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Let’s assume a DA-hydrodynamic modeling framework with 𝑙 parameters (𝑝 = 1,2, … , 𝑙), m states 242 

(𝑠 = 1,2, … ,𝑚) and n observations (𝑗 = 1,2, … , 𝑛). The following EnKF equations are described 243 

in accordance with the flowchart shown in Figure 2.  In the EnKF, parameter samples can be 244 

generated by adding the noise of 𝜏𝑡
𝑖𝜂𝑡 with covariance ∑𝜃

𝑡 𝜎𝑡
𝜃to the prescribed parameters.  245 

𝜃𝑡+1
𝑖− = 𝜃𝑡

𝑖+ + 𝜏𝑡
𝑖           𝜏𝑡

𝑖~𝑁(0, 𝜎𝑡
𝜃, 𝜂𝑡+1)     ∀      𝜂𝑡+1 = ∑ .𝜃

𝑡+1     (3) 246 

Using 𝜃𝑡+1
𝑖−  and forcing data, a model state ensemble and predictions are generated, respectively.  247 

𝑥𝑡+1
𝑖− = 𝑓(𝑥𝑡

𝑖+, 𝑢𝑡
𝑖 , 𝜃𝑡+1

𝑖− ) + 𝜔𝑡
𝑖      𝜔𝑡

𝑖~𝑁(0, 𝜎𝑡
𝑥𝑄𝑡)    ∀      𝑄𝑡 = ∑ .𝑥𝑡     (4) 248 

�̂�𝑡+1
𝑖 = ℎ(𝑥𝑡+1

𝑖− , 𝜃𝑡+1
𝑖− ) + 𝜈𝑡+1

𝑖          𝜈𝑡+1
𝑖 ~𝑁(0, 𝜎𝑡+1

𝑦̂ 
𝑅𝑡+1)        ∀     𝑅𝑡+1 = ∑ .

𝑦̂ 
𝑡+1   (5) 249 

where 𝑥𝑡, 𝑢𝑡, 𝜃𝑡 and 𝑦 
𝑡
𝑦𝑡 are the vector of the uncertain state variables, forcing data, model 250 

parameters and observation datamodel prediction at time step 𝑡, respectively. 𝜔𝑡 and 𝜈𝑡 represents 251 

the model state and prediction errors due to the imperfect modeling, and 𝜈𝑡 is the measurement 252 

error. Most often, 𝜔𝑡 and 𝜈𝑡 are assumed to be white noises with mean zero and covariance 𝜎𝑡
𝑥𝑄𝑡 253 

and 𝜎𝑡+1
𝑦̂ 

𝑅𝑡, respectively. In addition, the two noises 𝜔𝑡 and 𝜈𝑡 are assumed to be independent.  254 

Then we update the parameter ensemble members using the standard Kalman filter equation:  255 

𝜃𝑡+1
𝑖+ = 𝜃𝑡+1

𝑖− + 𝐾𝑡+1
𝜃 (𝑦𝑡+1

𝑖 − �̂�𝑡+1
𝑖 )         (6) 256 

where �̂�𝑡+1
𝑖  and �̂�𝑡+1

𝑖 𝑦𝑡+1
𝑖  are the model simulation prediction and observations, respectively, and  257 

𝐾𝑡+1 
𝜃 ∈ ℝ𝑙×𝑛 is the Kalman gain matrix for correcting the parameter trajectories obtained by: 258 

𝐾𝑡+1
𝜃 = ∑ [∑ .

𝑦̂𝑦̂
𝑡+1 + 𝑅𝑡+1

´ ]
−1𝜃𝑦̂

𝑡+1          (7) 259 

𝐾𝑡+1
𝜃 = 𝜎𝑡+1

𝜃𝑦̂
[𝜎𝑡+1

𝑦̂𝑦̂
+ 𝑅𝑡+1

´ ]
−1

         (7) 260 
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where 𝜎𝑡+1
𝜃𝑦̂ ∑ .

𝜃𝑦̂
𝑡+1 ∈ ℝ𝑙×𝑛 is the cross-covariance matrix of parameter ensemble and prediction 261 

ensemble (Eq. 6). Unlike other studies, and for more realistic characterization of observation and 262 

model errors here the correlation between the errors associated with n observation data are 263 

accounted for during the assimilation process. Therefore, the covariance matrix 𝑅´𝑡 ∈ ℝ𝑛×𝑛 is a 264 

nonzero matrix, such that the values in the diagonal represent the error variance associated with 265 

each observation data (𝑅𝑡+1) and all elements lower/upper the main diagonal denote the cross 266 

covariance between different observations (Eq. 79). 𝜎𝑡+1
𝑦̂𝑦̂

 ∈ ℝ𝑛×𝑛∑  ∈ ℝ𝑛×𝑛 
𝑦̂𝑦̂
𝑡 is also a similar 267 

covariance matrix with the inclusion of error correlation between the model simulations  (Eq. 8).     268 

𝜎𝑡+1
𝜃𝑦̂

(𝑝, 𝑗) ∑ (𝑝, 𝑗).
𝜃𝑦̂
𝑡+1 =

1

𝑁
∑ [(𝜃𝑡+1

𝑖− (𝑝) − 𝐸[𝜃𝑡+1
− (𝑝)])(�̂�𝑡+1

𝑖 (𝑗) − 𝐸[�̂�𝑡+1(𝑗)])]
𝑁
𝑖=1   (8) 269 

𝑅𝑡+1
´ (𝑗, 𝑗´) = {

𝑅𝑡+1                                                                                                   𝑗 = 𝑗´
1

𝑁
∑ [(𝑦𝑡+1

𝑖 (𝑗) − 𝐸[𝑦𝑡+1 (𝑗)])(𝑦𝑡+1
𝑖 (𝑗´) − 𝐸[𝑦𝑡+1(𝑗´)])]   𝑗 ≠ 𝑗´ 𝑁

𝑖=1
  (9) 270 

𝜎𝑡+1
𝑦̂𝑦̂

(𝑗, 𝑗´) ∑ (𝑗, 𝑗´).
𝑦̂𝑦̂
𝑡+1 =

1

𝑁
∑ [(�̂�𝑡+1

𝑖 (𝑗) − 𝐸[�̂�𝑡+1 (𝑗)])(�̂�𝑡+1
𝑖 (𝑗´) − 𝐸[�̂�𝑡+1(𝑗´)])]

𝑁
𝑖=1   271 

 (10) 272 

𝐸[𝜃𝑡+1
− ] =

1

𝑁
∑ 𝜃𝑡+1

𝑖−𝑁
𝑖=1          (11) 273 

𝐸[�̂�𝑡+1] =
1

𝑁
∑ �̂�𝑡+1

𝑖𝑁
𝑖=1          (12) 274 

Now using the updated parameter, the new model state trajectories (state forecasts) and prediction 275 

trajectories are generated: 276 

𝑥𝑡+1
𝑖− = 𝑓(𝑥𝑡

𝑖+, 𝑢𝑡
𝑖 , 𝜃𝑡+1

𝑖+ ) + 𝜔𝑡
𝑖      𝜔𝑡

𝑖~𝑁(0, 𝜎𝑡
𝑥 ∑ .𝑥𝑡 )    ∀      𝑄𝑡 = ∑ .𝑥

𝑡+1    277 

 (13) 278 
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�̂�𝑡+1
𝑖 = ℎ(𝑥𝑡+1

𝑖− , 𝜃𝑡+1
𝑖+ ) + 𝜈𝑡+1

𝑖          𝜈𝑡+1
𝑖 ~𝑁(0, 𝜎𝑡+1

𝑦̂ ∑ .
𝑦̂
𝑡+1 )        ∀     𝑅𝑡+1 = ∑ .

𝑦̂
𝑡+1   279 

 (14) 280 

Model states ensemble is similarly updated as follows: 281 

𝑥𝑡+1
𝑖+ = 𝑥𝑡+1

𝑖− +𝐾𝑡+1
𝑥 (𝑦𝑡+1

𝑖 − �̂�𝑡+1
𝑖 )        (15) 282 

𝑦𝑡+1
𝑖 = 𝑦𝑡+1

𝑖 + 𝜂𝑡+1
𝑖 𝜈𝑡+1

𝑖          𝜂𝑡+1
𝑖 𝜈𝑡+1

𝑖 ~𝑁(0, 𝑅𝑡+1)        ∀     𝑅𝑡+1 = ∑ .
𝑦̂
𝑡+1    283 

 (16) 284 

where 𝐾𝑡+1
𝑥  ∈ ℝ𝑚×𝑛 is the Kalman gain for correcting the state trajectories and is obtained by: 285 

𝐾𝑡+1
𝑥 = ∑ [∑ .

𝑦̂𝑦̂
𝑡+1 + 𝑅𝑡+1

´ ]
−1𝑥𝑦̂

𝑡+1         (17) 286 

𝐾𝑡+1
𝑥 = 𝜎𝑡+1

𝑥𝑦̂
[𝜎𝑡+1

𝑦̂𝑦̂
+ 𝑅𝑡+1

´ ]
−1

  287 

𝜎𝑡+1
𝑥𝑦̂

(𝑠, 𝑗) ∑ (𝑠, 𝑗)
𝑥𝑦̂
𝑡+1 =

1

𝑁
∑ [(𝑥𝑡+1

𝑖− (𝑠) − 𝐸[𝑥𝑡+1
− (𝑠)])(�̂�𝑡+1

𝑖 (𝑗) − 𝐸[�̂�𝑡+1(𝑗)])]
𝑁
𝑖=1   (18) 288 

 289 


