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In the following document, we reproduce all the comments of the Referees in italic characters 

followed by our responses in blue. 

Response to editor 

Thank you for your responses to the reviewer comments. From what I can understand you aim to 

make some useful changes that will improve the manuscript. I would say the reviewers are mixed 

in their assessment of your paper but I believe with major changes to your approaches and 

results then the paper could become a useful contribution. I do accept that applying spatial data 

and in a multi-objective approach to the regionalization problem warrants a novel enough 

approach to be included in the literature,  

We would like to thank the Editor for the evaluation of the manuscript.  

 

however I do wish to make the following points for the next evaluation of this paper: 

1) I do not agree that in your response to referee #2 that you are really dealing with the core 

uncertainties in this process. I'd like to see some significant justification as to why you can 

possibly consider that the adjustment of weights is fundamentally the most important source of 

uncertainty that your experimental design faces or really that this in some way relates to the core 

matters the reviewer is trying to get you to address. You are using multi-objectives here, and 

spatial information, you are currently treating them all as if they are deterministic. I think when 

we use multi response data we have to care and mind what they represent and their accuracy. 

Here you provide no evidence to justify your methods and this needs to change 

We agree with the Editor about the importance of providing insights into the various uncertainty 

sources of the data and the experimental design. During the conceptualization of the analysis we 

considered the following potential sources of uncertainty: 

(a) model inputs 

(b) model structure 

(c) accuracy of satellite data  



(d) model calibration 

(e) model parameter regionalization  

We considered the impact of sources (a) to (c) to be smaller than (d) and (e) for the following 

reasons. The uncertainty of model inputs (a) is generally mainly due to the spatial interpolation of 

point (precipitation and air temperature) observations, as catchment averages are needed for 

water balance reasons, and this is a topic that has traditionally attracted a lot of interest in 

hydrology (e.g. Faurès et al. 1995). In this study, the model inputs (mean daily precipitation and 

air temperature) are estimated from the gridded SPARTACUS dataset with a grid resolution of 1 

km that is small relative to the median catchment size 167 km². Hiebl and Frei (2018) show the 

accuracy of the precipitation interpolation used in SPARTACUS to be high, and the monthly 

biases to be very small (values are within ±2%). The cross-validation of the air temperature 

interpolation (Hiebl and Frei, 2016) indicates no systematic overestimation or underestimation, 

i.e. the compound mean error is 0 °C, the root mean square error is 1.4 °C. 

Model structure (b) is of course more difficult to evaluate and previous studies in the context of 

regionalization performance (e.g. Petheram et al. (2012), Parajka et al., 2013, Yang et al., 2020) 

have shown that the simpler models are not superior to complex models (nor much worse) in 

predicting daily hydrographs in ungauged catchments, and more generally the difference between 

hydrological models tends to be small (Petheram et al., 2012). Parajka et al. (2013) grouped 

models according to the number of model parameters and showed that the median of the 

regionalisation performance (Nash-Sutcliffe efficiency) for each group of models is around 0.65. 

Yang et al. (2020) compared four daily rainfall-runoff models (GR4J, WASMOD, HBV and XAJ, 

with 6, 8, 13, and 17 parameters) and reported that the difference in model structure has a smaller 

impact on the regionalization model performance than the difference in climate conditions. Yang 

et al. (2020) shows that the average Nash-Sutcliffe runoff efficiency values are, for the best 

regionalization method (Physical similarity methods with output averaging), larger than 0.6 for 

all tested model structures. These findings suggest that the model structure error (when measured 

as the difference in performance between different model types) tends to be small in a 

regionalisation context.  

The evaluation of MODIS snow cover (source (c)) of Tong et al. (2021) indicates an overall 

classification accuracy of the most recent MODIS snow cover product of larger than 97% which 

implies much smaller uncertainties than most of the other sources. The accuracy assessment of 

the experimental S1ASCAT dataset at the regional scale is still work in progress. A preliminary 

assessment (Panic et al., 2020, https://presentations.copernicus.org/EGU2020/EGU2020-

16222_presentation.pdf) demonstrates S1ASCAT to compare well with point-scale and area-

representative in situ root zone measurements. The correlation between observed in situ (i.e. TDR 

soil network and Cosmic-Ray Neutron Probe) and S1ASCAT soil moisture is 0.59 and 0.51, 

respectively. These correlations are higher than those obtained between in situ and existing 

COPERNICUS soil moisture products (SSM 1km and SWI 1km), and it is to be expected that 

only a part of the differences between the data types is due to the satellite data, as also TDR soil 

probes and Cosmic-Ray Neutron Probes have some level of uncertainty.  

We thus decided to focus on the uncertainties resulting from model calibration (source (d) and 

selection of regionalization method (source (e)). The impact of using different time periods for 



the prediction of runoff hydrographs is evaluated by the split-sample uncertainty assessment 

proposed by Klemes (1985). Regionalization studies typically refer only to regionalisation model 

efficiencies obtained for the same period as used for model calibration. Our results indicate that 

regionalization efficiencies obtained in an independent validation period generally show a small 

decrease (loss) in runoff model performance. The median of the loss in Nash-Sutcliffe efficiency 

varies between 0.02 and 0.07, depending on the regionalization method and calibration weight. In 

the lowlands the average median loss is 0.06 while it is 0.03 in the alpine basins. The results also 

show that the median loss of runoff efficiency tends to be smaller for multiple-objective variants 

(average median loss of 0.05) than for variants using parameters calibrated to runoff only 

(average median loss of 0.06). The largest relative improvement of soil moisture efficiency is 

found in alpine catchments (more than 70%), but the absolute value of the correlations (on 

average 0.31) are still lower than in lowland catchments (average correlation 0.59). These 

numbers suggest that the differences in performance (which are an indicator of the uncertainties 

to be expected) are quite significant for uncertainty source (d). 

The evaluation of the uncertainty of runoff prediction using different regionalization methods 

(source (e)) shows that the variability in medians of runoff regionalization efficiency is smaller 

between regionalization methods than between different calibration variants (i.e. runoff weights). 

For example, the standard deviation of the medians obtained for eleven runoff weights for the 

local similarity regionalization method in alpine catchments is 0.17. The standard deviation of the 

medians between eight regionalization methods ranges (depending on the runoff weight) between 

0.04 and 0.11. The differences are somewhat smaller in lowland catchments (i.e. the standard 

deviation of medians between runoff weights and regionalization methods are 0.14 and about 

0.09, respectively).  

 

In response to this comment, we extended the Discussion section to discuss the additional sources 

of uncertainty as follows:  

“The transfer of model parameters to ungauged sites and the efficiency of different approaches 

for predicting runoff hydrographs are affected by different sources of uncertainty. During the 

conceptualization of the analysis we considered the following potential sources of uncertainty: (a) 

model inputs; (b) model structure; (c) accuracy of satellite data; (d) model calibration and (e) 

model parameter regionalization. We considered the impact of sources (a) to (c) to be smaller 

than (d) and (e) for the following reasons. The uncertainty of model inputs (a) is generally mainly 

due to the spatial interpolation of point (precipitation and air temperature) observations, as 

catchment averages are needed for water balance reasons, and this is a topic that has traditionally 

attracted a lot of interest in hydrology (e.g. Faurès et al. 1995). In this study, the model inputs 

(mean daily precipitation and air temperature) are estimated from the gridded SPARTACUS 

dataset with a grid resolution of 1 km that is small relative to the median catchment size 167 km². 

Hiebl and Frei (2018) show the accuracy of the precipitation interpolation used in SPARTACUS 

to be high, and the monthly biases to be very small (values are within ±2%). The cross-validation 

of the air temperature interpolation (Hiebl and Frei, 2016) indicates no systematic overestimation 

or underestimation, i.e. the compound mean error is 0 °C, the root mean square error is 1.4 °C. 



Model structure (b) is of course more difficult to evaluate and previous studies in the context of 

regionalization performance (e.g. Petheram et al. (2012), Parajka et al., 2013, Yang et al., 2020) 

have shown that the simpler models are not superior to complex models (nor much worse) in 

predicting daily hydrographs in ungauged catchments and more generally the difference between 

hydrological models tends to be small (Petheram et al., 2012). Parajka et al. (2013) grouped 

models according to the number of model parameters and showed that the median of the 

regionalisation performance (Nash-Sutcliffe efficiency) for each group of models is around 0.65. 

Yang et al. (2020) compared four daily rainfall-runoff models (GR4J, WASMOD, HBV and XAJ, 

with 6, 8, 13, and 17 parameters) and reported that the difference in model structure has a smaller 

impact on the regionalization model performance than the difference in climate conditions. Yang 

et al. (2020) shows that the average Nash-Sutcliffe runoff efficiency values are, for the best 

regionalization method (Physical similarity methods with output averaging), larger than 0.6 for 

all tested model structures.  

The evaluation of MODIS snow cover (source (c)) of Tong et al. (2021) indicates an overall 

classification accuracy of the most recent MODIS snow cover product of larger than 97% which 

implies much smaller uncertainties than most of the other sources. The accuracy assessment of 

the experimental S1ASCAT dataset at the regional scale is still work in progress. A preliminary 

assessment (Panic et al., 2020, https://presentations.copernicus.org/EGU2020/EGU2020-

16222_presentation.pdf) demonstrates S1ASCAT to compare well with point-scale and area-

representative in situ root zone measurements. The correlation between observed in situ (i.e. TDR 

soil network and Cosmic-Ray Neutron Probe) and S1ASCAT soil moisture is 0.59 and 0.51, 

respectively. These correlations are higher than those obtained between in situ and existing 

COPERNICUS soil moisture products (SSM 1km and SWI 1km), and it is to be expected that 

only a part of the differences between the data types is due to the satellite data, as also TDR soil 

probes and Cosmic-Ray Neutron Probes have some level of uncertainty.  

We thus decided to focus on the uncertainties resulting from model calibration (source (d) and 

selection of regionalization method (source (e)). The impact of using different time periods for 

the prediction of runoff hydrographs is evaluated by the split-sample uncertainty assessment 

proposed by Klemes (1985). Regionalization studies typically refer only to regionalisation model 

efficiencies obtained for the same period as used for model calibration. Our results indicate that 

regionalization efficiencies obtained in an independent validation period generally show a small 

decrease (loss) in runoff model performance. The median of the loss in Nash-Sutcliffe efficiency 

varies between 0.02 and 0.07, depending on the regionalization method and calibration weight. In 

the lowlands the average median loss is 0.06 while it is 0.03 in the alpine basins. The results also 

show that the median loss of runoff efficiency tends to be smaller for multiple-objective variants 

(average median loss of 0.05) than for variants using parameters calibrated to runoff only 

(average median loss of 0.06). These results are consistent with Yang et al. (2020), who reported 

a small degradation of regionalization runoff performance from the calibration to the validation 

period. The largest relative improvement of soil moisture efficiency is found in alpine catchments 

(more than 70%), but the absolute value of the correlations (on average 0.31) are still lower than 

in lowland catchments (average correlation 0.59). These numbers suggest that the differences in 

performance (which are an indicator of the uncertainties to be expected) are quite significant for 

uncertainty source (d). 



The evaluation of the uncertainty of runoff prediction using different regionalization methods 

(source (e)) shows that the variability in medians of runoff regionalization efficiency is smaller 

between regionalization methods than between different calibration variants (i.e. runoff weights). 

For example, the standard deviation of the medians obtained for eleven runoff weights for the 

local similarity regionalization method in alpine catchments is 0.17. The standard deviation of the 

medians between eight regionalization methods ranges (depending on the runoff weight) between 

0.04 and 0.11. The differences are somewhat smaller in lowland catchments (i.e. the standard 

deviation of medians between runoff weights and regionalization methods are 0.14 and about 

0.09, respectively).” 

 

 

2) Secondly and partly related to the above and as I have noted in my editorial review, the 

methods section is extremely poor (still) on explaining how you are comparing these spatial 

information to your model framework and how commensurate they are (and the issues and 

assumptions that have to be dealt with). If your paper is a valuable contribution to introducing 

this type of spatial information into the regionalization process then I expect the paper to give 

this full and detailed consideration of the steps needed to make those comparisons effective and 

'plausible' Here there is a smoke screen of how lower resolution information is disaggregated 

and related to a model that has only spatial elevation bands and homogeneous parameters for 

each catchment. The paper does not attempt to explain in detail the approach used to compare 

these quantities nor explains how soil moisture (for a certain depth average) can be related to a 

potential different depth average of a model conceptualization. I don't mind if this is fully 

detailed in appendices etc. but this has to be massively improved with appropriate figures and 

explanations. In conjunction with this there is almost no evaluation as to the trade offs and 

parameterizations across catchments to how well the model does compared to this information. 

This again needs to improve as the plots currently are too summarized to explain the real value 

of the information in the multi-objective analyses and thus the value to the regionalization 

approach. 

 

In response to this comment, we have extended the Methods section and added a Supplement 

section as suggested by the Editor. This revision provides more detailed information on why and 

how we have estimated the agreement between satellite and modelled soil moisture and a detailed 

description of how we relate modelled and satellite soil moisture.  

 

Methods section:  

“The rationale behind selecting the Pearson correlation as a measure of agreement is that it 

assesses the spatial and temporal correspondence of the satellite soil moisture and simulated root 

zone soil moisture time series. At the spatial resolution of original ASCAT dataset (ca. 12.5 km), 

the satellite estimates of root zone soil moisture reflect mainly regional rainfall and melt 

processes patterns, and are thus more closely related to altitudinal zonality than to morphometric 



characteristics of the terrain that operate at smaller scales. The calculation of OSM from soil 

moisture averages for elevation zones thus allows representing the agreement in regional and 

seasonal soil moisture patterns. Choice of a correlation coefficient has the advantage of not being 

sensitive to the units. In a preliminary analysis, we tested different methods for calculating OSM 

and found that the OSM combining soil moisture estimated from different elevation zones better 

describes the soil moisture agreement than the correlation between soil moisture estimates 

averaged at the catchments scale (see Supplement, Fig. S3). Particularly in the alpine regions, 

correlation calculated from catchment averages masks the spatial variability in the agreement 

between ASCAT and hydrologic root zone soil moisture estimates. A similar approach has been 

used in previous studies (e.g., Parajka et al., 2006; Gruber et al., 2020; Beck et al., 2021). A more 

detailed description of the calculation of soil moisture agreement is presented in the 

Supplement.” 

 

Supplement section: 

Soil moisture is one of the key controls of runoff response. Past studies have used ground soil 

moisture measurements to provide insight into spatial and temporal soil moisture patterns and 

their relation to terrain, and soil and vegetation characteristics (e.g. Bardossy and Lehmann, 1998, 

Western and Blöschl, 1999). However, ground-based measurements have spatial supports of only 

a few centimetres, and logistically, they can only cover relatively small areas. This makes it very 

difficult to estimate meaningful spatial averages over medium-sized to large catchments. 

Alternative more relevant for larger catchments are hydrological models and satellite 

observations (Babaeian et al., 2019). The main advantage of using hydrological models is that 

they explicitly represent areal averages, and soil moisture simulated by these models is 

considered vertically representative over the entire root zone (i.e. the critical zone for runoff 

generation) but they always need calibration for accurately representing hydrological processes in 

a particular case (Blöschl and Grayson, 2002).  

The TUWmodel used in this study is a conceptual hydrologic model, which simulates soil 

moisture in the root zone. The changes in the soil moisture state result from changes in snowmelt, 

rainfall, evapotranspiration and runoff generation contributions. The parameterization of soil 

moisture and runoff generation has three model parameters (FC, Beta, LP), which are calibrated. 

The relationship between rainfall, melt, soil moisture storage and runoff generation is described 

by a non-linear function, which is an empirical curve that connects effective precipitation to 

simulated soil moisture storage and the model parameter field capacity (FC) (Bergström and 

Lindström, 2015). The contribution of rain (PR) and snowmelt (M) to runoff is calculated by an 

explicit scheme as a function of the soil moisture SSM in the root zone, using the following non-

linear relationship:  

 

where FC is the maximum soil moisture storage and Beta is a parameter that controls the 

characteristics of runoff generation. Similar concepts can, for example, be found in the 

Xinanjiang model (Zhao, 1992) and the VIC model (Liang and Lettenmaier, 1994). For a full 



description of the TUWmodel and its implementation see Viglione and Parajka (2020), 

Astagneau et al. (2021) and Jansen et al. (2021). 

Satellite observations similarly provide an integral value over an area which allows direct 

comparisons with hydrologic models. Most satellite datasets are available globally with relatively 

high temporal resolution, so they are also suited for ungauged catchment predictions. However, 

microwave-based datasets have limited penetration depths and poor estimation under dense 

vegetation, on frozen ground and for snow-covered conditions. Because of the limited penetration 

depth of a few centimetres, further processing is needed to obtain soil moisture estimates over a 

deeper soil layer.  

The satellite estimates of root zone soil moisture used in this study are based on the change 

detection method of Wagner et al. (1999) which relates surface soil moisture and satellite 

backscatter. The surface soil moisture is determined by extrapolating the backscatter coefficient 

to a reference angle of 40° and accounting for surface roughness and vegetation characteristics. A 

simple two-layer water balance model then estimates the root zone soil moisture. The first layer 

represents the remotely sensed topsoil layer, and the second layer represents a reservoir 

connected to the surface layer. It is assumed that the surface wetness observations from the 

scatterometer reflect the high soil moisture dynamics due to precipitation, evaporation, and 

surface runoff and indicate the wetting and drying trend of the moisture content in the lower soil 

profile. The water flux between the two layers is assumed to be proportional to the volumetric 

water content in the surface layer and the reservoir. The result of this model is a Soil water index, 

which represents the profile soil moisture in relative units ranging between wilting point and field 

capacity. This method has been validated and compared with ground-based and modelled root-

zone soil moisture estimates in numerous studies (e.g. Paulik et al., 2014). It has become a part of 

the processing algorithms providing operational and experimental soil moisture products, such as 

S1ASCAT used in this study (Bauer-Marschallinger et al., 2018). 

One of the aims of this study is to compare the hydrologic model and satellite soil moisture 

predictions in ungauged basins. The procedure consists of transferring model parameters to 

ungauged basins, running the model, and estimating runoff, soil moisture and snow cover. We 

use a semi-distributed hydrologic model for the modelling and calculate the soil moisture and 

snow cover in individual elevation zones in each catchment. The catchments are partitioned into 

elevation zones of 200 m vertical width. The main idea of our approach is to keep the number of 

model parameters small (to allow an effective transfer to ungauged sites), but to represent the 

spatial (mostly altitudinal) variability of runoff processes, including snowmelt in alpine areas. 

Our approach uses lumped model parameters (i.e. the same parameters in all elevation zones of a 

catchment), but the model inputs and state variables differ between elevation zones. This 

methodology has been widely used in the past (e.g. Paris Anguela et al., 2008, Parajka et al., 

2009). 

The individual steps of the methodology are documented in Figs S1-S4. Fig. S1 shows an 

example of the regional patterns of root zone soil moisture estimated from the ASCAT satellite, 

indicating that the spatial resolution reflects mainly the large scale rainfall patterns and 

antecedent melt processes, rather than the morphometric characteristics of the terrain (e.g. 

differences between concave and convex landforms).  



 

Figure S1. Relative root zone soil moisture from ASCAT on May 15, 2016 in Austria. Grey 

colour indicates masking because of snow cover.  

 

Figure S1 shows higher soil moisture in central and western (alpine) parts of Austria due to 

rainfall on May 14, 2016 and preceding snowmelt than in the eastern lowlands. Wetter soils in 

the South-east reflect local rainfall events on May 14 and 15. Both the seasonal precipitation and 

melt processes have strong altitudinal variability, so we decided to estimate the agreement in soil 

moisture for individual elevation zones in each catchment. We extracted for each day the average 

satellite soil moisture in each elevation zone in each catchment. The example in Figure S2 shows 

the S1ASCAT root-zone soil moisture averages for different elevation zones at the top and 

observed daily discharge at the bottom.  

 

 



 

Figure S2. Time-series of observed S1ASCAT soil moisture in different elevation zones and 

observed discharge for the Pramerdorf-Pram catchment (341 km²) in Upper Austria. 

 

In a next step we considered (in turn, leave one out) each catchment as ungauged and transferred 

calibrated model parameters to it by using different regionalization methods. The model 

parameters had been calibrated in a previous study of Tong et al. (2021) using a multiple-

objective framework. We tested 11 different sets of model calibrations representing different 

runoff weightings and satellite snow cover and soil moisture objective functions. While the 

weight wQ=1 represents a traditional calibration to runoff only, wQ=0 represents a calibration to 

snow cover and soil moisture only. Values of wQ between 0 and 1 represent different tradeoffs 

between these objectives. Regionalization model performance in each catchment was then 



evaluated against runoff and satellite data. The soil moisture efficiency compares the correlation 

(OSM) between the simulated relative root zone soil moisture and the ASCAT snow water index. 

In a preliminary testing phase, we tested different methods for calculating the OSM agreement. 

We found that the OSM combining soil moisture estimated from different elevation zones allows 

more robust description of the OSM agreement than the correlation between soil moisture 

estimates averaged over the entire catchment (Fig. S3).  

 

Figure S3. Comparison of the Pearson correlation coefficient (MEsoil) estimated from the mean 

catchment averages (red symbols) and from elevation zone averages (blue symbols) in 213 

catchments. The black bars show the variability of Pearson correlation calculated for the 

elevation zones within each catchment. The Pearson correlation is estimated between ASCAT 

root zone soil moisture and hydrologic model relative root zone soil moisture in the calibration 

period. 

 

Particularly in the alpine (higher altitude) regions, correlations calculated from the catchment 

averages of soil moisture estimates hide the spatial variability in the agreement between ASCAT 

and hydrologic root-zone soil moisture estimates, because in catchments with large altitudinal 

variability, the correlation between catchment averages is often large (red symbols in Fig. S3), 

but the soil moisture agreement in higher elevation zones (lines representing the range of 

correlation in Fig. S3) is much smaller. We thus decided to estimate the correlation for elevation 

zones rather than catchment averages. The final correlation coefficient is calculated as average 

over all elevation zones for every day where soil moisture is available. Days for which elevation 

zone average satellite soil moisture cannot be estimated (due to missing pixel values that indicate 



snow cover or frozen ground) are excluded from the correlation estimation. An example of the 

soil moisture agreement (correlation) for the Pramersdorf-Pram catchment in the calibration and 

validation period is presented in Figure S4. 

 

 

Figure S4 Example of soil moisture agreement (correlation) for the Pramersdorf-Pram catchment 

in the calibration and validation periods. 
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