forecast year, since these inputs would be known by the nominal forecast release date of 1 June. However, summer 120 

(June–September) inputs were sampled from historical records of multiple years (always omitting the forecast 

year). To retain the temporal correlation in these inputs, data were sampled in blocks (i.e., the complete daily time 

series for each summer). As wind conditions cannot be accurately forecasted beyond 10 days (Zhang et al., 2019), 

summer wind velocity data were sampled from the complete historical record (1985–2016).  

Summer riverine inputs can potentially be projected in advance through regression (Section 2.4). Thus, riverine 125 

time series were sampled from only the 10 most “relevant” historical years. For each historical year, relevancy to 

the forecast year was determined by computing the differences between the summer historical records and the 

regression-projected discharge and bioavailable nitrogen loading (Section 2.4). Monthly projections and 

observations were standardized based on the mean and standard deviation of the historical data for each summer 

month, so that the differences in loading and flow could be combined on the same unitless scale. The 10 years 130 

with the smallest aggregated differences were selected as the relevant years for use in the Monte Carlo simulations. 
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Figure 2: Flowchart summarizing processes and inputs required to generate the hypoxia hindcast (A) and pseudo-

forecast (B) for a given year. Parallelograms represent data inputs and Bayesian posterior parameter distributions. 135 
Rectangles represent forecasting computations. Squares with bell-shaped curves indicate steps that propagate 

uncertainty (including stochastic hydrometeorology). 

 

2.4 Regressions for June-September discharge and loading 

Regression modelling was used to project riverine inputs, which were employed to constrain the historical records 140 

used in the Monte Carlo simulations to relevant years (Section 2.3, Fig. 2B). June, July, August, and September 

river (Atchafalaya and Mississippi) discharge (QA and QM, m3/s) and bioavailable nitrogen loading (LA and LM, 

T/mo) were estimated through multiple linear regression. The candidate predictor variables (predictors) included 

monthly (January–May) and 4-month average (January–April) discharge, loading, total river basin precipitation 

(P, in), and river basin temperature (T, ºC) (Fig. 1). Response variables were square-root transformed to account 145 

for the skewness of their distributions and comply with error normality assumption for linear regression (Faraway, 

2015). Predictors for each model were selected using the Bayesian Information Criterion (BIC) through an 

exhaustive search (Lumley, 2017). BIC prioritizes models based on log likelihood while penalizing for the number 

of parameters to prevent overfitting (Faraway, 2015). The performance of the regression was measured by the 
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coefficient of determination, R2, in the square-root transformed space. If any of the sixteen regressions had 150 

R2 < 30%, the associated month and variable was excluded from determining relevant years for hypoxia 

forecasting (Section 2.3). To further check the validity of these regressions, we performed leave-one year-out-

cross validation (LOOCV), where we excluded years by one, calibrated the models to the reduced dataset, and 

predicted for the excluded year. 

2.5 Forecast assessment 155 

The forecasting approach was applied to the complete historical record (1985–2016, excluding the summer input 

data of the forecast year from the Monte Carlo simulation). This retrospective forecast (i.e., pseudo-forecast) 

performance was evaluated through comparison of the daily forecasted values with both hindcasted (generated by 

DMO20) and geostatistically estimated (referred to as “observed” for brevity) BWDO and HA for the two shelf 

sections. The approach also allowed for determining 95% inter-quantile ranges (IQR) of the pseudo-forecasts, 160 

accounting for parameter, model residual, transformation, and bias adjustment uncertainties, as well as the 

stochasticity in riverine and meteorological inputs (Section 2.3).  

We also assessed how inclusion of various hydrometeorological inputs affected pseudo-forecast accuracy and 

uncertainty. Specifically, we compared four cases with different types of spring–summer wind and summer 

riverine data. Case 1 included summer riverine and spring–summer wind records randomly sampled from the 165 

complete historical data (thus they are treated as unknown, consistent with conventional Gulf forecasting 

approaches). Case 2 was similar to Case 1, except it included actual spring wind data (to 31 May). Case 3 was 

also similar to Case 1, except it used summer riverine records sampled from only the 10 most relevant historical 

years, as determined from the regression projections (Section 2.4). Finally, Case 4 (our proposed approach, 

Fig. 2B) used both actual spring wind data and riverine records from the 10 most relevant years.  170 

3 Results and Discussion 

3.1 Monthly discharge and loading projections 

Multiple linear regressions predict average monthly (June to September) summer river discharge and bioavailable 

nitrogen loading at each river outlet. The performance of these 16 regressions generally decreases from the 

beginning to the end of summer (Table 1), reflecting the increasing temporal gap (i.e., lead time) between the 175 

available spring predictors and the forecast response. For instance, the regressions explain 78% and 9% of the 

variability in (square-root transformed) Mississippi River bioavailable nitrogen loading in June and September, 

respectively. The residuals for all selected models appear evenly distributed with minimal heteroscedasticity 

(Fig. S3.1–S3.4) and mostly weak serial correlation of residuals (Pearson lag-1 correlations ranging from –0.02 

to 0.35). The predictive variables chosen via exhaustive BIC selection include May discharge (QA5 or QM5) or 180 

bioavailable nitrogen loading (LA5 or LM5) in 13 of the 16 models. In other words, high flow and nutrient loading 

in May is indicative of high flow and nutrient loading in summer. However, the most consistent individual 

predictor (present in 12 out of 16 regressions) is Mississippi River Basin precipitation in May (P5), likely due to 

the hydrologic lag between rainfall and basin discharge. Note that the correlation between P5 and May discharge 

is relatively weak (r = 0.36 for both rivers), while the correlations between P5 with June and July discharge are 185 

r = 0.77 and r = 0.66, respectively, suggesting an average basin response time of 1–2 months. This lag is generally 
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consistent with a previous study that identified a strong positive correlation between March–May precipitation 

and May–June nitrogen flux in the basin (Donner and Scavia, 2007). Additionally, the strong influence of lagged 

watershed precipitation on nitrogen loading has been confirmed for other river basins (Gentry et al., 2014; Hinsby 

et al., 2012; Sinha and Michalak, 2016). Regressions for August and September flow and loading perform poorly 190 

in both calibration and cross validation, compared to the earlier months (Table 1). Therefore, only the eight 

regressions for June and July discharge and bioavailable nitrogen loading are used for screening and constraining 

riverine inputs for subsequent hypoxia forecasting (Section 2.3). 

 

Table 1: Regressions for monthly Atchafalaya and Mississippi River discharge (QA and QM, m3/s) and bioavailable 195 
nitrogen loading (LA and LM, Mg/mo). Variable subscript numbers represent months. For example, P1:4 represents 

average Mississippi River basin precipitation for January-April. Bold R2 values (>0.30) indicate models used for 

selection of relevant years in hypoxia forecasting. 

 Regression  R2 LOOCV R2 

A
tc

h
af

al
ay

a 

√𝑄𝐴6 = 19.45 + 2.55 × 10−3 × 𝑄𝐴5 + 0.46 × 𝑃5 0.79 0.75 

√𝑄𝐴7 = 8.20 + 0.54 × 𝑃1:4 + 0.38 × 𝑃5 0.47 0.38 

√𝑄𝐴8 = 33.69 + 1.06 × 10−3 × 𝑄𝐴5 + 0.19 × 𝑃5 0.28 0.14 

√𝑄𝐴9 = 63.15 + 2.61 × 𝑇1:4 0.13 0.04 

√𝐿𝐴6 = 35.86 + 1.57 × 10−3 × 𝐿𝐴5 + 0.82 × 𝑃5 0.76 0.71 

√𝐿𝐴7 = 54.44 + 1.17 × 10−3 × 𝐿𝐴5 + 0.54 × 𝑃5 0.51 0.41 

√𝐿𝐴8 = 72.82 + 1.22 × 10−3 × 𝐿𝐴5 0.30 0.17 

√𝐿𝐴9 = 73.61 + 0.56 × 10−3 × 𝐿𝐴5 0.11 -0.02 

M
is

si
ss

ip
p
i 

√𝑄𝑀6 = 31.63 + 1.66 × 10−3 × 𝑄𝑀5 + 0.69 × 𝑃5 0.77 0.73 

√𝑄𝑀7 = 49.01 + 0.73 × 10−3 × 𝑄𝑀5 + 0.51 × 𝑃5 0.48 0.38 

√𝑄𝑀8 = 53.11 + 0.69 × 10−3 × 𝑄𝑀5 + 0.28 × 𝑃5 0.28 0.15 

√𝑄𝑀9 = 97.19 + 3.81 × 𝑇1:4 0.13 0.04 

√𝐿𝑀6 = 32.42 + 0.92 × 10−3 × 𝐿𝑀5 + 1.66 × 𝑃5 0.78 0.74 

√𝐿𝑀7 = 44.85 + 0.65 × 10−3 × 𝐿𝑀5 + 1.39 × 𝑃5 0.51 0.41 

√𝐿𝑀8 = 50.87 + 0.52 × 10−3 × 𝐿𝑀5 + 0.80 × 𝑃5 0.25 0.12 

√𝐿𝑀9 = 92.39 + 1.57 × 𝑃5 0.09 0.01 

 

3.2 Forecast skill 200 

After constraining historical riverine inputs (to the 10 most relevant years, excluding the forecast year) based on 

the discharge and loading regressions for each forecast year, the hypoxia model (DMO20) is run to obtain daily 

hypoxia predictions (Fig. 3, top). Over the 32-year record, these pseudo-forecasts explain 66% and 64% of the 

variability in hindcasted BWDO (i.e., DMO20 model predictions assuming all inputs are known throughout the 

summer) for the west and east sections, respectively. After transformation of BWDO to HA, the pseudo-forecast 205 

explains 68% of variability in hindcasted HA for each section (Fig. S4.1). Overall, the pseudo-forecast explains 

71% and 77% of the variability in hindcasted total shelfwide HA and mean BWDO, respectively.  

Pseudo-forecasts can also be compared to observed (geostatistically estimated) BWDO and HA at the times of 

monitoring cruises (Fig. 3, bottom). The forecasted BWDO fits moderately well to the observations with an R2 of 

0.39 and 0.50 for the west and east sections, respectively. When BWDO is transformed to HA, the pseudo-forecast 210 

explains 41% and 48% of variability in observed HA in the west and east sections, respectively (Fig. S4.1), which 
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is similar to the hindcast explanatory power of 46% and 58% (as in DMO20). In comparison, hindcasting studies 

using three-dimensional models have generally explained a lower 27–37% of the variability in Gulf BWDO, but 

at finer spatial resolution (Fennel et al., 2016). To our knowledge, this is the first time Gulf hypoxia forecasts have 

been rigorously compared to observations across the entire summer season (June–September). Previous studies 215 

have generally focused on assessing forecast performance relative to the Louisiana Universities Marine 

Consortium midsummer shelfwide hypoxia cruises, which typically take place within a two-week window 

beginning in late July (Laurent and Fennel, 2019; Scavia et al., 2017). 

A tighter selection of relevant years for forecast generation may produce more accurate forecasting results, but 

may capture less of the true stochasticity in the hydrometeorology. If the forecasting approach is revised to include 220 

only the 5 most relevant years, the predictive accuracy slightly improves based on comparisons with hindcasted 

values (R2 increases by 2.8%), while there is virtually no improvement based on comparisons with observed HA. 

At the same time, the uncertainty (standard error) for the population variance increases by a factor of 1.5 when 

using 5 years instead of 10 years (Benhamou, 2018). Therefore, using 10 relevant years appears to provide a more 

reasonable balance between predictive accuracy and uncertainty characterization, though this could be explored 225 

further in future research. 

 

 

Figure 3: Daily hindcasted BWDO (predicted for every summer day from DMO20, 1985-2016, assuming 

hydrometeorology and loading is known throughout the summer) and observed BWDO (geostatistically estimated from 230 
monitoring cruises) versus forecasted BWDO for west and east shelf sections. Diagonal line represents perfect 

prediction. 
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Forecasting performance gradually degrades with longer lead times. The ability of pseudo-forecasts to match 

DMO20 hindcasts of shelfwide HA declines by about 50% (comparing R2 values, Fig. 4, top) from June to 235 

September due to increasing uncertainty in riverine and meteorological inputs toward the end of the summer 

season. In comparison, the ability of forecasts to match actual observations declines by nearly 70% 

(Fig. 4, bottom). Forecasts and hindcasts benefit from the same seasonal patterns inherent to the DMO20 model 

structure, while observations may deviate from these patterns due to additional drivers of variability not captured 

in the mechanistic formulation. 240 

 

 

Figure 4: Month-by-month comparison of the daily hindcasted (top) and observed (geostatistically estimated, bottom) 

shelfwide HA versus pseudo-forecasted HA. Diagonal line represents perfect prediction. 

 245 

Our forecast quantifies predictive uncertainty associated with the Bayesian parameter estimates and residual 

errors, summer model inputs, bias adjustment, and transformation of BWDO to HA (Fig. 5, Figs. S5.1–S5.11). 

The results indicate that the 95% IQR for the west section is on average 2.6 times higher than for the east section, 

due to greater overall size of the west section (and greater HA) and the complex effect of both river outfalls 

(Atchafalaya and Mississippi) on BWDO in this section (DMO20). Although the forecasts generally follow the 250 

shape of the hindcasts over time, some dissimilarities exist due to hydrometeorological variability (Fig. 5). The 

pseudo-forecast captures the large HA during summer 1993 that was caused by extremely high May–September 

river flow and nutrient loadings (Larson, 1997). Interestingly, however, the pseudo-forecast in 2009 overpredicts 

HA in the west section (two observations are outside of the 95% IQR), due to unusually strong westerly summer 

winds in this year (Turner et al., 2012). Generally, high wind stress increases water column reaeration and disrupts 255 

stratification (Justić and Wang, 2014; Obenour et al., 2015), while upwelling westerly winds disperse the river 

plume offshore, reducing the consequent oxygen demand (Feng et al., 2012; Le et al., 2016). Overall, only 6% (9 
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of 149) of the observations of total HA are outside of the 95% IQR (Figs. S6.1–S6.8). Also, the geostatistically 

estimated 95% confidence intervals of observed HA always overlap the forecasted 95% IQR except for one 

observational cruise in 1988. This discrepancy is caused by anomalously strong summer winds combined with 260 

low discharge and nutrient loading in 1988 (Tables S3.1–S3.2). In general, these results suggest the forecasts 

realistically characterize predictive uncertainties. 

Our approach also allows for disentangling and quantifying various sources of forecast variance (Fig. S4.2). Note 

that the relative magnitudes of the variance components are somewhat different from the magnitudes of the IQR 

components (e.g., Fig. 5) because variance has squared units. For total HA, the variance associated with 265 

stochasticity in riverine and meteorological inputs is 40 times greater than variance associated with parameter 

uncertainty (on average). Also, the variance associated with these summer data inputs is more influential in later 

months, with its contribution to total variance increasing from 26% in June–July to 41% in August–September. 

The remaining sources of forecast variance (dominated by residual error, but also including the June bias 

adjustment and transformation of BWDO to HA) are 1.9 times greater than the variance related to the stochastic 270 

data inputs, suggesting limitations in the model structure or available modelling data (e.g.,  accuracy or resolution). 

The relatively low parameter uncertainty reflects the long calibration record (currently 1985–2016) and is 

consistent with the underlying model’s robust performance in cross validation (Obenour et al., 2015).  

 

 275 
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Figure 5: Daily pseudo-forecasts of HA for the west and east sections in 1993 (top) and 2009 (bottom), including 95% 

IQR of the predictive distribution, distinguishing between i) parameter, ii) riverine and meteorological inputs, 

iii) mechanistic model residual error and iv) regressions related to transformation of BWDO to HA and bias 

adjustment uncertainties (shades of gray from lightest to darkest). Yellow dashed line is hindcasted estimate, black 

dashed line is the 32 year average hindcast, orange points and error bars represent the mean and associated 95% 280 
confidence interval of the (geostatistically estimated) hypoxia observations. 

 

Interestingly, the predictive intervals shown in Fig. 5 do not clearly increase over the course of the summer. This 

is largely because predictive intervals tend to increase with increasing predicted hypoxic area, and hypoxic area 

tends to decline after midsummer. If predictive intervals are normalized (i.e., IQR divided by predicted HA), there 285 

is a clearer increase in uncertainty over the summer (Fig. 6). The normalized IQRs increase due to the transition 

from observed to randomly sampled model inputs. The riverine and meteorological inputs to DMO20 are lagged 

rolling window averages that include mostly actual observed data (i.e., data prior to 1 June) at the beginning of 

the summer, and an increasing proportion of randomly sampled historical data thereafter (Section 2.1). As a result, 

the normalized IQR for pseudo-forecasted HA for June–July is 30% lower than for August–September on average 290 

(Fig. 6A, boxplots). There is a rapid increase in normalized IQR during the second week of June. In the model, 

mean water column reaeration is determined by wind speeds over the preceding two weeks (Obenour et al., 2015). 

Consequently, the large and highly variable wind speeds of June (Fig. 6B) (de Velasco and Winant, 1996) quickly 

increase predictive uncertainties, as these stochastic inputs replace the known wind speed inputs from May. 

Finally, increases in IQR are also noted in August and September (Fig. 6A), which is consistent with limited 295 

ability of the regression analysis (Section 3.1) to accurately project flow and load for such long lead times. 

 

 

Figure 6: (A) Boxplots represent daily pseudo-forecasted normalized IQR (IQR/HA) including uncertainty due to 

variability in parameters, riverine inputs and meteorology. Red dashed and solid lines show the daily mean HA and 300 
(non-normalized) IQR, respectively; (B) Boxplots show 14 day weighted average squared wind speed near the west 

shelf section. Boxplots represent interannual variability in the results. The center of each box is the median, while 

whiskers extend to the extreme value or 1.5 times the IQR of the corresponding variable (whichever is less). 
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3.3 Sensitivity to riverine and meteorological inputs 305 

The results presented in the previous section are for the proposed forecasting approach with known spring 

loadings, discharge and winds, and with summer riverine inputs constrained through the regression projections 

(i.e., Case 4 of Section 2.5). In comparison, the more conventional Gulf forecasting approach, using known spring 

riverine inputs but with unknown wind and summer riverine inputs (i.e., randomly sampled from the entire 

historical record, Case 1) explains only around half of variability in hindcasted and observed HA (i.e., 56% and 310 

44%, respectively, Table 2). Also, the performance of Case 1 declines greatly from the beginning (June) to the 

end (September) of the summer. The inclusion of summer riverine records constrained through regression 

projections substantially increases the variance explained in both hindcasted and observed HA (Table 2, 

Cases 3 and 4). This improvement in performance is the most notable for July–September, indicating that the 

constrained summer inputs provide a more accurate determination of water column stratification and oxygen 315 

demand within the biophysical model. Additionally, the summer-wide average of the normalized IQR for Case 4 

is on average 22% lower than that of the conventional forecasting approach (Case 1). 

Addition of actual spring wind data to the conventional approach (Table 2, Case 2) slightly increases the explained 

variance in hindcasted and observed HA by 4% (i.e., from 56% to 60%) and 1%, respectively. This forecast 

improvement is most notable in June and July because zonal wind velocities up to three months in advance 320 

regulate the transport of water and nutrients over the shelf (Obenour et al., 2015; Walker et al., 2005). 

Interestingly, about a quarter of the variability in hindcasted June HA remains unexplained even when actual 

spring wind data are included (Table 2, Case 2). This is consistent with the importance of near-term wind and 

discharge inputs in controlling reaeration in the model. It is also consistent with the uncertainties presented in 

Fig. 6 and other modelling studies exploring the influence of wind on hypoxia formation (Forrest et al., 2011; Yu 325 

et al., 2015). Overall, the forecast is only moderately sensitive to the inclusion of actual spring wind velocities 

(compare Cases 1 and 2 to Cases 3 and 4). However, we anticipate that inclusion of actual spring wind data may 

still be important, especially for years with anomalous wind patterns. 

Finally, for the preferred forecasting approach (Case 4) we examine an alternative way of determining the relevant 

years that constrain the distribution of riverine inputs for the forecast year. If only nitrogen loading regressions 330 

are used to constrain summer inputs (instead of both flow and loading regressions), the explained variability in 

the hindcasted total HA drops from 71% (Table 2, Case 4) to 69%. This relatively small drop in predictive 

performance is not too surprising, as monthly nitrogen loading, which is the primary driver of many hypoxia 

models (Turner et al., 2006), is highly correlated with monthly discharge (r = 0.90). However, employing the 

discharge regressions (in addition to the loading regressions) better accounts for the influence of river flow on 335 

stratification and hypoxia formation (Obenour et al., 2012). 
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Table 2: Explained variance (R2) in hindcasted and geostatistically observed HA by pseudo-forecasts based on the 

different data input cases. Here, act indicates actual data for the specific year being forecasted are used, ran-all indicates 

input data are randomly sampled from the complete historical record, and ran-sel indicates that riverine input data 340 
are randomly sampled from a subset of relevant historical years based on the regression projections for flow and 

loading. Spring includes March–May while summer includes June–September records. The highest R2 values for each 

month are highlighted with bold. 

C
as

e 

Data input R2, Forecasted vs Hindcasted  R2, Forecasted vs Observed 

Riverine Wind Month 
Overall 

Month 

Overall 
Spring Summer Spring Summer Jun Jul Aug Sep Jun Jul Aug Sep 

1 act ran-all ran-all ran-all 0.69 0.38 0.32 0.21 0.56 0.57 0.28 0.28 0.15 0.44 

2 act ran-all act ran-all 0.76 0.56 0.33 0.19 0.60 0.53 0.32 0.28 0.14 0.45 

3 act ran-sel ran-all ran-all 0.73 0.68 0.52 0.36 0.68 0.58 0.39 0.32 0.19 0.49 

4 act ran-sel act ran-all 0.80 0.73 0.54 0.38 0.71 0.54 0.42 0.34 0.17 0.50 

 

3.4 Implications for hypoxia forecasting and fisheries management 345 

To our knowledge, there is only one hypoxia forecasting study (i.e. Laurent and Fennel, 2019), with a similar 

temporal scope to the current study. That study applied three-dimensional hydrodynamic–biogeochemical model 

hindcasts, weighted based on comparisons with historical May nitrogen loading only. Other predictive hypoxia 

studies have employed both discharge and wind (Forrest et al., 2011; Testa et al., 2017), however they lacked the 

desired temporal resolution of this study. Here, we demonstrate how projections of summer riverine inputs based 350 

on spring discharge, loading, and watershed precipitation (Section 3.1) can be used to constrain model inputs, 

substantially improving hypoxia forecasting skill (Case 4, Table 2). We suggest that other hypoxia forecasting 

efforts could also benefit from such expanded and projected model inputs.  

Our approach allows for daily forecasts of BWDO and HA for two shelf sections throughout the entire summer 

season. Generally, results indicate that HA can be forecasted up to four months ahead, but predictions for later 355 

months should be treated with increased caution given their higher uncertainties (Fig. 6). Note that the river input 

regressions only explain 25–30% of the variability in August nitrogen loadings (Table 1), which is a major factor 

underlying the decrease in forecast skill in late summer. Additional sources of uncertainty in model inputs may 

arise from extreme climatic events (e.g. tropical storms and hurricanes), which are unpredictable at the forecasting 

time scales considered here. These storm events have a multifaceted effect on BWDO, potentially reaerating the 360 

bottom water column but also providing additional terrestrially derived or sediment-resuspended nutrients that 

may exacerbate hypoxia (Bianucci et al., 2018; Yu et al., 2015). Therefore, it is not surprising that the pseudo-

forecast can explain only about a third of the variability in hindcasted September total HA (Fig. 4). Overall, future 

hypoxia forecasting efforts would benefit from improvements in weather and riverine forecasting systems that 

provide more reliable projections for longer time periods.  365 

The forecasts also explicitly distinguish between different sources of uncertainty in BWDO and HA (Fig. 5). Most 

previous forecasting studies for the northern Gulf (Forrest et al., 2011; Scavia et al., 2013; Turner et al., 2012) 

and other systems like Chesapeake Bay (Testa et al., 2017) implicitly represent uncertainty associated with 

unknown summer data inputs, sometimes accounting for it in the residual error. On the other hand, the recent 
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study by Laurent and Fennel (2019) explicitly considers uncertainty due to stochastic summer riverine inputs, but 370 

does not include parameter and residual error uncertainties in the generated forecasts. Thus, this study provides a 

more comprehensive uncertainty assessment, allowing for management decisions that are robust to potential 

extremes (Keeney, 1982; Schuwirth et al., 2019). 

Finally, the proposed approach has potential benefits for short- and long-term environmental planning and 

fisheries management. In the northern Gulf, the largest volume (Atlantic Menhaden) and highest valued (Penaeid 375 

shrimp) fisheries occur during the summer months concurrent with seasonal hypoxia. These fisheries are highly 

mobile and hypoxia is known to affect the dynamics of both targeted species (Craig and Crowder, 2005; Craig 

and Bosman, 2013) and fishing fleets (Langseth et al., 2014; Purcell et al., 2017), with potential implications for 

catch (Craig, 2012), economic condition (Smith et al., 2017), and management (Langseth et al., 2016). However, 

previous attempts to correlate fishery performance (e.g. catch) with annual measures of hypoxic severity (e.g., 380 

area of hypoxia in late July) have had limited success (O’Connor and Whitall, 2007; Zimmerman and Nance, 

2001) because neither the spatio–temporal dynamics of hypoxia or of the fishery have been considered. Thus, the 

proposed daily forecasts can potentially be linked to fisheries and ecosystem models (e.g. de Mutsert et al., 2016), 

to provide more actionable management guidance. In addition, while this study focuses on a 1 June forecast release 

date, consistent with current Gulf forecasting practices, future modelling enhancements might focus on updating 385 

the forecast over the summer, as additional hydrometeorological data become available. Such updating could 

potentially benefit real-time, adaptive management of the fishery. 

4 Conclusion 

In this study, we demonstrate a novel approach for forecasting intra-seasonal variability in BWDO and HA in the 

northern Gulf of Mexico by leveraging a Bayesian mechanistic model. This study generates the first daily hypoxia 390 

forecasts across the summer season (up to four months ahead) with comprehensive uncertainty assessment. We 

show that the major sources of uncertainty include variability in data inputs and residual error, while model 

parameter uncertainty is relatively small. This study also compares how different methods for specifying riverine 

and meteorological model inputs influence forecast accuracy. In particular, we show how constraining summer 

riverine inputs based on spring conditions, including precipitation over the Mississippi River Basin, can be used 395 

to improve hypoxia forecasting skill. We also show that inclusion of monitored spring wind data further improves 

hypoxia forecasts. Together, these enhancements increase retrospective pseudo-forecast accuracy from 44% to 

50% (R2) while reducing forecast uncertainty by 22% across summers, relative to the conventional approach using 

spring loadings and flows only (with randomly sampled summer riverine and spring–summer wind records). Thus, 

the forecasting system developed here provides an enhanced capacity to inform natural resources management in 400 

hypoxic coastal systems.  
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