
 1 

Sequential Data Assimilation for Real-Time Probabilistic 1 

Flood Inundation Mapping 2 

Keighobad Jafarzadegan*, Peyman Abbaszadeh, Hamid Moradkhani 3 

Center for Complex Hydrosystems Research, Department of Civil, Construction, and 4 

Environmental Engineering, University of Alabama, Tuscaloosa, AL 5 

*Corresponding author: kjafarzadegan@ua.edu 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

https://doi.org/10.5194/hess-2021-181
Preprint. Discussion started: 18 May 2021
c© Author(s) 2021. CC BY 4.0 License.



 2 

Abstract 19 

Real-time probabilistic flood inundation mapping is crucial for flood risk warning and decision 20 

making during the emergency of an upcoming flood event. Considering high uncertainties 21 

involved in the modeling of a nonlinear and complex flood event, providing a deterministic flood 22 

inundation map can be erroneous and misleading for reliable and timely decision making. The 23 

conventional flood hazard maps provided for different return periods cannot also represent the 24 

actual dynamics of flooding rivers. Therefore, a real-time modeling framework that forecasts the 25 

inundation areas before the onset of an upcoming flood is of paramount importance. Sequential 26 

Data Assimilation (DA) techniques are well-known for real-time operation of physical models 27 

while accounting for existing uncertainties. In this study, we present a Data Assimilation (DA)-28 

hydrodynamic modeling framework where multiple gauge observations are integrated into the 29 

LISFLOOD-FP model to improve its performance. This study utilizes the Ensemble Kalman Filter 30 

(EnKF) in a multivariate fashion for dual estimation of model state variables and parameters where 31 

the correlations among point source observations are taken into account. First, a synthetic 32 

experiment is designed to assess the performance of the proposed approach, then the method is 33 

used to simulate the Hurricane Harvey flood in 2017. Our results indicate that the multivariate 34 

assimilation of point-source observations into hydrodynamic models can improve the accuracy 35 

and reliability of probabilistic flood inundation mapping by 5-7% while it also provides the basis 36 

for sequential updating and real-time flood inundation mapping. 37 

Keywords: Data Assimilation; Probabilistic Flood Inundation Mapping; Hydrodynamic Model; 38 

Ensemble Kalman Filter 39 
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1. Introduction 46 

The on-time, accurate, and reliable characterization of an upcoming flood event is imperative for 47 

proper decision making and risk analysis. A well-calibrated hydrologic model coupled with 48 

reliable weather forecast models can be used to generate the streamflow forecast (Clark and Hay, 49 

2004; Cuo et al., 2011; Habets et al., 2004). While streamflow forecasting during flood events is 50 

indispensable, the critical step for flood risk analysis is to estimate the flood inundation areas 51 

corresponding to the forecasted streamflow of a potential upcoming event. Hydrodynamic models 52 

are common tools used to simulate the physics of a river system and predict the spatiotemporal 53 

distribution of water surface elevation. The predicted water surface elevation can be simply 54 

converted to water depth and inundation area by overlaying with a high-resolution Digital 55 

Elevation Model (DEM) (Merwade et al., 2008; Teng et al., 2017). 56 

According to the literature, most studies have analyzed the flood events for which the flood extent 57 

maps were available from surveying or satellite remote sensing. These studies include but are not 58 

limited to,  calibration and assimilation of hydrodynamic models (Baldassarre et al., 2009; García-59 

Pintado et al., 2013; Gobeyn et al., 2017; Hostache et al., 2009; Lai et al., 2014; Pappenberger et 60 

al., 2007; Rahman and Thakur, 2018; Tarpanelli et al., 2013). Depending on the research 61 

objectives, such studies are crucial as they address important theoretical questions and advance the 62 

flood modeling task. For example, several studies have used satellite remote sensing data, such as 63 

Synthetic Aperture Radar (SAR) images, to find the sensitivity of hydrodynamic models to their 64 

parameters, compare calibration strategies and test the application of assimilating remote sensing 65 

data into these models (Di Baldassarre et al., 2009; Hunter et al., 2005; Mason et al., 2009; Matgen 66 

et al., 2010). Since floods happen in a short period and at a certain location, it is most often not 67 

possible to find an appropriate remote sensing image that covers those inundated areas during the 68 
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flood period. This is the main reason that research on flood inundation mapping is mostly limited 69 

to post-event analysis where specific study areas with available remote sensing data are used as 70 

testbeds.  71 

Federal Emergency Management Agency (FEMA) is the leading agency in the United States that 72 

provides flood hazard and risk maps over the Contiguous United States (CONUS). These maps 73 

display the flood-prone areas corresponding to specific return periods (e.g. 100 and 500-year 74 

events). While the FEMA flood hazard and risk maps provide general information about risk areas, 75 

they are not always reliable for an upcoming flood event with different return periods. For 76 

example, FEMA 100-year and 500-year flood hazard maps covered only one-third and half of the 77 

inundated areas induced by Hurricane Harvey in Harris County, Texas, respectively (Pinter et al., 78 

2017). The National Water Center Innovators Program proposed the idea of real-time flood 79 

inundation mapping across the United States in 2015 (Maidment, 2017). It highlighted the 80 

importance of event-based flood inundation mapping where a model uses the forecasted river 81 

discharge to estimate the inundation areas corresponding to a specific flood just before the onset 82 

of the event.  Compared to the traditional flood hazard mapping, real-time flood inundation 83 

mapping is more informative and beneficial for emergency response‐related decision-making.  84 

In real-time flood inundation mapping, the model takes advantage of forecasted forcing data and 85 

generates inundation areas corresponding to an upcoming flood event. Providing these maps ahead 86 

of time is extremely valuable for building a robust flood warning system. Data assimilation (DA) 87 

is an effective approach commonly used to improve the performance of real-time hydrologic 88 

forecasting by updating the model state variables and parameters when new observation becomes 89 

available (Moradkhani et al., 2019). The integration of DA with physical models is highly 90 

advantageous as it enables accounting for different sources of uncertainties involved in model 91 
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predictions. These include  (1) forcing data uncertainty due to the limitation of measurements and 92 

spatiotemporal representativeness of the data (Alemohammad et al., 2015; Kumar et al., 2017), (2) 93 

parameter uncertainty due to equifinality and non-uniqueness of parameters (Abbaszadeh et al., 94 

2018; Leach et al., 2018), (3) model structural uncertainty due to the imperfect representation and 95 

conceptualization of a real system (Abbaszadeh et al., 2019; Pathiraja et al., 2018; Zhang et al., 96 

2019) and (4) initial and boundary condition uncertainty (DeChant and Moradkhani, 2014; Lee et 97 

al., 2011).  98 

Probabilistic forecasting and uncertainty quantification using DA have been the core of modeling 99 

in the atmospheric and oceanic sciences (e.g. Anderson and Anderson, 1999; Courtier et al., 1993). 100 

Later, the hydrologic community started to utilize this approach to account for the uncertainties 101 

involved in different layers of model predictions and provide more accurate and reliable model 102 

estimates such as soil moisture (Pauwels et al., 2001; Reichle et al., 2002), streamflow 103 

(Moradkhani et al., 2005a; Vrugt et al., 2006), snow (Sheffield et al., 2003; Slater and Clark, 2006) 104 

and so many other variables. Despite these advances in hydrologic studies, the application of data 105 

assimilation in conjunction with hydrodynamic models has received little attention in the literature. 106 

The characterization of uncertainty in hydrodynamic models for probabilistic flood inundation 107 

mapping has been mostly limited to conventional techniques, such as random Monte Carlo 108 

sampling (Domeneghetti et al., 2013; Neal et al., 2013; Pedrozo‐Acuña et al., 2015; Purvis et al., 109 

2008) and Generalized Likelihood Uncertainty Estimation (GLUE) (Aronica et al., 2002a; 110 

Romanowicz and Beven, 2003).  111 

The effectiveness and application of assimilating remotely sensed data (e.g. Soil Moisture Active 112 

Passive (SMAP)) into hydrologic models have been vastly investigated in the literature 113 

(Abbaszadeh et al., 2020; Azimi et al., 2020; Lievens et al., 2017). However, given the small scale 114 
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of the hydrodynamic modeling process, the spatiotemporal resolution of current satellite products 115 

is not adequate for assimilating into these models. To properly estimate the flood inundation 116 

extent, a spatial resolution less than river width (e.g. 100 m) is recommended. In addition, due to 117 

the short duration of floods, satellite data with daily revisit time is needed. Since remote sensing 118 

products do not provide such high spatiotemporal resolution data for hydrodynamic models, the 119 

research on hydrodynamic data assimilation is limited in the literature. Due to the coarse spatial 120 

resolution of satellites that provide water surface elevation data, some studies have limited their 121 

analyses to large rivers with a width of above 1 km (e.g. study of Nile and Amazon) (Brêda et al., 122 

2019). However, since the width of the majority of rivers is less than 100 meters, these studies 123 

cannot be practically used in many regions.  Several studies used higher resolution synthetic 124 

SWOT data to evaluate the performance of assimilation techniques (Durand et al., 2008; Munier 125 

et al., 2015; Pedinotti et al., 2014; Yoon et al., 2012). While these works provided important 126 

information about the assimilation of satellite data into hydrodynamic models, their applications 127 

are only limited to synthetic experiments, making them impractical for real case studies. Some 128 

studies have implemented indirect methods to estimate WSE from flood extents generated by high-129 

resolution SAR satellite data (Giustarini et al., 2011; Hostache et al., 2010; Matgen et al., 2010b; 130 

Neal et al., 2009). This approach can provide high-resolution data that is suitable for the majority 131 

of rivers. However, the reliability of this data is concerning because the methods used to convert 132 

the flood extent to WSE pose additional errors which downgrades the quality of the final observed 133 

data for assimilation practices. Besides these issues, the major drawback of remote sensing data 134 

assimilation pertains to their coarse temporal resolutions. To efficiently monitor the flood 135 

dynamics, the assimilation process should be performed at a daily/hourly time scale, however, the 136 

revisit frequency of satellites used for capturing the water surface elevation ranges from a week to 137 
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a month. Therefore, there is a significantly low chance to capture multiple real-time remote sensing 138 

images for the majority of inundated catchments during flood events. In the most optimistic 139 

scenario, assimilation of satellite data is only limited to one/two updates during the simulation 140 

period which may not be sufficient for reliable probabilistic flood inundation mapping.   141 

Application of DA in hydrodynamic modeling can be either river monitoring or flood inundation 142 

mapping. The goal of hydrodynamic data assimilation for river monitoring is to track variations in 143 

the channel roughness and bathymetry in the long run. Therefore, the weekly/monthly satellite 144 

data can be well assimilated into the models as the channel characteristics do not change on a daily 145 

basis. On the other hand, flood inundation mapping needs an hourly/daily track of WSE because 146 

floods happen rapidly and affect the river dynamics on a short time scale. The literature indicates 147 

those studies that assimilated data into hydrodynamic models have been mostly designed for river 148 

monitoring (Brêda et al., 2019; Durand et al., 2008; Yoon et al., 2012b). To capture the daily 149 

dynamics of the rivers for real-time flood inundation mapping, the discharge and water stage 150 

values measured at the gauge stations can be assimilated into the hydrodynamic models.  Xu et al., 151 

(2017) performed a Particle Filtering (PF) approach to assimilate the water stage data from six 152 

gauges into a hydrodynamic model. In order to calculate the particle weights in the filtering 153 

process, they assumed that gauge observations are independent. In this study, however, we 154 

consider interconnections among the gauge stations and apply multivariate Ensemble Kalman 155 

Filter (EnKF) to a 2D hydrodynamic model for better characterization and quantification of 156 

uncertainty and further improving the accuracy of model simulations.  157 

Advancing the probabilistic hydrodynamic modeling with DA techniques is a necessary step to fill 158 

the gap between hydrology and hydrodynamics. To address this problem, this study aims to 159 

explore the capability of a standard sequential DA technique, namely the EnKF, for real-time 160 
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probabilistic flood inundation mapping. The past studies that used DA in conjunction with 161 

hydrodynamic models have mostly focused on the quantification of uncertainty in one or two 162 

hydrodynamic variables (e.g. Giustarini et al., (2011) and Hostache et al., (2018) only investigated 163 

the uncertainty in the upstream flow and rainfall respectively; Yoon et al., (2012) focused on the 164 

uncertainty of river bathymetry while ignoring the roughness parameter uncertainty). In addition, 165 

the main application of DA-hydrodynamic modeling framework has been in river monitoring at 166 

long-term or water stage forecasting during the flood events (Brêda et al., 2019; Matgen et al., 167 

2010; Xu et al., 2017). However, this study takes one step further and proposes a DA-168 

hydrodynamic modeling framework for real-time probabilistic flood inundation mapping while 169 

accounting for all sources of uncertainties involved in the model simulations. These include 170 

hydrodynamic model parameters (channel roughness and river bathymetry) uncertainty, forcing 171 

data (river boundary conditions) uncertainty, and state variable (water depth) uncertainty. 172 

Additionally, unlike past works that assimilated either discharge or water stage into the 173 

hydrodynamic model, this study performs a multivariate DA to incorporate the observed values of 174 

both variables into the hydrodynamic model for a reliable simulation of flooding and its 175 

corresponding inundation area.  176 

2 Data and Study area 177 

In this study, we simulate the Hurricane Harvey flood, one of the worst natural disasters in the 178 

history of the United States that caused more than 120 billion in damage 179 

(https://www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf). The Harvey storm hit Texas on 180 

August 25, 2017, caused massive precipitation for six continuous days and resulted in extreme 181 

flooding condition in Houston and surrounding areas. Given the considerable uncertainties in 182 

hydrologic and hydrodynamic processes of such an extreme flood, a deterministic modeling 183 
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approach with fixed inputs provides erroneous simulations that are highly different from 184 

observations. To account for the uncertainties involved in different layers of flood simulation, this 185 

study implements a DA-hydrodynamic modeling framework and provides probabilistic flood 186 

inundation maps.  187 

Figure 1.a shows the study area that consists of four main channels (blue lines) and eight tributaries 188 

(red lines). The upstream and downstream boundary conditions (purple points) are provided from 189 

daily streamflow in four USGS gauges ((#08068090, # 08068500, #08068740, #08068780) and 190 

water stage time series at the downstream gauge (#08069500). The daily streamflow discharge in 191 

two internal gauges (green points #08068800 and #08069000) and water stage time series in the 192 

second internal gauge are the observations that will be assimilated into the LISFLOOD-FP model. 193 

Figures 1.b and 1.c present the geographic location of the study area within the state of Texas and 194 

San Jacinto watershed, respectively. To set up the LISFLOOD-FP model, we use a DEM with 120 195 

m spatial resolution. Such a coarse resolution DEM alleviates the computational intensity of the 196 

proposed probabilistic hydrodynamic modeling framework. It should be noted that the subgrid 197 

solver used for simulation of flood has the advantage of accepting narrow rivers with a width of 198 

less than 120 m while the cell sizes are 120 m. In this study, the DA-hydrodynamic modeling 199 

framework is parallelized and performed on the University of Alabama High-Performance 200 

Computing (UAHPC) cluster.  201 
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 202 

Figure 1 (a) Study area with all gauges, rivers, and tributaries. (b) Geographic location of San 203 

Jacinto Watershed within the state of Texas. (c) Geographic location of the study area within 204 

San Jacinto watershed (© NhDplus and USGS). 205 

3. Methods 206 

3.1 Flood inundation model 207 

The flood inundation model used in this study is LISFLOOD-FP (Bates and De Roo, 2000), a 208 

raster-based 2D hydrodynamic model that simulates the spatiotemporal distribution of water 209 

surface elevation over the study area. The model solves the momentum and continuity equations 210 

(Saint Venont equations): 211 

𝜕𝑄

𝜕𝑥
+
𝜕𝐴

𝜕𝑡
= 0            (1) 212 
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1

𝐴

𝜕𝐴

𝜕𝑡
+

1

𝐴

𝜕(
𝑄2

𝐴
)

𝜕𝑥
+ 𝑔

𝜕ℎ

𝜕𝑥
− 𝑔(𝑆0 − 𝑆𝑓) = 0       (2) 213 

where Q is the flow rate at a given cross-section with the area of A in the main channel, x denotes 214 

the location along the channel, t represents time, S0 and Sf  are channel bed and friction slopes, and 215 

g is the gravitational acceleration.  216 

We use the sub-gird channel solver, the most recently developed numerical scheme that considers 217 

friction and water slope as well as local acceleration components in the shallow water equations 218 

(Neal et al., 2012). This solver is advantageous for large-scale and efficient modeling as it utilizes 219 

coarse resolution DEMs along with channel width values that are smaller than DEM resolution.  220 

Since DA-hydrodynamic modeling requires hundreds of model simulations, a computationally 221 

intensive operation, this solver helps reduce the computational burden and enables implementing 222 

probabilistic flood inundation mapping within a DA framework. To set up the model, we assume 223 

rectangular cross-section areas and a uniform roughness for both channel and floodplain. Given 224 

the low sensitivity of LISFLOOD-FP to the floodplain roughness (Hall et al., 2005), this parameter 225 

is assumed a constant value. However, the channel roughness is the only model roughness 226 

parameter whose associated uncertainty is accounted for within the assimilation framework. We 227 

also consider the uncertainty of bathymetry by defining an offset parameter that uniformly lowers 228 

the DEM values of the river channels.  In addition to model parameters (channel roughness and 229 

bathymetry), the upstream and lateral fluxes entered the river system as the boundary conditions 230 

of the model are other main sources of uncertainty in the assimilation framework.   231 

The upstream boundary conditions are generated from four USGS gauge stations (Figure. 1). To 232 

estimate the lateral fluxes, we calculate the deficit in the system as subtraction of the upstream 233 

from downstream flows and then, distribute the deficit among river tributaries based on their 234 
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drainage areas (Please refer to Jafarzadegan et. al (2021) for detailed information about the 235 

calculation of lateral flows in this study area). In section 3.3, we will further discuss the procedure 236 

we used to initialize the model parameters and river boundary conditions.   237 

3.2 Ensemble Kalman Filter (EnKF) 238 

(Moradkhani et al., 2005b) provided a comprehensive description of the EnKF formulation for 239 

dual estimation of state and parameters in hydrologic models. Here we briefly describe the EnKF 240 

formulation for multivariate assimilation of point source water stage and discharge data into a 241 

hydrodynamic model. For a more effective assimilation proccess, both types of interconnections 242 

between observations, namely spatial correlation of a single observation (discharge or water stage) 243 

among different gauges as well as the correlation between both observations at a single gauge are 244 

taken into account in the EnKF equations. In this study, EnKF is used to simultaneously estimate 245 

model states and parameters. For this purpose, the parameters should be treated similar to the state 246 

variables with a difference that parameter evolution is generated artificially.  247 

Let’s assume a DA-hydrodynamic modeling framework with 𝑙 parameters (𝑝 = 1,2, … , 𝑙), m states 248 

(𝑠 = 1,2, … ,𝑚) and n observations (𝑗 = 1,2, … , 𝑛). The following EnKF equations are described 249 

in accordance with the flowchart shown in Figure 2.  In the EnKF, parameter samples can be 250 

generated by adding the noise of 𝜂𝑡 with covariance ∑𝜃𝑡 to the prescribed parameters.  251 

𝜃𝑡+1
𝑖− = 𝜃𝑡

𝑖+ + 𝜏𝑡
𝑖           𝜏𝑡

𝑖~𝑁(0, 𝜂𝑡+1)     ∀      𝜂𝑡+1 = ∑ .𝜃
𝑡+1      (3) 252 

Using 𝜃𝑡+1
𝑖−  and forcing data, a model state ensemble and predictions are generated, respectively.  253 

𝑥𝑡+1
𝑖− = 𝑓(𝑥𝑡

𝑖+, 𝑢𝑡
𝑖 , 𝜃𝑡+1

𝑖− ) + 𝜔𝑡
𝑖      𝜔𝑡

𝑖~𝑁(0, 𝑄𝑡)    ∀      𝑄𝑡 = ∑ .𝑥𝑡     (4) 254 

�̂�𝑡+1
𝑖 = ℎ(𝑥𝑡+1

𝑖− , 𝜃𝑡+1
𝑖− ) + 𝜈𝑡+1

𝑖          𝜈𝑡+1
𝑖 ~𝑁(0, 𝑅𝑡+1)        ∀     𝑅𝑡+1 = ∑ .

𝑦
𝑡+1    (5) 255 
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where 𝑥𝑡, 𝑢𝑡, 𝜃𝑡 and 𝑦𝑡 are the vector of the uncertain state variables, forcing data, model 256 

parameters and observation data at time step 𝑡, respectively. 𝜔𝑡 represents the model errors due to 257 

the imperfect model, and 𝜈𝑡 is the measurement error. Most often, 𝜔𝑡 and 𝜈𝑡 are assumed to be 258 

white noises with mean zero and covariance 𝑄𝑡 and 𝑅𝑡, respectively. In addition, the two noises 259 

𝜔𝑡 and 𝜈𝑡 are assumed to be independent.  260 

Then we update the parameter ensemble members using the standard Kalman filter equation:  261 

𝜃𝑡+1
𝑖+ = 𝜃𝑡+1

𝑖− + 𝐾𝑡+1
𝜃 (𝑦𝑡+1

𝑖 − �̂�𝑡+1
𝑖 )        (6) 262 

where 𝐾𝑡+1 
𝜃 ∈ ℝ𝑙×𝑛 is the Kalman gain matrix for correcting the parameter trajectories and is 263 

obtained by: 264 

𝐾𝑡+1
𝜃 = ∑ [∑ .

𝑦𝑦
𝑡+1 + 𝑅𝑡+1

´ ]
−1𝜃𝑦

𝑡+1          (7) 265 

where ∑ .
𝜃𝑦
𝑡+1 ∈ ℝ

𝑙×𝑛 is the cross-covariance matrix of parameter ensemble and prediction ensemble 266 

(Eq. 6). Unlike other studies, and for more realistic characterization of observation and model 267 

errors here the correlation between the errors associated with n observation data are accounted for 268 

during the assimilation process. Therefore, the covariance matrix 𝑅´𝑡 ∈ ℝ
𝑛×𝑛 is a nonzero matrix, 269 

such that the values in the diagonal represent the error associated with each observation data and 270 

all elements lower/upper the main diagonal denote the cross covariance between different 271 

observations (Eq. 7). ∑  ∈ ℝ𝑛×𝑛 
𝑦𝑦
𝑡 is also a similar covariance matrix with the inclusion of error 272 

correlation between the model simulations  (Eq. 8).     273 

∑ (𝑝, 𝑗).
𝜃𝑦
𝑡+1 =

1

𝑁
∑ [(𝜃𝑡+1

𝑖− (𝑝) − 𝐸[𝜃𝑡+1
− (𝑝)])(�̂�𝑡+1

𝑖 (𝑗) − 𝐸[�̂�𝑡+1(𝑗)])]
𝑁
𝑖=1    (8) 274 

𝑅𝑡+1
´ (𝑗, 𝑗´) = {

𝑅𝑡+1                                                                                                   𝑗 = 𝑗´
1

𝑁
∑ [(𝑦𝑡+1

𝑖 (𝑗) − 𝐸[𝑦𝑡+1 (𝑗)])(𝑦𝑡+1
𝑖 (𝑗´) − 𝐸[𝑦𝑡+1(𝑗´)])]   𝑗 ≠ 𝑗´ 

𝑁
𝑖=1

  (9) 275 
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∑ (𝑗, 𝑗´).
𝑦𝑦
𝑡+1 =

1

𝑁
∑ [(�̂�𝑡+1

𝑖 (𝑗) − 𝐸[�̂�𝑡+1 (𝑗)])(�̂�𝑡+1
𝑖 (𝑗´) − 𝐸[�̂�𝑡+1(𝑗´)])]

𝑁
𝑖=1    (10) 276 

𝐸[𝜃𝑡+1
− ] =

1

𝑁
∑ 𝜃𝑡+1

𝑖−𝑁
𝑖=1          (11) 277 

𝐸[�̂�𝑡+1] =
1

𝑁
∑ �̂�𝑡+1

𝑖𝑁
𝑖=1          (12) 278 

Now using the updated parameter, the new model state trajectories (state forecasts) and prediction 279 

trajectories are generated: 280 

𝑥𝑡+1
𝑖− = 𝑓(𝑥𝑡

𝑖+, 𝑢𝑡
𝑖 , 𝜃𝑡+1

𝑖+ ) + 𝜔𝑡
𝑖      𝜔𝑡

𝑖~𝑁(0, ∑ .𝑥𝑡 )    ∀      𝑄𝑡 = ∑ .𝑥
𝑡+1     (13) 281 

�̂�𝑡+1
𝑖 = ℎ(𝑥𝑡+1

𝑖− , 𝜃𝑡+1
𝑖+ ) + 𝜈𝑡+1

𝑖          𝜈𝑡+1
𝑖 ~𝑁(0, ∑ .

𝑦
𝑡+1 )        ∀     𝑅𝑡+1 = ∑ .

𝑦
𝑡+1    (14) 282 

Model states ensemble is similarly updated as follows: 283 

𝑥𝑡+1
𝑖+ = 𝑥𝑡+1

𝑖− +𝐾𝑡+1
𝑥 (𝑦𝑡+1

𝑖 − �̂�𝑡+1
𝑖 )        (15) 284 

𝑦𝑡+1
𝑖 = 𝑦𝑡+1

𝑖 + 𝜈𝑡+1
𝑖          𝜈𝑡+1

𝑖 ~𝑁(0, 𝑅𝑡+1)        ∀     𝑅𝑡+1 = ∑ .
𝑦
𝑡+1     (16) 285 

where 𝐾𝑡+1
𝑥  ∈ ℝ𝑚×𝑛 is the Kalman gain for correcting the state trajectories and is obtained by: 286 

𝐾𝑡+1
𝑥 = ∑ [∑ .

𝑦𝑦
𝑡+1 + 𝑅𝑡+1

´ ]
−1𝑥𝑦

𝑡+1         (17) 287 

where ∑ .
𝑥𝑦
𝑡+1 ∈ ℝ

𝑚×𝑛 is the cross-covariance matrix of states ensemble and prediction ensemble 288 

(Eq. 16).   289 

∑ (𝑠, 𝑗)
𝑥𝑦
𝑡+1 =

1

𝑁
∑ [(𝑥𝑡+1

𝑖− (𝑠) − 𝐸[𝑥𝑡+1
− (𝑠)])(�̂�𝑡+1

𝑖 (𝑗) − 𝐸[�̂�𝑡+1(𝑗)])]
𝑁
𝑖=1    (18) 290 

𝐸[𝑥𝑡+1
− ] =

1

𝑁
∑ 𝑥𝑡+1

𝑖−𝑁
𝑖=1          (19) 291 

In this study the water depth along the channel is the only state variable (m=1). The channel 292 

roughness and bathymetry are two model parameters (l=2) and three point source observations 293 
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including water discharge at gauge 1 and 2 as well as water stage at gauge 2 (n=3) are assimilated 294 

into the LISFLOOD-FP model (Table 1). Therefore, the Kalman gains used to update the model 295 

parameters and states (Eqs 5 and 15) are 2 × 3  and 1 × 3  matrices that take advantage of a 296 

multivariate point source assimilation while considering the downstream correlation between 297 

discharge observations and the correlation between water stage and discharge at gauge 2. 3.3. 298 

Experimental design 299 

The ultimate goal of this study is to simulate the Hurricane Harvey flood and generate probabilistic 300 

flood inundation maps through the DA-hydrodynamic modeling framework. Figure. 1 illustrates 301 

the flowchart of the proposed probabilistic flood inundation mapping approach. In this study, the 302 

EnKF is performed based on an ensemble size of 100. The boundary conditions including four 303 

upstream flows, seven lateral fluxes, and downstream flows are perturbed with adding white noises 304 

sampled from a normal distribution with a mean zero and relative error of 20%. The errors are 305 

assumed heteroscedastic meaning that their values are proportional to the flow magnitude. To 306 

characterize uncertainty in the initial condition, namely water depth, we add a white noise with a 307 

mean zero and standard deviation of 1 meter. In this study, using the proposed EnKF-based 308 

multivariate assimilation approach, three point-scale observations, i.e., discharge at USGS gauges 309 

1 and 2, as well as water stage at gauge 2, are incorporated into the LISFLOOD-FP model to rectify 310 

its state variables and parameters, and hence provide more accurate and reliable flood inundation 311 

maps. All these three observations are perturbed by adding a normally distributed white noise with 312 

a mean zero and a relative error of 20%.  First, the LISFLOOD-FP model is forced with the 313 

upstream, downstream and lateral flow ensembles. To initialize the state variables in the system, 314 

the simulated water depth values at the ending day of the warm-up period (the initial condition for 315 

the first day of the model simulation) are perturbed with adding a white noise with a mean zero 316 
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and standard deviation of 1 meter. The model parameters (i.e., channel roughness and bathymetry) 317 

are initialized using the Latin Hypercube Sampling method and evolved during the assimilation 318 

process. The ensemble of water depth values predicted by the model for the next time step together 319 

with observations, namely water stage and discharge at gauges are used in the multivariate Kalman 320 

equation to update the model parameters. The LISFLOOD-FP model is run for the second time 321 

with the updated parameters and the second multivariate Kalman equation uses the predicted water 322 

depth with observations to update the ensemble of water depth in the system. The ensemble of 323 

updated water depth (state), bathymetry, and channel roughness (parameters) will be used within 324 

the LISFLOOD-FP to predict an ensemble of water depth for the next time step. The predicted 325 

water depth is simply converted to a probabilistic flood inundation map. Using this data 326 

assimilation framework, we can generate 1-day forecast of probabilistic flood inundation maps 327 

which would be highly beneficial for real-time flood warning and decision making. It is worth 328 

mentioning that the forecasted probabilistic maps account for different sources of uncertainty 329 

including the forcing data (boundary condition flows), model parameters (channel roughness and 330 

bathymetry), and initial conditions (water depth). 331 

The simulation period of the LISFLOOD-FP model is set up for 45 days from July-30-2017 to 332 

Sep-12-2017 and the entire month of July is used as a warm-up period. The water depth generated 333 

for the end of July will be used as the initial condition of the model. To account for the uncertainty 334 

of channel roughness and bathymetry, we sample them from uniform distributions ranging from 335 

[0,0.1] and [39,42] m, respectively. The bathymetry parameter is the elevation of the channel bed 336 

at the upper location of the channel. The offset parameter is calculated by subtracting this value 337 

from DEM at the upper location. Then, the bathymetry vector that includes the channel bed 338 

elevation for all channel cells is generated by subtracting the offset from DEM values along the 339 
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channel.  It should be noted that the range of uniform distribution is chosen based on previous 340 

studies (Aronica et al., 2002b; Bales and Wagner, 2009; Di Baldassarre et al., 2009; Horritt, 2006; 341 

Pappenberger et al., 2008), expert judgment, and trial-and-error.  342 

 343 

Figure 2. Schematic of the DA-hydrodynamic modeling framework for real-time probabilistic 344 

flood inundation mapping. The green boxes represent the state variables where their updated 345 

values are fed into the LISFLOOD-FP model and provide a probabilistic flood inundation map 346 

at the forecast mode (blue box). The black boxes highlight the physical model and the orange 347 

boxes represent the Kalman equations used for updating the parameter and state variables by 348 

the EnKF. 349 

To assess the effectiveness and robustness of the proposed assimilation framework for 350 

probabilistic flood inundation mapping, we design three different experiments. First, an open-loop 351 
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(OL) simulation is established where the model is run without assimilation. In the second 352 

experiment, we perform DA-hydrodynamic modeling on a synthetic case study where we assume 353 

the model is perfect and has no error. In this approach, we set the model parameters (channel 354 

roughness and bathymetry), initial state (water depth) and boundary condition flows to fixed values 355 

and run the model to generate discharge and water surface elevation across the gauges within the 356 

study area. These predicted values are assumed as benchmark observations. This synthetic analysis 357 

ensures that the assimilation process performs well and the model parameters end up converging 358 

to predefined values. In the next step, we implement the proposed assimilation framework on a 359 

real case study where the observed discharge and water surface elevation data that are recorded 360 

from the USGS gauges during Hurricane Harvey, are assimilated into the model. Considering the 361 

severe flood condition during the Hurricane, we aim to investigate the extent to which the 362 

multivariate DA-Hydrodynamic modeling framework improves the model simulation and flood 363 

inundation mapping skill. 364 

3.4 Validation strategy 365 

As mentioned before, the convergence of uncertain model parameters toward truth in the 366 

synthetic experiment demonstrates the performance of DA-hydrodynamic modeling framework. 367 

To provide a robust analysis of each assimilation run, it is necessary to assess the model 368 

performance through multiple deterministic (KGE and RMSE) and probabilistic (NRR and 369 

Reliability) measures. The summary of performance measures used in this study is tabulated in 370 

Table 1.  371 

 372 

 373 
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Table 1: Summary of performance measures used in this study  374 

Performance Measure Mathematical Representation 

Kling-Gupta Efficiency 

(KGE) 1 − √((
Cov𝑦𝑡𝑦𝑡′

𝜎𝜎′
) − 1)

2

+ ((
𝜎′

𝜎
) − 1)

2

+ ((
𝜇′

𝜇
) − 1)

2

 

Root Mean Square Error 

(RMSE) √
1

𝑇
∑(𝑦𝑡

′ − 𝑦𝑡)
2

𝑇

𝑡=1

 

Normalized Root-Mean-

Square Error Ratio 

(NRR) 

√
1

𝑇
∑(𝑦𝑡 − 𝑦∎,𝑡

′̅̅ ̅̅ ̅)
2

𝑇

𝑡=1

×

(

 
1

𝑇
{
 

 
∑√

1

𝑇
[∑(𝑦𝑡 − 𝑦∎,𝑡

′̅̅ ̅̅ ̅)
2

𝑇

𝑡=1

]

𝑇

𝑡=1
}
 

 
√
𝑁 + 1

2𝑁

)

 

−1

 

Reliability 

1 −
2

𝑇
∑|

𝑍𝑡
𝑇
− 𝑈𝑡|

𝑇

𝑡=1

 

 375 

𝑦𝑡 and  𝑦𝑡
′ are the observed and simulated values, respectively. The Kling–Gupta Efficiency (KGE) 376 

varies from −∞ to 1, such that a value of 1 indicates a perfect fit between observed and simulated 377 

values. The pairs of (𝜇, 𝜎) and (𝜇′, 𝜎′) represent the first two statistical moments (means and 378 

standard deviations) of 𝑦𝑡 and 𝑦𝑡
′, respectively. Root mean squared error (RMSE) is the square 379 

root of the mean of the square of all of the error between the predicted and observed values.  380 

NRR (DeChant and Moradkhani, 2012) is calculated to measure the ensemble spread and assess 381 

how confidently the ensemble mean is statistically distinguishable from the ensemble spread. 382 

Reliability (Renard et al., 2010) is a measure of the fit of the Q-Q quantile plot to a uniform. A 383 

value of 1 is exactly uniform and a value of 0 is the farthest possibility from uniform. For the 384 

description of the 𝑧𝑡 and 𝑈𝑡 calculation, we refer the readers to Renard et al. (2010). 385 
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The above four performance measures assess the dynamic behavior of DA-hydrodynamic 386 

modeling framework at two specific points. Moreover, to spatially evaluate the behavior of the 387 

proposed framework, we compare the maximum probabilistic flood inundation maps (union of 388 

probabilistic maps over the simulation period) with the observed floodplain map delineated 389 

aftermath of Harvey. The Receiver Operating Characteristic (ROC) graph is a common tool for 390 

validating probabilistic classifiers (Fawcett, 2006). Consider a deterministic flood map as a binary 391 

map where one and zero represent flooded and non-flooded cells, respectively. First, a threshold 392 

in the range of [0,1] is used to convert the probabilistic map to a binary deterministic map. This 393 

means all cells with the probability of inundation less than a given threshold are converted to zero 394 

and other cells are set to one. The binary map is compared with the reference map and the rate of 395 

true positive (rtp) and false positive (rfp) are calculated using Equations 7 and 8 (Jafarzadegan and 396 

Merwade, 2017): 397 

𝑟𝑡𝑝 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
         (7) 398 

𝑟𝑓𝑝 =
𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
         (8) 399 

where true and false positive instances represent the total number of flooded cells in the reference 400 

map that are predicted as flood and non-flooded cells, respectively. Total positives and negatives 401 

are total flooded and non-flooded cells in the reference map. This process is repeated and a set of 402 

points (rfp.rtp) are generated corresponding to different thresholds. The ROC graph connects the 403 

points in the rfp-rtp space and the area under the curve (AUC) represents the performance of the 404 

probabilistic classifier (Fawcett, 2006). In this study, we use AUC to compare the performance of 405 

OL simulation with the EnKF for probabilistic flood inundation mapping. In addition, we calculate 406 
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the Underprediction and Overprediction Flood Indices (UFI and OFI) introduced by Jafarzadegan 407 

et al., (2018) for comparing probabilistic flood maps against deterministic reference maps: 408 

𝑈𝐹𝐼 =  
∑ (1−𝑃𝑖)
𝑁
𝑖=1

𝑁
 × 100          𝑖 ∈ 𝐹        (9) 409 

𝑂𝐹𝐼 =  
∑ (𝑃𝑗)
𝑀
𝑖=1

𝑀
 × 100                 𝑗 ∈ 𝑁𝐹       (10) 410 

where F and NF denote the flooded and non-flooded regions in the reference map, and i and j are 411 

indicators of cells located within these regions. N and M are the total number of cells in the F and 412 

NF regions and 𝑃𝑖 , 𝑃𝑗  denote the probability of inundation for cells i and j derived from the 413 

probabilistic flood maps.  414 

4. Results 415 

4.1 Synthetic Case Study 416 

We conduct the synthetic experiment to ensure the usefulness and effectiveness of the proposed 417 

DA-hydrodynamic modeling framework. Figure 3 presents uncertainty bound evolution of the 418 

parameters in the LISFLOOD-FP model (i.e., channel roughness and bathymetry) for 45 days 419 

assimilation of synthetic observations (i.e., discharge at gauges 1 and 2 and water stage at gauge 420 

2). The shaded areas correspond to  95, 75, 68, and 10 percentile predictive intervals, and the black 421 

stars at the end of each parameter subplot represent the true parameter values. As seen both 422 

parameters converge smoothly to the certain region in parameter space where the uncertainty 423 

bounds stabilize. While the uncertainty bound associated with the bathymetry becomes stabilized 424 

at the early stage of the assimilation process, for the channel roughness, the uncertainty bound gets 425 

stabilized toward the end of the assimilation period. It is also evident from Figure 3 that the 426 
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bathymetry is a more identifiable parameter as it shows the fastest convergence with a minimum 427 

degree of uncertainty. However, the channel roughness is less identifiable with the slowest 428 

convergence. The scatter plots illustrate the evolution of parameter space at six different time 429 

segments. The first day (t=1) includes all 100 ensemble members of parameters and day 30 430 

corresponds to the highest discharge and water stage of flooding when the model parameters reach 431 

the highest improvement and get closer to the true value. Figure 3 shows that both model 432 

parameters are converging toward the true values as the assimilation proceeds. This indicates the 433 

efficacy and usefulness of the proposed DA-hydrodynamic modeling framework developed in this 434 

study.   435 
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 436 

Figure 3. Temporal evolution of the LISFLOOD parameters for the synthetic experiment during 437 

Hurricane Harvey using the EnKF. (a) Temporal evolution of model parameter predictive 438 

intervals corresponding to 95, 75, 68, and 10 percentile (b) Temporal evolution of particle 439 

positions in the model parameter space at six different days during the Hurricane. 440 

4.2 Real Case Study 441 

In the real experiment, we assimilate the discharge and water stage readings from two internal 442 

USGS gauges into the LISFLOOD-FP model. We also run the OL simulation and calculate the 443 

ensemble mean to predict the discharge and water stage at these two gauges. Figure 4 presents a 444 
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comparison of simulated discharge (Figures 4a, 4b) and water stage (Figures 4c, 4d) with 445 

observations using both OL and our EnKF-based approach.  Figures 4a and 4c are the prior 446 

estimates of discharge and water stage, while Figures 4b and 4d show their posteriors which reflect 447 

the updated variables after assimilating the observations into the model. It is worth mentioning 448 

that although priors represent the results before assimilating new observations into the model, their 449 

values are dependent on the initial conditions updated from observations in the previous time step.  450 

In this study, since forecasting (1-day lead time) is the main objective of DA-hydrodynamic 451 

modeling framework, we specifically focus on behavior of priors. As can be seen, the simulated 452 

peak discharge by the OL is highly overestimated by around 200 cms while assimilating the 453 

observations improve the results so that their difference with observation is less than 50 cms at the 454 

peak of the flood (KGE =0.76 and RMSE=40.9 cms)).  In contrast, the simulated water stage in 455 

Figures 4c and 4d are underestimated by OL by around 2 meters at the peak. Using the developed 456 

approach raises the peak of water stage at peak and reduces the errors significantly (KGE=0.96 457 

and RMSE=0.5). The accurate estimates of prior discharge and water stage confirm the 458 

applicability of the proposed assimilation framework in forecast mode when real-time flood 459 

warning and decision making is the priority. The NRR measure for the prior discharge and water 460 

stage are 1.17 and 0.65 showing that the uncertainty bound is underestimated and overestimated, 461 

respectively. The reliability of both variables is above 70 percent since the uncertainty bounds 462 

encompass the observations for almost the entire simulation period.  463 

 464 
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 465 

Figure 4 Simulation results of LISFLOOD-FP for the real experiment during Hurricane Harvey 466 

using the EnKF and open-loop. (a) Prior simulated discharge at gauge 1 (b) Posterior simulated 467 

discharge at gauge 1 (c) Prior simulated water stage at gauge 2 (d) Posterior simulated water 468 

stage at gauge 2. The shaded areas represent the predictive interval of simulated discharge and 469 

water stage by EnKF. 470 

Figure 5 illustrates the prior and posterior distributions of discharge and water stage in the 471 

beginning, peak, and ending days of Hurricane Harvey flood. In all three days, the uncertainty 472 

bounds of both discharge and water stage are narrowed down by assimilating the observations so 473 

that posterior distributions are more precise compared to the priors. In the beginning and ending 474 

days (Aug 26 and Sep 1) the mean of prior distributions is substantially shifted toward truth in the 475 

posterior distributions. Figure 5 reveals that our developed approach provides more accurate and 476 

https://doi.org/10.5194/hess-2021-181
Preprint. Discussion started: 18 May 2021
c© Author(s) 2021. CC BY 4.0 License.



 26 

reliable posterior discharge and water stage distributions compared to prior distributions where the 477 

simulations are either overestimated or underestimated. It is noted that, on August 28 (day of flood 478 

peak), although the prior distributions accurately represent the observation, they have wide 479 

uncertainty bound. After correcting/updating the model state variables and parameters, as posterior 480 

distributions show, the uncertainty bound is reduced while the ensemble mean remains closer to 481 

the observation.   482 

 483 

Figure 5. Prior and posterior distribution of discharge (a,b,c) and water stage (c,d,f) at the 484 

beginning (Aug 26), peak (Aug 28), and ending (Sep1) days of Hurricane Harvey using the 485 

EnKF 486 

 487 
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4.3 Probabilistic Flood Inundation Mapping 488 

In this study, we propose a DA-hydrodynamic modeling framework to account for the 489 

uncertainties involved in flood modeling and generate real-time probabilistic flood inundation 490 

maps. Since the majority of flooding conditions occurred within 6 days from August 27-Sep 1, we 491 

display the spatial distribution of water depth in this period and provide probabilistic flood 492 

inundation maps using both OL and our developed approach (see Figures 6 and 7). Figure 6 493 

represents the first three days of Harvey which corresponds to the upper limb of the flood 494 

hydrograph. On August 27, the major difference between the OL and EnKF appears in the regions 495 

around the upstream of the lower channel where the EnKF provides a more reliable inundated area. 496 

Moving toward the peak of flood on Aug 29, the OL generates a large region of uncertain cells 497 

around the banks of the upper channel while both the extent and density of uncertain values in the 498 

probabilistic maps generated by the EnKF is smaller during the peak of Harvey. 499 
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 500 

Figure 6 Probabilistic flood inundation maps generated by OL and EnKF techniques to simulate 501 

the upper limb of Harvey flood hydrograph from Aug 27 to Aug 29. 502 

Figure 7 shows the probabilistic inundation areas in the last three days corresponding to the lower 503 

limb of the flood hydrograph. In this figure, the discrepancies between the OL and EnKF flood 504 

maps increase showing that performing DA is more effective in improving the inundation mapping 505 

skill from peak to ending point of the flood hydrograph. A large number of inundated cells 506 

generated by the OL are vanished after the peak of Harvey which results in a set of scattered 507 

discontinuous maps in Aug 31 and Sep 1. On the other hand, the probabilistic maps generated by 508 

the EnKF maintain their continuous shapes so that the probability of inundation is reduced without 509 

changing the extent. The merit of the EnKF in improving the flood inundation areas at the lower 510 
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limb of the flood hydrograph agrees with results in Figures 4c and 4d where the EnKF widens the 511 

simulated water stage hydrographs and removes the lag difference that exists between the open-512 

loop and observations.  513 

 514 

Figure 7 Probabilistic flood inundation maps generated by OL and EnKF techniques to simulate 515 

the lower limb of Harvey flood hydrograph from Aug 30 to Sep 1. 516 

Finally, to quantify the performance of EnKF and OL for generating a spatial distribution of water 517 

depth over the domain, we illustrate the ROC graphs, the AUC values, and Fit indices in Figure 8. 518 

To calculate these measures, we ignore the temporal distributions and only report the maximum 519 

inundation maps that represent the union of flooded areas over the entire period of Harvey. 520 

Comparing the EnKF and OL in Figure 8.a, the EnKF line (blue) is closer to the northwest of the 521 
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rfp-rtp space where its AUC is 5% higher than the OL approach. In Figure 8.b, each point 522 

represents the Fit indices for the OL and the EnKF approaches corresponding to a given threshold. 523 

Using hundred number of  thresholds that each ranging from [0.01,1], the probabilistic maps are 524 

converted to 100 deterministic maps and the Fit indices are calculated. The position of scatters 525 

above the dash line confirms the EnKF outperforms the OL. In addition to these measures, the 526 

[UFI, OFI] indices calculated for OL and EnKF approaches are [30.3, 0.26] %, and [23.4, 0.4]% 527 

respectively. The low values of OFI for both approaches (< 1%) show that the simulations mostly 528 

underestimate the flood inundation areas. In addition, comparing the indices of both approaches 529 

reveal that the EnKF reduces the overall underestimation by around 7%.  530 

 531 

Figure 8 The Receiver Operating Curves (ROC) indicating the performance of OL and EnKF 532 

techniques for probabilistic flood inundation mapping 533 

5. Discussion and Conclusions 534 

The main motivation in this study is to propose a DA-hydrodynamic modeling framework for real-535 

time probabilistic flood inundation mapping. Considering the coarse spatiotemporal resolution of 536 

satellite data for capturing the water surface elevation, assimilating them into the hydrodynamic 537 
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models may not be a practical solution for an upcoming flood event. On the other hand, the 538 

availability of daily discharge and water surface elevation data at gauge stations is a great 539 

opportunity to establish a multivariate DA-hydrodynamic modeling framework that updates the 540 

initial condition of modeling at daily scale and forecast the flood inundation areas at 1 day lead 541 

time.  Here, we used the EnKF data assimilation method in conjunction with a hydrodynamic 542 

model to account for different sources of uncertainties involved in different layers of model 543 

simulations, including the boundary conditions, model parameters, and initial condition,  and 544 

generate real-time probabilistic flood inundation maps . To further enhance the performance of the 545 

developed framework, the discharge and water stage at two different gauges are simultaneously 546 

assimilated into the LISFLOOD-FP model. The multivariate EnKF approach considers the 547 

correlation between discharge at two gauges and between discharge and water surface elevation at 548 

one gauge using a modified covariance matrix and Kalman gain equation.  549 

In the synthetic experiment, we examined the convergence of model parameters toward truth and 550 

found that the proposed DA-hydrodynamic modeling framework can be successfully used to 551 

improve the accuracy and reliability of model predictions while accounting for uncertainties 552 

associated with model parameters. The channel roughness coefficient varied more  rapidly than 553 

the bathymetry during the temporal evolutions of these parameters showing the better 554 

idemtifiability of this parameter. The validation results of the real experiment revealed that the 555 

assimilation with the EnKF approach improves the model predictions at across temporal and 556 

spatial scales (i.e., discharge and water stage time series at gauges and flood maps showing the 557 

maximum water depth over the simulation period). These improvements are more pronounced 558 

during the falling limb of the flood hydrograph where the EnKF widens the simulated hydrograph 559 

and removes the existing lag compared to the observations. Similarly, the simulated flood 560 

https://doi.org/10.5194/hess-2021-181
Preprint. Discussion started: 18 May 2021
c© Author(s) 2021. CC BY 4.0 License.



 32 

inundation maps confirm that the OL provides discontinuous scattered maps during the flood 561 

recession period while the EnKF provides a more accurate representation of the inundation areas. 562 

The validation results also demonstrate that the EnKF reduces the underestimation by 7% and 563 

outperformed the OL approach by around 5% for probabilistic flood inundation mapping. 564 

To simulate flood hazards during the emergency of an upcoming flood event, using an efficient 565 

flood modeling framework is of paramount importance. However, a simplified model setup (i.e. 566 

using coarse resolution DEM, assuming uniform roughness coefficient for channel and floodplain, 567 

estimating bathymetry by lowering DEM with one parameter) for efficient flood modeling is prone 568 

to losing accuracy. Particularly, for an extreme flooding condition such as Hurricane Harvey, the 569 

simplified modeling may pose significant errors. The results obtained from the simulation of the 570 

real experiment demonstrated that despite using a simplified efficient modeling setup, we can still 571 

simulate the discharge, water stage, and inundation areas for an extreme flood event with 572 

acceptable accuracy while accounting for uncertainties involved in model predictions. This shows 573 

that assimilating the gauge data into a simplified model setup improves the accuracy, and provides 574 

an efficient probabilistic framework for real-time flood inundation mapping that considers 575 

potential sources of uncertainties in different layers of modeling.  576 

The time dependency that exists between the upstream and downstream gauges along a channel 577 

can affect the performance of multivariate assimilation with those gauges. For future studies, using 578 

a more advanced DA technique that fully characterizes the model structural uncertainty 579 

(Abbaszadeh et al., 2019), and considering the time lag dependency between multiple gauges can 580 

improve the performance of modeling and provide more realistic assimilation of the hydrodynamic 581 

models. Finally, proposing a DA-hydrodynamic modeling framework that considers the DEM and 582 
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channel width uncertainty can provide a more comprehensive uncertainty quantification for 583 

probabilistic flood inundation mapping in future studies.  584 
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