
Comment 4, Reviewer1, Additional Information:  

Here are the rearranged (updated) titles: 

2.6 Parameter estimation for deep and wide artificial neural network architectures  

2.6.1 Strategies for improving the tractability of parameter estimation 

2.6.1.1 Greedy learning 

2.6.1.2 Extreme Learning Machine configuration 

2.6.1.3 Regularization for robust estimation for hidden node selection 

3 Metrics for evaluation of intermittent flow predictions 

3.1 How well does the model predict zero-flow states? 

3.2 How well does the model predict no-flow persistence? 

3.3 How well does the model predict transitions to and from zero-flow states? 

3.4 How well does the model predict non-zero flowrates? 

4 Input specification for deep and wide ANNs for predicting intermittent streamflows 

5 Model evaluation testbeds 

6 Results and discussion 

6.1 Model calibrations and testing 

6.2 Deep and wide topologies for predicting zero-flow states 

6.2.1 Comparison of zero flow predictions with shallow model 

6.3 Comparison of no-flow state persistence and transitions 

6.4 Deep and wide topologies for IRES non-zero flowrate prediction 

7 Summary and conclusions  

  



Comment 6, Reviewer1, Additional Information:  

Here is the material that are moved to the supplementary material: 

 

Table S1. Contingency Table for Evaluation of Classifier Cell Predictions 

Contingency  
Table 

Predicted 

0 (No-Flow) + (Flow) 

Observed 
0 (No-Flow) 𝑁00 𝑁0+ 

+ (Flow) 𝑁+0 𝑁++ 
 

 

Table S2. Transition Matrix for Flow and No-Flow States 

Transition  
Matrix 

Next State 

0 (No-Flow) 1 (Flow) 

Current State 
0 (No-Flow) 𝑃00 𝑃0+ 

1 (Flow) 𝑃+0 𝑃++ 
 

 

Figure S2. Fraction of negative flow predictions by the shallow, deep and wide models for the nine 

IRES of study. 

 

 



Comment 11, Reviewer1, Additional Information:  

Here is the TableS3, added to the supplementary material:  

 



Table S3. Statistical features (mean and standard deviation) of the inputs used at the IRES of study. 

Station 

ID 

Precipitation 

(PPT) 

Precipitation 

Lag1 (PPT1) 

Soil Moisture 

Index (SMI) 

Soil Moisture 

Index Lag1 

(SMI1) 

Potential 

Evapotranspiration 

(PET) 

Potential 

Evapotranspiration 

Lag1 (PET1) 

VIC-Estimated 

Runoff (VICR) 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

ST1 41.24 42.02 82.74 65.11 745.01 943.12 1486.2 1585.25 68.92 59.81 68.61 58.52 2.76 0.8 

ST2 43.23 42.72 86.47 66.47 862.6 1002.63 1716.85 1658.35 77.32 62.08 76.69 60.62 6.21 6.43 

ST3 42.56 42.6 84.99 63.48 860.7 1003.85 1714.21 1602.58 80.67 63.21 79.94 61.7 5.73 3.8 

ST4 53.85 47.47 107.6 73.36 1061.85 1152.67 2116.2 1905.5 80.74 66.51 80.05 64.84 6.83 2.31 

ST5 59.01 50.74 117.98 76.12 1153 1197.29 2302.91 1932.36 81.92 65.54 81.17 63.87 5.3 1.96 

ST6 66.32 54.4 132.41 80.48 1299.4 1279.94 2593.6 1986.85 85.39 63.99 84.77 62.68 13.25 16.95 

ST7 85.32 67.61 170.65 104.01 1518 1501.72 3049.24 2464.16 79.99 65.19 79.38 63.51 19.76 9.68 

ST8 53.01 56.92 105.96 84.48 1224.8 1515.13 2448.8 2311.14 104.88 75.56 104.08 73.72 7.1 3.55 

ST9 56.35 64.04 112.79 96.56 1389.2 1759.88 2777 2680.92 113.78 73.04 112.89 71.36 2.49 2.37 

 

 

 



Comment 2, Reviewer2, Additional Information:  

Here is the updated Figure1: 

 

Figure 1. An illustration of the developed architectures for A) the deep model, and B) the wide model for IRES flow prediction. 

 

  



Comment 5, Reviewer2, Additional Information:  

Here is the added introductory section on ANNs: 

Artificial Neural Networks (ANN) 

ANNs are biologically inspired computational models and parallel-distributed information processing 

systems (Haykin, 1994; Yaseen et al., 2015). Detailed introductions to ANNs can be found in the literature 

(Zupan, 1994; Dongare et al., 2012; Adnan et al., 2017). Therefore, and for the sake of brevity, a short 

overview is provided here. Being known as universal approximators, ANNs has been successfully used in 

many fields (Wong et al., 1997; Dase and Pawar, 2010; Shrivastava et al., 2012; Qazi et al., 2015; Tealab, 

2018), particularly hydrological modeling (Dawson and Wilby, 2001; Joshi and Patel, 2011; Zhang et al., 

2018), to model a variety of functions, including streamflow dynamics (Zealand et al., 1999; Kisi, 2007; 

Gao et al., 2010: Mehr et al., 2015; Li et al., 2019; Malekian and Chitsaz, 2021). A classic single-layer ANN 

(depicted in figure S1) is a collection of multiple elements, known as units, cells or neurons that are 

connected in three layers: The input layer, the hidden layer, and the output layer. These layers are 

connected with links that has weights associated with them. The weights represent the strength 

(importance) of a connection.  

 

Figure S1. An illustration of a single-layer Artificial Neural Network architecture 

 

The input layer is merely responsible to receive the input information and send it toward the hidden layer. 

The number of neurons in the input layer is equal to the number of input features (e.g., in the case of 

having precipitation, potential evapotranspiration, soil moisture index, their first lags, and VIC-estimated 

runoff, there will be seven input nodes). The nodes in the input layer are fully connected to the nodes in 



the hidden layer. Each hidden node receives the product of the input nodes and the weight of the respective 

connections, sums them up, and then, applies a typically non-linear activation function on it.  

 

𝑍𝑗  =  ∑ 𝑤𝑖,𝑗𝐼𝑖   + 𝑏𝑗   ∀ 𝑗 =  1, . . . , 𝐻

𝑀

𝑖=1

 

 

Where Z is the aggregated sum at the jth hidden node, Ii corresponds to the ith input, M is the number of 

inputs, and H is the total number of hidden nodes within the hidden layer.  The bias term (intercept) of the 

jth node is denoted by, bj.  The output of the hidden node is obtained by passing the aggregated sum from 

Equation (2) through an activation function: 

 

ℎ𝑗.𝑜  =  𝑔(𝑍𝑗) 

 

The hidden layer is fully connected to the output layer, meaning that the ultimate product of the hidden 

layer will be sent to the output layer.  The output node also performs a weighted aggregation of the input 

it receives (i.e., the outputs of the hidden node), and in the case of a binary classifier, it passes the 

summation value through a sigmoid activation function to obtain a value between 0 and 1. 

 

𝑍𝑜  =  ∑ 𝑤𝑗,𝑜ℎ𝑗,𝑜  +  𝑏𝑜

𝐻

𝑗=1

 

 

The subscript, o, refers to the output node in the above equation. The output (O) can be computed as: 

 

𝑂 =  
1

1 + 𝑒−𝑍𝑜
 

 

The value of O is a value between 0 and 1.  For a dichotomous variable Qc, which can take values 0 (no 

flow) or 1 (flow), the output O corresponds to the probability of obtaining a value of 1 (i.e., flow) or P(Qc = 

1).  When the value of O is low (typically below 0.5), there is insufficient evidence of a non-zero flow, and 

as such Qc is classified as 0 (i.e., No Flow).  When the output O has a value greater than 0.5, Qc is classified 

as 1 (i.e., flow).  Note that when O is interpreted as P(Qc = 1), Equation 5 has the same mathematical 

structure as the Logistic Regression.   

In case of a regression problem, as the output of a regression model is continuous and not dichotomous, 

the activation function for the output cell is taken as linear: 



 

𝑄𝑝  =  (∑ 𝑤𝑗,𝑜ℎ𝑗,𝑜  +  𝑏𝑜

𝐻𝑟

𝑗=1

) ×  1 

 

Where Qp is the predicted flowrate within the regression cell, and all other variables have the same 

meaning as before.  Notice that above equation has the same mathematical form as the ordinary linear 

regression. 

 

 

 

  



Comment 7, Reviewer2, Additional Information:  

Here is the updated version of Table 1: 

 

Table 1. Summary of information on the nine streamflow monitoring stations. 

Station 

ID 

USGS 

ID 
Stream Location 

Intermittency 

Ratio 

Interquartile 

Range (cfs) 

Maximum 

Recorded 

Flowrate 

(cfs) 

Range of 

Training 

Range of 

Testing 

ST1 7233500 
Palo Duro 

Creek 

Near Spearman, 

Hansford County, TX 
65% 0.03 197.2 

1999/7 – 

2015/3 

2015/4 – 

2020/6 

ST2 8079600 

Double 

Mountain 

Fork Brazos 

River 

At Justiceberg, Garza 

County, TX 
12% 22.15 875.7 

1961/12 – 

2005/10 

2005/11 – 

2020/6 

ST3 8117995 
Colorado 

River 

Near Gail, Borden 

County, TX 
33% 7.59 709.9 

1988/3 – 

2012/4 

2012/5 – 

2020/5 

ST4 8082700 
Millers 

Creek 
Near Munday, TX 41% 1.14 433.8 

1963/8 – 

2006/3 

2006/4 – 

2020/6 

ST5 8086290 
Big Sandy 

Creek 

Above Breckenridge, 

TX 
17% 14.63 1251 

1962/2 – 

2006/3 

2006/4 – 

2020/11 

ST6 8103900 
South Fork 

Rocky 

Near Briggs, Burnet 

County, TX 
24% 10.49 189 

1963/4 – 

2006/5 

2006/6 – 

2020/9 

ST7 8050840 
Range 

Creek 
Near Collinsville, TX 32% 16.65 328.4 

1992/10 – 

2013/9 

2013/10 – 

2020/9 

ST8 8206700 
San Miguel 

Creek 
Near Tilden, TX 32% 12.13 1828 

1992/10 – 

2013/11 

2013/12 – 

2020/11 

ST9 8212400 
Los Olmos 

Creek 

Near Falfurrias, 

Brooks County, TX 
78% 0 137 

1999/4 – 

2015/6 

2015/7 – 

2020/11 

 



Comment 8, Reviewer2, Additional Information:  

the following captions were updated with more information added: 

Updated caption for Table 1. : 

“Table 1. Summary of information on the nine streamflow monitoring stations. Intermittency ratio is the 

ratio of no-flow events to the total number of records.” 

Updated caption for Figure 3. : 

“Figure 3. The observed vs. the predicted streamflow time-series of the shallow, deep, and wide models 

using SMOTE-balanced and transformed data for stations ST1, ST2, and ST3. The relative location of 

these stations and their information summary can be found in Figure 2. And Table 1.” 

Updated caption for Figure 4. : 

“Figure 4. The observed vs. the predicted streamflow time-series of the shallow, deep, and wide models 

using SMOTE-balanced and transformed data for stations ST4, ST5, and ST6. The relative location of 

these stations and their information summary can be found in Figure 2. And Table 1.” 

Updated caption for Figure 5. : 

“Figure 5. The observed vs. the predicted streamflow time-series of the shallow, deep, and wide models 

using SMOTE-balanced and transformed data for stations ST7, ST8, and ST9. The relative location of 

these stations and their information summary can be found in Figure 2. And Table 1.” 

Updated caption for Table 2. : 

“Table 2. Summary of continuous performance evaluation metrics (MAE, RMSE, Pearson’s r, and 

Spearman’s Rho) for the shallow, deep, and wide models trained with SMOTE-balanced data during 

testing with and without applying log transform for the entire flow range. Abbreviations: MAE, mean 

absolute error; RMSE, root mean squared error.” 

Updated caption for Figure 7. : 

“Figure 7. Comparison of observed No-Flow Persistence (NFP) and the predictions of the shallow, deep 

and wide models trained with SMOTE-balanced data for the nine IRES of study over the Testing Period.” 

Updated caption for Figure 8. : 

“Figure 8. Comparison of observed Flow Persistence and the predictions of the shallow, deep and wide 

models trained with SMOTE-balanced data for the nine IRES of study over the Testing Period.” 

Updated caption for Figure 9. : 

“Figure 9. Comparison of observed Flow to No-Flow Transition (F2NFT) and the predictions of the 

shallow, deep and wide models trained with SMOTE-balanced data for the nine IRES of study over the 

Testing Period.” 

Updated caption for Figure 10. : 

“Figure 10. Comparison of observed No-Flow to Flow (NF2FT) and the predictions of the shallow, deep 

and wide models trained with SMOTE-balanced data for the nine IRES of study over the Testing Period.”  



Comment 9, Reviewer2, Additional Information:  

Here is the Table S4: 

  



Table S4. Summary of continuous performance evaluation metrics (MAE, RMSE, Pearson’s r, and 

Spearman’s Rho) for the shallow, deep, and wide models during testing without applying log 

transform for the entire flow range. Abbreviations: MAE, mean absolute error; RMSE, root mean 

squared error. 

Station ID Model 
No Transform 

MAE RMSE Pearson's r Spearman's Rho 

ST1 Con 0.266 0.556 0.32 0.4 

ST1 Deep 0.298 0.619 0.56 0.51 

ST1 Wide 0.225 0.55 0.33 0.51 

ST2 Con 0.766 2.005 0.67 0.72 

ST2 Deep 0.72 2.044 0.68 0.8 

ST2 Wide 0.717 1.998 0.67 0.76 

ST3 Con 0.496 1.92 0.78 0.62 

ST3 Deep 0.546 1.918 0.74 0.66 

ST3 Wide 0.477 1.919 0.79 0.64 

ST4 Con 0.381 0.926 0.74 0.37 

ST4 Deep 0.302 0.807 0.78 0.74 

ST4 Wide 0.309 0.913 0.74 0.42 

ST5 Con 0.894 3.041 0.65 0.65 

ST5 Deep 0.938 3.061 0.66 0.67 

ST5 Wide 0.868 3.046 0.65 0.64 

ST6 Con 0.261 0.42 0.79 0.67 

ST6 Deep 0.281 0.433 0.78 0.61 

ST6 Wide 0.248 0.418 0.79 0.62 

ST7 Con 0.325 0.562 0.95 0.89 

ST7 Deep 0.317 0.515 0.95 0.84 

ST7 Wide 0.313 0.563 0.95 0.84 

ST8 Con 1.398 3.429 0.79 0.25 

ST8 Deep 1.201 2.91 0.79 0.49 

ST8 Wide 1.258 3.416 0.8 0.24 

ST9 Con 0.146 0.559 0.79 0.5 

ST9 Deep 0.21 0.588 0.23 0.55 

ST9 Wide 0.121 0.558 0.76 0.57 

 

 

 


