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Abstract. Environmental tracers have been used to separate streamflow components for many years. They allow to quantify 

the contribution of water originating from different sources such as direct runoff from precipitation, subsurface stormflow or 10 

groundwater to total streamflow at variable flow conditions. Although previous studies have explored the value of 

incorporating experimentally derived fractions of event and pre-event water into hydrological models, a thorough analysis of 

the value of incorporating hydrograph separation derived information on multiple streamflow components at varying flow 

conditions into model parameter estimation has not yet been performed. This study explores the value of such information to 

achieve more realistic simulations of catchment discharge. We use a modified version of the process-oriented HBV model that 15 

simulates catchment discharge through the interplay of hillslope, riparian zone discharge and groundwater discharge at a small 

forested catchment which is located in the mountainous north of South Korea subject to a monsoon season between June and 

August. Applying a Monte Carlo based parameter estimation scheme and the Kling Gupta efficiency (KGE) to compare 

discharge observations and simulations across two seasons (2013 & 2014), we show that the model is able to provide accurate 

simulations of catchment discharge (KGE ≥ 0.8) but fails to provide robust predictions and realistic estimates of the 20 

contribution of the different streamflow components. Using a simple framework to incorporate experimental information on 

the contributions of hillslope, riparian zone and groundwater to total discharge during four sub-periods, we show that the 

precision of simulated streamflow components can be increased while remaining with accurate discharge simulations. We 

further show that the additional information increases the identifiability of all model parameters and results in more robust 

predictions. Our study shows how tracer derived information on streamflow contributions can be used to improve the 25 

simulation and predictions of streamflow at the catchment scale without adding additional complexity to the model. The 

complementary use of temporally resolved observations of streamflow components and modelling provides a promising 

direction to improve discharge prediction by representing model internal dynamics more realistically. 
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1 Introduction 

At many catchments, particularly in temperate regions, subsurface stormflow (SSF) is an important event-scale mechanism of 

streamflow generation (Bachmair and Weiler, 2011; Barthold and Woods, 2015; Blume et al., 2016; Chifflard et al., 2019). 

SSF often occurs at hillslopes with contrasting soil hydraulic properties within the soil profile favouring lateral flow rather 

than vertical percolation of infiltrating waters or where rising groundwater levels reach more permeable layers of the soil 5 

("transmissivity feedback mechanism", see Bishop et al., 1990). Previous work has shown that SSF can be an important 

component of runoff generation at the catchment scale (Zillgens et al., 2007), adding to flood generation (Markart et al., 2015), 

or nutrient and contaminant transport (Zhao et al., 2013). The experimental investigation of SSF requires intensive 

instrumentation, and therefore only few studies have attempted to directly measure SSF on natural hillslopes (Du et al., 2016; 

Freer et al., 2002; Tromp-Van Meerveld and McDonnell, 2006; Woods and Rowe, 1996). If direct field observations of SSF 10 

are not possible, sampling and characterizing subsurface water using tracers (soil water, shallow groundwater) can be a way 

forward to evaluate the relevance of SSF for streamflow generation. The tracer signatures of different water source areas or 

flow pathways (also called end-members) are used to compute in a mass balance approach the potential relative contributions 

of the sampled water sources required to result in the observed tracer signals in streamflow. Other than early approaches that 

split streamflow into event and pre-event water (Kendall et al., 2001; Sklash et al., 1979),  these approaches rely on the 15 

assumption that streamflow is a mixture of distinct water sources within the catchment. This hydrograph separation technique 

and more advanced multivariate statistical tools for comprehensive data sets, such as the End Member Mixing Analysis 

employing a principal component analysis, have extensively been used in streamflow generation studies (Brown et al., 1999; 

Burns et al., 2001; Christophersen and Hooper, 1992; Inamdar et al., 2013). However, the initiation, pathways, residence times, 

quantity, or spatial origin of SSF in various landscapes are still poorly understood. Due to this lack of a general understanding 20 

of the occurrence of and controls on SSF, only few modelling studies focus on the realistic simulation of SSF (Appels et al., 

2015; Chifflard et al., 2019; Hopp and McDonnell, 2009).  

Conceptual models lump together the spatial heterogeneity of hydrological properties of entire catchments or hydrotopes while 

still considering dominant hydrological processes (Wagener and Gupta, 2005). Different streamflow components and 

catchment internal fluxes are usually represented by the outflows of simple or modified linear reservoirs: For instance the HBV 25 

model (Hydrologiska Byrans Vattenavdelning, Lindström et al., 1997; Seibert and Vis, 2012) represents the interplay between 

subsurface stormflow and groundwater by a shallow groundwater reservoir with two outlets. When below a predefined 

threshold, only one outlet provides discharge to the stream. But when exceeding the threshold, the more dynamic second outlet 

releases additional water, which is one way of representing the “fill and spill” dynamics of SSF observed by Tromp-Van 

Meerveld and McDonnell (2006). A similar procedure is used in the TOPMODEL (Beven and Kirkby, 1979; Clark et al., 30 

2008) or the Precipitation Runoff Modeling System (PRMS, Leavesley et al., 1983; Markstrom et al., 2015) that uses a 

threshold to initiate subsurface stormflow (referred to by “preferential flow” in the model’s manual). Physically-based models 

usually discretize the catchment into a grid of rectangular or triangular cells and apply physical equations, e.g., Richard’s 

https://doi.org/10.5194/hess-2021-179
Preprint. Discussion started: 28 May 2021
c© Author(s) 2021. CC BY 4.0 License.



3 

 

equation or the groundwater flow equations, on each of them individually. That way they provide spatially distributed 

information on the flow and storage behaviour of the simulated catchments. Similar to conceptual models, many physically 

based models consider to contributions of different streamflow components to total catchment discharge. For instance, the 

WaSiM-ETH model (Schulla and Jasper, 2007) considers subsurface stormflow by calculating interflow from hydraulic 

conductivity, river density, soil moisture and the matric potential. The SWAT model (Neitsch et al., 2011) uses a kinematic 5 

storage model to consider interflow, or the LARSIM model (Bremicker, 2000) uses the saturation deficit of the soil and a 

lateral drainage parameter to calculate subsurface stormflow. 

In order to represent SSF correctly within conceptual and physically based models, the model parameters controlling the 

initiation and rate of SSF have to be estimated. However, in most of the model applications, little information about SSF model 

parameters is available and modellers have to rely on inverse parameter assessment approaches (Vrugt et al., 2008). Due to 10 

the limited information content of discharge (Wheater et al., 1986; Ye et al., 1997), the distinction of model internal lateral 

flow paths like surface runoff, SSF, groundwater, etc., remains uncertain (Seibert and McDonnell, 2002). Previous work 

already used field observations in addition to discharge to confine model parameters and simulated processes using, for 

instance, hydrochemical information (Hartmann et al., 2017; Kuczera and Mroczkowski, 1998) and water isotopes (Hartmann 

et al., 2013; Son and Sivapalan, 2007; Sprenger et al., 2015). In a multi-objective approach, Seibert and McDonnell (2002) 15 

showed that the inclusion of groundwater observations and discontinuous observations of event water contributions derived 

from hydrograph separation allowed for an improved confinement of simulated processes. However, a detailed analysis of the 

usefulness of incorporating more detailed information of experimentally derived streamflow components is, to our knowledge, 

not yet available. 

This study explores the value of experimentally derived streamflow components to identify the increase in accuracy of 20 

simulated streamflow components at the catchment scale. We use a modified version of the process-oriented HBV model and 

Monte Carlo based parameter estimation framework to (1) obtain acceptable simulations of total streamflow at the catchment 

outlet and (2) incorporate experimentally derived information on the contributions of the hillslope, riparian zone and 

groundwater to total streamflow into model parameter estimation. By iteratively adding this information to the parameter 

estimation, we can quantify the impact of the additional data on parameter identifiability and on the uncertainty of discharge 25 

simulations during variable flow conditions. We apply our approach at a well-instrumented test site in the monsoonal 

mountainous north of South Korea during two consecutive seasons. 

2 Test catchment: site characteristics, measurements and hydrograph separation results 

Our test catchment is located in a mountainous area in the northeast of South Korea (N38.2051°, E128.1816°). The forested 

headwater catchment has an area of ~16 ha, with elevations ranging from 368 to 682 m a.s.l. and a mean slope of 24° (Lee et 30 

al., 2016). Its soils consist mostly of cambisols with a loamy texture and an average thickness of 0.6 m. A deciduous stand 

dominates at elevations above 450 m (61% of the entire area), whereas lower elevations are dominated by a coniferous stand 
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(39% of the entire area). Precipitation data in daily resolution from a weather station of the Korea Meteorological 

Administration (station no. 594, located approx. 3 km northeast of the study site; https://www.kma.go.kr) was obtained for the 

years 2013 and 2014. In addition, monthly precipitation data from this station was available for the period 1997-2012. South 

Korea experiences the East Asian summer monsoon during the months June, July and August (JJA). Mean annual precipitation 

was 1273 mm (1997-2014), with on average 60% of it occurring from June through August. In 2013, annual precipitation was 5 

1313 mm (JJA: 897 mm), whereas 2014 was much drier with an annual precipitation of 699 mm (JJA: 364 mm). 

Discharge was measured at the outlet of the catchment during 2013 and 2014 (Fig. 1). In 2013 among others, throughfall, 

streamflow at the catchment outlet, hillslope soil water (20 to 40 cm depth, sampled with suction lysimeters) and riparian zone 

soil water (20 to 40 cm depth, sampled with suction lysimeters) were sampled regularly between early June and mid-August 

(for detailed information on methodology please refer to Payeur-Poirier, 2018). A range of geochemical tracers (calcium, 10 

magnesium, nitrate, sulphate), electrical conductivity EC and δ2H were analysed in the water samples. These were used for a 

simple three-component two-tracer hydrograph separation. As overland flow was not observed during the field work and also 

direct channel interception was considered to be negligible, we defined three end members, i.e. three water sources potentially 

contributing to streamflow: hillslope soil water, riparian zone soil water, and groundwater (streamflow hydrochemical 

signature before the onset of the monsoon, i.e. baseflow). The general procedure of hydrograph separation relies on several 15 

assumptions: (1) streamflow can be described as a linear mixture of the end members, (2) the end members have characteristic 

and differing tracer concentrations, i.e. typical signatures, (3) end member concentrations are time-invariant, and (4) tracers 

behave conservatively (Hooper et al., 1990). Various pairings of the six tracers were explored using bivariate plots, where the 

concentrations of two tracers in the end members and streamflow are plotted against each other. If streamflow can be well 

described by a mixture of the three selected end members, streamflow concentrations will fall within the bounds of the triangle 20 

that is created by the tracer concentrations of the three end members. Mixing ratios between the three selected end members 

were calculated using mass balances for water and the two tracers: 

 

1 =  𝑓1 + 𝑓2 + 𝑓3                                                                                                                                                                 

𝑐𝑠1 = 𝑓1𝑐11 + 𝑓2𝑐21 + 𝑓3𝑐31                                                                 (1) 25 

𝑐𝑠2 = 𝑓1𝑐12 + 𝑓2𝑐22 + 𝑓3𝑐32                                                            

 

Where csj means concentration of tracer j in streamwater, cij is concentration of tracer j in end member i, and fi is fractional 

contribution of end member i to streamflow. By rearranging these three equations, the three unknowns f1, f2 and f3 can be 

determined. 30 

The analysis of the end member tracer concentrations revealed that end member concentrations varied over time, i.e. 

assumption (3) was not met. Based on the temporal behaviour of the end member concentrations, weekly precipitation amounts 

and the discharge response, we delineated four periods over the course of the sampling period, for which we calculated mean 

end member concentrations: baseflow (pre-monsoon), wet-up, main monsoon, and drying-up. In the following text, these 
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periods are called the “monsoon periods”. We used these mean end member concentrations for calculating mixing ratios. By 

performing the hydrograph separation for individual periods, we tried to account for the time-variant behaviour of end member 

signatures (see for an early example Ogunkoya and Jenkins, 1993). The tracer pairs Mg/EC, NO3/Mg and Ca/δ2H all resulted 

in very similar mixing ratios per monsoon period, and we report in Table 1 the mean of calculated mixing ratios from these 

three pairings per monsoon period. Per our definition, pre-monsoon, i.e. baseflow, streamflow concentrations were used as 5 

proxy for groundwater; therefore, during the pre-monsoon period, groundwater constitutes 100% of streamflow. During the 

subsequent monsoon periods, however, the change in mixing ratios indicates that the relative contribution of water from the 

hillslopes and the riparian zones to streamflow increased markedly for the main monsoon and drying-up period. 

Table 1: Relative contributions to streamflow (based on three-component hydrograph separation) of groundwater, hillslope soil 

water, and riparian zone soil water during baseflow (09.06.-22.06.2013), wet-up (23.06.-06.07.2013), main monsoon (07.07.-10 
27.07.2013) and drying-up (28.07.-17.08.2013) of the 2013 monsoon season.  

Streamflow component Baseflow Wet-up Main monsoon Drying-up 

Groundwater FGW [%] 100 100 50 38 

Hillslope soil water FSSF [%] 0 0 40 47 

Riparian zone soil water FRZ [%] 0 0 10 15 

 

 

Figure 1: Location and detailed map of the test catchment and sampling setup. 
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3 Methods 

We used a process-based lumped model to simulate the storage and flow dynamics of the hillslope, the riparian zone and the 

groundwater for different periods of the 2013 monsoon season by separate subroutines. We used a Monte Carlo approach to 

create 2,000,000 simulation time series, which we iteratively confined using performance criteria of discharge and the mixing 

ratios estimated by tracer-based three component hydrograph separation (Table 1). At each step, we quantify the sensitivity of 5 

model parameters to learn about the information content of the discharge observations and hydrograph separation results 

considered in the confinement procedure. We finally compare the uncertainty of the simulated streamflow components with 

and without using the hydrograph separation results and, using independent discharge observations of the 2014 monsoon 

season, quantify how much the inclusion of experimentally derived streamflow components can reduce prediction uncertainty. 

3.1 The model 10 

We use a modified version of the HBV model (Beck et al., 2010; Seibert and Vis, 2012). The model was modified to include 

the riparian zone similar to Seibert et al. (2003) and simplified by removing the snow routine and considering only two 

reservoirs that simulate the contributions of the hillslope, the riparian zone and groundwater to total discharge with eight model 

parameters (Figure 2, Table 2). The first storage receives all precipitation [mm/d] and calculates actual evapotranspiration 

[mm/d] from potential evaporation [mm/d] (Penman-Wendling approach, DVWK, 1996; Wendling et al., 1991) by 15 

multiplication with an evaporation factor fEvap [-] (0 ≤ fEvap ≤ 1): 
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S
Evap
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tV
tf


           (2) 

with VS [mm] as the soil storage at time t, FC [mm] the field capacity, and LP [-] as an evaporation shape factor. A wetness 

factor fWet derived from soil saturation and a shape factor  [-] determines the fraction of precipitation that percolates through 

the soil:  20 
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The remaining part of precipitation [1 - fwet(t)] is added to the soil storage. Soil percolation is added to the water stored in 

reservoir one, V1(t) [mm], which is drained by groundwater discharge QGW [mm/d] and hillslope discharge (sometimes referred 

to by subsurface storm flow or interflow) QHS [mm/d] when a maximum groundwater storage UGW [mm] is exceeded: 

 
 

GW

GW
K

tV
tQ 1            (4) 25 

𝑄𝐻𝑆(𝑡) = {
𝑉1(𝑡)−𝑈𝐺𝑊

𝐾𝐻𝑆

0

    𝑖𝑓 𝑉1(𝑡) ≥ 𝑈𝐺𝑊

    𝑖𝑓 𝑉1(𝑡) < 𝑈𝐺𝑊
       

 (5) 
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where KGW [d] and KHS [d] are the storage constant of the groundwater and the hillslope, respectively, and UGW [mm] is the 

maximum groundwater storage. Hillslope discharge is fed into reservoir two, which represents the riparian zone until riparian 

zone storage V2(t) exceeds it maximum capacity URZ [mm]. Discharge of the riparian is therefore defined as 
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        (6) 

Catchment discharge is obtained by summarizing over QGW, QHS and QRZ at each time t and rescaling them to [m³/s] using the 5 

catchment area (16 ha). Re-scaling the catchment discharge for each time step t, we can express each streamflow component 

in [%]. Similar to preceding work that compared simulated and tracer derived streamflow contributions (Robson et al., 1991, 

1992), we can now compare the model’s simulations to the results of the streamflow separation analysis (section 2). 

 

 10 

Figure 2: Structure of the modified HBV model. The three components hillslope, riparian zone and groundwater sum up to total 

catchment discharge. 

The model operates at a daily temporal resolution to simulate the monsoon seasons of 2013 and 2014 after a warm-up period 

of 3.5 years. Precipitation data from a nearby meteorological station of the Korean Meteorological Administration (see section 

2) and from a global product (Global Land Data Assimilation System GLDAS, Rodell et al., 2004), corrected with the 15 

observations from the local weather station, were used to complete the missing observations before the 2013 monsoon season 

and between the two monsoon seasons. Since reliable hydrograph separation results are only available for the 2013 monsoon 
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season, we use this year for model calibration, while we use the monsoon season of 2014, when only discharge observations 

are available, for the validation of the model. 

3.2 Step-wise parameter estimation and quantification of information content of observations 

Similar to the Generalized Likelihood Uncertainty Estimation (GLUE) framework (Beven and Binley, 1992), we use a “soft 

rules” approach to estimate model parameters and their sensitivities that allows the consideration of different types of 5 

observations (Chang et al., 2020; Hartmann et al., 2017; Sarrazin et al., 2018). We apply a Monte Carlo parameter sampling 

to obtain 2,000,000 model realisations derived by uniform sampling of model parameters within their predefined ranges (Table 

2). For each run, we calculate the model performance concerning observed catchment discharge by the Kling Gupta efficiency 

KGEQ (Gupta et al., 2009), that indicates flawless simulations with a value of one and simulations worse than the simple 

average of the observations with a value of -0.41 (Knoben et al., 2019), and the deviation of observed and simulation 10 

contributions of groundwater FGW [%] and midslope discharge FHS [%] over all four monsoon periods defined in Table 1. In a 

three-step procedure, we remove those model realisations that perform poorly against discharge or streamflow component 

observations with rather soft thresholds for FGW and FHS to account for the comparably large uncertainties of multi-component 

streamflow separation (Genereux, 1998).  

 15 

1. We reduce the sample by discarding all simulations that perform badly in terms of observed total streamflow by 

removing all simulations with KGEQ < 0.8.  

2. We further reduce the sample be removing all simulations whose FHS show more than 20% deviation compared to the 

hydrograph separation estimates.  

3. We further reduce the sample be removing all simulations whose FGW show more than 20% deviation compared to 20 

the hydrograph separation estimates. Since the contributions of the hillslope, groundwater and the riparian zone sum 

up to 100%, riparian zone contributions are implicitly considered in this last step. 

 

To quantify the information content provided through adding more and more information along the three parameter 

confinement steps, we quantify the strength of reduction of the initial sample of 2,000,000 and the change of the distribution 25 

of each model parameter at each individual step. If discharge observations or one of the hydrograph separation streamflow 

components has a high information content, a strong decrease of the initial sample and a substantial change of a large number 

of model parameters should be found.  

3.3 Quantification of uncertainty of simulated model internal fluxes and discharge  

We quantify simulation uncertainty of discharge by the mean and standard deviations of KGEQ, obtained by using only 30 

observed discharge or both observed discharge and the hydrograph separation results for parameter confinement for the 

calibration period in 2013 and the validation period in 2014. Similarly, to quantify the simulation uncertainty of simulated 

https://doi.org/10.5194/hess-2021-179
Preprint. Discussion started: 28 May 2021
c© Author(s) 2021. CC BY 4.0 License.



9 

 

internal fluxes (hillslope discharge, groundwater discharge and riparian zone discharge), we compare their simulated means 

and standard deviations, that were obtained by using only observed discharge or by both observed discharge and the hydrograph 

separation results for parameter confinement, with the hydrograph separation derived streamflow components during the four 

time periods of the 2013 sampling period. We do the same for the 2014 monsoon season but since there are no reliable 

hydrograph separation results available for this year, we only analyse the simulated mean and standard deviation of the 5 

simulated streamflow contributions for both calibrations. If the hydrograph separation derived from streamflow components 

provides new information for parameter estimation, it will result in a reduction of uncertainty of simulated fluxes and 

discharges in both years, and an increase of KGEQ of the 2014 predictions should be found.  

4 Results 

4.1 Step-wise parameter estimation and quantification of information content of observations 10 

When iteratively applying the three rules for parameter confinement, we observe a substantial decrease of the initial sample of 

2,000,000 parameter sets (Figure 3). Extracting only those with KGEQ ≥ 0.8 reduces the sample to less than 10% (137,137 

parameter sets left). Adding the observed streamflow components to the calibration procedure results in a further reduction of 

the sample. Discarding all parameter sets that deviate more than 20% from the observed hillslope contributions, results in 555 

remaining parameter sets and in 29 parameter sets when the groundwater contributions (implicitly the riparian zone 15 

contributions, too) are finally added. Despite being only average values over the four sub-periods of the 2013 sampling period, 

the incorporation of the hydrograph separation derived streamflow contributions results in a reduction by more than three 

orders of magnitude, while the discharge observations, although using a high value of 0.8 of the KGEQ criterion, only reduced 

the sample by slightly less than one order of magnitude.  
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Figure 3: Iterative reduction of the initial sample of 2,00,000 parameter sets using the KGEQ and hydrograph-separation derived 

streamflow contributions for the individual years 2013 and 2014, as well as for both years together 

The influence of the parameter confinement procedure using observed discharge and streamflow components is also visible 

through the changes of the distribution of each of the parameters occurring at each of the confinement steps (Figure 4). When 5 

only discharge is considered in the first step of the confinements (KGEQ ≥ 0.8), some model parameter distributions shift away 

from the mean of the normalized range, e.g. LP, KHS, or KGW, but only one of them, FC, shows a confinement of its 25th and 75th 

percentile, which indicates a reduction of uncertainty. When the sample is further confined by the observed streamflow 

contributions of the hillslope, a few more parameters shift away from the mean, e.g.  and UGW, but three more parameters, 

KHS, KGW and KRZ, show confined uncertainties. When finally adding the groundwater contributions (and implicitly the riparian 10 

zone contributions), all model parameters show a clear shift of their distributions away from the mean, for most of them going 

along with a reduced uncertainty indicated by narrowing 25th and 75th percentiles. We find the same results when calculating 

the mean and standard deviations of the model parameters for the confinement by discharge only and the confinement by 

discharge and the observed streamflow contributions (Table 2). 

Table 2: Parameters of the modified HBV model, description, units, and boundaries for parameter estimation (see below), and the 15 
model performances and simulated streamflow components for the four delineated monsoon periods (see Table 1) when confining 

the initial parameter sample by discharge only, and by discharge and observed streamflow contributions for the calibration in 2013 

and the validation in 2014 

 
Parameter Description Unit 

Lower 
boundary 

Upper 
boundary 

KGEQ ≥ 0.8 
FGW & FHS ± 

20% 

  Shape factor [-] 1 10 5.6 ± 2.6 4.9 ± 2.6 

 FC Maximum storage in hillslope soil [mm] 0 250 98.2 ± 58.2 54.5 ± 59.3 

 LP Threshold for reduction of evaporation [-] 0.3 1 0.7 ± 0.2 0.7 ± 0.2 

 log10 KHS Recession coefficient (hillslope) [d-1] -5 0 -1.4 ± 1.5 -0.3 ± 0.1 

 log10 KGW Recession coefficient (groundwater) [d-1] -5 0 -1.6 ± 1.7 -1.6 ± 0.5 

 UGW Maximum groundwater storage [mm] 0 250 114.6 ± 68.4 100 ± 74.6 

https://doi.org/10.5194/hess-2021-179
Preprint. Discussion started: 28 May 2021
c© Author(s) 2021. CC BY 4.0 License.



11 

 

 log10 KRZ Recession coefficient (riparian zone) [d-1] -5 0 -2.6 ± 1.5 -1.6 ± 0.7 

 URZ Maximum riparian zone storage) [mm] 0 100 48.2 ± 28.9 36.9 ± 22.9 
        

2
0

1
3

 

KGEQ model performance concerning discharge [-]  ∞ 1 0.84 ± 0.02 0.82 ± 0.02 
FGW,BF simulated groundwater contribution during baseflow [-] 0 1 0.74 ± 0.35 0.97 ± 0.06 
FGW,WU simulated groundwater contribution during wet-up [-] 0 1 0.74 ± 0.38 0.99 ± 0.03 
FGW,,MM simulated groundwater contribution during main monsoon [-] 0 1 0.59 ± 0.46 0.36 ± 0.03 
FGW,DU simulated groundwater contribution during drying-up [-] 0 1 0.61 ± 0.45 0.46 ± 0.08 
FHS,BF simulated hillslope contribution during baseflow [-] 0 1 0.01 ± 0.07 0.00 ± 0.00 
FHS,WU simulated hillslope contribution during wet-up [-] 0 1 0.11 ± 0.28 0.00 ± 0.00 
FHS,MM simulated hillslope contribution during main monsoon [-] 0 1 0.33 ± 0.42 0.57 ± 0.03 
FHS,DU simulated hillslope contribution during drying-up [-] 0 1 0.27 ± 0.39 0.32 ± 0.04 
FRZ,BF simulated riparian contribution during baseflow [-] 0 1 0.25 ± 0.34 0.03 ± 0.06 
FRZ,WU simulated riparian contribution during wet-up [-] 0 1 0.14 ± 0.28 0.01 ± 0.03 
FRZ,MM simulated riparian contribution during main monsoon [-] 0 1 0.08 ± 0.2 0.07 ± 0.03 
FRZ,DU simulated riparian contribution during drying-up [-] 0 1 0.11 ± 0.26 0.21 ± 0.09 

                       

2
0

1
4

 KGEQ model performance concerning discharge [-]  ∞ 1 -0.98 ± 1.54 0.02 ± 0.39 
FGW,MS simulated groundwater contribution monsoon season* [-] 0 1 0.75 ± 0.28 0.87 ± 0.09 
FHS,MS simulated hillslope contribution during monsoon season* [-] 0 1 0.04 ± 0.1 0.02 ± 0.01 
FRZ,MS simulated riparian contribution monsoon season* [-] 0 1 0.21 ± 0.25 0.11 ± 0.09 

               

 * from 01.04.2014 to 30.09.2014 (same as in Figure 5h)      
 

 

Figure 4: Initial parameter distribution and their modification along the three parameter estimation steps for the individual years 

2013 and 2014, as well as for both years together. Boxes indicate the range between the 25th and 75th percentile, lower and upper 

whiskers show the 5th and 95th percentile, respectively.  5 

4.2 Quantification of uncertainty of simulated model internal fluxes and discharge 

Using only KGEQ ≥ 0.8 to confine the parameter sample, an average KGEQ of 0.84 with a relatively low standard deviation of 

0.02 is found for the calibration period in 2013 (Table 2), which also results in an acceptable visual agreement between 

simulations and observations (Figure 5g). Adding the observed streamflow contributions to the parameter confinement results 

in a similar mean KGEQ (0.82), standard deviation (0.02), and visual agreement. However, when looking at the simulated 10 

streamflow contributions of the calibration by discharge only, we find that the standard deviations are large compared to the 

mean simulated contributions of groundwater, hillslope discharge and riparian zone discharge across all four monsoon periods 

(Table 2). Visualizing the entire range of their uncertainties (Figure 5a,c,e), we can see that simulated groundwater and riparian 
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zone contribution could range from 0% to 100%. The same is true for the hillslope contributions during wet-up, main monsoon 

and drying up. Only during drier periods, hillslope contributions to discharge are limited and sometimes fall down to 0%. 

Adding the observed streamflow contributions to the parameter confinement reduces the simulation uncertainty of all three 

streamflow components for the four monsoon periods in 2013 as indicated by their strongly reduced standard deviations in 

Table 2 and by the narrower ranges around the observations of their simulations in Figure 5a,c,e. The strong dominance of the 5 

groundwater streamflow component during the baseflow and wet-up periods is well represented, as well as the onset of 

hillslope discharge during the main monsoon and the drying period, when the contributions of the riparian zone to streamflow 

gradually increase. The simulations also indicate that hillslope discharge mostly replaces groundwater in the main monsoon 

and the drying up, while before and after the monsoons season, streamflow is comprised by an interplay of groundwater and 

riparian zone discharge. The comparison of simulations and observations also indicates that strong variations of streamflow 10 

components occur even within the monsoon periods, especially during the main monsoon and the drying-up (Figure 5a,c,e). 
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Figure 5: Simulated time series of groundwater discharge, subsurface stormflow, riparian zone discharge, and total catchment 

discharge (bottom to top) by using discharge (KGEQ) only and by using FSSF and FGW during both years for parameter estimation.  
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During the validation in 2014, simulation performance of discharge decreases for both calibration steps, including discharge 

observations only and including observed discharge and streamflow components (Table 2). Using only discharge observations, 

a very poor simulation quality (KGEQ=-0.98) is found with a standard deviation of 1.54 indicating a very high simulation 

uncertainty. When using both, discharge and streamflow components for calibration, a much better performance is found 

(KGEQ=0.02), which is well above the KGE that would be obtained when using just the average observations to predict 5 

discharge (-0.41) and which has a much smaller simulation uncertainty indicated by a standard deviation of 0.09, which is 

confirmed when comparing simulated and observed time series (Figure 5h). Although there are no observations of the 

streamflow components available for the validation year 2014, we can still see that the simulation uncertainty of all three 

components indicated by their standard deviations is generally high over the whole simulation period when only discharge is 

used for calibration and reduced by more than a third when the stream contributions are considered in the calibration (Table 10 

2). Similar to the calibration year 2013, we see that the interplay between groundwater and the riparian zone is much better 

defined and that the short but pronounced initiation of hillslope discharge is much better represented when both observed 

discharge and stream flow components are used for calibrations (Figure 5b,d,f). 

5 Discussion 

5.1 Realism of model simulations 15 

We use a simple approach to incorporate streamflow contributions derived from environmental tracers into our simulation 

approach that compares simulated streamflow contributions and tracer-derived streamflow contributions instead of simulating 

tracer transport directly. That way, no additional uncertainty was introduced due to additional model parameters to consider 

transport (Birkel and Soulsby, 2015). Despite its simple structure, the model easily achieves performances of KGE ≥ 0.8 with 

more than 130,000 parameter sets (out of initially 2,000,000, Figure 2) indicating adequateness of its structure for simulating 20 

the hydrology of our small forested mountainous catchment. Such good performance could be expected since similar models 

like the HBV model or similar modifications of the HBV model performed already well at similar landscapes (Chen et al., 

2018; Seibert et al., 2003; Uhlenbrook et al., 1999). Including the observed streamflow contributions results in a further 

substantial reduction of the initial parameter sample to 29 parameter sets and in a slight decrease of overall discharge simulation 

performance. Such further reduction of the parameter sample is due to the increased difficulty to simulate adequately and 25 

simultaneously both discharge and streamflow contributions and was already found in previous studies that investigated the 

influence of additional information in a GLUE-like approach (Hartmann et al., 2017; Mudarra et al., 2019).  

Likewise, a decrease of simulation uncertainty concerning discharge going along with incorporating additional information 

into parameter estimation has already been observed (Kuczera and Mroczkowski, 1998; Seibert and McDonnell, 2002; Son 

and Sivapalan, 2007). This mostly went along with an increased identifiability of model parameters and prediction skill, which 30 

is also found in this study. Using only discharge for model parametrization, a mean KGE of -0.98 in the validation year of 

2014 is found (Table 2). The parameter sets obtained from using both discharge and observed streamflow contributions result 
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in a mean KGE of 0.02. Compared to the performances of KGE ≥ 0.8 that we obtained during the calibration in year 2013, this 

appears to be a strong decrease but it is substantially better than using the mean of discharge observations for prediction (that 

would result in KGE=-0.41; Knoben et al., 2019). Also, while the discharge observations in the calibration year 2013 cover 

the entire stream response to the monsoon season (maximum observed discharge > 0.15 m³/s, Figure 5), the validation data set 

stops before the onset of the late and weak monsoon events in late August that produced increased discharge observations 5 

(observed discharges < 0.004 m³/s, Figure 5). Hence, the decrease of performance can also partially be explained by the 

challenge of predicting low flows with a calibration that covers the entire variability of streamflow (Nicolle et al., 2014).  

5.2 Identification of model parameters and processes  

The acceptable multi-variate performance of the model in the calibration period and the still acceptable performance found in 

the validation period gives us reason to believe that our approach provides interpretable results. Incorporating observed 10 

streamflow contributions into parameter estimation results in reduced parameter uncertainty for all model parameters except 

for LP (remains the same) compared to the parameter estimation using discharge only (Table 2). The iterative inclusion of 

observations into the parameter estimation procedure allows assessing the information content of each data type. When 

discharge only is considered, changes of the distributions of parameters LP, KHS, or KGW, and FC change (Figure 4), confirming 

the well-known fact that only four to six model parameters can be identified when calibrating a model with discharge 15 

observations only (Jakeman and Hornberger, 1993; Wheater et al., 1986; Ye et al., 1997). When the experimental information 

of the contributions of the hillslope subsurface flow to streamflow is added, more parameters change their distributions 

indicating that additional information is added to the parameter estimation. We can see that this is most pronounced for KHS, 

which controls the discharge dynamics of the hillslope, and KGW and UGW that indirectly control hillslope discharge by 

triggering it after saturation of the groundwater storage (Figure 2). Adding the observed streamflow contributions of 20 

groundwater (and implicitly information about the riparian zone contributions as all three together sum up to 1), we see a 

further increase of sensitivity for KGW, which is indicated by a further narrowing of its 25th and 75th percentile. Most 

prominently, KRZ and URZ show substantial confinement indicating the new information about streamflow contributions added 

more information about riparian zone and groundwater dynamics.  

Previous work with a model that simulated discharge and solute transport already showed that added information through 25 

environmental tracers can be linked to their origin in the hydrological system and respective model parameters (Hartmann et 

al., 2017). Our results indicate that even without the explicit inclusion of solute transport in the model, similar linkages between 

observations of streamflow contributions and model parameters that control the dynamics of their origin, hillslope, 

groundwater or riparian zone, could be found. These relationships are plausible and can be regarded as validation of the realism 

of the model (Hartmann et al., 2013). By including discharge and observed streamflow components into parameter estimation 30 

without adding more complexity to the model, we achieve desirable levels of model parameter identifiability (all nine 

parameters) and prediction uncertainty (Birkel and Soulsby, 2015). The resulting parameters express the effective properties 

of our test catchment with thin soil (FC= 54.5 mm ± 59.3 mm) and fast percolation of water towards the hillslope and 

https://doi.org/10.5194/hess-2021-179
Preprint. Discussion started: 28 May 2021
c© Author(s) 2021. CC BY 4.0 License.



16 

 

groundwater storages through a high value of  (4.9 ± 2.6). The value of LP (0.7 ± 0.2) indicates that plant water uptake through 

forest cover is efficient even below saturation of the soil. The groundwater storage can store more than double of the soil while 

the riparian zone storage is about 15 mm smaller (Table 2). With around 0.5 d-1, KHS indicates fast hillslope dynamics after 

initiation, while with both at around 0.025 d-1, KGW and KRZ are reacting slowly. The scales of the three parameters are 

comparable to the parameters identified by Uhlenbrook et al. (1998), who found 0.1 – 0.35 d-1 and 0.02 – 0.05 d-1 for their 5 

simulated interflow and groundwater dynamics, respectively.  

5.3 Benefits of including observed streamflow contributions for streamflow prediction 

The uncertainty of the simulated streamflow contributions obtained by discharge during the same period show considerable 

uncertainty allowing for contributions of groundwater and the riparian zone from 0% - 100% throughout the entire simulation 

period of 2013 (Figure 5ac) despite high performance in simulating discharge (Figure 5g, Table 2). Just for the hillslope 10 

contributions, the calibration by discharge only indicates possible contributions <100% during the baseflow period but shows 

the same uncertainty as the simulated groundwater and riparian zone contributions when the wet-up begins (Figure 5e). This 

strong uncertainty of the three simulated streamflow contributions despite high discharge simulation performance is a text 

book example of the equifinality problem (Beven, 2006; Perrin et al., 2001) that is known to result in poor prediction 

performance as we also found in this study when using discharge for parameter estimation only. With the observed streamflow 15 

contributions considered in the calibration, the simulated time series of all three contributions, groundwater, hillslope and 

riparian zone, become more distinguishable especially during the main monsoon and the drying up period of the 2013 monsoon 

(Figure 5ace). We clearly see that the simulated groundwater contribution dominates discharge in the baseflow and wet-up 

periods following the observed contribution of groundwater. At the same time, the riparian zone contributions confine 

themselves to their observed values close to 0%. During the main monsoon and the drying-up, the observed contributions of 20 

the hillslope are -on average- enveloped by the model simulations resulting in a substantial decrease of the groundwater 

contributions.  

Strongly different model internal behaviour that results in almost the same discharge performance was also observed by Seibert 

and McDonnell (2002) who showed with a similar model that two completely different model setups can produce very similar 

discharge simulation performance. Among different types of hard and soft data, they also showed the value of observed 25 

streamflow contributions for reducing model parameter uncertainty but only focusing on two streamflow components (new 

water and old water) at peak discharge for six separate rainfall runoff events (McDonnell et al., 1991). In our study, we 

distinguish three different streamflow components temporally disaggregated over four periods that resulted in parameter 

uncertainty reductions that could be attributed to the respective flow and storage processes at their origin (subsection 5.2). In 

addition, using the monsoon year of 2014, we can show the discharge prediction performance of the model increased and 30 

simulation uncertainty decreased when the streamflow contributions are considered during parameter estimation (Figure 5h, 

Table 2). This is due to the improved representation of the three flow components in the model that indicate, likewise to the 

monsoon period in 2013, that the model could have over-estimated the contribution of the riparian zone and under-estimated 
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the contributions of groundwater, as well as it could have miss-predicted the onset and ceasing of the hillslope contributions 

to discharge. Such decrease of predictive uncertainty was also revealed in other studies (Hartmann et al., 2017; Son and 

Sivapalan, 2007) but, to our knowledge, it has not yet been achieved using more than two experimentally separated streamflow 

components and not yet without accepting additional uncertainty through the incorporation of transport routines into the model.  

6 Conclusions 5 

The value of environmental tracers in improving the realism and prediction skills of hydrological models has been tested and 

proved in many previous studies. However, few studies were able to include them without adding more complexity to their 

models due to the conclusion of transport routines. Our study shows that, by directly comparing simulated and experimentally 

derived streamflow contributions, information derived from environmental tracers can be considered without adding transport 

routines to our model. Considering the contribution of three streamflow components, namely the hillslope, the riparian zone 10 

and groundwater, at four separate periods during a strong change of hydrological boundary conditions, we provide strong 

indication that it is worth considering the temporal dynamics of components that express more than just pre-event and event 

water in the model. Including this information in our stepwise parameter estimation procedure, we obtain increased parameter 

sensitivities and und decreased simulation uncertainty in the validation period compared to using discharge only for calibration. 

Incorporating the contributions of different components iteratively, we can show that they increase the identifiability of 15 

parameters related to the dynamics of their origin (e.g., the hillslope flow and storage dynamics when hillslope contributions 

to streamflow are considered). Considering all three observed streamflow components, we can identify all nine model 

parameters compared to just five parameters when using discharge only for calibration. Consequently, the uncertainty of 

predicted streamflow in 2014 decreases along with an increased precision of predicted streamflow components.  

Our study adds to the large body of preceding work that provides evidence for the usefulness of incorporating auxiliary data 20 

into model calibration. In particular, it shows that the full potential of incorporating streamflow contributions obtained by 

environmental tracers has not yet been explored. On the one hand, including estimated streamflow contributions from multiple 

sources (not just event and pre-event water) allows enhanced improvement of the simulation of model internal processes, 

especially those that are seldom monitored such as hillslope contributions through subsurface stormflow (Chifflard et al., 

2019). On the other hand, considering the dynamics of those streamflow contributions over time provides a more thorough 25 

distinction between realistic and unrealistic parameters combinations. We see that among the four periods that we considered, 

the observations for the baseflow and wet-up periods are well enveloped by the simulations. But the temporal resolution of 

observed streamflow contributions during the main monsoon and the drying-up period seem to be too coarse as the simulations 

show much higher temporal variability (while their average seems to follow the observed contributions). Hence, further efforts 

may involve the monitoring and integration into the model of streamflow components at a higher temporal resolution. 30 

Furthermore, separating contributions of streamflow components of different origin, our approach might be suitable for 

parameterization of hillslope processes in more complex and spatially distributed models (Fan et al., 2019). 
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