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Abstract. Electromagnetic induction (EMI) is used widely for hydrological and other environmental studies. The apparent 

electrical conductivity (ECa), which can be mapped efficiently with EMI, correlates with a variety of important soil attributes. 

EMI instruments exist with several configurations of coil spacing, orientation, and height. There are general, rule-of-thumb 

guides to choose an optimal instrument configuration for a specific survey. The goal of this study was to use machine learning 

(ML) to improve thisprovide a robust and efficient way to design this optimization task. In this investigation, we used machine 15 

learning as an efficient tool for interpolating among the results of many forward model runs. Specifically, we generated an 

ensemble of 100,000 EMI forward models representing the responses of many EMI configurations to a range of three-layer 

subsurface models. We split the results into training and testing subsets and trained a decision tree (DT) with gradient boosting 

(GB) to predict the subsurface properties (layer thicknesses and EC values). We further examined the value of prior knowledge 

that could limit the ranges of some of the soil model parameters. We made use of the intrinsic feature importance measures of 20 

machine learning algorithms to identify optimal EMI designs for specific subsurface parameters. The optimal designs identified 

using this approach agreed with those that are generally recognized as optimal by informed experts for standard survey goals, 

giving confidence in the ML-based approach. The approach also offered insight that would be difficult if not impossible to 

offer based on rule-of-thumb optimization. We contend that such ML-informed design approaches could be applied broadly 

to other survey design challenges. 25 

 

1 Introduction 

Water movement through the vadose zone is often controlled by the near surface hydrogeologic structurelayering of soil.  In 

the simplest sense, this is often represented as a small number of horizontal layers, such as is often related to soil formation 
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processes leading to distinct soil layers.  The hydrogeologic structure places critical controls on processes ranging from 30 

infiltration to percolation to root water uptake to recharge, thereby playing a critical role in most hydrologic systems (Winter 

et al., 1998; Nimmo, 2009). The need to describe this shallow hydrogeologic structure has been a major driver in the 

development and adoption of hydrogeophysical methods (Binley et al., 2015).  

 

Electromagnetic induction (EMI) is a non-contact method to measure the apparent electrical conductivity (ECa) of the shallow 35 

subsurface. The ECa is an integration of the electrical conductivity of all layers in the subsurface. EMI works when a transmitter 

coil produces an electromagnetic field that induces secondary currents in the subsurface soils. The combined current is 

measured with a receiver coil (Nabighian and Macnae, 1991). The strength of the measured field is used to estimate the ECa 

within the sample volume of the measurement (Doolittle and Brevik, 2014). EMI instruments differ in the orientations of their 

coils: some use transmitter and receiver coils that have their long axis horizontal with respect to the ground surface (HCP), 40 

others orient both coils vertically (VCP), and some use one horizontal and one vertical coil in a perpendicular arrangement 

(PRP). In addition, instruments differ in the separation of the coils, with larger separations used to measure to greater depth. 

Finally, an operator can choose different instrument heights above ground, which also impacts the spatial sensitivity of the 

measurement in the subsurface. We refer to the collective choices of coil orientation, separation, and height above ground as 

the instrument configuration. 45 

For several decades, EMI instruments have been used to gather measurements of ECa of the soil. The ECa of soil is positively 

correlated with salinity, water content, and clay content (Doolittle and Brevik, 2014). As a result, ECa is a meaningful, but 

complex, aggregate measure of soil properties (Palacky, 2011). Because the EMI method is non-contact, it is reasonably fast 

and inexpensive compared to direct soil sampling, resulting in a frequent use in agriculture (McCutcheon et al., 2006; Daccache 

et al, 2015; Adhikari and Hartemink, 2017), soil mapping (James et al., 2003; Cockx et al., 2009; Heil and Schmidhalter, 2012; 50 

Reyes et al., 2018), and archaeological investigations (Saey et al., 2013; De Smedt et al., 2014; Saey et al., 2015; Christiansen 

et al., 2016). In addition to the challenges introduced by ECa being sensitive to multiple soil properties, quantitative 

interpretation of EMI measurements is complicated by the complex averaging of the local soil EC within the instrument’s 

sample volume. (Note that we use the term EC to refer to the actual bulk electrical conductivity of a soil, which may vary 

within the measurement volume of the instrument, and ECa to refer to the average EC that is measured from EMI instrument 55 

responses.) More challenging still, the spatial sensitivity (or spatial weighting) of the EC depends on the instrument 

configuration (McNeill, 1980). Finally, in some cases, the spatial sensitivity may have a higher dependency on the absolute 

value and spatial distribution of the EC (Callegary et al., 2012). In this investigation, we make the common assumption that 

the spatial sensitivity only depends on the instrument configuration, but this dependence could be considered using more 

complete forward models of EMI response. The spatial averaging of EMI is not an issue if the medium is electrically 60 

homogeneous. However, most soils have some structure – at a minimum, agricultural soils display horizontal layering with a 

distinct uppermost layer (the Ap horizon). Therefore, optimal design of an EMI configuration should select the orientation, 

separation, and height of the coils to locate the instrument sensitivity in the subsurface to best determine the subsurface 
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properties.  The depth of investigation (DOI) of EMI instruments is both in the scientific literature (Saey et al., 2009a; Saey et 

al., 2009b; Saey et al., 2012; De Smedt et al., 2014; Doolittle & Brevik, 2014; Adamchuk et al., 2015) and by the manufacturers 65 

(Dualem Inc., Canada n.d.) often estimated to be at the depth the has 70% of the cumulative response. There is a relationship 

between depth sensitivity of the instrument response and coil spacing and position. Therefore 70% cumulative response rule 

is in practice frequently converted to a rule of thumb that states larger coil spacings and HCP should be used for deeper 

investigations while short spacing and VCP/PRP should be used for shallow investigation (Acworth, 1999; Beamish, 2011; 

Cockx et al., 2009; K Heil & Schmidhalter, 2015; Kurt Heil & Schmidhalter, 2019). While this rule of thumb is not 70 

wrongwrong, the terms shallow and deep are subjective and will have different meaning depending on whether it is a 

hydrogeologist, archeologist, agronomist or a geophysicist who applies the terms. It also fails to make any distinction to the 

differences between using the VCP or PRP coil orientation.   Another rule of thumb derived from the 70% rule is that thin 

layers are harder to detect than thick, but this leaves Developers of EMI instruments have long recommended using different 

configurations to measure layered ECa values, leading to simple rules of thumb such as using shorter coil separations for 75 

shallow mapping and larger separations for deeper investigations. However, Tthese basic guides become more difficult if the 

objective is to determine subsurface properties in a non-homogeneous medium, even a simple layered case. For these 

conditionsconditions, the , a nonexpert user is often adviseadvice isd to use multiple coils with different coil orientations with 

the same separation or some combination of orientation, separation, and height. ButNevertheless, little specific guidance is 

offered. Furthermore, there the rule of thumb is nooffers way for a user to consider the possible impact of prior knowledge 80 

(e.g. bounds on the expected depth of the topmost layer) in the survey design. Commercially available EMI instruments for 

relatively shallow applications offer a wide range of designs based on differences in the three instrument characteristics. This 

makes it difficult for non-expert users to make an informed choice regarding the preferred instrument and configuration.  

Aside from the generally applied rule of thumb Tthere are several published efforts to optimize the design of geophysical 

surveys (e.g. Furman et al., 2007; Khodja et al., 2010; Song et al., 2016). These methods seek to estimate the reduction in 85 

prediction uncertainty based on changes in experiment design through inverse modelling.  Applying these design optimization 

approaches to EMI would require that the responses of many configurations be computed for multiple soil models. Each survey 

design includes multiple measurements at each location, each with a different configuration, that jointly provide the most 

useful information for inferring specific, user-identified subsurface properties. That is, a user is faced with the question of 

which combination of configurations is optimal given their measurement priorities and, ideally, incorporating any applicable 90 

constraints that they may have regarding the subsurface conditions. Any method that requires formal inversion of each 

proposed combination of configurations is computationally intractable for most usersexpensive.  

Machine Learning (ML) describes a wide range of regression algorithms used for pattern recognition. ML has grown in 

popularity and is now used regularly within and beyond science. The simplest ML tools are based on Decision Trees (DT), 

which are supervised ML techniques that perform classification or regression by sequential categorization based on 95 

observations. For our application, each ECa measurement made with a different EMI configuration represents a feature in ML 

parlance. By training DTs on many examples, they can be used to efficiently predict outcomes based on observations without 
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formal, model-based inversion. DTs are computationally inexpensive, but they can have limited predictive skill (Hastie et al., 

2001). To improve their performance, DTs are often augmented by ensemble learning methods such as bagging (Breiman, 

1996) and boosting (Friedman, 2001). For our application, we found that gradient boosting (GB) offered improved 100 

performance without adding unreasonable additional computational effort. Feature importance key ability of DTs (with and 

without GB), which is a functions that quantify the importance of each feature for making the predictions of interest. We make 

use of this ability importance for EMI survey design optimization. 

DTs are computationally inexpensive, but they can have limited predictive skill (Hastie et al., 2001). To improve their 

performance, DTs are often augmented by ensemble learning methods such as bagging (Breiman, 1996) and boosting 105 

(Friedman, 2001). The ML approach is different than traditional inverse modelling because the ML is trained to balance 

generalization with goodness of fit. A sensitivity or inverse model approach would have to be repeated multiple times for each 

subset to estimate the value of every instrument configuration. The feature importance of tree-based ML gives a data value 

analysis at each step of the ML training procedure without extra effort. This makes the ML approach very efficient for 

calculating the information content of instrument configurations for an ensemble of soils compared to the inverse analysis of 110 

data value. 

 Feature importance key ability of DTs (with and without GB), which is a function that quantify the importance of each feature 

for making the predictions of interest. We make use of this ability to do geophysical survey design optimization without model 

inversion.We used DT with GB as an efficient approach to EMI measurement design optimization. Specifically, we ran many 

forward models of EMI response for a range of three-layer subsurface conditions (varying each layer thickness and EC). We 115 

then tested the ability of DT with GB to infer the correct value of each subsurface property given the ECa that would be 

measured with all the EMI configurations. We used the feature importance capabilities of DT with GB to identify which 

observed ECa values were most informative for the inference and eliminated all insensitive configurations. This allows us to 

find the  

One of the challenges of both scientific and environmental investigations is to determine the optimal data to acquire. Data 120 

which is often used to provide structural information to a model or constrainData, which is often used to either provide 

structural information to a model or constrain model parameterization. Measurement optimization is an attempt to balance data 

quality and the work expended in the field and laboratory. optimal instrument configurations for each subsurface parameter 

without having to do multiple inverse models, one for each possible combination of observations for each parameter. To 

examine the impact of independent knowledge of any of the subsurface properties, we then repeated this analysis for a subset 125 

of the soil models that met a given restriction, such as only those that had a thin upper layer or a high EC middle layer.   

The engine for our analysis is EMagPy (Mclachlan et al., 2020), a recently published open-source code that offers ready access 

to forward and inverse modeling for a wide range of users. For this analysis, we only made use of the forward modeling ability 

of EMagPy. We then used the EMagPy output as the input for a python code that implemented the DT with GB analyses and 

produced the figures to guide EMI survey design. The ultimate goal  wasis to develop an efficient and robustn approach to 130 

measurement optimization that would be accessible to a wide range of users, with the hope that a similar approach could be 
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developed forextended into other measurement network design problems. The specific objective of this investigation was to 

present an the approach in combination with a simple geophysical model to select sets of EMI configurations that are optimal 

given the specific survey goals and any independent knowledge of the subsurface electrical properties.  

2 Theory 135 

2.1 Depth sensitivity of EMI instruments 

If the subsurface is electrically homogeneous within the sample volume of the instrument, then the EMI instrument response 

(ECa) can be related directly to the EC of the subsurface. It is more common, especially on agricultural soils In almost all 

subsurface media that are not subject to net percolation, that the EC varies with depth due to soil layering, irrigation, or near-

surface accumulation of salts. For these conditions, multiple measurements, made using different coil spacing and separations, 140 

can be interpreted simultaneously to infer the EC profile. This requires a model of the depth sensitivity of the EMI 

measurement. 

The simplest, most widely used depth sensitivity model is the Cumulative Sensitivity (CS) model of McNeill (1980) (eq. 1 and 

2) and Wait (1962) (eq. 3). This analytical solution describes the contribution from the soils below any given depth to the 

measured ECa. The model only strictly applies under low induction number (LIN) conditions. The LIN approximation proposed 145 

by McNeil (1980) and assumes that changes in the measuring frequency has no effect on the response and that the depth of 

investigation does not depend on the EC of the subsurface. Assuming LIN conditions therefore means  and the response 

depends only on the depth, coil separation length, and coil configuration with no regard for the subsurface EC distribution. It 

is a common assumption for commercially available EMI instruments to operate under LIN conditions, despite being a 

simplification. Taking z to be the depth divided by coil separation and adding the instrument height above the surface to the 150 

depth, the CS response factors, R, of the three coil configurations are: 

 

𝑅𝑉𝐶𝑃(𝑧) = √(4𝑧2 + 1) − 2𝑧,          (1) 

𝑅𝐻𝐶𝑃(𝑧) =
1

√(4𝑧2+1)
,           (2) 

𝑅𝑃𝑅𝑃(𝑧) = 1 −
2𝑧

√(4𝑧2+1)
,           (3) 155 

 

The contribution from a single layer is given by the EC of the layer weighted by the CS response factor. The contributions 

from all layers are summed to define the total response (ECa). Imagine a subsurface with two distinct layers with a top layer 

with a conductivity of EC1 and thickness of t1 and the lower layer of infinite thickness and EC2. For the specific condition 

where the thickness of the top layer is equal to the coil spacing, z, the ECa from an HCP would be: 160 

 

𝐸𝐶𝑎 = 𝐸𝐶1 ∗ [1 − 𝑅𝐻𝐶𝑃(𝑧)] + 𝐸𝐶2 ∗ 𝑅𝐻𝐶𝑃(𝑧),        (4) 
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More complete solutions have been developed that remove or reduce the restrictions of McNeil’s solution (Monteiro Santos 

2004; Auken et al., 2015; Saey et al., 2016). EMagPy (McLachlan et al., 2020) offers the user the opportunity to use several 165 

models and makes them readily available to a wide audience, even users with no background in EMI modellingbecause it is 

an open source software. McNeil’s solution was chosen because it is both very widely used and the data collection should be 

designed with consideration to the processing, Furthermore, the connection between results from ML analysis and theory 

becomes more intuitive and the discussion is accessible to a wider audience. However, there is no hindrance to use a more 

complete geophysical model or a model describing different processes.  170 

3 Materials and Methods 

In this study, we describe a specific EMI instrument configuration based on the three coil orientations horizontal (HCP), 

vertical (VCP), perpendicular (PRP), coil separation (in m), and instrument height (in m). For example, a configuration that 

uses coils that are horizontal to the surface with a separation of 1 m and an instrument height of 0.3 m would be named: 

hcp_1.0_0.3. The EC of any layer is an actual electrical property of that specific medium and it is referred to as EC followed 175 

by the layer name. For example, the EC of the A-layer is referred to as ECA. Likewise, the thickness of any layer is denoted 

by Thick followed by the layer name. Thus, the thickness of the A-layer is denoted as ThickA. All symbols and abbreviations 

can be found in Appendix A. 

3.1 Generating the model ensemble 

We consider a three-layer soil profile, which is common for agricultural soils with distinctly developed A-, B- and C-layers 180 

characterizing changes in the physical, chemical and biological characteristics with depth (Fig. 1). Electrical properties are 

assumed to be constant horizontally within the sample volume of the instrument. The subsurface properties (three EC values 

and two thicknesses) were varied independently (Table 1), forming a large set of subsurface conditions. Then, the ECa was 

calculated for many EMI instrument configurations through EMagPy (Mclachlan et al., 2020) version 1.1.0. EMagPy deployed 

usingthe CS response functions from eq. 1, 2 (McNeil, 1980), and 3 (Wait, 1962) in combination with the summation of eq. 4, 185 

which assumes that the LIN approximations (McNeil, 1980) are valid EMagPy (Mclachlan et al., 2020) version 1.1.0. 
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Figure 1: Three layered soil (A-, B-, and C-layer) with variable electrical conductivities (EC).  Also showing the schematic of an 

EMI instrument situated on the surface. The HCP and VCP has the receiver coil is in the same horizontal plane as the transmitter 

coil. The PRP have the receiver coil in the plane perpendicular to the transmitter coil. 190 

Each of the five soil parameters had ten possible values, which created 100,000 different EC soil profiles. The ranges of EC 

used in the forward model were chosen to represent a wide spectrum of soil types and, water contents, and salinities. The 

lowest EC represents a dry sandy soil and the highest EC represent an agricultural soil with a combination of high clay , 

salinity, or water content (Triantafilis and Lesch, 2005; Robinson et al., 2008; Harvey and Morgan, 2009). The ranges of soil 

layer thicknesses ranged span from thin (0.05 m) to relatively thick (2.0 m) for agricultural sitesthickness. The full ranges of 195 

the subsurface properties are supposed to cover the range of multiple field sites and we therefore consider a wide range of 

geology and variation in EC (Palacky, 2011). Each of the three coil orientations was modelled for three different coil 

separations and three different instrument heights, all of which are typical for field applications of EMI with commercially 

available instruments. In total, the EMagPy code was run 2.7 million times to form the ensemble of results covering the soils 

and instrument configurations. Note that all analyses were repeated for the Andrade (2016) EMI model. The findings were not 200 

significantly different, so the results are presented for the simpler, more widely used McNeil model. 

 

 

 

 205 
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Table 1: Adjustable parameters used in the forward model to generate the ensemble and values used for each of the combinations 

that constitute the soil profiles. 210 

 Subsurface parameters 

ECA ThickA ECB ThickB ECC 

[mS/m] [m] [mS/m] [m] [mS/m] 

1 0.05 1 0.1 1 

12 0.21 12 0.3 12 

23 0.37 23 0.5 23 

34 0.53 34 0.7 34 

45 0.69 45 0.9 45 

56 0.86 56 1.1 56 

67 1.02 67 1.4 67 

78 1.18 78 1.6 78 

89 1.34 89 1.8 89 

100 1.5 100 2.0 100 

Instrument parameters 

Height Coil spacing Coil orientation 

m  

0.1 1.0 Vertical 

0.3 2.5 Horizontal 

0.5 4.0 Perpendicular 

  

3.2 Analyzing the EMI model results and feature importance with a gradient boosted decision tree 

 

3.2.1 Decision tree models 

Decision tree is a machine learning method that performs regression or classification practicing on subset of the full data set 215 

called training data. A training data set consists of n samples (x1, y1), (x2, y2), …, (xn, yn), where x1-n areis the inputs (features) 

and y1-n areis the corresponding response outputs (targets). The aim is to estimate a function F(x) that connect the features with 

the targets in a way that minimizes the loss function (Friedman, 2001): 
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𝐿(𝑦, 𝐹(𝑥)) =∑
1

2
[𝑦𝑖 − 𝐹(𝑥𝑖)]

2

𝑛

𝑖=1

, (5) 

 

The features in our dataset consists of values of modelled ECa from various instrument configurations and the targets are the 220 

five adjustable subsurface parameters. The tree is built by splitting the values of the features in the training data into two 

groups. The optimal split minimizes the sum of squared residuals between the value of the targets and the average value of all 

target within each group. The two new groups are split into additional two groups each (Hastie et al., 2001). This process 

continues creating a structure like an upside-down real-world tree with a root node at the top, from which non-terminal nodes 

(branches) will be at every split, and terminal nodes (leaves) at every end point. To avoid overfitting the growth of the tree is 225 

limited by introducing a maximum depth of the tree and a minimum number of data samples required to create a leaf by 

splitting a non-terminal node.  

 

3.2.2 Gradient boosting algorithm 

The GB algorithm (Friedman et al., 2001; Mason et al., 1999) takes the training data set and the chosen loss function to make 230 

an initial estimate F0(x) as a starting point. When the loss function is defined by eq. 5 the initial estimate F0(x) becomes the 

average of the inputs x1, x2, …, xn. The residual rim between the initial estimate calculated by F0(x) and the true value of the 

targets are calculated for i=1, 2, …, n: 

𝑟𝑖𝑚 − [
𝜕𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]
𝐹(𝑥)=𝐹𝑚−1(𝑥)

, (6) 

 

Right side of the minus sign in eEquation 6. is the gradient from which the algorithm is named, and the residual rim are named 235 

pseudo-residuals. Then a decision tree model is made from the features to predict the pseudo-residuals from eq. 6. The decision 

tree model output is scaled by a learning rate ν to reduce variance of the prediction. The scaled output is added to F0(x) to 

create a new function Fm(x) for decision tree m for i=1, 2, …, n: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈∑𝛾𝑗𝑚𝐼(𝑥 ∈ 𝑅𝑗𝑚),

𝐽𝑚

𝑗=1

 (7) 

 

Where Jm is the total number of leaves in the terminal region Rjm in decision tree model m. The new function Fm(x) is used to 240 

calculate a new set of pseudo residuals. The process of making a new decision tree model Fm(x) and adding the scaled output 

to the existing function Fm-1(x) is repeated until the reduction in pseudo residuals with each added tree becomes insignificant 

or a specified number of trees M has been created. 
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Feature importance is an indicator of how valuable each of the included features is in the context of the final decision with 

GB. The relative importance 𝐼𝑗
2 of any feature is proportional to the number of times it is used to make splits weighted by the 245 

square of its improvement to the goodness of fit for the model at each split (Friedman and Meulman, 2003):  

𝐼𝑗
2(𝑇) =∑𝑖�̂�

21(𝑣𝑡 = 𝑗)

𝐽−1

𝑡=1

, (8) 

 

which sums over the non-terminal nodes J-1 in the tree T and the squared residual 𝑖�̂�
2 attributed to the split of each node t with 

vt as the target variable being split at each node (Friedman, 2001). Since boosting generates multiple trees the relative 

importance is averaged over all trees. The importance is normalized over all features so that the sum of the feature importance 250 

values equals one where a higher value indicates a greater effect on the targets.  

 

We found that gradient boosting (Elith et al., 2008; Friedman, 2001) offered improved performance without adding 

unreasonable additional computational effort and it was used for all analyses. For our application, each modelled ECa value in 

the ensemble of the different EMI configuration represents a feature in ML parlanceGradient boosting (Elith et al., 2008; 255 

Friedman, 2001) was used for all analyses. We then tested the ability of DT with GB to infer the correct value of each 

subsurface property given the ECa that would be measured with all the EMI configurations. A separate boosted tree was trained 

to predict each of the five subsurface parameters. The EMI model ensemble was split into training and testing sets, with 70% 

used for training and the remaining 30% used for testing, using the random sample function in python. Training and testing 

were repeated five times with different training/testing splits. Differences among the repeats were small, so all results were 260 

combined for analyses. The learning rate, maximum tree depth, and minimum samples per leaf were tuned manually by manual 

trial and error and the optimal values for these parameters were found to be 0.1, 10, and 2, respectively. However, the 

performance of the DT with GB did not vary significantly with the hyperparameter values. All other hyperparameters used the 

default values in the scikit-learn toolbox (Pedregosa et al., 2011).  

We used the feature importance capabilities of DT with GB to identify which observed ECa values were most informative for 265 

the inference and eliminated all insensitive configurations. This allows us to find the optimal instrument configurations for 

each subsurface parameter without having to do inverse modelling. To examine the impact of independent knowledge of any 

of the subsurface properties, we then repeated this analysis for a subset of the soil models that met a given restriction, such as 

only those that had a thin upper layer or a high EC middle layer.   

 270 

3.3 Assessing the value of additional information 

For our initial analyses, we considered the full range of all the subsurface electrical properties. However, in many cases, prior 

information is available to define one or more of these soil EC parameters or, at least, to reduce the range of plausible values 
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for at least one of them. This prior knowledge could be in form of hard data or soft expert knowledge for a survey area. Here, 

we examine how reducing the uncertainty of one soil EC parameter improves the EMI-based inference of other parameter 275 

values and whether this additional information changes the composition of the optimal EMI configurations to include in a 

survey. 

To examine the value of additional a-priori parameter information, we perform three restriction analyses. In each case, we 

sequentially limit the range of one of the five subsurface EC parameters and determine the impact on the accuracy of inference 

of the other parameters. Recognizing that some parameters, especially EC values, can have a different impact on EMI energy 280 

distribution if they are high or low valued, we consider four patterns of restriction: 

• Centered: The four minimum and four maximum values defining the parameter ranges are eliminated.  

• Skew low: The eight highest values are eliminated from the parameter range. 

• Skew high: The eight lowest values are eliminated from the parameter range. 

• Full range: All ten possible values of the five parameters are used in the analysis.  285 

For each restriction analysis, we present the impact of the restriction compared to the case with no independent information 

and we describe any changes in the composition of the optimal EMI configuration set for each target subsurface parameter. 

4 Results and discussion 

In this section, we present the outcome from the forward modelling with the CS models for VCP (eq. 1), HCP (eq. 2) and PRP 

(eq. 3) and the summation from eq. 4 (section 4.1). In this section, we present the outcome from the forward modelling with 290 

EMagPy (section 4.1). We also assess the results from applying a DT with GB to output of the forward modelling. FirstFirst, 

we look at parameter identifiability and examine the cases that lead to inaccurate predictions (section 4.2) and then we examine 

the feature importance output (section 4.3). We show the impact of restricting the range of ThickA on inferring ECA (section 

4.4.1). Analysis described in sections 4.1 to 4.4.1 focuses on the full range of parameters and ECA, the EC of the A-layer (the 

shallowest layer). FinallyFinally, we present the impact of piecewise applying all restriction patterns to all five subsurface 295 

parameters on the value of independent information (section 4.4.2) and the feature importance of EMI configurations (section 

4.5). The results will be influenced by the choice of forward model, but the ML approach to design optimization is not model 

dependent and a change in forward model is a trivial extension. 

4.1 Modelled ECa ensemble 

The five soil parameters with ten different values provides us with an ensemble of 100,000 soil profiles. The three coil 300 

orientations, three coil spacings, and three instrument height sums to 27 instrument designs that are applied to each profile. 

Frequency distributions of the modelled ECa for each of the 27 instrument designs in all the profiles are shown in Fig. 2. The 

distributions are quite similar, but they do differ in detail. The distributions of modelled ECa values depend strongly on the 
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height or coil orientation for designs with a 1-meter coil separation (left column, Fig. 2). The variations are less pronounced 

for larger coil separations. There are also differences in the smoothness of the distributions: the PRP (bottom row, Fig. 2) has 305 

more distinct peaks for small separations whereas the HCP (top row, Fig. 2) has more peaks for larger separations.  

 

 
Figure 2: Frequency distributions of the responses from the cumulative sensitivity model for the three coil orientations: Horizontal 

(HCP), vertical (VCP) and perpendicular (PRP). Each panel shows the modelled ECa output from one coil orientation and -310 
separation for three different heights. The coil orientation and -separation change respectively with the rows and columns of the 

nine panels. 

4.2 Predicting parameter values with a trained DT with GB using all observations 

The first step in our analysis was to examine the ability of the trained DT with GB to predict each parameter value. That is, we 

use 70,000 EC profile realizations for training the DT with GB. We then provide the 27 observations for each of the remaining 315 

30,000 EC profile realizations to the trained DT with GB and predicted ECA (the EC of the shallowest layer). To account for 

the brittle nature of DT methods, this procedure was repeated five times with different training/testing splits. The results of the 

repeated analysis were not significantly different, so they were pooled, providing 150,000 predictions upon which the goodness 

of fit was determined.  

The root mean squared error (RMSE) between predicted and true values of the EC of the A-layer (ECA) is shown on Figure 320 

3Fig. 3. The true values are the known ECA values used in the forward models. The results, shown as a cross-plot of points, 

are somewhat misleading because it is difficult to see that many points are overlapping close to the 1:1 line. Therefore, shaded 

areas are included to show ± one and two standard deviations about the mean predicted ECA for each true ECA value. There 
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are clear outliers – cases for which the trained DT with GB did not give an accurate estimate of ECA even considering all 27 

EMI observations. However, the overall RMSE was 7.34 mS/m over the entire set of 150,000 test cases. The residuals shown 325 

in Fig. 3 are not evenly distributed at the low and high values because of the lower and upper boundaries of the input values. 

 

Figure 3: The result from running the DT with GB on the entire 100000 soil types and all 27 instrument configurations five times. 

The EC of the A-layer (ECA) is the parameter that is being predicted. The X-axis is the true value of the ECA, and the Y-axis is the 

predicted values for ECA. 330 

The process shown in Fig. 3 was repeated for each of the five EC profile parameters. The RMSE for each parameter is reported 

in Table 2.  Because the range of values of the parameters differ, the normalized root mean square error (NRMSE) is calculated 

by dividing the RMSE by the full range of the true values of the parameter. The NRMSE of the parameter is a measure of how 

well the ML is able to infer the individual parameters and thus how estimable the parameters are. Because the ML is trained 

on EMI output the NRMSE also suggests how well the EMI instrument can detect the soil properties.  The results show that 335 

EMI is least able to infer the layer thicknesses, with slightly better ability to infer the thickness of the A compared to the B-
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layer. Furthermore, EMI produces better estimates of the shallow and deep EC values compared to the EC of the B-layer. 

These results fit with expectations, given that EMI designs with very short coil separations might be sensitive to only ECA 

and those with very large separations might be mostly sensitive to the EC of the deepest layer, ECC (Callegary et al., 2012; 

Heil and Schmidhalter, 2015). In contrast, the layer thicknesses, ThickA and ThickB, and the EC of the middle layer, ECB, 340 

must always be inferred based on multiple measurements.  

Table 2: The root mean square error (RMSE) between the prediction from the gradient boosted (GB) model and the testing data. 

The machine learning procedure was repeated with each of the five subsurface parameters as targets, thus creating five models. The 

RMSE is normalized by the mean value of the target to get the normalized root mean square error (NRMSE). 

Target ECA ThickA ECB ThickB ECC 

Unit mS/m m mS/m m mS/m 

RMSE 7.34 0.29 18.7 0.49 1.51 

NRMSE 0.07 0.20 0.19 0.26 0.02 

 345 

4.2.1 Examining the conditions that led to poor estimations of ECA 

From the 150,000 test cases, displayed on Fig. 3, 8,894 cases are more than one standard deviation away from the true value 

when predicting ECA. These cases are displayed in Fig. 3 by the blue markers that are located outside the shaded areas. The 

compositions of these 8,894 cases are presented as frequency distributions of their parameter values in Fig. 4. The values for 

ECB, ECC, and ThickB are uniformly distributed, which indicates that no specific values of ECB, ECC or ThickB lead to poor 350 

inference of ECA. In contrast, 94% of the problematic conditions have a thickness of the A-layer (ThickA) among the three 

lowest values. This, again, agrees with expectations that the EC of a thin layer would be more difficult to infer accurately than 

that of a thicker layer using an EMI instrument. The finding is opposite for ECA; while not as pronounced, the results indicate 

that the poorly inferred cases tended to have higher ECA values, with 54% of the conditions having the three highest ECA 

values. Practically, Tthis suggests that the methodidentifying the layer with EMI instrument would be more likely to be 355 

successful if a user can be relatively certain that the range of ThickA does not include the lowest values examined here; that 

is, we would expect improved inference of ECA for centered or high skewed restrictions of ThickA. A more successful survey, 

based on the ability to infer ECA, would occur if the ECA values tend to be lower. That is, a center or low skewed restriction 

should show better performance.  
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 360 

Figure 4: The ECA was inferred for 150,000 test cases. In 8894 of the 150,000 cases the inference was more than one standard 

deviation away from the true value. The figure shows the distribution of five subsurface parameter values within the 8894 conditions. 

The top X-axis is the layer thickness, the bottom X-axis is the layer EC and the Y-axis is the frequency. 

4.3 Feature importance when predicting parameter values with a trained DT with GB 

The preceding analysis used measurements from all 27 instrument configurations for each EC profile parameter estimation. 365 

The major focus of this investigation was to use ML tools to identify the optimal set of observations to collect, which balances 

performance with reduced field effort. To illustrate how the built-in feature importance of tree-based methods can be used to 

achieve this, consider the results shown on Fig. 5. The feature importance is shown for each of the 27 configurations; because 

they sum to 1 it is convenient to represent this as a pie chart. The colors and patterns that comprise the circles identify the eight 

most important EMI configurations for each combination of the parameters. The fraction of the cirlcle covered by each 370 

color/pattern shows the relative importance of that observation. The colors indicate the coil orientation, while the shade and 

pattern indicate the coil distance and instrument height. The 19 least important EMI configurations are combined in “others” 

(white slices). From these results, it is apparent that approximately 90% of the information used to predict ECC (rightmost 

circle) is provided by configuration hcp_4.0_0.1. The optimal orientation and large coil separation could have been predicted 
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from McNeil’s classic work (McNeill, 1980). However, he did not consider the PRP orientations. The reason for the preference 375 

for a small instrument height is as apparent; it may simply be due to further penetration of the signal to greater depth.  To our 

knowledge, no other method, short of exhaustive comparisons of many synthetic inverse analyses, would have been able to 

show that a single configuration was so clearly dominant for inferring ECC. Similarly, almost 60% of the information used to 

infer ECA (leftmost circle) was provided by the prp_1.0_0.1 configuration. The small coil separation and low instrument 

height fit with general expectations, but the highly sensitive PRP orientation was not expected before conducting this analysisfit 380 

with the findings of Tabbagh (1986).  

 

Figure 5: Feature importance for inferring each of the five parameters from a decision tree analysis of the full parameter range. The 

feature importance from all 27 configurations sum to 1. The eight most important configurations for inferring each of the five 

parameters are shown with a unique color and pattern combination. The remaining 19 configurations are aggregated into the 385 

“others” category and displayed with white. 

Taken together, the results suggest that each of the EC profile parameters relies on a relatively small number of observations. 

To illustrate this, 90% of the importance, including only the highest importance observations, is provided by 3, 8, 14, 17, and 

1 observation for ECA, ThickA, ECB, ThickB, and ECC, respectively (Fig. 5). Of these high importance observations, 53% 

had the instrument placed at the lowest instrument height considered. The VCP is the most widely used coil orientation in 390 

agriculture (Heil & Schmidhalter, 2017), but it is Perhaps more controversially, in the context of EMI instrument design and 

use, only 26% of the most informative configurations used the VCP orientation (Fig. 5). This may be  partially explained by 

the spatial sensitivities of the orientations (Callegary et al., 2007; Christiansen et al., 2016) which indicates the HCP/PRP 

pairing are more complementary relatively to the HCP/VCP pairing. relatively high spatial sensitivity redundancy for the HCP 

and VCP orientations.  395 
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4.4 Parameter restriction analyses 

4.4.1 Applying a skew low restriction to the thickness of layer A 

One piece of information that may be available (e.g. from direct field examination) is the expected thickness of the shallow 

topsoil layer (ThickA). Therefore, we begin our restriction analyses by examining the effect of improved knowledge of ThickA 

on the inference of the ECA parameter. Specifically, we repeated the analysis only including models with the two middle 400 

values of ThickA (0.69 m and 0.86 m). This reduces the ThickA parameter range to 11% of its full range and thereby removes 

the cases that contains low values for ThickA. The results (Fig. 6) show stark improvement in the ability of the DT with GB 

to infer ECA. A similar analysis could be repeated for any restricted range of value for any parameter or for multiple 

parameters. This could be done for practical reasons – to design a site-specific survey – or for scientific reasons – to explore 

which conditions are identifiable with EMI and to understand these parameter interactions.  405 

The analysis leading to Fig. 6 is one example of the ability of the DT with GB method to consider the benefits of independent 

soil property information. In this section, we expand the investigation to include all the soil electrical parameters and three 

different restriction patterns. 
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Figure 6: The result from running the machine learning algorithm on a subset of the ensemble where the thickness of the A-layer 410 
have been restricted. Only 20,000 soil types and all 27 instrument configurations remain in this restricted subset. The EC of the A-

layer (ECA) is the parameter that is being predicted.  

4.4.2 Changes in parameter inference of restricted subsets  

Figure 7 summarizes the impacts of providing the maximum additional information (considering only two of the ten possible 

values of one parameter) on the inference of all other parameters. The y-axis on Fig. 7 is the RMSE (such as that reported on 415 

Figure 6 for inferring ECA with ThickA restricted) normalized by the full range (max – min) of the inferred parameter. With 

reference to Fig. 6, this would be reported as the RMSE divided by the range of ECA, giving a unitless value of 0.028. Each 

inferred parameter is associated with a short horizontal line, which indicates the normalized RMSE without restriction of any 

other parameter’s range. Each symbol on Figure 7Fig. 7 represents the results of an analysis like that shown on Figure 6Fig. 



19 

 

6. There are three symbols (triangle, dot, and square) associated with each target/restricted parameter pair for each of three 420 

restriction patterns. Consider, for example, inferring ECA. The set of three blue symbol represents the impact of restricting the 

range of ECA itself, the leftmost triangle represents skewed low restriction (retaining the two lowest ECA values), the middle 

dot is a centered restriction (ECA values 45 and 56 mS/m), and the right square represents the skewed high restriction (retaining 

the two highest ECA values). As expected, restricting the range of ECA, regardless of the restriction pattern, leads to a similar 

reduction in the normalized RMSE of ECA. Every pair of restricted/inferred parameters is represented using three symbols 425 

with the same left nudged triangle, center dot, right nudged square for the low, middle, and high skewed restrictions.  

Consider another example to illustrate how Fig. 7 can be interpreted and related to Fig. 6. The three symbols dots above ECA 

represent the impact of restricting ThickA. The center dot corresponds exactly to Fig. 6, the centered restriction of ThickA. 

The left green triangle shows that there is an increase in the NRMSE for the skewed left restriction compared to the unrestricted 

case (horizontal line above ECA), which shows that restricting the thickness of layer A to the lowest range of values leads to 430 

lower quality inference of ECA. In other words, the shallowest layer may be too thin to be detected properly because the 

instrument response is an integration over a large depth compared to the now relatively thin layer thickness. This fits with 

previous findings (Fig. 4), which revealed that a thin ThickA makes it difficult to infer ECA. Furthermore, it agrees with our 

expectations that if the uppermost layer is sufficiently thick, we can choose an coil separation and orientation that is almost 

exclusively sensitive to the uppermost layer, essentially allowing direct measurement of ECA. Consistent with this explanation, 435 

the right green square above ECA has the lowest NRMSE. In this case, this confirms the expectation that it is easier to infer 

ECA accurately if the shallowest soil layer is relatively thick. Similar interpretations about the value of restricting one 

parameter on the ability to infer other parameters accurately can be drawn for each pair of restricted/inferred parameters, 

allowing users and researchers to gain valuable insight into the interaction of measurements and other independent information. 

In all cases, there is a reduction in the NRMSE of the inferred parameter when the parameter itself is restricted. For these cases, 440 

there are no significant differences among the three restriction patterns. In most cases, restricting the range of the inferred 

parameter itself showed a greater improvement than restricting any other parameter. The only clear exception was inferring 

ECA, which showed a greater improvement by restricting ThickA with a central or right skew. 
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Figure 7: The changes in inference of the five subsurface parameters (Xx-axis) are based on a comparison between the RMSE from 445 
restricted case divided by the range of the parameter (Y-axis). The lines show how well the parameters are predicted when all 

parameters are full range. The color shows which parameter that is being represented and the location and symbol represents the 

three restriction patterns skewed low (left nudged triangle), centered (centered dot), skewed high (right nudged square). 

In practice, Fig. 7 can be used as a guide for planning an EMI survey by helping to prioritize which information is most likely 

to improve the inference of any specific parameter value of interest. Consider the inferred parameter ThickB on Fig. 7. The 450 

three green symbols represent the cases where ThickA is restricted. The left triangle is the skewed low restriction that results 

in a reduced NRMSE compared to the full parameter range (black line). The middle dot, which is centered restriction, shows 

the same NRMSE as the full parameter range. The right square, which is skewed high restriction, has a higher NRMSE than 

the full parameter range. The changes in NRMSE between the three restrictions of ThickA show that knowledge of the ThickA 

confers little advantage to estimating ThickB unless it can be shown that the shallowest layer is very thin.   455 

More generally, there are relatively few cases where the restriction of one parameter significantly improves the inference of 

another parameter. Beneficial restrictions include restricting ECA and ECB to infer ThickA and restricing ThickA and ECA 

to infer ECB. To a lesser degree restricting any other parameter when inferring ThickB offers a slight advantage. The value of 

ECC is already well constrained for the full parameter range, as shown by the line, and there is little advantage to restricting 

another parameter to infer ECC. In 24% of cases, restricting the range of one parameter led to worse inference of another. 460 

These cases can guide a user todisplay the field conditions that lead to more challenging use of EMI, such as a very thin middle 
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layer making it very difficult to infer ECB. An experienced EMI user would be able to reach these conclusions, which helps 

us to confirm that the ML approach is robust and reaches reasonable results. The value of this type of analysis with a 

geophysical EMI model is to provide guidance for site-specific conditions, but the analysis can also be executed with more 

complete geophysical models or different model types. Furthermore, this guidance is quantifiable rather than based on intuition 465 

derived from the rule-of-thumb.   

From the perspective of an experienced user of EMI surveys, most of these general conclusions will be obvious, which helps 

to confirm the validity of the proposed approach. We see the value of this analysis as providing a way of providing general 

guidance to less experienced users and to provide more fine-tuned guidance for site-specific conditions for those with more 

experience using EMI. Furthermore, the guidiance provided is quantifiable rather than based on general rules-of-thumb. 470 

 

4.5 Feature importance in restricted subsets 

The composition of the optimal EMI measurement configuration is different depending on the soil layer thicknesses and 

conductivities. Figure 8Fig. 8 summarizes the feature importance for the cases presented in Figure 7Fig. 6, for which only two 

out of ten values remain for the restricted parameter. The color and symbol patterns are the same as those used for Fig. 5. The 475 

columns in Fig. 8 represent the five inferred parameters and the rows represent the restricted parameter. Consequently, each 

circle is a pairing between one restricted and one inferred parameter. The circles are subdivided into four rings that represent 

the different restriction patterns. From inside out, the rings represent the full parameter range (no parameter restriction), 

centered, skew low, and skew high restriction. The feature importance of the full parameter range (centermost ring) is the same 

in every row for each inferred parameter. For reference, the center ring results are identical to those presented in Fig. 5. All 75 480 

combinations of the five inferred/restricted parameters and the unrestricted case are shown for the three restriction patterns on 

Figure 8Fig. 8, allowing a user to draw general insights into the value of different configurations under a wide range of 

conditions. Fig. 8 is designed to showcase all the different combinations restrictions made to the ensemble in this study but for 

pure practical application not all combinations would need to be displayed. 
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 485 

Figure 8: Feature importance for the 8 most important EMI configurations for every combination of the five inferred/restricted 

parameters and the three patterns. Each circle is subdivided into four rings that shows, from inside out, the feature importance for 

full range, centered, skew low, and skew high. Each column/row represents the each of the five inferred/restricted parameters. The 

coil orientations are colored so that Horizontal (HCP) is blue, Vertical (VCP) is green, and Perpendicular (PRP) is red. A dark and 

light hue represents respectively a short and long coil distance. 490 

Figure 8 is somewhat information dense, so it may be useful to discuss a few cases in more detail.  One of the simplest subplots 

to understand is the inference of ECC when restricting ECA (top right circle). The results show clearly that there is no 

meaningful change in the composition of the optimal set of configurations due to adding additional ECA information, 

regardless of the range of ECC values considered: all four concentric rings look nearly identical. Furthermore, all four rings 

indicate that a single configuration, HCP_4_0.1 provides the vast majority of the information needed to characterize ECC. 495 

Again, this is in general agreement with the rules of thumb provided byderived from McNeil (1980)the 70% rule, but it 

confirms these findings for all values of EC and thickness of the other layers, and it extends the findings to consider the PRP 
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configuration. Moving down the ECC column, note the difference when ThickB is restricted. If ThickB is skewed high (ThickB 

ranges between 1.8 m and 2.0 m), there is some advantage to adding the PRP_4_0.1 configuration. Our approach does not 

explain this choice. We suggest that it is informative to collect this additional observation to constrain the values of ECB and 500 

ThickB if the middle layer is relatively thick and that the identified configuration has a usefully different sensitivity distribution 

than the large HCP array placed close to the ground surface. This result could not be anticipated based on McNeil’s solutionsthe 

rule of thumb. Furthermore, the resulting optimal configuration is almost identical if either ThickA or ThickB is restricted, 

when inferring ECC. Moving to the bottom of that column, the analyses show that if the value of ECC itself is limited then the 

composition of the optimal set changes significantly. Interestingly, regardless of the pattern of restriction (the results are the 505 

same for the outer three rings), the optimal set now includes four configurations with approximately equal importance: 

HCP_4_0.1; HCP_4_0.3; HCP_2.5_0.1; and PRP_4_0.1. It is further confirmation of the validity of the approach that no VCP 

arrays were chosen, as would be expected based on McNeil (1980). Similarly, as expected, the larger array separations are 

preferred. It is surprising, however, that one of the four observations place the instrument higher above ground. This is a result 

of the spatial sensitivities and an example of a conclusions that is very difficult to reach through intuition and the rule-of-510 

thumb. For more complete forward models this We suggest that this is a good example of a result that has both immediate 

practical value for survey design and could point researchers to ask follow-on questions about why this combination a specific 

configuration or of observation types areis identified as optimal.  

 

The results for inferring ECA (leftmost column) are similar but show interesting differences. The optimal set for ECA is 515 

relatively insensitive to the pattern of restriction of ECA. But,But more than one observation is required for all cases. Whereas 

the optimal cases were similar for restricting ThickA and ThickB for inferring ECC, this similarity holds for restricting ECB 

and ThickB when inferring ECA. The pattern of restriction of ThickA has dramatic impacts on the optimal set of configurations 

for inferring ECA. The three other parameters (ThickA, ThickB, and ECB) show significant changes in the optimal 

configuration set depending upon the pattern of restriction (ring-to-ring) and upon the independent information provided (row-520 

to-row). There is no case for which a single configuration dominates the importance. In fact, there are many cases that would 

recommend more than nine configurations. For example, this likely indicates that ThickB is unlikely to be well resolved by a 

practical field survey. Further considerations of inferring ThickB give interesting general insights compared to rule-of-thumb 

suggestions. Namely, very few VCP configurations are selected. If PRP arrays are to be used, then profiling should be achieved 

by increasing the coil separation with the coil placed close to the ground. For HCP configurations, profiling should be achieved 525 

by increasing the coil separation and by lifting the instrument above the ground for the largest coil separation configuration.  

To summarize, taken together Fig. 7 and 8 provide a direct guideguidance to an EMI user when designing a survey with a 

specific target. Figure 7 indicates whether that target can be characterized reliably given the full range of configurations 

considered and which additional information will improve the characterization. A low NRMSE will suggest a more reliable 

characterization of the subsurface property by the instrument and vice versa.  Figure 8 identifies the optimal set (and number) 530 

of arrays needed for optimal characterization. Some of the conclusions would be expected based on McNeil’s (1980) classic 
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work and would be anticipated by an experienced EMI user. Other results would be difficult, if not impossible, to predict 

without a value-of-data analysis like that shown here. These results, in particular, could point the way to further scientific 

investigations to better understand the complementary information content of multiple EMI configurations. The restriction 

analyses offer insight into the mutual identifiability of soil EC. Given the availability and flexibility of EMagPy (Mclachlan 535 

et al., 2020) and the efficiency of the DT with GB algorithm, the analyses performed here could be extended to include 

identification of optimal configuration sets for multiple targets (e.g. thickness and EC of the B layer). For example, placing 

equal weight on all five targets, an optimal without restriction of any of their values suggests the use of: one HCP array 

(hcp_4.0_0.1) and four PRP arrays (1.0_0.1, 4.0_0.1, 1.0_0.3, and 2.5_0.1). If this specific set of configurations was deemed 

impractical, a user could limit the available configurations for consideration, find the optimal survey, and compare the 540 

projected RMSE to that estimated for the overall optimal set. This information could guide a user in whether it is worthwhile 

to change their instruments, or designs, or whether gathering additional information about the range of plausible parameter 

values is likely to be more important for their survey goals.  Finally, the general approach shown here could be extended easily 

to consider multiple measurement types (e.g. combining EMI with other geophysical methods), and even dynamic optimization 

of measurement networks for monitoring applications. 545 

5 Conclusions 

Most environmental and agricultural field investigations are conducted on relatively limited budgets. As a result, there is 

usually some advantage optimizing data collection to achieve the best results with the limited time and money available. These 

restrictions are one of the main reasons that electromagnetic induction (EMI) has become a popular tool for these studies. 

While it is often the case that the measurements are more ambiguous than direct measurements of soil properties, the 550 

noncontact nature of the instruments allows for much greater spatial coverage. The recent availability of EMagPy (Mclachlan 

et al., 2020), allowed us to perform the large number of EMI forward models necessary to support a machine learning (ML) 

examination of EMI surveys, leading to a simple but comprehensive investigation of parameter identifiability and optimal EMI 

configurations. The result is an approach that can allow an EMI user with limited expertise to choose a better set of instrument 

configurations given their main survey goal and knowledge of the site conditions. The same tool can point more advanced 555 

users to areas of investigation that may improve our understanding of the prior knowledge content of different EMI 

configurations. The decision tree with gradient method based on a large ensemble of instrument response forward models, 

proposed here, makes novel use of the efficiency and built-in feature importance capabilities. But, the analyses are not restricted 

to this relativley simple ML algorithm. More advanced ML tools could be combined with independent feature importance 

analyses if required for specific monitoring applications. Similarly, while EMI forward modeling is relatively simple and fast, 560 

given that it is based on analytical models, with sufficient computational resources any measurement method and underlying 

physical process could be examined in the same way. As just one illustrative example, an optimal combination of EMI, 

electrical resistivity, gravity, and monitoring well observations could be proposed to constrain the interpretation of a pumping 
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test performed in an unconfined, anisotropic medium by conducting forward models of many configurations (survey locations 

and times, Electrical Resistivity Tomography array types, and screen depths) for a large ensemble of plausible aquifer 565 

conditions and allowing an ML algorithm to consider all of the data and identify the most informative observations. This opens 

the possibilities for exploring truly novel combinations of multimodal observations.  

6 Appendices 

Appendix A Symbols and abbreviations 

CS – Cumulative sensitivity 570 

DT - Decision Trees 

EC – Electrical conductivity  

ECa – Apparent electrical conductivity  

ECA/B/C – Electrical conductivity of layers A, B and C 

EMI – Electromagnetic induction method 575 

GB – Gradient boosting 

HCP – Horizontal co-planar 

LIN – Low induction number 

ML – Machine learning 

NRMSE – Normalized root mean square error 580 

PRP – Perpendicular-planar 

RMSE – Root mean square error 

ThickA/B – Thickness of layers A and B  

VCP – Vertical co-planar 

Code and data availability  585 

The modelled EMI data and code used in this study is available on https://zenodo.org/record/4621121 
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