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Abstract 19 

Real-time probabilistic flood inundation mapping is crucial for flood risk warning and decision 20 

decision-making during the emergency of an upcoming flood event. Considering the high 21 

uncertainties involved in the modeling of a nonlinear and complex flood event, providing a 22 

deterministic flood inundation map can be erroneous and misleading for reliable and timely 23 

decision decision-making. The conventional flood hazard maps provided for different return 24 

periods cannot also represent the actual dynamics of flooding rivers. Therefore, a real-time 25 

modeling framework that forecasts the inundation areas before the onset of an upcoming flood is 26 

of paramount importance. Sequential Data Assimilation (DA) techniques are well-known for real-27 

time operation of physical models while accounting for existing uncertainties. In this study, we 28 

present a Data Assimilation (DA)-hydrodynamic modeling framework where multiple gauge 29 

observations are integrated into the LISFLOOD-FP model to improve its performance. This study 30 

utilizes the Ensemble Kalman Filter (EnKF) in a multivariate fashion for dual estimation of model 31 

state variables and parameters where the correlations among point source observations are taken 32 

into account. First, a synthetic experiment is designed to assess the performance of the proposed 33 

approach, ; then the method is used to simulate the Hurricane Harvey flood in 2017. Our results 34 

indicate that the multivariate assimilation of point-source observations into hydrodynamic models 35 

can improve the accuracy and reliability of probabilistic flood inundation mapping by 5-7%, while 36 

it also provides the basis for sequential updating and real-time flood inundation mapping. 37 

Keywords: Data Assimilation; Probabilistic Flood Inundation Mapping; Hydrodynamic Model; 38 

Ensemble Kalman Filter 39 
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1. Introduction 46 

The on-time, accurate, and reliable characterization of an upcoming flood event is imperative for 47 

proper decision making and risk analysis. A well-calibrated hydrologic model coupled with 48 

reliable weather forecast models can be used to generate the streamflow forecast (Clark and Hay, 49 

2004; Cuo et al., 2011; Habets et al., 2004). While streamflow forecasting during flood events is 50 

indispensable, the critical step for flood risk analysis is to estimate the flood inundation areas 51 

corresponding to the forecasted streamflow of a potential upcoming event. Hydrodynamic models 52 

are common tools used to simulate the physics of a river system and predict the spatiotemporal 53 

distribution of water surface elevation (WSE). The predicted water surface elevationWSE can be 54 

simply converted to water depth and inundation area by overlaying with a high-resolution Digital 55 

Elevation Model (DEM) (Merwade et al., 2008; Teng et al., 2017). Since floods happen in a short 56 

period and at a certain location, it is most often not possible to find an appropriate remote sensing 57 

image that covers those inundated areas during the flood period. This is the main reason that 58 

research on flood inundation mapping is mostly limited to post-event analysis where specific study 59 

areas with available remote sensing data are used as testbeds.  60 

 61 

According to the literature, most studies have analyzed the flood events for which the flood extent 62 

maps were available from surveying or satellite remote sensing. These studies include but are not 63 

limited to,  calibration and assimilation of hydrodynamic models (Baldassarre et al., 2009; García-64 

Pintado et al., 2013; Gobeyn et al., 2017; Hostache et al., 2009; Lai et al., 2014; Pappenberger et 65 

al., 2007; Rahman and Thakur, 2018; Tarpanelli et al., 2013). Depending on the research 66 

objectives, such studies are crucial as they address important theoretical questions and advance the 67 
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flood modeling task. For example, several studies have used satellite remote sensing data, such as 68 

Synthetic Aperture Radar (SAR) images, to find the sensitivity of hydrodynamic models to their 69 

parameters, compare calibration strategies and test the application of assimilating remote sensing 70 

data into these models (Di Baldassarre et al., 2009; Hunter et al., 2005; Mason et al., 2009; Matgen 71 

et al., 2010). Since floods happen in a short period and at a certain location, it is most often not 72 

possible to find an appropriate remote sensing image that covers those inundated areas during the 73 

flood period. This is the main reason that research on flood inundation mapping is mostly limited 74 

to post-event analysis where specific study areas with available remote sensing data are used as 75 

testbeds.  76 

Federal Emergency Management Agency (FEMA) is the leading agency in the United States that 77 

provides flood hazard and risk maps over the Contiguous United States (CONUS). While These 78 

these maps display the flood-prone areas corresponding to specific return periods (e.g. 100 and 79 

500-year events). While the FEMA flood hazard and risk maps provide general information about 80 

risk areas, they are not always reliable for an upcoming flood event with different return periods. 81 

For example, FEMA 100-year and 500-year flood hazard maps covered only one-third and half of 82 

the inundated areas induced by Hurricane Harvey in Harris County, Texas, respectively (Pinter et 83 

al., 2017). The National Water Center Innovators Program proposed the idea of real-time flood 84 

inundation mapping across the United States in 2015 (Maidment, 2017). It highlighted the 85 

importance of event-based flood inundation mapping where a model uses the forecasted river 86 

discharge to estimate the inundation areas corresponding to a specific flood just before the onset 87 

of the event.  Compared to the traditional flood hazard mapping, real-time flood inundation 88 

mapping is more informative and beneficial for emergency response‐related decision-making.  89 
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In real-time flood inundation mapping, the model takes advantage of forecasted forcing data and 90 

generates inundation areas corresponding to an upcoming flood event. Providing these maps ahead 91 

of time is extremely valuable for building a robust flood warning system. Data assimilation (DA) 92 

is an effective approach commonly used to improve the performance of real-time hydrologic 93 

forecasting by updating the model state variables and parameters when new observation becomes 94 

available (Moradkhani et al., 2019). The integration of DA with physical models is highly 95 

advantageous as it enables accounting for different sources of uncertainties involved in model 96 

predictions. These include  (1) forcing data uncertainty due to the limitation of measurements and 97 

spatiotemporal representativeness of the data (Alemohammad et al., 2015; Kumar et al., 2017), (2) 98 

parameter uncertainty due to equifinality and non-uniqueness of parameters (Abbaszadeh et al., 99 

2018; Leach et al., 2018), (3) model structural uncertainty due to the imperfect representation and 100 

conceptualization of a real system (Abbaszadeh et al., 2019; Pathiraja et al., 2018; Zhang et al., 101 

2019) and (4) initial and boundary condition uncertainty (DeChant and Moradkhani, 2014; Lee et 102 

al., 2011).  103 

Probabilistic forecasting and uncertainty quantification using DA have been the core of modeling 104 

in the atmospheric and oceanic sciences (e.g. Anderson and Anderson, 1999; Courtier et al., 1993). 105 

Later, the hydrologic community started to utilize this approach to account for the uncertainties 106 

involved in different layers of model predictions and provide a more accurate and reliable model 107 

estimates such asestimation of soil moisture (Gavahi et al., 2020; Pauwels et al., 2001; Reichle et 108 

al., 2002; Xu et al., 2020), streamflow (Moradkhani et al., 2005a; Vrugt et al., 2006), snow 109 

(Sheffield et al., 2003; Slater and Clark, 2006) and so many other hydrologic variables. Despite 110 

these advances in hydrologic studies, the application of data assimilation in conjunction with 111 

hydrodynamic models has received little attention in the literature. The characterization of 112 
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uncertainty in hydrodynamic models for probabilistic flood inundation mapping has been mostly 113 

limited to conventional techniques, such as random Monte Carlo sampling (Ahmadisharaf et al., 114 

2018; Aronica et al., 2012; Domeneghetti et al., 2013; Neal et al., 2013; Papaioannou et al., 2017; 115 

Pedrozo‐Acuña et al., 2015; Purvis et al., 2008; Savage et al., 2016) and Generalized Likelihood 116 

Uncertainty Estimation (GLUE) (Aronica et al., 2002a; Romanowicz and Beven, 2003).  117 

The effectiveness and application of assimilating remotely sensed data (e.g. Soil Moisture Active 118 

Passive (SMAP)) into hydrologic models have been vastly investigated in the literature 119 

(Abbaszadeh et al., 2020; Azimi et al., 2020; Lievens et al., 2017). However, given the small scale 120 

of the hydrodynamic modeling process, the spatiotemporal resolution of current satellite products 121 

is not adequate for assimilating into these models. To properly estimate the flood inundation 122 

extent, a spatial resolution less than river width (e.g. 100 m) is recommended. In addition, dDue 123 

to the short duration of floods, satellite data with daily revisit timea sub-daily time scale and spatial 124 

resolution less than the river width (e.g. 100 m) is neededrecommended. Since remote sensing 125 

products do not provide such high spatiotemporal resolution data for hydrodynamic models, the 126 

research on hydrodynamic data assimilation is limited in the literature. Due to the coarse spatial 127 

resolution of satellites that provide water surface elevation data, sSome studies have limited their 128 

analyses to large rivers with a width of above 1 km (e.g. study of Nile and Amazon) (Brêda et al., 129 

2019). However, since the width of the majority of rivers is less than 100 meters, these studies 130 

cannot be practically used in many regions.  131 

 Several studies used higher resolution synthetic Surface Water and Ocean Topography (SWOT) 132 

data to evaluate the performance of assimilation techniques (Durand et al., 2008; Munier et al., 133 

2015; Pedinotti et al., 2014; Yoon et al., 2012). While these works provided important information 134 

about the assimilation of satellite data into hydrodynamic models, their applications are only 135 
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limited to synthetic experiments, making them impractical for real case studies. Some studies have 136 

implemented indirect methods to estimate WSE from flood extents generated by high-resolution 137 

SAR satellite data (Giustarini et al., 2011; Hostache et al., 2010; Matgen et al., 2010b; Neal et al., 138 

2009). This approach can provide high-resolution data that is suitable for the majority of rivers. 139 

However, the reliability of this data is concerning because the methods used to convert the flood 140 

extent to WSE pose additional errors which that downgrades the quality of the final observed data 141 

for assimilation practices. Besides these issues, the major drawback of remote sensing data 142 

assimilation pertains to their coarse temporal resolutions. To efficiently monitor the flood 143 

dynamics, the assimilation process should be performed at a daily/hourly time scale, however, the 144 

revisit frequency of satellites used for capturing the water surface elevationWSE ranges from a 145 

week to a month. Therefore, there is a significantly low chance to capture multiple real-time remote 146 

sensing images for the majority of inundated catchments during flood events. In the most 147 

optimistic scenario, assimilation of satellite data is only limited to one/two updates during the 148 

simulation period which may not be sufficient for reliable probabilistic flood inundation mapping.   149 

Application of DA in hydrodynamic modeling can be either river monitoring or flood inundation 150 

mapping. The goal of hydrodynamic data assimilation for river monitoring is to track variations in 151 

the channel roughness and bathymetry in the long run. Therefore, the weekly/monthly satellite 152 

data can be well assimilated into the models as the channel characteristics do not change on a daily 153 

basis. On the other hand, flood inundation mapping needs an hourly/daily track of WSE because 154 

floods happen rapidly and affect the river dynamics on a short time scale. The literature indicates 155 

those studies that assimilated data into hydrodynamic models have been mostly designed for river 156 

monitoring (Brêda et al., 2019; Durand et al., 2008; Yoon et al., 2012b). To capture the daily 157 

dynamics of the rivers for real-time flood inundation mapping, the discharge and water stage 158 
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values measured at the gauge stations can be assimilated into the hydrodynamic models.  Xu et al., 159 

(2017) performed a Particle Filtering (PF) approach to assimilate the water stage data from six 160 

gauges into a hydrodynamic model. In order to calculate the particle weights in the filtering 161 

process, they assumed that gauge observations are independent. In this study, however, we 162 

consider interconnections among the gauge stations and apply multivariate Ensemble Kalman 163 

Filter (EnKF) to a 2D two-dimensional (2D) hydrodynamic model for better characterization and 164 

quantification of uncertainty and further improving the accuracy of model simulations.  165 

Advancing the probabilistic hydrodynamic modeling with DA techniques is a necessary step to fill 166 

the gap between hydrology and hydrodynamics. To address this problem, this study aims to 167 

explore the capability of a standard sequential DA technique, namely the EnKF, for real-time 168 

probabilistic flood inundation mapping. The pPast studies that used the DA in conjunction with 169 

hydrodynamic models, have mostly focused on the quantification of uncertainty in one or two 170 

hydrodynamic variables ; (e.g. Giustarini et al., (2011) and Hostache et al., (2018) only 171 

investigated the uncertainty in the upstream flow and rainfall, respectively; Yoon et al., (2012) 172 

focused on the uncertainty of river bathymetry while ignoring the roughness parameter 173 

uncertainty). In addition, the main application of DA-hydrodynamic modeling framework has been 174 

in river monitoring at long-term or water stage forecasting during the flood events (Brêda et al., 175 

2019; Matgen et al., 2010; Xu et al., 2017). However, this study takes one step further and proposes 176 

a DA-hydrodynamic modeling framework for real-time probabilistic flood inundation mapping 177 

while accounting for all major sources of uncertainties involved in the model simulations including 178 

. These include hydrodynamic model parameters (channel roughness and river bathymetry) 179 

uncertainty, forcing data (river boundary conditions) uncertainty, and state variable (water depth) 180 

uncertainty. Additionally, unlike past works that assimilated either discharge or water stage into 181 
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the hydrodynamic model, this study performs a multivariate DA to incorporate the observed values 182 

of both variables into the hydrodynamic model for a reliable simulation of flooding and its 183 

corresponding inundation area.  184 

2 Data and Study area 185 

In this study, we simulate the Hurricane Harvey flood, one of the worst natural disasters in the 186 

history of the United States that caused more than 120 billion USD in damage 187 

(https://www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf). The Harvey storm hit Texas on 188 

August 25, 2017, caused massive precipitation for six continuous days and resulted in extreme 189 

flooding condition in Houston and surrounding areas. Given the considerable uncertainties in 190 

hydrologic and hydrodynamic processes of such an extreme flood, a deterministic modeling 191 

approach with fixed inputs provides erroneous simulations that are highly different from 192 

observations. To account for the uncertainties involved in different layers of flood simulation, this 193 

study implements a DA-hydrodynamic modeling framework and provides probabilistic flood 194 

inundation maps.  195 

Figure 1.a shows the study area that consists of four main channels (blue lines) and eight tributaries 196 

(red lines).. The study area is located in the State of Texas (Figure 1.b) in the middle of the San 197 

Jacinto watershed (Figure 1.c), a highly developed basin (USGS HUC6 #120401) with the area of 198 

10400 km2.  The main channels simulated in the study are around 106 km and draining into three 199 

HUC8 watersheds; the Spring (#12040102), West Fork San Jacinto (#12040101) and East Fork 200 

San Jacinto (#12040103). The drainage areas of the channels are relatively flat with an average 201 

slope of 0.62%, and the soil is mostly impermeable due to the high rate of recent developments in 202 

this region. The upstream and downstream boundary conditions (purple points) are provided from 203 

https://www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf
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the daily streamflow in four United States Geological Survey (USGS) gauges ((#08068090, # 204 

08068500, #08068740, #08068780) and water stage time series at the downstream gauge 205 

(#08069500). The daily streamflow discharge in two internal gauges (green points #08068800 and 206 

#08069000) and water stage time series in the second internal gauge are the observations that will 207 

beare assimilated into the LISFLOOD-FP model. Internal gauges refer to those stations located 208 

between upstream and downstream of the simulated river system. Figures 1.b and 1.c present the 209 

geographic location of the study area within the state of Texas and San Jacinto watershed, 210 

respectively. To set up the LISFLOOD-FP model, we use a DEM with 120 m spatial resolution 211 

resampled from one arc second (30 m) USGS National Elevation Dataset. Such a coarse resolution 212 

DEM alleviates the computational intensity of the proposed probabilistic hydrodynamic modeling 213 

framework. It should be noted that the subgrid solver used for simulation of flood has the 214 

advantage of accepting narrow rivers with a width of less than 120 m while the cell sizes are 120 215 

m. In this study, the DA-hydrodynamic modeling framework is parallelized and performed on the 216 

University of Alabama High-Performance Computing (UAHPC) cluster.  217 
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 218 

Figure 1 (a) Study area with all gauges, rivers, and tributaries. (b) Geographic location of San 219 

Jacinto Watershed within the state of Texas. (c) Geographic location of the study area within 220 

San Jacinto watershed (© NhDplus and USGS). 221 

3. Methods 222 

3.1 Flood inundation model 223 

The flood inundation model used in this study is LISFLOOD-FP (Bates and De Roo, 2000), a 224 

raster-based 2D hydrodynamic model that simulates the spatiotemporal distribution of water 225 

surface elevationWSE over the study area. The model solves the momentum and continuity 226 

equations (Saint Venont equations): 227 
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where Q is the flow rate at a given cross-section with the area of A in the main channel, x denotes 230 

the location along the channel, t represents time, S0 and Sf  are channel bed and friction slopes, and 231 

g is the gravitational acceleration.  232 

We use the sub-gird channel solver, the most recently developed numerical scheme that considers 233 

friction and water slope as well as local acceleration components in the shallow water equations 234 

(Neal et al., 2012). This solver is advantageous for large-scale and efficient modeling as it utilizes 235 

coarse resolution DEMs along with channel widths values that are smaller than DEM resolution.  236 

Since DA-hydrodynamic modeling requires hundreds of model simulations, a computationally 237 

intensive operation, this solver helps reduce the computational burden of each simulation and 238 

enables implementing probabilistic flood inundation mapping within a DA framework. To set up 239 

the model, we assume rectangular cross-section areas and a uniform roughness for both channel 240 

and floodplain. Given the low sensitivity of LISFLOOD-FP to the floodplain roughness (Hall et 241 

al., 2005; Horritt and Bates, 2002), this parameter is assumed a constant value. However, the 242 

uncertainty of channel roughness is the only model roughness parameter whose associated 243 

uncertainty is accounted fortaken into account within the assimilation framework. We also 244 

consider the uncertainty of bathymetry by defining an offset parameter that uniformly lowers the 245 

DEM values of the river channels.  In addition to model parameters (channel roughness and 246 

bathymetry), the upstream and lateral fluxes entered the river system as the boundary conditions 247 

of the model are other main sources of uncertainty in the assimilation framework.   248 
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The upstream boundary conditions are generated from four USGS gauge stations (Figure. 1). To 249 

estimate the lateral fluxes, we calculate the deficit in the system as subtraction of the upstream 250 

from downstream flows and then, distribute the deficit among river tributaries based on their 251 

drainage areas (Please refer to Jafarzadegan et. al (2021) for detailed information about the 252 

calculation of lateral flows in this study area). In section 3.3, we will further discuss the procedure 253 

we used to initialize the model parameters and river boundary conditions.   254 

3.2 Ensemble Kalman Filter (EnKF) 255 

(Moradkhani et al., (2005b) provided a comprehensive description of the EnKF formulation for 256 

dual estimation of state and parameters in hydrologic models. Here we briefly describe the EnKF 257 

formulation for multivariate assimilation of point source water stage and discharge data into a 258 

hydrodynamic model. For a more effective assimilation proccess, both types of interconnections 259 

between observations, namely spatial correlation of a single observation (discharge or water stage) 260 

among different gauges as well asand the correlation between both observations at a single gauge 261 

are taken into account in the EnKF equations. The In this study, EnKF is used to simultaneously 262 

estimate model states and parameters. For this purpose, the parameters should be treated similar 263 

to the state variables with a difference that parameter evolution is generated artificially.  264 

Let’s assume a DA-hydrodynamic modeling framework with 𝑙 parameters (𝑝 = 1,2, … , 𝑙), m states 265 

(𝑠 = 1,2, … ,𝑚) and n observations (𝑗 = 1,2, … , 𝑛). The following EnKF equations are described 266 

in accordance with the flowchart shown in Figure 2.  In the EnKF, parameter samples can be 267 

generated by adding the noise of 𝜂𝑡 with covariance ∑𝜃𝑡 to the prescribed parameters.  268 

𝜃𝑡+1
𝑖− = 𝜃𝑡

𝑖+ + 𝜏𝑡
𝑖           𝜏𝑡

𝑖~𝑁(0, 𝜂𝑡+1)     ∀      𝜂𝑡+1 = ∑ .𝜃
𝑡+1      (3) 269 

Using 𝜃𝑡+1
𝑖−  and forcing data, a model state ensemble and predictions are generated, respectively.  270 

https://www.macmillandictionary.com/us/dictionary/american/difference


 14 

𝑥𝑡+1
𝑖− = 𝑓(𝑥𝑡

𝑖+, 𝑢𝑡
𝑖 , 𝜃𝑡+1

𝑖− ) + 𝜔𝑡
𝑖      𝜔𝑡

𝑖~𝑁(0, 𝑄𝑡)    ∀      𝑄𝑡 = ∑ .𝑥𝑡     (4) 271 

�̂�𝑡+1
𝑖 = ℎ(𝑥𝑡+1

𝑖− , 𝜃𝑡+1
𝑖− ) + 𝜈𝑡+1

𝑖          𝜈𝑡+1
𝑖 ~𝑁(0, 𝑅𝑡+1)        ∀     𝑅𝑡+1 = ∑ .

𝑦
𝑡+1    (5) 272 

where 𝑥𝑡, 𝑢𝑡, 𝜃𝑡 and 𝑦𝑡 are the vector of the uncertain state variables, forcing data, model 273 

parameters and observation data at time step 𝑡, respectively. 𝜔𝑡 represents the model errors due to 274 

the imperfect model, and 𝜈𝑡 is the measurement error. Most often, 𝜔𝑡 and 𝜈𝑡 are assumed to be 275 

white noises with mean zero and covariance 𝑄𝑡 and 𝑅𝑡, respectively. In addition, the two noises 276 

𝜔𝑡 and 𝜈𝑡 are assumed to be independent.  277 

Then we update the parameter ensemble members using the standard Kalman filter equation:  278 

𝜃𝑡+1
𝑖+ = 𝜃𝑡+1

𝑖− + 𝐾𝑡+1
𝜃 (𝑦𝑡+1

𝑖 − �̂�𝑡+1
𝑖 )        (6) 279 

where 𝐾𝑡+1 
𝜃 ∈ ℝ𝑙×𝑛 is the Kalman gain matrix for correcting the parameter trajectories and is 280 

obtained by: 281 

𝐾𝑡+1
𝜃 = ∑ [∑ .

𝑦𝑦
𝑡+1 + 𝑅𝑡+1

´ ]
−1𝜃𝑦

𝑡+1          (7) 282 

where ∑ .
𝜃𝑦
𝑡+1 ∈ ℝ

𝑙×𝑛 is the cross-covariance matrix of parameter ensemble and prediction ensemble 283 

(Eq. 6). Unlike other studies, and for more realistic characterization of observation and model 284 

errors here the correlation between the errors associated with n observation data are accounted for 285 

during the assimilation process. Therefore, the covariance matrix 𝑅´𝑡 ∈ ℝ
𝑛×𝑛 is a nonzero matrix, 286 

such that the values in the diagonal represent the error associated with each observation data and 287 

all elements lower/upper the main diagonal denote the cross covariance between different 288 

observations (Eq. 7). ∑  ∈ ℝ𝑛×𝑛 
𝑦𝑦
𝑡 is also a similar covariance matrix with the inclusion of error 289 

correlation between the model simulations  (Eq. 8).     290 
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∑ (𝑝, 𝑗).
𝜃𝑦
𝑡+1 =

1

𝑁
∑ [(𝜃𝑡+1

𝑖− (𝑝) − 𝐸[𝜃𝑡+1
− (𝑝)])(�̂�𝑡+1

𝑖 (𝑗) − 𝐸[�̂�𝑡+1(𝑗)])]
𝑁
𝑖=1    (8) 291 

𝑅𝑡+1
´ (𝑗, 𝑗´) = {

𝑅𝑡+1                                                                                                   𝑗 = 𝑗´
1

𝑁
∑ [(𝑦𝑡+1

𝑖 (𝑗) − 𝐸[𝑦𝑡+1 (𝑗)])(𝑦𝑡+1
𝑖 (𝑗´) − 𝐸[𝑦𝑡+1(𝑗´)])]   𝑗 ≠ 𝑗´ 

𝑁
𝑖=1

  (9) 292 

∑ (𝑗, 𝑗´).
𝑦𝑦
𝑡+1 =

1

𝑁
∑ [(�̂�𝑡+1

𝑖 (𝑗) − 𝐸[�̂�𝑡+1 (𝑗)])(�̂�𝑡+1
𝑖 (𝑗´) − 𝐸[�̂�𝑡+1(𝑗´)])]

𝑁
𝑖=1    (10) 293 

𝐸[𝜃𝑡+1
− ] =

1

𝑁
∑ 𝜃𝑡+1

𝑖−𝑁
𝑖=1          (11) 294 

𝐸[�̂�𝑡+1] =
1

𝑁
∑ �̂�𝑡+1

𝑖𝑁
𝑖=1          (12) 295 

Now using the updated parameter, the new model state trajectories (state forecasts) and prediction 296 

trajectories are generated: 297 

𝑥𝑡+1
𝑖− = 𝑓(𝑥𝑡

𝑖+, 𝑢𝑡
𝑖 , 𝜃𝑡+1

𝑖+ ) + 𝜔𝑡
𝑖      𝜔𝑡

𝑖~𝑁(0, ∑ .𝑥𝑡 )    ∀      𝑄𝑡 = ∑ .𝑥
𝑡+1     (13) 298 

�̂�𝑡+1
𝑖 = ℎ(𝑥𝑡+1

𝑖− , 𝜃𝑡+1
𝑖+ ) + 𝜈𝑡+1

𝑖          𝜈𝑡+1
𝑖 ~𝑁(0,∑ .

𝑦
𝑡+1 )        ∀     𝑅𝑡+1 = ∑ .

𝑦
𝑡+1    (14) 299 

Model states ensemble is similarly updated as follows: 300 

𝑥𝑡+1
𝑖+ = 𝑥𝑡+1

𝑖− +𝐾𝑡+1
𝑥 (𝑦𝑡+1

𝑖 − �̂�𝑡+1
𝑖 )        (15) 301 

𝑦𝑡+1
𝑖 = 𝑦𝑡+1

𝑖 + 𝜈𝑡+1
𝑖          𝜈𝑡+1

𝑖 ~𝑁(0, 𝑅𝑡+1)        ∀     𝑅𝑡+1 = ∑ .
𝑦
𝑡+1     (16) 302 

where 𝐾𝑡+1
𝑥  ∈ ℝ𝑚×𝑛 is the Kalman gain for correcting the state trajectories and is obtained by: 303 

𝐾𝑡+1
𝑥 = ∑ [∑ .

𝑦𝑦
𝑡+1 + 𝑅𝑡+1

´ ]
−1𝑥𝑦

𝑡+1         (17) 304 

where ∑ .
𝑥𝑦
𝑡+1 ∈ ℝ

𝑚×𝑛 is the cross-covariance matrix of states ensemble and prediction ensemble 305 

(Eq. 16).   306 

∑ (𝑠, 𝑗)
𝑥𝑦
𝑡+1 =

1

𝑁
∑ [(𝑥𝑡+1

𝑖− (𝑠) − 𝐸[𝑥𝑡+1
− (𝑠)])(�̂�𝑡+1

𝑖 (𝑗) − 𝐸[�̂�𝑡+1(𝑗)])]
𝑁
𝑖=1    (18) 307 
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𝐸[𝑥𝑡+1
− ] =

1

𝑁
∑ 𝑥𝑡+1

𝑖−𝑁
𝑖=1          (19) 308 

In this study the water depth along the channel is the only state variable (m=1). The channel 309 

roughness and bathymetry are two model parameters (l=2) and three point source observations 310 

including water discharge at gauge 1 and 2 as well as water stage at gauge 2 (n=3) are assimilated 311 

into the LISFLOOD-FP model (Table 1). Therefore, the Kalman gains used to update the model 312 

parameters and states (Eqs 5 and 15) are 2 × 3  and 1 × 3  matrices that take advantage of a 313 

multivariate point source assimilation while considering the downstream correlation between 314 

discharge observations and the correlation between water stage and discharge at gauge 2.  315 

3.3. Experimental designDA-hydrodynamic modeling framework 316 

The ultimate goal of this study is to simulate the Hurricane Harvey flood and generate probabilistic 317 

flood inundation maps through the DA-hydrodynamic modeling framework. Figure. 1 illustrates 318 

the flowchart of the proposed DA-hydrodynamic modeling framework used for real-time 319 

probabilistic flood inundation mapping approach. In this study, the EnKF is performed based on 320 

an ensemble size of 100. The boundary conditions including four upstream flows, seven lateral 321 

fluxes, and downstream flows are perturbed with adding white noises sampled from a normal 322 

distribution with a mean zero and relative error of 20%. The errors are assumed heteroscedastic 323 

meaning that their values are proportional to the flow magnitude. (Pelletier, (1988) conducted a 324 

literature review on the uncertainty of recorded flow at rivers and demonstrated that the error varies 325 

in the range 8%-20%. Later, Di Baldassarre and Montanari, (2009) found that the uncertainty of 326 

extreme flows can exceed to 25% due to the extrapolating the rating curves.  To characterize 327 

uncertainty in the initial condition, namely water depth, we add a white noise with a mean zero 328 

and standard deviation of 1 meter. In this study, using the proposed EnKF-based multivariate 329 
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assimilation approach, three point-scale observations, i.e., discharge at USGS gauges 1 and 2, as 330 

well as water stage at gauge 2, are incorporated into the LISFLOOD-FP model to rectify its state 331 

variables and parameters, and hence provide more accurate and reliable flood inundation maps. 332 

All these three observations are perturbed by adding a normally distributed white noise with a 333 

mean zero and a relative error of 20%.  First, the LISFLOOD-FP model is forced with the 334 

upstream, downstream and lateral flow ensembles. To initialize the state variables in the system, 335 

the simulated water depth values at the ending day of the warm-up period (the initial condition for 336 

the first day of the model simulation) are perturbed with adding a white noise with a mean zero 337 

and standard deviation of 1 meter. It is worth mentioning that the error terms used for the observed 338 

flows and the initial water depth are determined through a manual tuning to achieve the most 339 

reliable predictions during the simulation.  The model parameters (i.e., channel roughness and 340 

bathymetry) are initialized using the Latin Hypercube Sampling method and evolved during the 341 

assimilation process. The ensemble of water depth values predicted by the model for the next time 342 

step together with observations, namely water stage and discharge at gauges are used in the 343 

multivariate Kalman equation to update the model parameters. The LISFLOOD-FP model is run 344 

for the second time with the updated parameters and the second multivariate Kalman equation uses 345 

the predicted water depth with observations to update the ensemble of water depth in the system. 346 

The ensemble of updated water depth (state), bathymetry, and channel roughness (parameters) will 347 

beare used within the LISFLOOD-FP to predict an ensemble of water depth for the next time step. 348 

The predicted water depth is simply converted to a probabilistic flood inundation map. Using this 349 

data assimilation framework, we can generate 1-day forecast of probabilistic flood inundation 350 

maps which would be highly beneficial for real-time flood warning and decision making. It is 351 

worth mentioning that the forecasted probabilistic maps account for different sources of 352 
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uncertainty including the forcing data (boundary condition flows), model parameters (channel 353 

roughness and bathymetry), and initial conditions (water depth). 354 

The simulation period of the LISFLOOD-FP model is set up for 45 days from July-30-2017 to 355 

Sep-12-2017 and the entire month of July is used as a warm-up period. The model time step and 356 

the Courant number are set to 1 second and 0.7, respectively, and the model is simulated at daily 357 

scale. The water depth generated for the end of July will beis used as the initial condition of the 358 

model. To account for the uncertainty of channel roughness and bathymetry, we sample them these 359 

variables from uniform distributions ranging from [0, 0.1] and [39, 42] m, respectively. The 360 

bathymetry parameter is the elevation of the channel bed at the upper location of the channel. The 361 

offset parameter is calculated by subtracting this value from DEM at the upper location. Then, the 362 

bathymetry vector that includes the channel bed elevation for all channel cells is generated by 363 

subtracting the offset from DEM values along the channel.  It should be noted that the range of 364 

uniform distribution for channel roughness is chosen based on previous studies (Aronica et al., 365 

2002b; Bales and Wagner, 2009; Di Baldassarre et al., 2009; Horritt, 2006; Pappenberger et al., 366 

2008) while the error range assumed for the bathymetry is mostly determined based on , expert 367 

judgment, and trial-and-error. Since the real magnitude and distribution of these errors have not 368 

been fully understood in the literature, their estimated values may not be necessarily the physically 369 

correct terms and their estimation is ill-posed according to Renard et al., (2010). 370 
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 371 

Figure 2. Schematic of the DA-hydrodynamic modeling framework for real-time probabilistic 372 

flood inundation mapping. The green boxes represent the state variables where their updated 373 

values are fed into the LISFLOOD-FP model and provide a probabilistic flood inundation map 374 

at the forecast mode (blue box). The black boxes highlight the physical model and the orange 375 

boxes represent the Kalman equations used for updating the parameter and state variables by 376 

the EnKF. 377 

3.4 Experimental Design  378 

To assess the effectiveness and robustness of the proposed assimilation framework for 379 

probabilistic flood inundation mapping, we design three two different experiments. First, an open-380 

loop (OL) simulation is established where the model is run without assimilation. In the second first 381 

experiment, we perform DA-hydrodynamic modeling on a synthetic case study where we assume 382 
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the model is perfect and has no error. In this approach, we set the model parameters (channel 383 

roughness and bathymetry), initial state (water depth) and boundary condition flows to fixed values 384 

and run the model to generate discharge and water surface elevationWSE across the gauges within 385 

the study area. These predicted values are assumed as benchmark observations. This synthetic 386 

analysis ensures that the assimilation process performs well and the model parameters end up 387 

converging to predefined values. In the next stepsecond experiment, we implement the proposed 388 

assimilation framework on a real case study where the observed discharge and water surface 389 

elevationWSE data that are recorded from the USGS gauges during Hurricane Harvey, are 390 

assimilated into the model. In both experiments, we implement an open-loop (OL) simulation 391 

where the model is run without an assimilation. The WSE and flood extent maps generated by OL 392 

are compared with the results provided by the EnKF in the synthetic and real case studies. 393 

Considering the severe flood condition during the Hurricane, we aim to investigate the extent to 394 

which the multivariate DA-Hydrodynamic modeling framework improves the model simulation 395 

and flood inundation mapping skill. 396 

3.4 5 Validation strategy 397 

As mentioned before, the convergence of uncertain model parameters toward truth in the 398 

synthetic experiment demonstrates the performance of DA-hydrodynamic modeling framework. 399 

To provide a robust analysis of each assimilation run, it is necessary to assess the model 400 

performance through multiple deterministic (KGE and RMSE) and probabilistic (NRR and 401 

Reliability) measures. The summary ofThe four performance measures used in this study, namely 402 

Kling Gupta Efficiency (KGE), Root Mean Square Error (RMSE), Normalized Root Mean Square 403 

Error Ratio (NRR) and Reliability y is tabulated in Table 1are calculated using Eqs. 20-23, 404 

respectively.  405 
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 406 

 407 

Table 1: Summary of performance measures used in this study  408 

Performance Measure Mathematical Representation 

Kling-Gupta Efficiency 

(KGE) 1 − √((
Cov𝑦𝑡𝑦𝑡′

𝜎𝜎′
) − 1)

2

+ ((
𝜎′

𝜎
) − 1)

2

+ ((
𝜇′

𝜇
) − 1)

2

 

Root Mean Square Error 

(RMSE) √
1

𝑇
∑(𝑦𝑡

′ − 𝑦𝑡)
2

𝑇

𝑡=1

 

Normalized Root-Mean-

Square Error Ratio 

(NRR) 

√
1

𝑇
∑(𝑦𝑡 − 𝑦∎,𝑡

′̅̅ ̅̅ ̅)
2

𝑇

𝑡=1

×

(

 
1

𝑇
{
 

 
∑√

1

𝑇
[∑(𝑦𝑡 − 𝑦∎,𝑡

′̅̅ ̅̅ ̅)
2

𝑇

𝑡=1

]

𝑇

𝑡=1
}
 

 
√
𝑁 + 1

2𝑁

)

 

−1

 

Reliability 

1 −
2

𝑇
∑|

𝑍𝑡
𝑇
− 𝑈𝑡|

𝑇

𝑡=1

 

 409 

1 − √((
Cov

𝑦𝑡𝑦𝑡
′

𝜎𝜎′
) − 1)

2

+ ((
𝜎′

𝜎
) − 1)

2

+ ((
𝜇′

𝜇
) − 1)

2

      (20) 410 

√
1

𝑇
∑ (𝑦𝑡

′ − 𝑦𝑡)
2𝑇

𝑡=1           (21) 411 

√
1

𝑇
∑ (𝑦𝑡 − 𝑦∎,𝑡

′̅̅ ̅̅ ̅)
2𝑇

𝑡=1 × (
1

𝑇
{∑ √

1

𝑇
[∑ (𝑦𝑡 − 𝑦∎,𝑡

′̅̅ ̅̅ ̅)
2𝑇

𝑡=1 ]𝑇
𝑡=1 }√

𝑁+1

2𝑁
)

−1

    (22) 412 

1 −
2

𝑇
∑ |

𝑍𝑡

𝑇
− 𝑈𝑡|

𝑇
𝑡=1           (23) 413 
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where 𝑦𝑡 and  𝑦𝑡
′ are the observed and simulated values, respectively. The Kling–Gupta Efficiency 414 

(KGE) varies from −∞ to 1, such that a value of 1 indicates a perfect fit between observed and 415 

simulated values. The pairs of (𝜇, 𝜎)  and (𝜇′, 𝜎′)  represent the first two statistical moments 416 

(means and standard deviations) of 𝑦𝑡 and 𝑦𝑡
′, respectively. Root mean squared error (RMSE) is 417 

the square root of the mean of the square of all of the errors between the predicted and observed 418 

values.  419 

NRR (DeChant and Moradkhani, 2012) is calculated to measure the ensemble spread and assess 420 

how confidently the ensemble mean is statistically distinguishable from the ensemble spread. 421 

Reliability (Renard et al., 2010b) is a measure of the fit of the Q-Q quantile plot to a uniform. A 422 

value of 1 is exactly uniform and a value of 0 is the farthest possibility from uniform. For the 423 

description of the 𝑧𝑡 and 𝑈𝑡 calculation, we refer the readers to Renard et al. (2010b). 424 

The above four performance measures assess the dynamic behavior of DA-hydrodynamic 425 

modeling framework at two specific points. Moreover, to spatially evaluate the behavior of the 426 

proposed framework, we compare the maximum probabilistic flood inundation maps (union of 427 

probabilistic maps over the simulation period) with the observed floodplain map delineated 428 

aftermath of Harvey. The Receiver Operating Characteristic (ROC) graph is a common tool for 429 

validating probabilistic classifiers (Fawcett, 2006). Consider a deterministic flood map as a binary 430 

map where one and zero represent flooded and non-flooded cells, respectively. First, a threshold 431 

in the range of [0,1] is used to convert the probabilistic map to a binary deterministic map. This 432 

means all cells with the probability of inundation less than a given threshold are converted to zero 433 

and other cells are set to one. The binary map is compared with the reference map and the rate of 434 

true positive (rtp) and false positive (rfp) are calculated using Equations 7 24 and 8 25 435 

(Jafarzadegan and Merwade, 2017): 436 
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𝑟𝑡𝑝 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
         (724) 437 

𝑟𝑓𝑝 =
𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
         (825) 438 

where true and false positive instances represent the total number of flooded cells in the reference 439 

map that are predicted as flood and non-flooded cells, respectively. Total positives and negatives 440 

are total flooded and non-flooded cells in the reference map. This process is repeated and a set of 441 

points (rfp.rtp) are generated corresponding to different thresholds. The ROC graph connects the 442 

points in the rfp-rtp space and the area under the curve (AUC) represents the performance of the 443 

probabilistic classifier (Fawcett, 2006). In this study, we use AUC to compare the performance of 444 

OL simulation with the EnKF for probabilistic flood inundation mapping. The Fit (F) index is 445 

another performance measure widely used to compare two deterministic flood extent maps in the 446 

literature (Alfieri et al., 2014; Bates and De Roo, 2000; Sangwan and Merwade, 2015; Tayefi et 447 

al., 2007). 448 

𝐹 = 
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 × 100       (26)  449 

 In addition, we calculate the Underprediction and Overprediction Flood Indices (UFI and OFI) 450 

introduced by Jafarzadegan et al., (2018) for comparing probabilistic flood maps against 451 

deterministic reference maps: 452 

𝑈𝐹𝐼 =  
∑ (1−𝑃𝑖)
𝑁
𝑖=1

𝑁
 × 100          𝑖 ∈ 𝐹𝑙        (927) 453 

𝑂𝐹𝐼 =  
∑ (𝑃𝑗)
𝑀
𝑖=1

𝑀
 × 100                 𝑗 ∈ 𝑁𝐹𝑙       (1028) 454 

where Fl and NFl denote the flooded and non-flooded regions in the reference map, and i and j are 455 

indicators of cells located within these regions. N and M are the total number of cells in the Fl and 456 
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NFl regions and 𝑃𝑖 , 𝑃𝑗  denote the probability of inundation for cells i and j derived from the 457 

probabilistic flood maps.  458 

4. Results 459 

4.1 Experiment 1: Synthetic Case Study 460 

We conduct the synthetic experiment to ensure the usefulness and effectiveness of the proposed 461 

DA-hydrodynamic modeling framework. Figure 3.a presents uncertainty bound evolution of the 462 

parameters in the LISFLOOD-FP model (i.e., channel roughness and bathymetry) for 45 days 463 

assimilation of synthetic observations (i.e., discharge at gauges 1 and 2 and water stage at gauge 464 

2). The shaded areas correspond to  95, 75, 68, and 10 percentile predictive intervals, and the black 465 

stars at the end of each parameter subplot represent the true parameter values. It is worth 466 

mentioning that the uncertainty of bathymetry shown in this Figure corresponds to the channel bed 467 

elevation at the upper location of the channel. As seen both parameters converge smoothly to the 468 

certain region in parameter space where the uncertainty bounds stabilize. While the uncertainty 469 

bound associated with the bathymetry becomes stabilized at the early stage of the assimilation 470 

process, for the channel roughness, the uncertainty bound gets is stabilized toward the end of the 471 

assimilation period. It is also evident from Figure 3.a that the bathymetry is a more identifiable 472 

parameter compared to the channel roughness as it shows the fastest convergence with a minimum 473 

degree of uncertainty. However, the channel roughness is less identifiable with the slowest 474 

convergence. The scatter plots illustrate the evolution of parameter space at six different time 475 

segments. In Figure 3.b, The the first day (t=1) includes all 100 ensemble members of parameters 476 

and day 30 corresponds to the highest discharge and water stage of flooding when the model 477 

parameters reach the highest improvement and get closer to the true value. Figure 3.b shows that 478 

Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic



 25 

both model parameters are converging toward the true values as the assimilation proceeds. This 479 

indicates the efficacy and usefulness of the proposed DA-hydrodynamic modeling framework 480 

developed in this study.   481 

 482 

Figure 3. Temporal evolution of the LISFLOOD parameters for the synthetic experiment during 483 

Hurricane Harvey using the EnKF. (a) Temporal evolution of model parameter predictive 484 

intervals (shaded areas) corresponding to 95, 75, 68, and 10 percentile (b) Temporal evolution 485 
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of particle positions in the model parameter space at six different days during the Hurricane. 486 

The shaded areas correspond to  95, 75, 68, and 10 percentile predictive intervals, and tThe 487 

black stars at the end of each parameter subplot represent the true parameter values. 488 

 489 

 490 

4.2 Experiment 2: Real Case Study 491 

In the real experiment, we assimilate the discharge and water stage readings from two internal 492 

USGS gauges into the LISFLOOD-FP model. We also run the OL simulation and calculate the 493 

ensemble mean to predict the discharge and water stage at these two gauges. Figure 4 presents a 494 

comparison of simulated discharge (Figures 4a and, 4b) and water stage (Figures 4c and, 4d) with 495 

observations using both OL and our EnKF-based approach.  Figures 4a and 4c are the prior 496 

estimates of discharge and water stage, while Figures 4b and 4d show their posterior distributionss 497 

which that reflect the updated variables after assimilating the observations into the model. It is 498 

worth mentioning that although prior distributionss represent the results before assimilating new 499 

observations into the model, their values are dependent on the initial conditions updated from 500 

observations in the previous time step.  In this study, sSince forecasting (1-day lead time) is the 501 

main objective of DA-hydrodynamic modeling framework, we specifically focus on behavior of 502 

priors. As can be seen, the simulated peak discharge by the OL is highly overestimated by around 503 

200 cms m3/s while assimilating the observations improve the results so that their difference with 504 

observation is less than 50 m3/s cms at the peak of the flood (KGE =0.76 and RMSE=40.9 505 

m3/scms)).  In contrast, the simulated water stage in Figures 4c and 4d are underestimated by OL 506 

by around 2 meters at the peak. Compared to the OL, Using using the developed EnKF approach 507 

raises the peak of water stage at peak and reduces the errors significantly (KGE=0.96 and 508 

RMSE=0.5 m). The accurate estimates of prior discharge and water stage confirm the applicability 509 
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of the proposed assimilation framework in forecast mode when real-time flood warning and 510 

decision making is the priority. The NRR measure for the prior discharge and water stage are 1.17 511 

and 0.65, showing that the uncertainty bound is underestimated and overestimated, respectively. 512 

The reliability Reliability of both variables is above 70 percent since the uncertainty bounds 513 

encompass the observations for almost the entire simulation period.  514 

 515 

 516 

Figure 4 Simulation results of LISFLOOD-FP for the real experiment during Hurricane Harvey 517 

using the EnKF and open-loop. (a) Prior simulated discharge at gauge 1 (b) Posterior simulated 518 

discharge at gauge 1 (c) Prior simulated water stage at gauge 2 (d) Posterior simulated water 519 
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stage at gauge 2. The shaded areas represent the predictive interval of simulated discharge and 520 

water stage by EnKF. 521 

Figure 5 illustrates the prior and posterior distributions of discharge and water stage in the 522 

beginning, peak, and ending days of Hurricane Harvey flood. In all three days, the uncertainty 523 

bounds of both discharge and water stage are narrowed down by assimilating the observations so 524 

that posterior distributions are more precise compared to the priors. In the beginning and ending 525 

days (Aug 26 and Sep 1), the mean of prior distributions is substantially shifted toward truth in the 526 

posterior distributions. Figure 5 reveals that our developed approach provides more accurate and 527 

reliable posterior discharge and water stage distributions compared to prior distributions where the 528 

simulations are either overestimated or underestimated. It is noted that, on August 28 (day of flood 529 

peak), although the prior distributions accurately represent the observation, they have a wide 530 

uncertainty bound. After correcting/updating the model state variables and parameters, as posterior 531 

distributions show, the uncertainty bound is reduced while the ensemble mean remains closer to 532 

the observation.   533 
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 534 

Figure 5. Prior and posterior distribution of discharge (a,b,c) and water stage (c,d,f) at the 535 

beginning (Aug 26), peak (Aug 28), and ending (Sep1) days of Hurricane Harvey using the 536 

EnKF 537 

 538 

4.3 Probabilistic Flood Inundation Mapping 539 

In this studysection, we propose a DA-hydrodynamic modeling framework to account for the 540 

uncertainties involved in flood modeling and generate real-time probabilistic flood inundation 541 

maps. Since the majority of flooding conditions occurred within 6 six days from August 27-Sep 1, 542 

we display the spatial distribution of water depth in this period and provide probabilistic flood 543 
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inundation maps using both OL and our developed approach (see Figures 6 and 7). Figure 6 544 

represents the first three days of Harvey, which corresponds to the upper limb of the flood 545 

hydrograph. On August 27, the major difference between the OL and EnKF appears in the regions 546 

around the upstream of the lower channel where the EnKF provides a more reliable prediction of 547 

the inundated area. Moving toward the peak of flood on Aug 29, the OL generates a large region 548 

of uncertain cells around the banks of the upper channel, while both the extent and density of 549 

uncertain values in the probabilistic maps generated by the EnKF is smaller during the peak of 550 

Harvey. 551 

 552 

Figure 6 Probabilistic flood inundation maps generated by OL and EnKF techniques to simulate 553 

the upper limb of Harvey flood hydrograph from Aug 27 to Aug 29. 554 
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Figure 7 shows the probabilistic inundation areas in the last three days corresponding to the lower 555 

limb of the flood hydrograph. In this figure, tThe discrepancies between the OL and EnKF flood 556 

maps increase showing that performing DA is more effective in improving the inundation mapping 557 

skill from peak to ending point of the flood hydrograph. A large number of inundated cells 558 

generated by the OL are vanished after the peak of Harvey which results in a set of scattered 559 

discontinuous maps in Aug 31 and Sep 1. On the other hand, the probabilistic maps generated by 560 

the EnKF maintain their continuous shapes so that the probability of inundation is reduced without 561 

changing the extent. The merit of the EnKF in improving the flood inundation areas at the lower 562 

limb of the flood hydrograph agrees with results in Figures 4c and 4d where the EnKF widens the 563 

simulated water stage hydrographs and removes the lag difference that exists between the open-564 

loop and observations.  565 
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 566 

Figure 7 Probabilistic flood inundation maps generated by OL and EnKF techniques to simulate 567 

the lower limb of Harvey flood hydrograph from Aug 30 to Sep 1. 568 

Finally, to quantify the performance of EnKF and OL for generating a spatial distribution of water 569 

depth over the domain, we illustrate the ROC graphs, the AUC values, and Fit indices in Figure 8. 570 

To calculate these measures, we ignore the temporal distributions and only report the maximum 571 

inundation maps that represent the union of flooded areas over the entire period of Harvey. 572 

Comparing the EnKF and OL in Figure 8.a, the EnKF line (blue) is closer to the northwest of the 573 

rfp-rtp space where its AUC is 5% higher than the OL approach. In Figure 8.b, each point 574 

represents the Fit indices for the OL and the EnKF approaches corresponding to a given threshold. 575 

Using hundred number of100  thresholds that each rangingrange from [0.01,1], the probabilistic 576 
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maps are converted to 100 deterministic maps and the Fit indices are calculated. The position of 577 

scatters above the dash line confirms the EnKF outperforms the OL. In addition to these measures, 578 

the [UFI, OFI] indices calculated for OL and EnKF approaches are [30.3, 0.26] %, and [23.4, 579 

0.4]% respectively. The low values of OFI for both approaches (< 1%) show that the simulations 580 

mostly underestimate the flood inundation areas. In addition, comparing the indices of both 581 

approaches reveal that the EnKF reduces the overall underestimation by around 7%.  582 

 583 

Figure 8 The Receiver Operating Curves (ROC) indicating the performance of OL and EnKF 584 

techniques for probabilistic flood inundation mapping 585 

 586 

 587 
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5. Discussion and Conclusions 588 

The main motivation in this study is to propose a DA-hydrodynamic modeling framework for real-589 

time probabilistic flood inundation mapping. Considering the coarse spatiotemporal resolution of 590 

satellite data for capturing the water surface elevationWSE, assimilating them into the 591 

hydrodynamic models may not be a practical solution for an upcoming flood event. On the other 592 

hand, the availability of daily discharge and water surface elevationWSE data at gauge stations is 593 

a great opportunity to establish a multivariate DA-hydrodynamic modeling framework that updates 594 

the initial condition of modeling at daily scale and forecast the flood inundation areas at 1 day lead 595 

time.  Here, we used the EnKF data assimilation method in conjunction with a hydrodynamic 596 

model to account for different sources of uncertainties involved in different layers of model 597 

simulations, including the boundary conditions, model parameters, and initial condition,  and 598 

generate real-time probabilistic flood inundation maps . To further enhance the performance of the 599 

developed framework, the discharge and water stage at two different gauges are simultaneously 600 

assimilated into the LISFLOOD-FP model. The multivariate EnKF approach considers the 601 

correlation between discharge at two gauges and between discharge and water surface 602 

elevationWSE at one gauge using a modified covariance matrix and Kalman gain equation.  603 

In the synthetic experiment, we examined the convergence of model parameters toward truth and 604 

found that the proposed DA-hydrodynamic modeling framework can be successfully used to 605 

improve the accuracy and reliability of model predictions while accounting for uncertainties 606 

associated with model parameters. The channel roughness coefficient varied more  rapidly than 607 

the bathymetry during the temporal evolutions of these parameters showing the better 608 

idenmtifiability of this parameter. The validation results of the real experiment revealed that the 609 

assimilation with the EnKF approach improves the model predictions at across temporal and 610 
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spatial scales (i.e., discharge and water stage time series at gauges and flood maps showing the 611 

maximum water depth over the simulation period). These improvements are more pronounced 612 

during the falling limb of the flood hydrograph where the EnKF widens the simulated hydrograph 613 

and removes the existing lag compared to the observations. Similarly, the simulated flood 614 

inundation maps confirm that the OL provides discontinuous scattered maps during the flood 615 

recession period while the EnKF provides a more accurate representation of the inundation areas. 616 

The validation results also demonstrate that the EnKF reduces the underestimation by 7% and 617 

outperformed the OL approach by around 5% for probabilistic flood inundation mapping. 618 

For real-time flood inundation mapping, timely decision making is of paramount importance. The 619 

time between the issuance of the warning and the occurrence of the flood is typically a short period 620 

less than a day. Additionally, the flood waves propagate, inundate the affected regions and cause 621 

damages rapidly. Thus, the main requirement for real-time probabilistic inundation mapping is to 622 

develop a fast and efficient modeling framework that is beneficial for decision makers and 623 

emergency managers. Considering the high computational expense of hydrodynamic models and 624 

the need for generating a multitude of simulations in the probabilistic fashion, this study uses a 625 

coarse resolution 120m DEM to maintain the efficiency of the modeling and meet the requirements 626 

for practical benefits. In this study, the DA-hydrodynamic modeling framework is executed on the 627 

University of Alabama High Performance Computing (UAHPC) cluster. Considering the 628 

ensemble size of 100, we submit a job array with 100 cores where each core is assigned to a specific 629 

member of the DA-hydrodynamic modeling simulation.  The efficient hydrodynamic model setup 630 

with coarse resolution DEM helps to simulate the Harvey and generate probabilistic results in 4-5 631 

hours (~ 4 hours for the hydrodynamic simulation and ~20 minutes for the DA).  Applying this 632 

computationally efficient framework is highly beneficial, specially for the emergency response 633 
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agencies (e.g. FEMA), insurance companies, Water Centers, and other private companies that need 634 

to forecast the inundation areas and take timely decisions a few hours before the onset of floods.  635 

(Savage et al., 2016) 636 

To simulate flood hazards during the emergency of an upcoming flood event, using an efficient 637 

flood modeling framework is of paramount importance 638 

.The coarse DEM used in this study cannot perfectly represent the watershed topography and 639 

bathymetry, and can be the main reason for the underestimation of inundation areas (F index less 640 

than 80%). Savage et al., (2016) investigated the impacts of DEM resolution on the accuracy and 641 

efficiency of probabilistic flood inundation maps generated with the LISFLOOD-FP model. They 642 

demonstrated that models with resolution less than 50 offer little gain in performance yet are more 643 

than an order of magnitude computationally expensive which can become infeasible when 644 

undertaking probabilistic analysis. They also found that the reliability of flood maps deteriorates 645 

at resolutions coarser than 100 m. Considering the medium scale of our study (> 100 km river) 646 

compared to the reach scale (~10 km river) of the work by Savage et al., (2016), here we slightly 647 

increased their suggested threshold for the DEM and demonstrated that the accuracy of results is 648 

still acceptable. 649 

 However, a simplified model setup (i.e. using coarse resolution DEM,The simulation of an 650 

extreme flooding condition such as Hurricane Harvey with a simplified model setup (i.e. using a 651 

coarse DEM, assuming uniform roughness coefficient for channel and floodplain, and estimating 652 

bathymetry by lowering DEM with one parameter)) for efficient flood modeling is prone to losing 653 

accuracy. Particularly, for an extreme flooding condition such as Hurricane Harvey, the simplified 654 

modeling may pose significant errors. The results obtained from the simulation of the real 655 
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experiment demonstrated that, despite using a simplified efficient modeling setup, we can still 656 

simulate the discharge, water stage, and inundation areas for an extreme flood event with an 657 

acceptable accuracy while accounting for uncertainties involved in model predictions. This shows 658 

that assimilating the gauge data into a simplified model setup improves the accuracy, and provides 659 

an efficient probabilistic framework for real-time flood inundation mapping that considers 660 

potential sources of uncertainties in different layers of modeling.  661 

The time dependency that exists between the upstream and downstream gauges along a channel 662 

can affect the performance of multivariate assimilation with those gauges. For future studies, using 663 

a more advanced DA technique that fully characterizes the model structural uncertainty 664 

(Abbaszadeh et al., 2019), and considering the time lag dependency between multiple gauges can 665 

improve the performance of modeling and provide more realistic assimilation of the hydrodynamic 666 

models. Another limitation of this study is the simple assumptions made for perturbing the initial 667 

condition (water depth), parameters (channel roughness and river bathymetry) and observations 668 

(WSE and discharge). More investigation on the physically meaningful distribution of these values 669 

can enhance the performance of the DA-hydrodynamic modeling framework in future studies. A 670 

joint assimilation of point source gauges and remotely sensed data can also improve the reliability 671 

and accuracy of the results. Finally, proposing a DA-hydrodynamic modeling framework that 672 

considers the DEM and channel width uncertainty can provide a more comprehensive uncertainty 673 

quantification for probabilistic flood inundation mapping in future studies.  674 

An advantage of the proposed DA-hydrodynamic modeling framework is its generic format so that 675 

other studies can follow the flowchart in Figure. 2 and use information in Section 3.2 and 3.3 to 676 

set up the hydrodynamic model and the EnKF algorithm, respectively. To properly apply this 677 

framework to other studies, first, the point source observations of WSE and discharge should be 678 
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available at daily/sub-daily scales. In other words, the proposed framework cannot be implemented 679 

in ungauged basins.  Second, the modeler should have access to high performance computing 680 

facilities for parallel simulation of ensemble members. Third, the hydrodynamic model should be 681 

sequentially executed within the DA algorithm. The modeler should check the hydrodynamic 682 

model manual and make sure that the outputs and initial conditions can be upgradated in a 683 

sequential manner. Taking these three considerations into account, the proposed DA-684 

hydrodynamic modeling framework can be applied to any other study areas that are prone to 685 

frequent flooding and provide a robust and generic tool for real-time probabilistic flood inundation 686 

mapping.  687 
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