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Abstract. Vegetation in wetlands is a large-scale nature-based resource providing a myriad of services for human beings and 

the environment, such as dissipating incoming wave energy and protecting coastal areas. For understanding wave height 

attenuation by vegetation, there are two main traditional calibration approaches to the drag effect acting on the vegetation. One 10 

of them is based on the rule that wave height decays through the vegetated area by a reciprocal function and another by an 

exponential function. In both functions, the local wave height reduces with distance from the beginning of the vegetation 

depending on a damping factor (Eqs. (1) and (4)). These damping factors 𝛼𝛼′ and 𝑘𝑘′ are linked to the drag coefficient 𝐶𝐶𝐷𝐷 and 

measurable parameters (Eqs. (3) and (5)). So there are two methods to predict 𝐶𝐶𝐷𝐷 that quantify the effect of vegetation. In this 

study, a new equation is derived that connects these two damping factors (Eq.(12)). The different relations and methods to 15 

predicting the drag coefficient 𝐶𝐶𝐷𝐷 have been investigated by 99 laboratory experiments. Finally, different relations between 

𝐶𝐶𝐷𝐷 and relevant parameters (𝑅𝑅𝑅𝑅, 𝐾𝐾𝐶𝐶, and 𝑈𝑈𝑈𝑈) have been analyzed. The results show that 𝛼𝛼′ approximately equals 𝑘𝑘′ only for 

fully submerged vegetation, while the new equation can be used for both emerged and submerged canopy. It appears that the 

methods for predicting 𝐶𝐶𝐷𝐷 by Dean (1979) and Kobayashi et al. (1993) are consistent with the well-recognized method by 

Dalrymple et al. (1984) for submerged vegetated canopy. But when the vegetation emerges, only the new method based on Eq. 20 

(12) leads to almost the same results as Dalrymple et al. (1984). Hence, Eq. (12) has built a bridge between these two 

approaches for the wave attenuation by vegetation and has proved applicable to emergent conditions of vegetation as well. 

1 Introduction 

To meet the current wave prevention requirements, it is of practical to construct ecological safety barrier with wetland 

vegetation based on natural conditions. Vegetation in wetlands can enhance the toughness of the coast and save construction 25 

investment effectively by dissipating incoming wave energy (e.g., Reguero et al., 2018). Practice also has proved that 

vegetation in wetlands can provide services such as enhance coastal ecosystem and biodiversity, enhance fisheries and forestry 

production, increase bank stability, and promote tourism economy, whereas the vegetated area occupies floodplain resources 

(Schaubroeck, 2017; Keesstra, 2018). Hence, it is necessary to better understand the mechanism of wave attenuation to promote 

the efficiency of the nature-based solution. 30 
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Wave attenuation by vegetation is mainly induced by the drag force provided by the vegetation acting on water motion in 

researches such as numerical modeling (e.g., Wu et al., 2016; Suzuki et al., 2019), laboratory experiment (e.g., Hu et al., 2014; 

Wu and Cox, 2015, 2016), or field study (e.g., Danielsen et al., 2005; Quartel et al., 2007). The drag force is closely related to 

the drag coefficient 𝐶𝐶𝐷𝐷 which quantifies the drag or resistance of vegetation in water (Chen et al., 2018). This coefficient is 35 

one of the most uncertain parameters in the complicate interaction between the vegetated area and water because the drag 

effect can be fairly different on various time and space scales. The calibration method for the drag coefficient is based on the 

perspective of wave energy dissipation and wave height reduction which will be discussed in Section 2, while Dean (1979) 

and Kobayashi et al. (1993) proposed that local wave height decaying through the vegetated canopy following reciprocal 

function and exponential function, respectively. These two calibration functions describe local wave height with a distance 40 

from the beginning of vegetation and a factor reflecting the damping. The damping factor from the reciprocal function and 

exponential damping factor from the exponential function are linked to the drag coefficient 𝐶𝐶𝐷𝐷 and measurable parameters 

such as water depth and density of stems. For instance, Dean (1979) proposed a method to predict 𝐶𝐶𝐷𝐷 based on the damping 

factor and the model later had been developed by researchers such as Knutson et al. (1982), Dalrymple et al. (1984), and 

Losada et al. (2016). Overall, different equations for these damping factors had been obtained under different operating 45 

conditions. Zhang et al. (2021) has compared these two calibration approaches by these featured functions directly and yielded 

a connection between the damping factor and the exponential damping factor then revealed a new equation to predict the drag 

coefficient. This article will compare these two traditional approaches from another perspective.  

 

Then there are two relations between the damping factor following Dean (1979) and the exponential damping factor following 50 

Kobayashi et al. (1993) from two perspectives, and they were analyzed by 99 cases from collected data and experimental 

observations in this study. Additionally, in normal tidal conditions and the initial stage of storm surge, vegetation in wetlands 

can be emerged while by storm surge, vegetation is submerged or near-submerged. Existing methods for the drag coefficient 

had been compared to calculate the drag coefficient considering these emergence conditions. Finally, relations between 𝐶𝐶𝐷𝐷 

and the Reynolds number (𝑅𝑅𝑒𝑒), the Keuglan-Carpenter number (𝐾𝐾𝐶𝐶), and the Ursell number (𝑈𝑈𝑈𝑈) had been studied. 55 

2 Theoretical foundations 

Typically, the drag coefficient 𝐶𝐶𝐷𝐷 is determined from the perspective of wave energy dissipation, represented by the decay of 

wave height. Dean (1979) proposed one of the first models for wave attenuation by vegetation in which wave height throughout 

the vegetated area can be expressed as a reciprocal function: 

𝐾𝐾𝑋𝑋 = 𝐻𝐻(𝑋𝑋)/𝐻𝐻0 = 1/(1 + 𝛼𝛼′𝑋𝑋),          (1) 60 

where 𝐾𝐾𝑋𝑋 (-) is the relative wave height at a distance 𝑋𝑋 (m) through the vegetation field from the beginning of vegetation, 

𝐻𝐻(𝑋𝑋) (m) is the local wave height, 𝐻𝐻0 (m) is the incident wave height, and 𝛼𝛼′ (m-1) is the damping factor.  
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Based on empirical estimates of fluid drag forces acting on vertical, rigid cylinder, Dean (1979) found that:  

𝛼𝛼′ = 𝐶𝐶𝐷𝐷𝑑𝑑𝑑𝑑𝐻𝐻0/6𝜋𝜋ℎ,           (2) 65 

where 𝑑𝑑 (m) is the diameter of circular vegetation cylinder, ℎ (m) is the water depth, and 𝑑𝑑 (stems m-2) is the average number 

of stems per unit area. 

 

Then Dalrymple et al. (1984) formulated an algebraic dissipation equation practicing linear theory and conservation of wave 

energy where 𝛼𝛼′ can be expressed as: 70 

𝛼𝛼′ = 4
9𝜋𝜋
𝐶𝐶𝐷𝐷𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘𝑤𝑤𝐻𝐻0

sinh3 𝑘𝑘𝑤𝑤𝑙𝑙𝑠𝑠+3sinh𝑘𝑘𝑤𝑤𝑙𝑙𝑠𝑠
sinh𝑘𝑘𝑤𝑤ℎ(sinh2𝑘𝑘𝑤𝑤ℎ+2𝑘𝑘𝑤𝑤ℎ)

,        (3) 

where 𝑑𝑑𝑣𝑣 (m) is the vegetated area per unit height of plant normal to wave direction, 𝑘𝑘𝑤𝑤 (rad m-1) is the wave number, and 𝑙𝑙𝑠𝑠 

(m) is the submerged stem height. 

 

On the other hand, Kobayashi et al. (1993) published that the local wave height decays exponentially through submerged 75 

artificial kelp: 

𝐾𝐾𝑋𝑋 = 𝐻𝐻(𝑋𝑋)/𝐻𝐻0 = exp(−𝑘𝑘′𝑋𝑋),          (4) 

where 𝑘𝑘′ (m-1) is the exponential damping factor. Based on linear wave theory and the conservation equation of energy, 𝑘𝑘′ was 

expressed as (Kobayashi et al.,1993):  

𝑘𝑘′ ≅ 1
9𝜋𝜋
𝐶𝐶𝐷𝐷𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘𝑤𝑤𝐻𝐻0

sinh3𝑘𝑘𝑤𝑤𝑙𝑙𝑠𝑠+9sinh𝑘𝑘𝑤𝑤𝑙𝑙𝑠𝑠
sinh𝑘𝑘𝑤𝑤ℎ(sinh2𝑘𝑘𝑤𝑤ℎ+2𝑘𝑘𝑤𝑤ℎ)

,        (5) 80 

 

Comparing these relations between the (exponential) damping factor and the drag coefficient (Eqs. (3) and (5)), a relation 

between the damping factor 𝛼𝛼′ and the exponential damping factor 𝑘𝑘′ is derived: 

𝛼𝛼′/𝑘𝑘′ ≅ 1,            (6) 

 85 

Recently, Zhang et al. (2021) presented a relation between 𝛼𝛼′ and 𝑘𝑘′ looking at these featured functions directly, based on 

Taylor expansion. This method firstly scaled the distance 𝑋𝑋 of Eqs. (1) and (4): 

𝐻𝐻/𝐻𝐻0 = 1/(1 + 𝛼𝛼′𝑋𝑋) = 1/(1 + 𝛼𝛼𝛼𝛼) = 𝐹𝐹(𝛼𝛼),        (7) 

and 

𝐻𝐻/𝐻𝐻0 = exp(−𝑘𝑘′𝑋𝑋) = exp(−𝑘𝑘𝛼𝛼) = 𝐺𝐺(𝛼𝛼),         (8) 90 

where 𝛼𝛼 (= 𝛼𝛼′𝐿𝐿) (-) is the scaled damping factor, 𝐿𝐿 (m) is the length of vegetated area, 𝛼𝛼 (= 𝑋𝑋/𝐿𝐿) (-) is the scaled distance 

through the vegetation field, 𝑘𝑘 (= 𝑘𝑘′𝐿𝐿) (-) is the scaled exponential damping factor, and 𝐹𝐹(𝛼𝛼) and 𝐺𝐺(𝛼𝛼) represent functions. 

 

Then by using the Taylor expansion, when the scaled distance 𝛼𝛼 equals half, the following equations had been derived: 
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𝐹𝐹(𝛼𝛼) = 2
𝛼𝛼+2

− 4𝛼𝛼
(𝛼𝛼+2)2

(𝛼𝛼 − 1/2) + 8𝛼𝛼2

(𝛼𝛼+2)3
(𝛼𝛼 − 1/2)2 − 16𝛼𝛼3

(𝛼𝛼+2)4
(𝛼𝛼 − 1/2)3 + 𝑅𝑅1(𝛼𝛼),    (9) 95 

and  

𝐺𝐺(𝛼𝛼) = 1
e𝑘𝑘/2 −

𝑘𝑘
e𝑘𝑘/2 (𝛼𝛼 − 1/2) + 𝑘𝑘2

2e𝑘𝑘/2 (𝛼𝛼 − 1/2)2 − 𝑘𝑘3

6e𝑘𝑘/2 (𝛼𝛼 − 1/2)3 + 𝑅𝑅2(𝛼𝛼),     (10) 

where 𝑅𝑅1(𝛼𝛼) and 𝑅𝑅2(𝛼𝛼) are the residual terms. The relative magnitude of each term in Eqs. (9) and (10) has been analyzed by 

Zhang et al. (2021), and it has revealed that the first two terms of these equations played the most significant role. Hence, 

considering only these two terms in Eqs. (9) and (10), the proportionality between the two first terms yields two equations, 100 

which result in: 

𝛼𝛼/𝑘𝑘 = 2/(2 − 𝑘𝑘),           (11) 

which equals: 

𝛼𝛼′/𝑘𝑘′ = 2/(2 − 𝑘𝑘′𝐿𝐿),           (12) 

Equations (6) and (12) have built a bridge between the exponential function and reciprocal function, verifying that these two 105 

are reliable and capable to describe the wave height attenuation by vegetation satisfactorily. The rule of the attenuation is then 

limited by two functions, which can increase the reliability of the calibration. Besides, the exponential damping factor can be 

obtained easily based on local wave height, therefore, calculating 𝛼𝛼′ in the well documented Eq. (3) on the basis of the 

calibrated 𝑘𝑘′ is much easier than calibrating 𝛼𝛼′ directly, which needs professional numerical tools. 

 110 

However, application of Eq. (6) in Eq. (12) results in 𝑘𝑘′𝐿𝐿 ≅ 0, which is not appropriate when there is vegetation in the wetland. 

Hence, it is worth further studying the relation between these two damping factors to help us better understanding the drag 

coefficient and wave attenuation by vegetation. 

 

In addition we study the relation between 𝐶𝐶𝐷𝐷 and three relevant hydraulic parameters, which are also frequently used to model 115 

𝐶𝐶𝐷𝐷, including: 1) the Reynolds number, 𝑅𝑅𝑅𝑅 (= 𝑢𝑢max𝑑𝑑𝑣𝑣/ν), where ν (=1.011×10-6 m2 s-1) is the kinematic viscosity of water 

and 𝑢𝑢max (= 2𝜋𝜋𝐻𝐻0/2𝑇𝑇 tanh𝑘𝑘𝑤𝑤ℎ) is the maximum horizontal wave velocity from linear wave theory, where 𝑇𝑇 (s) is the wave 

period; 2) the Keulegan-Carpenter number, 𝐾𝐾𝐶𝐶 (= 𝑢𝑢max𝑇𝑇/𝑑𝑑𝑣𝑣), representing oscillatory flow around cylinders;  and 3) the 

Ursell number, 𝑈𝑈𝑈𝑈 (= 𝜆𝜆2𝐻𝐻0/ℎ3), characterizing the balance between wave steepness and the relative water depth, where 𝜆𝜆 (m) 

is the wave length. The following formula is used to study the relation between 𝐶𝐶𝐷𝐷 and these parameters: 120 

𝐶𝐶𝑑𝑑 = 𝑎𝑎 exp(−𝑏𝑏𝑋𝑋�)           (13) 

where 𝑋𝑋� could be 𝑅𝑅𝑒𝑒, 𝐾𝐾𝐶𝐶 or 𝑈𝑈𝑈𝑈; 𝑎𝑎 and 𝑏𝑏 are factors. 
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3 Experimental setup and instrumentations 

The experiments were conducted in a wave flume in Guangdong key laboratory of hydrodynamic research at Guangdong 

research institute of water resources and hydropower, China. The wave flume is 80.0 m long, 1.8 m wide, and 2.6 m deep 125 

(schematized in Fig. 1a, unit: m). The wave was generated by a wave generator at one end and absorbed at the opposite end.  

 

The start of the vegetated area was located 52.7 m from the wave generator. The uniform canopies were constructed by putting 

mimic plants (Fig. 1b) in holes drilled in the bottom. These two heights of mimic plants (𝑙𝑙𝑠𝑠) were 0.3 and 0.5 m and 𝑑𝑑𝑣𝑣 of the 

mimics was 0.057 m considering average diameters of the stem and leaves while the height ratio of them is about 0.5 (Fig. 1b). 130 

The three lengths of the canopies (𝐿𝐿) were 4, 5, and 6 m, and two mimic stem densities (𝑑𝑑) were 25 and 50 stems m-2 (N1 and 

N2, see Figs. 1c and 1d). These two water levels of the flume were 0.8 and 1.0 m so the corresponding water depth of the 

floodplain (ℎ) were 0.3 and 0.5 m.  

 

The original wave heights (𝐻𝐻ori) of each designed regular wave were calibrated at 30 m from the wavemaker before these tests. 135 

In this study, seven wave gages (G1 to G7) were used to measure the wave height time series, which were placed 1 m apart 

from each other from the beginning of the vegetated area (Fig. 1a) and we used the measurement at G1 as the incident wave 

height (𝐻𝐻0) (Wu and Cox, 2015).  

 

Control tests were carried out with no mimic plants to reduce the influence of flume bed and sidewalls. As list in Table 1, 140 

sixteen operating modes were conducted including various conditions. Data of each test were collected more than 200 s and 

each case was repeated for three times. 
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Figure 1: Experimental setup. (a) Schematic of the wave flume and instrument deployment, when the water level was 1.0 m and 
mimic plants height was 0.5 m; (b) mimic plants with a height of 0.3 m; (c) and (d) top view of the mimic plant canopy with density 145 
of 25 and 50 stems m-2. 

 
Table 1: Hydrodynamic conditions with regular waves 

Cases 𝒉𝒉 [m]/𝑯𝑯𝐨𝐨𝐨𝐨𝐨𝐨 [m] 𝒌𝒌𝒘𝒘 [-] wave period (𝑻𝑻) [s] 𝑳𝑳 [m] 𝑵𝑵 [stems m-2] 𝒍𝒍𝒔𝒔 [m] 

1 0.3/0.12 2.24 1.00 4 25 0.3 

2 0.3/0.12 2.24 1.00 5 25 0.3 

3 0.3/0.12 2.24 1.00 6 25 0.3 

4 0.3/0.12 2.24 1.00 4 25 0.5 

5 0.3/0.12 2.24 1.00 5 25 0.5 

6 0.3/0.12 2.24 1.00 6 25 0.5 

7 0.3/0.12 2.24 1.00 4 50 0.5 

8 0.3/0.12 2.24 1.00 5 50 0.5 

9 0.3/0.15 2.04 1.10 4 50 0.5 

10 0.3/0.15 2.04 1.10 5 50 0.5 

11 0.5/0.15 1.79 1.12 4 25 0.3 

12 0.5/0.15 1.79 1.12 5 25 0.3 

13 0.5/0.15 1.79 1.12 6 25 0.3 

14 0.5/0.15 1.79 1.12 4 25 0.5 
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Cases 𝒉𝒉 [m]/𝑯𝑯𝐨𝐨𝐨𝐨𝐨𝐨 [m] 𝒌𝒌𝒘𝒘 [-] wave period (𝑻𝑻) [s] 𝑳𝑳 [m] 𝑵𝑵 [stems m-2] 𝒍𝒍𝒔𝒔 [m] 

15 0.5/0.15 1.79 1.12 5 25 0.5 

16 0.5/0.15 1.79 1.12 6 25 0.5 

4 Data collection 

Besides experiments in this study, observations in published literature had been collected. These researchers in previous studies 150 

had shown the values of 𝐶𝐶𝐷𝐷 and local wave height along the vegetated area.  

 

Hu et al. (2014) conducted laboratory experiments in a wave flume, with a 6 m long vegetation mimic canopy. The mimics 

were stiff wooden rods with a height of 0.36 m and a diameter of 0.01 m. Three mimic stem densities (62, 139 and 556 stems 

m-2, represented by VD1, VD2 and VD3) were constructed and control tests with no stems were measured. Also, two water 155 

depths (0.25 and 0.50 m) were used to study the emerged and submerged conditions. 

 

Wu et al. (2011) reported a series of experiments in laboratory with a 3.66 m long vegetation field. The rigid vegetation 

mimicked by 9.5 mm diameter birch dowels were studied by two stem densities (350 and 623 stems m-2) and two stem heights 

(0.63 and 0.48 m). 160 

 

The laboratory experiments by Wu and Cox (2015) were conducted in a wave flume with a water depth of 12 cm and the 1.8 

m long vegetated area was modeled by plastic strips, 5 mm wide by 1 mm thick. The length of the strips was 14 cm and the 

density was 2 100 stems m-2. 

 165 

Wu and Cox (2016) also conducted experiments in a small scale wave flume, and the vegetated field is 90-cm-long by uniform 

stand of emergent vegetation with a stem height of 0.14 m and width of 5 mm. The stem density was 1618 stems m-2, and the 

water depth was 0.1 m. 

5 Results and discussion 

5.1 Reduction of wave height 170 

Wave height along the vegetated area is a significant index for wave attenuation by vegetation. The calibrated reductions of 

wave height demonstrating two examples (Cases 13 and 16) were shown in Fig. 2. It is clear that Eqs. (1) and (4) were reliable 

relations between the scaled distance and the relative wave height. Also, Eq. (1) with calculated 𝛼𝛼 value according to Eq. (11) 

is appliable to fit the observations, hence Eq. (11) is useful. Results showed that the larger the value of the scaled damping 

factor 𝛼𝛼 and the scaled exponential damping factor 𝑘𝑘, the stronger the wave attenuates.  175 
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Figure 2: Measured and predicted wave attenuation. Square and trigon symbols indicated measurements of Cases 13 and 16; solid, 
dashed and dotted lines represented the curves fitted by Dean (1979) (Eq. (1)), Kobayashi et al. (1993) (Eq. (4)), and Eq. (11).  

5.2. Relation between 𝜶𝜶 and 𝒌𝒌 

The relation between calibrated values of 𝛼𝛼 and 𝑘𝑘 by 99 cases from this study and collected data was shown in Fig. 3. In the 180 

study of Wu et al. (2011), Hu et al. (2014) and this research, both submerged and emerged cases were conducted, and in the 

study of Wu and Cox (2015, 2016) the vegetation canopies were emerged. The emerged and submerged canopies were 

separated for studying the influence of emergent condition (emerged or submerged). The results showed that there is an obvious 

relation between 𝛼𝛼 and 𝑘𝑘. However, Eq. (6), which has been obtained by comparing these relations between the (exponential) 

damping factor and the drag coefficient by Dalrymple et al. (1984) and Kobayashi et al. (1993), worked well only when values 185 

of 𝛼𝛼 and 𝑘𝑘 were smaller than around 0.4. Equation (12), on the other hand, seemed a possible solution for the relation of these 

two factors, and the relation between 𝛼𝛼 and 𝑘𝑘 did not strongly affect by the emergent condition while these values were indeed 

relatively small when the vegetation was submerged (0.04<𝛼𝛼<0.56) than when it was emerged (0.12<𝛼𝛼<1.43). Notably, the 

analytical solution of Kobayashi et al. (1993) was obtained and conducted using deeply submerged artificial kelp, and 

𝐻𝐻(𝑋𝑋)3 ≅ 𝐻𝐻0𝐻𝐻(𝑋𝑋)2 was assumed which can only be valid when wave height reduces slightly through submerged vegetated 190 

areas and the damping factors are small. This is why Eq. (6) can only be profitable for submerged vegetation. 
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Figure 3: Comparison of calibrated 𝜶𝜶 and 𝒌𝒌. Different symbols indicated cases from different researches and emergent conditions. 
For emerged and submerged cases, “-e” and “-s” were added after the references as the legend shown. The dashed and dotted lines 
indicated calculation by Eqs. (6) and (11), respectively. 195 

5.3 Predict 𝑪𝑪𝑫𝑫 by different methods 

5.3.1 Predict 𝑪𝑪𝑫𝑫 by Dean (1979) 

Attention has been paid to study the emergent condition of the vegetation recently. This condition (eg., by 𝑙𝑙𝑠𝑠) has been included 

in Eq. (3) by Dalrymple et al. (1984) while it has not been considered in Eq. (2) by Dean (1979). In this part, the calibrated 

values of the drag coefficient by Eqs. (2) and (3), both considering wave height decaying by the reciprocal function, were 200 

compared. Figure 4 showed that these 99 cases obviously can be divided into two categories and they could be fitted by linear 

lines. The values of the adjusted R-square of the linear fit of emerged category and submerged category were 0.970 and 0.973, 

respectively, while the slope of the former was about twice as large as the latter. Hence, it is necessary to distinguish submerged 

from emerged cases when study the drag coefficient in wave attenuation by vegetation by Eq. (2). Furthermore, the linear fit 

of the submerged category was close to the 1:1 line which meant that both Eqs. (2) and (3) can be the solution in submerged 205 

cases but for emerged cases Eq. (2) can lead to larger values of the calibrated 𝐶𝐶𝐷𝐷.  
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Figure 4: Comparison of the calibrated values of 𝑪𝑪𝑫𝑫 by Eqs. (3) and (2). Different symbols indicated cases from different researches. 
The solid and dashed dot lines indicated linear fit of emerged and submerged categories.  

5.3.2 Predict 𝑪𝑪𝑫𝑫 by Kobayashi et al. (1993) 210 

Equation (5) by Kobayashi et al. (1993) also considered the emergent condition and it was obtained by using local wave height 

decaying exponentially. Hence, in this part, the comparison of calibrated values of the drag coefficient by Eqs. (3) and (5) were 

studied to learn the influence of different decaying function and the result was shown in Fig. 5. The result also revealed that 

cases can be divided into emerged and submerged categories and the emergent condition has smaller effect on the calibrated 

𝐶𝐶𝐷𝐷 by Eq. (5) than Eq. (2). These slopes of the linear fit lines of emerged category and submerged category in Fig. 5 were 0.77 215 

and 0.96 while the values were 2.15 and 1.16 in Fig. 4. Additionally, the linear fit line was close to the 1:1 line for submerged 

category hence for calculating the drag coefficient in wave attenuation by submerged vegetation, both Eqs. (3) and (5) can be 

the solution. This is consistent with the result in the last Section. However, for emerged cases, Eq. (5) can lead to smaller 

values of the calibrated 𝐶𝐶𝐷𝐷. 
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 220 
Figure 5: Comparison of the calibrated values of 𝑪𝑪𝑫𝑫 by Eqs. (3) and (5). Details are the same as Fig. 4. 

5.3.3 Predict 𝑪𝑪𝑫𝑫 by a new method 

The new method obtained the scaled damping factor 𝛼𝛼′ by Eq. (12) and calculated the drag coefficient 𝐶𝐶𝐷𝐷 by Eq. (3). The Eq. 

(12)-based method used the rule that the local wave height decaying exponentially and the classic relation between the damping 

factor and 𝐶𝐶𝐷𝐷 by Dalrymple et al. (1984). The comparison of the calibrated values of 𝐶𝐶𝐷𝐷 by Eq. (3) and the new method is 225 

shown in Fig. 6. The result showed that there was a strong linear relationship among the calibrated values in 99 cases from 

different researches. The slope of the linear fit was about unit and the adjusted R-square equalled 0.99. The result was inspiring 

and showed that the new method can lead to comparable results to the method by Dalrymple et al. (1984) for the drag 

coefficient. It is revealed that Eq. (12) is satisfactory and can be a bridge between the damping factor and the exponential 

damping factor and there is no need to consider the emergent condition. 230 
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Figure 6: Comparison of the calibrated values of 𝑪𝑪𝑫𝑫 by Eq. (3) and the new method. Different symbols indicated cases from different 
researches. The solid line indicated linear fit of all cases.  

5.4. Relate 𝑪𝑪𝑫𝑫 to 𝑹𝑹𝒆𝒆, 𝑲𝑲𝑪𝑪, and 𝑼𝑼𝑼𝑼 

5.4.1. Relate 𝑪𝑪𝑫𝑫 to 𝑹𝑹𝒆𝒆 235 

The relation between 𝑅𝑅𝑒𝑒 and the calibrated 𝐶𝐶𝐷𝐷 by the new method and the nonlinear fit by Eq. (13) were shown in Fig. 7. In 

the study by Hu et al. (2014) and this research, different densities were separated. These two trigons in the lower left corner of 

cases from Hu et al. (2014) were considered outliers in these analyses. Results showed that the tendencies of the relations were 

noticeable for different groups of cases as the legend specified. The values of 𝑅𝑅𝑒𝑒 ranged from 370 to 38000, and this might 

due to the fact that Wu and Cox (2015, 2016) used irregular wave so the calculated Reynolds numbers were small. Results 240 

revealed that separating cases from different densities was necessary for studying this relation while the effect of the emergent 

condition was ignorable. Equation (13) was utilized to study the relation between 𝑅𝑅𝑒𝑒 and 𝐶𝐶𝐷𝐷 and the outcomes of the factors 

from nonlinear fit by the new method and Eq. (3) were shown in Table 2. Results showed that values for a certain factor based 

on the new method and Eq. (3) were close to each other especially for cases from Hu et al. (2014), supporting that the new 

method is comparable to Dalrymple et al. (1984). Moreover, values can be quite different in various groups hence laboratory 245 

setup could play an important role on the relation between the drag coefficient and the Reynolds number. Hence, for 

engineering applications, case study is needed for certain issues. 
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Figure 7: Relation between 𝑹𝑹𝒆𝒆 and the calibrated 𝑪𝑪𝑫𝑫 by the new method. Different symbols indicated cases from different researches. 
The solid line following the symbols indicated nonlinear fit of groups by Eq. (13). 250 

 

Table 2: Outcome of the factors in Eq. (13) between 𝑹𝑹𝒆𝒆 and 𝑪𝑪𝑫𝑫 by the new method and Eq. (3). 

References 
The new method Equation (3) 

𝑎𝑎 𝑏𝑏 Adj. R2 𝑎𝑎 𝑏𝑏 Adj. R2 

Hu et al. (2014) VD1 5.2 3.1×10-4 0.64 4.6 2.7×10-4 0.67 

Hu et al. (2014) VD2 6.2 2.3×10-4 0.44 5.5 2.2×10-4 0.44 

Hu et al. (2014) VD3 3.1 3.1×10-4 0.73 3.3 3.3×10-4 0.69 

Wu and Cox (2015) 2.5 2.6×10-4 0.04 3.0 5.4×10-4 0.32 

Wu and Cox (2016) 16.8 2.6×10-3 0.99 / / / 

This research N2 14.7 3.7×10-4 0.69 8.3 2.8×10-4 0.90 

5.4.2. Relate 𝑪𝑪𝑫𝑫 to 𝑲𝑲𝑪𝑪 

The relation between 𝐾𝐾𝐶𝐶 and the calibrated 𝐶𝐶𝐷𝐷 was shown in Fig. 8. The values of 𝐾𝐾𝐶𝐶 ranged from 9 to 130 and the range is 

much smaller than that of 𝑅𝑅𝑒𝑒 in Fig. 7. Similarly, Eqs. (13) was utilized to study the relation between 𝐾𝐾𝐶𝐶 and 𝐶𝐶𝐷𝐷 and outcomes 255 

of the factors were shown in Table 3. Results showed that these fit lines were closer to each other than that in Fig. 7. The 

adjusted R-square values in Table 3 were overall larger than the corresponding numbers in Table 2. From these studied cases, 

the Keulegan-Carpenter number could be a satisfactory parameter for describing the drag coefficient. In addition, values for a 

certain factor based on these two methods were closer than the results in Table 2, revealing that the new method performed 

well since the method by Dalrymple et al. (1984) is well-recognized. 260 
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Figure 8: Relation between 𝑲𝑲𝑪𝑪 and the calibrated 𝑪𝑪𝑫𝑫 by the new method. Details are the same as Fig. 7. 

 

Table 3: Outcome of the factors in Eq. (13) between 𝑲𝑲𝑪𝑪 and 𝑪𝑪𝑫𝑫 by the new method and Eq. (3). 

References 
The new method Equation (3) 

𝑎𝑎 𝑏𝑏 Adj. R2 𝑎𝑎 𝑏𝑏 Adj. R2 

Hu et al. (2014) VD1 3.7 1.2×10-2 0.67 3.4 1.1×10-2 0.76 

Hu et al. (2014) VD2 5.4 1.1×10-2 0.76 4.8 1.0×10-2 0.76 

Hu et al. (2014) VD3 2.3 1.3×10-2 0.94 2.4 1.5×10-2 0.90 

Wu and Cox (2015) 2.8 1.0×10-2 0.44 3.0 1.3×10-2 0.65 

Wu and Cox (2016) 4.8 2.0×10-2 0.94 5.0 2.4×10-2 0.96 

This research N2 8.0 1.7×10-2 0.56 5.4 1.4×10-2 0.82 

5.4.3. Relate 𝑪𝑪𝑫𝑫 to 𝑼𝑼𝑼𝑼 265 

The relation between 𝐶𝐶𝐷𝐷 and the Ursell number 𝑈𝑈𝑈𝑈 has also been studied (Fig. 9). The values of 𝑈𝑈𝑈𝑈 ranged from 1 to 68. 

However, the nonlinear fit by Eqs. (13) was unsatisfactory for all groups since the relation of these data were not strong. 

Results showed that comparatively, 𝑈𝑈𝑈𝑈 was not a well-performed parameter for studying the drag coefficient in wave 

attenuation by vegetation. 
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Figure 9: Relation between 𝑼𝑼𝑼𝑼 and the calibrated 𝑪𝑪𝑫𝑫 by the new method. Details are the same as Fig. 7. 

6. Discussion and conclusions 

Wave attenuation by vegetation in wetlands is a large-scale nature-based solution providing a myriad of services for human 

beings. For understanding wave attenuation, two main traditional calibration approaches to the drag effect acting on the 

vegetation were established, based on local wave height decaying by reciprocal function or exponential function. By combining 275 

these two reliable calibration methods by Dean (1979) and Kobayashi et al. (1993) from two perspectives: one by combining 

these featured functions directly (Eqs. (1) and (4)), and another by these relations between the (exponential) damping factor 

and the drag coefficient (Eqs. (3) and (5)). So, two relations between the damping factor 𝛼𝛼′ and the exponential damping factor 

𝑘𝑘′ were derived (Eqs. (6) and (12)). Then, the relation between 𝛼𝛼′ and 𝑘𝑘′ and the drag coefficient in wave attenuation were 

analyzed by 99 laboratory experiments. Furthermore, the relation between 𝐶𝐶𝐷𝐷 and important parameters (𝑅𝑅𝑅𝑅, 𝐾𝐾𝐶𝐶, and 𝑈𝑈𝑈𝑈) was 280 

analysed. 

 

The results showed that the reduction of wave height can be described by both reciprocal and exponential functions. For 

submerged vegetation, which reduces wave height relatively slightly, the damping factor approximately equals the exponential 

damping factor and Eq. (6) may be applied. However, Eq. (12) appeared applicable no matter how submerged the vegetation 285 

is, which is really a satisfactory result. These two equations build a bridge between the two traditional wave height decaying 

models. For submerged vegetated canopy, Eq. (2) by Dean (1979) and Eq. (5) by Kobayashi et al. (1993) were consistent with 

the well-recognized Eq. (3) by Dalrymple et al. (1984). However, when the vegetation was emerged, Eqs. (2) and (5) were not 

in line with Eq. (3). On the other hand, the predicted 𝐶𝐶𝐷𝐷 values by the new method by Zhang et al. (2021) in combination with 

Eq. (3) were almost the same as those derived with the method of Dalrymple et al. (1984). Additionally, it appeared that 𝐾𝐾𝐶𝐶 290 
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performed best to predict 𝐶𝐶𝐷𝐷, better than 𝑅𝑅𝑅𝑅 and 𝑈𝑈𝑈𝑈, although the results can be quite different in different groups of laboratory 

observations. Therefore, further studies are needed in a variety of laboratory experiments.  

 

Building a bridge between the two reliable methods by Dean (1979) and Kobayashi et al. (1993) is helpful. Firstly, it is 

promising that the reduction of wave height is limited by two functions so experimental outliers can be distinguished. Besides, 295 

based on local wave height, the exponential damping factor 𝑘𝑘′can be obtained easily by MS Excel, while the damping factor 

𝛼𝛼′needs professional numerical tools. Therefore, calculating 𝛼𝛼′ by the calibrated 𝑘𝑘′ is much easier than calibrating 𝛼𝛼′ directly 

by the well documented Eq. (3) which is the advantage of the new method in this study. This method for the drag coefficient 

has been validated by a great amount of data under different laboratory conditions, however, the interaction between the 

vegetation and flow filed is complicated so verification and/or calibration are needed further for predicting the drag coefficient. 300 
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