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Abstract. In most (sub)-tropical African cultivated regions, more than one cropping season exists following the (one or two) 

rainy seasons. An additional cropping season is possible when irrigation is applied during the dry season, which could result 10 

in 3 cropping seasons. However, most studies using agro-hydrological models such as Soil and Water Assessment Tool 

(SWAT) to map blue and green ET do not account for these cropping seasons. Blue ET is a portion of crop evapotranspiration 

after irrigation application, while green ET is the evapotranspiration resulting from rainfall. In this paper, we derived dynamic 

and static trajectories from seasonal land use maps to represent the land use dynamics following the major growing seasons to 

improve simulated blue and green water consumption from simulated evapotranspiration (ET) in SWAT+. A comparison 15 

between the default SWAT+ setup (with static land use representation) and a dynamic SWAT+ model setup (with seasonal 

land use representation) is made by spatial mapping of the ET results. Additionally, the SWAT+ blue and green ET were 

compared with the results from the four remote sensing data-based methods, namely: SN (Senay), EK (van Eekelen), Budyko 

method and Soil Water Balance method (SWB). The results show that ET with seasonal representation is closer to remote 

sensing estimates, giving higher performance than ET with static land use representation. The Root Mean Squared Error 20 

decreased from 181 to 69 mm/year; the per cent bias decreased from 20% to 13%, and Nash Sutcliffe Efficiency increased 

from -0.46 to 0.4. Furthermore, the blue and green ET results from the dynamic SWAT+ model were compared to the four 

remote sensing methods. The results show that the SWAT+ blue and green ET are similar to the van Eekelen method and 

performed better than the other three remote sensing methods. It is concluded that representation of seasonal land use dynamics 

produces better ET results, which provide better estimations of blue and green agricultural water consumption. 25 

1. Introduction 

Freshwater availability is a limiting resource in many regions worldwide, and the problem is projected to 

increase in the near future due to land use change, population growth, and climate change. The availability 

of freshwater is mostly determined by precipitation on land. Rain on land travels via either green or blue 

waterways (Velpuri and Senay, 2017; Hoekstra, 2019). The green water resource is the water that is held 30 
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in the unsaturated soil layer, whereas the blue water resource is the water that is stored in rivers, streams, 

surface-water bodies, and groundwater (Falkenmark and Rockström, 2006). One of the solutions to lessen 

the threat of freshwater scarcity is to minimise consumptive water use in agriculture. However, for water 

resource management, it is critical to understand water use in agricultural production by source (rainwater 

or irrigation water from surface and groundwater) (Velpuri and Senay, 2017). Knowing how much direct 35 

rainwater (green water) and abstracted water (blue water) is being utilised is crucial for efficient water 

resource management. Yet such information is not readily available, especially in developing countries. 

Hydrological models such as the Soil and Water Assessment Tool (SWAT) can provide information on 

blue and green water at basin and continental scales (Xie et al., 2020; Jeyrani et al., 2021; Liang et al., 

2020; Serur, 2020). For instance, Schuol et al. (2008) used the SWAT model to simulate blue and green 40 

water availability for the African continent. Xie et al. (2020) evaluated the evolution of the blue and green 

water resources, water footprints, and water scarcity in time and space in the Yellow River basin in China 

from 2010–2018. The study accounts for the effects of irrigation on blue and green water resources. Liang 

et al. (2020) used the SWAT model combined with future land use and climate scenarios, which was 

successfully applied to quantify the spatiotemporal distribution of blue and green water change for the 45 

Xiangjiang River Basin in China between 2015 and 2050. 

However, a few of these studies have implemented annual land use dynamics. Since land use refers to 

manmade socio-economic activities and management practices on the land, these anthropogenic activities 

may change depending on the season, specifically on cultivated land (Anderson et al., 1976). These 

seasonal changes are called seasonal land use dynamics (Msigwa et al., 2019). Hence, mapping the blue 50 

and green water with agro-hydrological models such as SWAT needs a better representation of the 

seasonality/cropping seasons. To the best of our knowledge, no studies have implemented seasonal land 

use dynamics in the estimation of blue and green water resources. For example, using SWAT, Jeyran et 

al. (2021) assessed basin blue and green available water components under different management and 

climatic scenarios. The annual land use change implementation showed that the 30% increase in 55 

agricultural land use from 1987 to 2015 has caused significant changes in water shortages in the Tashk-

Bakhtegan basin in Iran. However, other studies do not implement even the annual land use dynamic to 
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decrease the computational time of the large-scale models. In most cases, the dominant soil and land cover 

are used. For instance, Serur (2020) used a 10-year land use map to model blue and green water 

availability for the Weyb River basin in Ethiopia.  60 

The main limitation of using these approaches in tropical African cultivated areas is that they typically 

have more than one growing cycle, usually between 2 and 3, depending on the sequence of rainy and dry 

seasons and irrigation water availability (Msigwa et al.,2019). Therefore, the right representation and 

timing of these cropping seasons are important to quantify crop water consumption.  

A few studies that have implemented seasonal land use dynamics for other purposes, such as nitrogen 65 

leaching and plant growth (Glavan et al., 2015), estimating water withdrawals (Msigwa et al., 2019) and 

Leaf Area Index (LAI) simulation (Nkwasa et al., 2020), have found an impact of representing seasonal 

land use dynamics in models. For instance, Nkwasa et al. (2020) found that implementing seasonal land 

use dynamics in SWAT and SWAT+ models led to an improved vegetation simulation. In addition, the 

LAI dynamics of the seasonal land use dynamic implementation showed more realistic temporal 70 

advancement patterns that corresponded to the seasonal rainfall within the basin. Moreover, Msigwa et 

al. (2019) found that water withdrawals for irrigated mixed crops increased by 482 Mm3/year when 

seasonal land use maps are used. On the other hand, seasonal land use dynamics have been studied and 

evaluated using four methods that use multi-scalar datasets to assess the cropping intensity of smallholder 

farms. In this study, the cropping intensity is the number of crops planted annually (Jain et al., 2013). 75 

However, in this case, the impact of seasonal land use on water resources has not been studied.  

The SWAT model incorporates crop rotation and its management at the Hydrological Response Unit 

(HRU) level within a sub-basin (Neitsch et al., 2002). It is represented as a sequence of planting and 

harvesting operations within the same HRU supplemented with management operations (Gao et al., 

2017). The representation of agricultural management is done through a separate management file, 80 

specifying the planting, harvesting, tillage, irrigation, fertiliser, and pesticide application by heat units or 

month and date (Arnold et al., 2018). Although the SWAT (+) model can represent multiple cropping 

seasons, this is mainly implemented outside of Africa's catchments. Agro-hydrological model 
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applications in African basins do not typically represent different cropping seasons. But they implement 

the default SWAT simulation of a single growing cycle every year (Ndomba et al., 2008; Koch et al., 85 

2012; Gashaw et al., 2018). The lack of consideration of the seasonal land use dynamics in hydrologic 

modelling studies, particularly in African cultivated basins, may be attributed to past model capability 

constraints as well as a lack of crop-specific and agricultural management practices data (Van Griensven 

et al., 2012).  

Hence, crop-specific and data management practices could be obtained from the seasonal land use maps 90 

using trajectory analysis. Trajectories represent changes in land use over time by comparing changes 

between two or several land use maps at a grid scale. Trajectory analysis has been widely applied to assess 

the changes and impact of Land Use and Land Cover (LULC) (Feng et al., 2014; Wang et al., 2012) and 

as a pre-processing tool for LULC (Zomlot et al., 2017). In these studies, change analysis is done pixel 

by pixel for each year to identify land use change (Mertens and Lambin, 2000; Swetnam, 2007; Zhou et 95 

al., 2008; Wang et al., 2012; Zomlot et al., 2017). However, none of these studies have analysed pixel by 

pixel within a year to identify the different (cropping) seasons, further referred to as land use dynamics. 

A recent study by Nkwasa et al. (2020) in the Usa catchment in the Kikuletwa basin in northern Tanzania 

has shown how to represent seasonal land use dynamics using trajectories in the SWAT model using the 

management file and the SWAT+ model using decision tables for accurate hydrological simulation. This 100 

study builds on Nkwasa et al.'s (2020) approach to evaluate the effects of seasonal land use dynamics on 

blue and green ET, with two main objectives: (i) investigate the effect of implementing seasonal land use 

dynamics on the water balance component in the Kikuletwa basin (6650 km2) with focus on the ET using 

SWAT+ and (ii) estimate blue and green water consumption from simulated ET.  

 105 
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2. Methods 

2.1. Study Area 

The Kikuletwa basin is a sub-basin of the Pangani basin that covers approximately 6,650 km2 (Figure 1). 110 

Rainfall within the basin is bimodal, meaning that the area receives long rains (Masika) from March to 

June and short rains (Vuli) from November to December, as shown in Figure 2. Annual rainfall ranges 

between 300mm and 800 mm in the lower part of the basin to 1200-2000 mm in the highlands of Mount 

Meru and Kilimanjaro. The maximum temperature ranges from 25 to 330C, and the minimum temperature 

ranges from 15 to 200C. The basin comprises diverse LULC classes such as agricultural land, dense forest 115 

on Mount Kilimanjaro (5880m) and Meru (4562m), grazed land, and mixed urban and shrubland/thickets. 

Shrubland and thickets in the study area are found mainly in the lowlands, where rain-fed agriculture is 

dominant. Urban areas concentrate around Arusha, although some emerging small towns are also 

emerging. 

 120 

Grazed land is mainly found in the Maasai land of Monduli and Simanjiro districts. Irrigated agriculture 

in Kikuletwa is mainly practiced in the highlands and lowlands along the river of Moshi, Moshi urban, 

Hai, Arumeru, Arusha, and Siha districts. The main crops in the highlands are bananas, coffee, and maize, 

while the lowlands are dominated by mixed vegetable crops such as tomatoes, onions, and beans.  
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Map data © 2021 Google 

Figure 1. The location of the Kikuletwa catchment in Africa (inset map). The catchment map shows the 

river networks and the location of groundwater level, rainfall and temperature station in and around the 

catchment. (by Authors). 
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Figure 2. Monthly average rainfall (mm) and temperature of Kikuletwa basin ground rainfall stations 

2.2 Input dataset for SWAT+ 

The required rainfall, river discharge, climate data, topography, soil map and land use map were collected 

from different sources. The 90-m Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model 

(DEM) was obtained from the United States Geological Survey (USGS) website 135 

(https://earthexplorer.usgs.gov/); the soil map was extracted from the African Soil Information Service 

(AFSIS; Hengl et al., 2015). Daily rainfall records for 10 stations were obtained from the Tanzania 

Meteorological Agency (TMA) and the Pangani Basin Water Office (PBWO). The daily climate records 

of temperature (maximum and minimum) for three stations were obtained from PBWO and TMA. The 

different data sets had variable record length and quality. However, only good quality data records for the 140 

selected 10 rainfall and 4 temperature stations for the overlapping period (2006 to 2013) were selected. 
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Our study used improved LULC maps with local observation, unlike other studies in the same catchment, 

such as Notter et al., (2012) and Ndomba et al., (2008). For instance, Notter et al. (2012) used only a few 

herbaceous crops in model parametrisation without a cropping calendar. The LULC maps were created 

using Landsat 8 (30 m resolution) images of three months (March, August, and October), representing 145 

three seasons in the basin. The March map represents the LULC during the long-wet season (Masika), the 

August map represents the dry season, and the October map represents the short rainy season (Vuli). The 

overall classification accuracy for the land use maps of March, August, and October 2016 were 85.5%, 

88.5%, and 91.6%, with a kappa coefficient of 0.84, 0.87, and 0.91, respectively (Msigwa et al., 2019). 

About 20 and 19 LULC classes in the Kikuletwa catchment were mapped for the wet and dry seasons, 150 

respectively. More details on the land use classes and their accuracies are found in Msigwa et al. (2019). 

The LULC maps were reclassified to match the SWAT land use classification (see Table 3B in Appendix 

B). For instance, the maps used the SWAT land use code' PAST' to represent grazed grassland. 

2.3 Land use Trajectories 

The LULC change trajectory methodology has been widely applied in many areas to assess LULC change 155 

and its impact on the environment. Researchers use trajectories to analyse the change between two images 

pixel by pixel (Mertens and Lambin, 2000; Swetnam, 2007; Zhou et al., 2008; Wang et al., 2012; Zomlot 

et al., 2017). 

In this study, we extended the meaning of land use trajectories from 'land use change' to 'seasonal 

succession of land use types for a given sample unit (pixel) with more than two observations at different 160 

times' (Zhou et al., 2008). We applied the method in this study to assess the seasonal agricultural dynamics 

for the meteorological dry and wet seasons of the Kikuletwa basin. 

The land use change trajectories were obtained by integrating three classified images to represent the 

three cropping seasons so that pixel-based change trajectories could be found using GIS. A land use 

trajectory is the trajectory of a certain pixel in each of the three images. For example, a trajectory of 165 

2→3→0 means that for the given pixel, the land use in March was rain-fed maize (2), then in August, 
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irrigated mixed crop (3), and finally, in October, bare land (0). This trajectory is classified as dynamic, 

whereas a trajectory of 4→4→4, meaning the land use is irrigated banana and coffee (4) in March, August, 

and October, is static. Thus, the LULC change trajectories were categorised into dynamic and static land 

use trajectories. We only implemented the trajectories from all agricultural land uses except irrigated 170 

banana and coffee and irrigated banana, maize and coffee land uses, which were combined as irrigated 

banana and coffee land use. About 74% of the trajectories were static, while 26% of the trajectories were 

dynamic. Figure 3 shows the spatial distribution of static and dynamic land use trajectories found in the 

study area. Only agricultural land use and extensive agriculture LULC, such as grazed grassland and 

shrubland, were considered when analysing the seasonal changes (dynamic land uses) and implemented 175 

in the SWAT+ model. We analysed and implemented 40 land use trajectories, Appendix B; Table 1B 

shows a few of the implemented trajectories. 

 

 

 180 

Figure 3. Spatial distribution of main dynamic land use trajectories (a) and the distinction 

between dynamic and static land use (b) identified in the study area. 
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Legend    

Id Main Trajectory Crop/ vegetation cover meaning 
1 AGRL-BSVG-AGRL Beans-space vegetation-beans 

2 CORN-AGRL-PAST Rainfed maize-beans-grassland 

3 CORN-AGRL-BSVG Rainfed maize-beans-space vegetation 

4 AGRL-AGRL-BSVG 

Irrigated mixed crops- irrigated mixed crops -space 

vegetation 

5 CORN-AGRL-AGRL Rainfed maize- Irrigated mixed crops - Irrigated mixed crops 

6 AGRL-AGRL-AGRL 

Irrigated mixed crops - Irrigated mixed crops - Irrigated 

mixed crops 

7 CORN-PAST-AGRL Rainfed maize -grassland- Irrigated mixed crops 

8 AGRL-AGRL-PAST Irrigated mixed crops - Irrigated mixed crops -grassland 

9 SUGC-AGRL-AGRL 

Irrigation sugarcane- Irrigated mixed crops - Irrigated mixed 

crops 

10 AGRL-AGRL-AGRL 

Irrigated mixed crops - Irrigated mixed crops - Irrigated 

mixed crops 

2.4. SWAT+ Model 

SWAT+ is a physically-based, semi-distributed hydrological model and restructured version of the Soil 

and Water Assessment Tool (SWAT) designed to address current and future challenges in water resource 185 

modelling and management (Bieger et al., 2017). Due to its watershed discretisation and configuration, 

SWAT+ is more flexible in simulating basin processes such as evapotranspiration, runoff, crop growth, 

and nutrient and sediment transport. The HRUs are contiguous areas, i.e., a representative field, with an 

associated user-defined length and width. The actual HRU is calculated based on the DEM, soil, and land 

use map inputs. Subbasins are delineated during the model construction but are divided into water areas 190 

and one or more landscape units (LSU) (Bieger et al., 2017). 

Land use and management representation in SWAT+ can be done through the management file or using 

decision tables. Decision tables are an accurate yet compact way to model complex rule sets and their 

corresponding actions. Nkwasa et al. (2020) highlighted the greater flexibility provided by decision tables 

during the representation of agricultural practices in SWAT+. The model gives room for two or more 195 

crops growing simultaneously by defining the plant community in the specific plant file. The model 

enables the representation of the reality of cultivated tropical basins. 

The ET in the model is estimated at HRU level. Different methods (Priestley-Taylor, Penman-Monteith, 

and Hargreaves) are used to estimate ET in the SWAT+ model. More detailed information can be found 
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in (Abiodun et al., 2017; Alemayehu et al., 2016; Neitsch et al., 2002). Our study adopted the Hargreaves 200 

method (Hargreaves and Samani, 1982) to estimate ET due to the limited amount of input data, such as 

solar radiation. The method has been tested in tropical basins such as the Mara basin, linking Tanzania 

and Kenya (Alemayehu et al., 2016). We aimed to use available ground data and not rely on remote 

sensing climate data such as solar radiation, which is reported to have uncertainties (Alemayehu et al., 

2016). The SWAT model has also been successfully used in the Pangani basin for different purposes 205 

(Ndomba et al., 2008; Notter et al., 2012). 

2.5 Land use Trajectories Implementation in SWAT+ 

We combined three maps (March, August, and October) to obtain the trajectory land use map. Forty land 

use trajectories were produced from the three seasonal land use maps. These trajectories differ from the 

traditional approach in that they define the space using agricultural static and dynamic land use maps. 210 

Then each trajectory was assigned a SWAT+ land use code (placeholder). For instance, a placeholder 

SWAT+ land use code 'MIXC' signifies a CORN→TOMA→TOMA trajectory (rainfed maize to tomato-

to-tomato land use trajectory), or 'MIGS' signifies a CORN →TOMA →BSVG trajectory (rainfed maize 

to tomato to sparse vegetation land use trajectory) as shown in Table 1B (Appendix B). The trajectory 

land use map is represented with the placeholder SWAT+ land use codes using the lookup Table 1B 215 

(Appendix B) for the Kikuletwa basin was created. A python code (Appendix A) was used to assign 

trajectories of the placeholder SWAT+ land use codes and to create the trajectories' management files, 

i.e., the 'landuse.lum', 'management.sch', and 'hru-data.hru' files. In the 'Landuse.lum' file, the trajectories 

were defined with respect to the plant community. The 'Management.sch' file controls the timing of the 

planting and harvesting of the individual crops in the community (Table 1). For instance, tomatoes and 220 

soya beans are planted in the same field with different planting and harvesting schedules but grown during 

the same period. However, each crop was defined by its own plant community in the new SWAT+ to 

distinguish between these crops. The 'hru-data.hru' file links the HRUs to the corresponding land use 

management. The irrigation schedules were implemented using decision tables. The source of irrigation 

water in the catchment was the river, and irrigation technique was mostly furrow.  225 

Table 1. An example of a 'management.sch' file input in dynamic SWAT+ model 
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1 name of the land use management, 2 points to the irrigation decision tables, 3 planting operation, 4 harvesting operation, 5 rainfed 

maize, 6 soy bean, 7 tomato, 8 harvest the grain portion of the crop, 9 number of operations, 10 number of auto-operations, 11 operation 

type, 12 month, 13 day, 14 heat unit schedule, * operations 

2.6 Model Configuration for both Static and Dynamic SWAT+ Models 230 

The SWAT+ model was set up using DEM, soil map and land use map of March 2016 for the static 

representation scenario (static model) and using a trajectory map and files (described in section 2.5) for 

the dynamic representation scenario (dynamic Model). In the static model, the crops were grown in the 

rainy season from March to July, and the land would be left bare. This is normally the case with most 

SWAT model applications in SWAT (Ndomba et al., 2008; Gashaw et al., 2018; Koch et al., 2012). Both 235 

models used the same ground observations of rainfall and temperature (Appendix C, Table 1C). The 

precipitation stations were adjusted manually according to elevation, and the potential maximum leaf area 

index of maize was adjusted to correspond to the field measurements of the basin. The USDA Soil 

name numb_ops9    numb_auto10 op_typ11 Mon12 Day13 hu_sch14 op_data1* op_data2* op_data3* 

cor_agr_agr_m1 8 2               

      irr_toma_soy2             

      irr_corn2             

      plnt3 3 15 0 corn5 grain8  0 

      hvkl4 8 15 0 corn grain 1 

      plnt 7 1 0 soyb6 grain 2 

      plnt 8 20 0 toma null 3 

      hvkl 10 1 0 soyb grain 4 

      hvkl 10 20 0 toma7 null 5 

      plnt 10 30 0 corn grain 6 

      hvkl 2 28 0 corn grain 7 

agr_agr_agr_m1 8 2               

      irr_toma_soy2             

      irr_corn2             

      plnt 3 15 0 soyb grain 0 

      hvkl 6 30 0 soyb grain 1 

      plnt 7 1 0 soyb grain 2 

      plnt 8 20 0 toma null 3 

      hvkl 10 1 0 soyb grain 4 

      hvkl 10 20 0 toma null 5 

      plnt 10 30 0 corn grain 6 

      hvkl 2 28 0 corn grain 7 
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Conservation Service (SCS) curve number was used to estimate surface runoff and the Muskingum 

method was used for channel routing. 240 

For the static SWAT+ model, 23 sub-basins, 171 landscape units, and 6086hru were generated with 14 

land use classes, while for the dynamic SWAT+ model, 23 sub-basins, 171 landscape units, and 9333hru 

were generated with 40 land use classes representing the 40 different trajectories. The difference in the 

number of HRUs is related to the higher number of land use classes in the dynamic land use mapping. 

The irrigation schedules were implemented through decision tables (Arnold et al., 2018) by specifying a 245 

furrow irrigation method and using the rivers within the sub-basins as the source of irrigation. The model 

was run for a period of 8 years (2006 to 2013). The first two years were used as a warmup period.  

2.7 Model Evaluation  

Both the static and dynamic SWAT+ models were compared in terms of how they simulate the water 

balance, with a particular emphasis on the ET component because the primary goal of this study is to 250 

improve the spatial distribution of blue and green water consumption. Hence, the SWAT+ models were 

not calibrated. The ET from both static and dynamic SWAT+ representation scenarios was compared 

with the remote sensing ET at a basin level for the same simulation period from 2008 to 2013. The remote 

sensing ET is an ensemble ET product from seven existing global-scale ET products (IHE Delft, 2020). 

All the ET products are based on multi-spectral satellite measurements and surface energy balance 255 

models, i.e., the Global Land Evaporation Amsterdam Model (GLEAM) (Miralles et al., 2011), CSIRO 

MODIS Reflectance-based Evapotranspiration (CMRS-ET) (Guerschman et al., 2009), Operational 

Simplified Surface Energy Balance (SSEBop) (Senay et al., 2013), Atmosphere-Land Exchange Inverse 

Model (ALEXI) (Anderson et al., 2007), Surface Energy Balance System (SEBS) (Su, 2002), ETMonitor 

(Hu and Lia, 2015) and MODIS Global Terrestrial Evapotranspiration Algorithm (MOD16) (Mu et al., 260 

2011). Detailed information on the ET products' description and method is found in Hugo et al. (2019). 

The product was evaluated for the study area by comparing the basin water balance at three gauged 

stations; Karangai, Kikuletwa Power station, and Tanzania Plantation Company (TPC) over a period of 

six years (2008-2013). The comparison of ET calculated using the water balance and remote sensing 
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showed good agreement (NSE= 0.77) for Kikuletwa Power station, which covered 86% of the total basin 265 

area (Msigwa et al., 2021, 2019). Statistical metrics such as Nash-Sutcliffe efficiency (NSE), Root Mean 

Square Error (RMSE), Percent Bias (PBIAS) and adjusted R squared (R2) were used to compare monthly 

ET from static and dynamic SWAT+ models to the remote sensing ET. Moreover, the Paired T-test 

statistical analysis was performed to determine if there is a significant difference between the ET from 

the static model and that of the dynamic model for only the dynamic land uses.   270 

2.8 Estimating blue and green ET 

The blue ET is a portion of crop evapotranspiration after irrigation application, while green ET is the 

evapotranspiration resulting from rainfall. The blue ET in this study was estimated as a difference between 

ET under irrigation and ET without irrigation (Liu and Yang, 2010). The SWAT+ dynamic land use 

implementation was run without irrigation, and then later, irrigation was applied. The green ET is the 275 

actual evapotranspiration from precipitation which can be kept in unsaturated soil and absorbed by plants 

and is then returned to the atmosphere via evapotranspiration. In this study, only the portion of blue water 

consumed from irrigation was considered and not all the blue water resources like in other studies (Xie et 

al., 2020). 

The SWAT+ model was run first, assuming no irrigation was carried out. The computed ET is called 280 

ETgreen. Then the SWAT+ model was run again with irrigation being implemented, and the ET computed 

is called ETtotal as explained in the two scenarios below. Finally, ETblue is computed by the difference of 

ETtotal from the run with irrigation implantation and ETgreen "Eq. (4)".  

The two scenarios used to estimate blue ET 

1. The seasonal dynamic SWAT+ is carried out by assuming the soil does not receive any irrigation 285 

water. The evapotranspiration computed using this first run is referred to as ETgreen 

2. The seasonal dynamic SWAT+ is carried out by assuming the soil receives sufficient irrigation 

water. The evapotranspiration computed using this second run is referred to as ETtotal 

Hence, ETblue is computed from the "Eq. (4)" below. 
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𝐸𝑇𝑏𝑙𝑢𝑒 = 𝐸𝑇𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑇𝑔𝑟𝑒𝑒𝑛        (4) 290 

It should be noted that the trajectory implementation involves only two of the agricultural land uses, i.e., 

rainfed maize and mixed crop, except for irrigated banana and coffee land use and irrigated banana, coffee 

and maize land use. 

2.9 Comparison of SWAT+ results with other remote sensing methods 

The SWAT+ blue and green ET were compared with the results from the four remote sensing data-based 295 

methods, namely: SN (Senay et al., 2016), EK (van Eekelen et al., 2015), the Budyko method (Simons et 

al., 2020) and the Soil Water Balance method-SWB (FAO and IHE Delft, 2019).  

The SN method (Senay et al., 2016) is the simplest method whereby blue water is estimated as a difference 

between precipitation (P) and ET, followed by the modified method of van Eekelen et al. (2015) where 

the effective fraction was introduced to reduce the amount of precipitation that evaporates. The Budyko 300 

method, as described in Simons et al. (2020), estimates green water from precipitation using an empirical 

relationship between actual evapotranspiration, precipitation, and reference evapotranspiration. The 

Budyko equation, also called the Budyko curve, assumes a relationship between the evaporation ratio 

(ET/P) and the climate aridity index (ETo/P) to describe the water-energy balance for long-term analysis. 

The soil moisture balance model computes green (ETgreen) and blue (ETblue) water components of ET by 305 

keeping track of the soil moisture balance and determining whether ET can be satisfied through direct 

precipitation and precipitation stored as soil moisture alone or if additional water (surface or groundwater 

supply) is required. The study compares blue and green water estimations for all LULC classes for the 

Kikuletwa catchment.  

3. Results  310 

3.1 Comparison of Simulated basin ET from Remote Sensing 

Figure 4 shows the average monthly ET at the basin scale of Kikuletwa for the two model scenarios of 

SWAT+ and that from remote sensing. The dynamic SWAT+ model shows higher ET (by 20mm/month), 

matching the remote sensing pattern in the dry seasons (July to October) than the static SWAT+ model 
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implementation. This shows that agricultural activities are occurring in the dry seasons. In the dynamic 315 

SWAT+ model, we implemented irrigated cropping during the dry seasons, leading to an increase in ET. 

The statistical analysis (Table 2) shows that both the SWAT+ simulations have a correlation (R2) of above 

0.5 when compared with the monthly remote sensing ET. However, the monthly average ET value for the 

dynamic land use scenario is closer to the remote sensing ET, especially during the dry months from July 

to November, where we implement more than one cropping season. 320 

Unlike the commonly used static land use scenario where only one cropping season was implemented per 

year, the monthly ET for the dynamic SWAT+ model implementation shows an acceptable PBIAS of 

13%. In contrast, the static SWAT+ model shows a higher PBIAS of 30%. Moreover, the dynamic 

SWAT+ model shows a good NSE of 0.4, while the static SWAT+ shows very low performance with an 

NSE of -0.46. 325 

Table 3 shows the water balance component for the two scenarios. A notable difference is seen in ET 

increase (24%) and decrease in other water balance components (lateral flow; 27%, percolation; 42%, 

surface runoff; 32%). In addition, the mass balance (change in soil water balance) in percentage for the 

static SWAT+ model is higher (1.8%) than in the dynamic SWAT+ model (0.5%). The most pronounced 

differences are found when comparing the dynamic land use representation on a basin scale and the 330 

commonly used static land use approach with remote sensing. Figure 5 shows the spatial distribution of 

ET from remote sensing, dynamic land use and static land use representation. 

The average basin ET is 461mm/y, 573mm/y and 642 mm/y for the static SWAT+ model, dynamic 

SWAT+ model, and remote sensing, respectively. Generally, all the simulated ET from SWAT+ shows a 

lower annual average ET than remote sensing ET. However, the ET from static land use representation 335 

shows a higher difference of 181mm/y, whereas, with dynamic land use, the difference in ET is only 

69mm/y. The paired T-test results show a significant difference between the ET from the static model 

and that of the dynamic model for the dynamic land uses. A P value of 0.013 was obtained, which was 

less than the 0.05 confidence interval. The spatial distribution of ET from the SWAT+ models is different 
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from remote sensing. However, visually, the spatial distribution of ET from the dynamic land use scenario 340 

is closer and shows similar patches to remote sensing than the ET from the static land use scenario (Figure 

5). 

The differences in ET spatial distribution (Figure 5) are vivid mostly in the trajectory implemented areas 

in the lowlands (see Figure 3). Figure 6 shows the ET on the dynamic land uses alone. The difference in 

the values of ET in these areas is more than 100mm per year. The vivid differences are seen in the right 345 

lower corner of the catchment, where the differences in ET are more than 200mm/y. There are more areas 

with less than 400mm/y in the static model compared to the dynamic model.  

 

Figure 4. Average monthly ET for basin-scale summarised from remote sensing, dynamic land use 

scenario and static land use scenario. 350 

 

Table 2. Statistical analysis of ET comparison of SWAT scenarios from Remote sensing 

Statistic Parameter Static SWAT+ Dynamic SWAT+ 

PBIAS 30% 13% 

Nash-Sutcliffe efficiency (NSE) -0.46 0.4 

Adjusted R Square 0.6 0.6 

RMSE (mm/month) 20.8 13.3 
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Table 3. Comparison of water balance component for the basin level 

 

 355 

 

 

 

Water balance component (mm) Static Dynamic 

Precipitation 814 814 

Irrigation 0 8.25 

Evapotranspiration 461 573 

Lateral flow 139 101 

Surface runoff 207 140 

Percolation 21.7 12.6 

%mass balance 1.8 0.53 
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 360 

Figure 5. Spatial distribution of ET from (a) Remote sensing (b) dynamic land use scenario and (c) static 

land use scenario. 
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Figure 6. Spatial distribution of ET from dynamic Land use for both (a) dynamic and (b) static SWAT+ 

Models. 365 

3.2 Blue and Green ET 

Figure 7 shows the blue and green annual ET trends in the Kikuletwa basin from 2008 to 2013. The 

implemented blue and green ET was mainly for irrigated mixed cropland use due to the implementation 

of trajectories. The annual average blue ET for irrigated mixed crops is 138mm, which accounts for 25.5% 

of the annual average total ET, and the annual average green ET is 402mm, which accounts for 74.5% of 370 

the annual average total ET. 



21 

 

 

Figure 7. The annual variation of blue and green ET from 2008–2013. 

Figure 8 shows the spatial distribution of blue ET for agricultural areas in the Kikuletwa basin for 

implemented trajectories such as rainfed maize to tomato to irrigated maize land use trajectory (See 375 

Appendix 2, Table 2). The blue water is calculated from the irrigated implemented trajectories that mainly 

include irrigated mixed crops (soybeans, tomato, and irrigated maize). Figure 8 shows that more than half 

of the total area consumes less than 200mm of blue ET. The higher blue ET is seen in the lower right 

corner where the irrigated sugarcane plantation is found. 



22 

 

 380 

Figure 8. Spatial distribution of Blue ET for the implemented trajectories of rainfed and irrigated mixed 

crops land use. 

Figure 9 compares average blue and green ET from four methods (Msigwa et al., 2021) with dynamic 

SWAT+. The value of both blue and green ET is closer to two methods, the EK (van Eekelen) and SWB 

(Soil Water Balance) methods, which were indicated to have realistic blue and green ET values. The Van 385 



23 

 

Eekelen et al. (2015) is the method that analyses precipitation (P) and ET and applies an effective rainfall 

factor since not all rainfall will infiltrate and be stored in the unsaturated zone to be available for uptake 

by plants. Both ground data and remote sensing data could be used for data analysis-based approaches on 

an annual basis. The SWB model is a pixel-by-pixel vertical soil water balance model that splits green 

and blue ET by tracking soil moisture balance and determining if the ET is satisfied only from rainfall or 390 

stored in the soil moisture or additional sources if required (FAO and IHE Delft, 2019). 

 

Figure 9. Blue and green ET comparison with other four methods from Msigwa et al. (2021). 

4. Discussion  

Previous studies have represented annual land use changes in SWAT and found that these significantly 395 

impact hydrology (Wagner et al., 2016; Woldesenbet et al., 2017; Wagner et al., 2019). However, none 

of these studies has represented the seasonal dynamics of land use within a single year in a spatially 

distributed manner. Nkwasa et al. (2020) incorporated the seasonal land use dynamic into SWAT and 

SWAT+ and found that models led to an improved vegetation simulation. This study did not show how 

the seasonal land use dynamic improved water balance components such as ET. Our study uses an agro-400 

hydrological model (SWAT+) to represent blue and green ET for different cropping seasons (represented 

by trajectory with time and space) and the use of remote sensing ET to evaluate the simulated ET from 
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SWAT+. The study has compared a common default modelling approach where a static land use map is 

used together with its management practices with a seasonal dynamic land use representation where more 

than one cropping season is represented in a year. The spatial and temporal ET estimates from two model 405 

setups were compared with remote sensing ET. An increase of 112mm/y of the ET is seen when seasonal 

dynamic land use is implemented in the dynamic model to match the remote sensing ET as compared to 

when a static land use map is used in the static model. The ET results from the dynamic model are 

significantly different from the ET in the static model for the dynamic land use. The models show 

differences in water balance components. This is due to the implementation of the land use trajectory in 410 

the dynamic model. 

A remarkable difference is seen in the spatial distribution of ET from static and dynamic land use SWAT+ 

representation. The dynamic land use SWAT+ visually is similar to a remote sensing map compared to 

the static land use SWAT+. This is because of the added management practices such as irrigated cropping 

in the dry seasons, unlike the default SWAT+ with static land use throughout the simulation period. The 415 

ET from the dynamic land use setup could not reach the maximum satellite ET because the satellite ET 

estimates also have uncertainties in the mountainous areas because of the presence of cloud cover. 

Moreover, different methods for estimating ET could lead to these differences. Climate ground stations 

(temperature, wind speed, relative humidity, and solar radiation) were used for ET simulation in the 

SWAT+ model, while remote sensing uses energy balance models, mostly remote sensing data. 420 

On the other hand, the ET from the static land cover, such as forest from the static and dynamic model 

setups, shows different ET values. This could be because of the difference in the initial model setup. The 

model setup for static used a March land use map with only 14 land use classes, while the dynamic model 

used a land use map with 40 trajectories. Hence, the changes in the ET might be due to the different land 

use maps yielding different numbers of HRUs. In order to avoid such a difference, one could have an 425 

initial setup with the same land uses, and then trajectory implementation could only be with the 

agricultural land use. 
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Furthermore, the ET estimates from the dynamic SWAT+ model were used to estimate blue and green 

ET. The blue and green ET estimates from SWAT+ for the mixed cropland use show no significant 

difference in the values from the two methods (EK and SWB) assessed in Msigwa et al., (2021). 430 

These findings demonstrate the importance of representing seasonal land use dynamics in modelling blue 

and green water consumption. Normally, most models use NDVI to represent seasonal changes (Amri et 

al., 2011; Ferreira et al., 2003), whereas the use of dynamic land use leads to improved accuracy of 

seasonal simulations of water use (Nkwasa et al., 2020). Seasonal land use maps can add information on 

management practices of changes in temporal crop rotation and irrigation water use at a spatial scale. 435 

However, to account for accurate seasonality of land use, more than three maps within a year should be 

represented, ideally 12 maps each year. This would enable a more complete understanding of the 

agricultural land use classes and minimise errors in the trajectory analysis. However, Landsat 8 is 

associated with clouds, especially in the rainy season. Therefore, cloud masking techniques are needed 

before further analysis of the images. Also, there were uncertainties associated with the trajectories; for 440 

example, unrealistic trajectories like changing from crop to forest and then to crop again. These types of 

trajectories were corrected and reclassified. 

The Landsat 8 images used in this study to map seasonal land use dynamics did not have a revisit time 

(16-day) that is small enough to acquire an adequate number of monthly images to represent the year. 

More products are now becoming available (Sentinel-2, 5-day revisit time) with a higher temporal 445 

resolution, which would aid in collecting more cloud-free images to represent seasonality within the year. 

Although it appears important to include seasonal land use dynamics, one may claim that the annual land 

use implementation is enough when studying the effect of land use in hydrology. Our study shows a 

significant impact of the representation of seasonal land use in the SWAT+ model by reducing the errors 

in water consumption estimations.  450 
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5. Conclusion 

Understanding the spatial-temporal variability of agricultural water consumption in terms of blue water 

requires accurate estimates of ET. This study has demonstrated the importance of incorporating seasonal 

land use dynamics to improve simulated ET for further blue and green ET estimates using a SWAT+ 

model. Although the static representation gives equally good R2 results of more than 0.5, we found that 455 

the RMSE for the static model result is significantly higher than the RMSE of the dynamic model result 

by about 112 mm per year. Moreover, the ET from the dynamic SWAT+ model gave a low PBIAS (13%) 

and a relatively good NSE of 0.4 compared to the ET from the static SWAT+ model, which gave a higher 

PBIAS (20.8%) and a negative NSE of -0.46. The study showed that a dynamic land use representation 

in the SWAT+ model gave ET estimates closer to the remote sensing ET than the default model with a 460 

static land use representation. The improved ET map from the dynamic SWAT+ model improved the blue 

ET estimates as compared to the use of static ET maps that do not implement irrigation in the dry season. 

Hence, the estimated blue ET corresponds to the blue ET amount of past studies in the basin (Msigwa et 

al., 2021). It is concluded that the representation of seasonal land use dynamics is essential to simulate 

agricultural (blue and green) water consumption correctly. Also, for land use change studies, it is 465 

important to represent the seasonal land use dynamics correctly. 

 

Data availability. The openly accessible data used in this analysis are available from the first author upon request 

(anna.msigwa@nm-aist.ac.tz), the code used in the SWAT+ model is available under the appendices section. 
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Appendices 

Appendix A. Make Management Script 

import sys 620 

from PIL import Image 
import numpy as np 
 
def open_tif_as_array(tif_file): 
    im = Image.open(tif_file) 625 

    imarray = np.array(im) 
    return imarray 
 

def empty_line(): 
    print("") 630 

 
def write_to(filename, text_to_write, report = False): 
    ''' 
    a function to write to file 
    ''' 635 

    g = open(filename, 'w') 
    try: 
        g.write(text_to_write) 
        if report: 
            print('\n\t> file saved to ' + filename) 640 

    except: 
        print("\t> error writing to {0}, make sure the file is not open in another program"
.format( 
            filename)) 
        response = input("\t> continue? (Y/N): ") 645 

        if response == "N" or response == "n": 
            sys.exit() 
    g.close 
 
def show_progress(count, end_val, string_before = "percent complete", string_after = "", ba650 

r_length = 30): 
    percent = float(count) / end_val 
    hashes = "#" * int(round(percent * bar_length)) 
    spaces = '_' * (bar_length - len(hashes)) 
    sys.stdout.write("\r{str_b} [{bar}] {pct}% {str_after}\t\t".format( 655 

        str_b = string_before, 
        bar = hashes + spaces, 
        pct = '{0:.2f}'.format(percent * 100), 
        str_after = string_after)) 
    sys.stdout.flush() 660 
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def read_from(filename): 
    ''' 
    a function to read ascii files 
    ''' 665 

    try: 
        g = open(filename, 'r') 
    except: 
        print("\t> error reading {0}, make sure the file exists".format(filename)) 
        return 670 

    file_text = g.readlines() 
    g.close 
    return file_text 
 
class schedule_data: 675 

    def __init__(self, crop_name): 
        self.crop_name = crop_name 
        self.oct_plant = "" 
        self.oct_harvest = "" 
        self.aug_plant = "" 680 

        self.aug_harvest = "" 
        self.mar_plant = "" 
        self.mar_harvest = "" 
 
base_txt = "C:/Users/james/Desktop/root/anna/new/new_swat_plus_model/kikuletwa/Scenarios/De685 

fault/TxtInOut" 
inputs_path = "trajectory_files" 
 
# read trajectory data 
trajectories = open_tif_as_array("{base}/{fn}".format(base = inputs_path, fn = "trajectory_690 

map_thres.tif")) 
legend_raw = read_from("{base}/{fn}".format(base = inputs_path, fn = "trajectory_lookup_fin
al.csv")) 
dates_raw = read_from("{base}/{fn}".format(base = inputs_path, fn = "crop_plant_harvest.csv
")) 695 

 
landuse_lum_raw = """landuse.lum: created for trajectories 
name                         cal_group          plnt_com               mgt               cn
2         cons_prac             urban            urb_ro           ov_mann              tile
               sep               vfs              grww               bmp   700 

""" 
plant_ini_raw = """plant.ini: created for trajectories 
pcom_name          plt_cnt rot_yr_ini  plt_name  lc_status      lai_init       bm_init     
 phu_init      plnt_pop      yrs_init      rsd_init   
""" 705 

 
management_raw = """management.sch: created for trajectories 
name                       numb_ops  numb_auto            op_typ       mon       day       
 hu_sch          op_data1          op_data2      op_data3   
""" 710 
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landuse_lum = landuse_lum_raw 
plant_ini = plant_ini_raw 
 
trajectories_dictionary = {} 715 

# trajectory_hru_lum_dict = {} 
crop_schedule_dictionary = {} 
month_dictionary = {'':"None", "Jan": "1", "Feb": "2", "Mar": "3", "Apr": "4", "May": "5", 
"Jun": "6", "Jul": "7", "Aug": "8", "Sep": "9", "Oct": "10", "Nov": "11", "Dec": "12"} 
 720 

for line in dates_raw[1:]: 
    parts = line.split(",") 
    crop_schedule_dictionary[parts[0].lower()] = schedule_data(parts[0]) 
    crop_schedule_dictionary[parts[0].lower()].oct_plant = "{0}".format(parts[5]).strip("\n
") 725 

    crop_schedule_dictionary[parts[0].lower()].oct_harvest = "{0}".format(parts[6]).strip("
\n") 
    crop_schedule_dictionary[parts[0].lower()].aug_plant = "{0}".format(parts[3]).strip("\n
") 
    crop_schedule_dictionary[parts[0].lower()].aug_harvest = "{0}".format(parts[4]).strip("730 

\n") 
    crop_schedule_dictionary[parts[0].lower()].mar_plant = "{0}".format(parts[1]).strip("\n
") 
    crop_schedule_dictionary[parts[0].lower()].mar_harvest = "{0}".format(parts[2]).strip("
\n") 735 

 
for line in legend_raw[1:]: 
    trajectories_dictionary[line.split(",")[1].lower()] = line.split(",")[2].strip("\n").lo
wer() 
 740 

growing_list = ["FRST", "BANA", "SHRB", "SUGC"] 
 
for crop_name in trajectories_dictionary: 
    # create lum 
    parts = trajectories_dictionary[crop_name].split("-") 745 

    com_mgt_prefix = "{0}_{1}_{2}".format(parts[0][:3], parts[1][:3], parts[2][:3]) 
    com_mgt_prefix = com_mgt_prefix.lower() 
    if True: #not ((parts[0] == parts[1]) and (parts[0] == parts[2])): 
        line_ = "{lum_t}                    null         {plt_comm}  {mgt}       rc_strow_g
       cross_slope              null              null    convtill_nores              null 750 

             null              null              null              null  \n".format( 
            lum_t = trajectories_dictionary[crop_name].lower().replace("-", "_"), 
            plt_comm = "{0}_c".format(com_mgt_prefix), 
            mgt = "{0}_m".format(com_mgt_prefix), 
        ) 755 

        landuse_lum += line_ 
        # print(trajectories_dictionary[crop_name]) 
 
    # create comm 
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    comm__ = "{comm_n}_c            //no         1  \n".format(comm_n = com_mgt_prefix) 760 

    plt_count = 0 
    done = [] 
    for plt in parts: 
        if plt == "AGRL": 
            for agrl_crop in ["TOMA","CORN","SOYB"]: 765 

                if not agrl_crop.lower() in done: 
                    if plt in growing_list: 
                        grow_ini = "y" 
                    else: 
                        grow_ini = "n" 770 

                    plt_count += 1 
                    comm__ += "                                        {agrl_crop}         
    {growing}       0.00000       0.00000       0.00000       0.00000       0.00000   10000
.00000  \n".format(agrl_crop = agrl_crop.lower(), growing = grow_ini) 
                    done.append(agrl_crop) 775 

     
            continue 
 
        if not plt.lower() in done: 
            if plt in growing_list: 780 

                grow_ini = "y" 
            else: 
                 grow_ini = "n" 
            plt_count += 1 
            comm__ += "                                        {plt_l}             {growing785 

}       0.00000       0.00000       0.00000       0.00000       0.00000   10000.00000  \n".
format(plt_l = plt.lower(), growing = grow_ini) 
            done.append(plt) 
     
    comm__ = comm__.replace("//no", str(plt_count)) 790 

    plant_ini += comm__ 
 
    # create_management 
    schedule_name = "{0}_m".format(com_mgt_prefix) 
    number_of_manual_ops = 0 795 

    number_of_auto_ops = 0 
 
    done_2 = [] 
 
    management_section_head = "{mgt_name}                          {number_manual}         800 

 {number_auto}  " 
    management_section_body = "" 
    counter_mgt = 0 
 
    for plant_index in range(0, 3): 805 

 
        date_day_plant = None 
        date_mnt_plant = None 
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        date_day_harvest = None 810 

        date_mnt_harvest = None 
        agrl_list = [] 
 
        if plant_index == 0: 
            agrl_list = ["soyb"] 815 

 
        if plant_index == 1: 
            agrl_list = ["soyb", "toma"] 
 
        if plant_index == 2: 820 

            agrl_list = ["corn"] 
 

        if parts[plant_index] == "agrl": 
            for agrl_crop_mgt in agrl_list: 
                if plant_index == 0: 825 

                    date_day_plant = crop_schedule_dictionary[agrl_crop_mgt].mar_plant.spli
t("-")[0] 
                    date_mnt_plant = crop_schedule_dictionary[agrl_crop_mgt].mar_plant.spli
t("-")[1] 
                if plant_index == 1: 830 

                    date_day_plant = crop_schedule_dictionary[agrl_crop_mgt].aug_plant.spli
t("-")[0] 
                    date_mnt_plant = crop_schedule_dictionary[agrl_crop_mgt].aug_plant.spli
t("-")[1] 
                if plant_index == 2: 835 

                    date_day_plant = crop_schedule_dictionary[agrl_crop_mgt].oct_plant.spli
t("-")[0] 
                    date_mnt_plant = crop_schedule_dictionary[agrl_crop_mgt].oct_plant.spli
t("-")[1] 
 840 

                management_body_line = "                                                   
         {activity}{mnt}{day}       0.00000              {crp}              null       {ord
er}.00000  ".format( 
                    activity = "plnt", 
                    mnt = month_dictionary[date_mnt_plant].strip(" ").rjust(10), 845 

                    day = date_day_plant.rjust(10), 
                    crp = agrl_crop_mgt.lower(), 
                    order = counter_mgt, 
                ) 
                management_section_body += "{0}\n".format(management_body_line) 850 

                counter_mgt += 1 
            for agrl_crop_mgt in agrl_list: 
                if plant_index == 0: 
                    date_day_harvest = crop_schedule_dictionary[agrl_crop_mgt].mar_harvest.
split("-")[0] 855 
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                    date_mnt_harvest = crop_schedule_dictionary[agrl_crop_mgt].mar_harvest.
split("-")[1] 
                if plant_index == 1: 
                    date_day_harvest = crop_schedule_dictionary[agrl_crop_mgt].aug_harvest.
split("-")[0] 860 

                    date_mnt_harvest = crop_schedule_dictionary[agrl_crop_mgt].aug_harvest.
split("-")[1] 
                if plant_index == 2: 
                    date_day_harvest = crop_schedule_dictionary[agrl_crop_mgt].oct_harvest.
split("-")[0] 865 

                    date_mnt_harvest = crop_schedule_dictionary[agrl_crop_mgt].oct_harvest.
split("-")[1] 
 
                management_body_line = "                                                   
         {activity}{mnt}{day}       0.00000              {crp}              null       {ord870 

er}.00000  ".format( 
                    activity = "hvkl", 
                    mnt = month_dictionary[date_mnt_harvest].strip(" ").rjust(10), 
                    day = date_day_harvest.rjust(10), 
                    crp = agrl_crop_mgt.lower(), 875 

                    order = counter_mgt, 
                ) 
                management_section_body += "{0}\n".format(management_body_line) 
                counter_mgt += 1 
 880 

        elif parts[plant_index] in crop_schedule_dictionary: 
            if not parts[plant_index] == "past": 
 
                if plant_index == 0: 
                    date_day_plant = crop_schedule_dictionary[parts[plant_index]].mar_plant885 

.split("-")[0] 
                    date_mnt_plant = crop_schedule_dictionary[parts[plant_index]].mar_plant
.split("-")[1] 
                if plant_index == 1: 
                    date_day_plant = crop_schedule_dictionary[parts[plant_index]].aug_plant890 

.split("-")[0] 
                    date_mnt_plant = crop_schedule_dictionary[parts[plant_index]].aug_plant
.split("-")[1] 
                if plant_index == 2: 
                    date_day_plant = crop_schedule_dictionary[parts[plant_index]].oct_plant895 

.split("-")[0] 
                    date_mnt_plant = crop_schedule_dictionary[parts[plant_index]].oct_plant
.split("-")[1] 
 
                management_body_line = "                                                   900 

         {activity}{mnt}{day}       0.00000              {crp}              null       {ord
er}.00000  ".format( 
                    activity = "plnt", 
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                    mnt = month_dictionary[date_mnt_plant].strip(" ").rjust(10), 
                    day = date_day_plant.rjust(10), 905 

                    crp = parts[plant_index].lower(), 
                    order = counter_mgt, 
                ) 
                management_section_body += "{0}\n".format(management_body_line) 
                counter_mgt += 1 910 

 
                if plant_index == 0: 
                    date_day_harvest = crop_schedule_dictionary[parts[plant_index]].mar_har
vest.split("-")[0] 
                    date_mnt_harvest = crop_schedule_dictionary[parts[plant_index]].mar_har915 

vest.split("-")[1] 
                if plant_index == 1: 
                    date_day_harvest = crop_schedule_dictionary[parts[plant_index]].aug_har
vest.split("-")[0] 
                    date_mnt_harvest = crop_schedule_dictionary[parts[plant_index]].aug_har920 

vest.split("-")[1] 
                if plant_index == 2: 
                    date_day_harvest = crop_schedule_dictionary[parts[plant_index]].oct_har
vest.split("-")[0] 
                    date_mnt_harvest = crop_schedule_dictionary[parts[plant_index]].oct_har925 

vest.split("-")[1] 
 
                management_body_line = "                                                   
         {activity}{mnt}{day}       0.00000              {crp}              null       {ord
er}.00000  ".format( 930 

                    activity = "hvkl", 
                    mnt = month_dictionary[date_mnt_harvest].strip(" ").rjust(10), 
                    day = date_day_harvest.rjust(10), 
                    crp = parts[plant_index].lower(), 
                    order = counter_mgt, 935 

                ) 
                management_section_body += "{0}\n".format(management_body_line) 
                counter_mgt += 1 
 
    if counter_mgt == 0: 940 

        continue 
 
    management_raw += management_section_head.format(mgt_name = schedule_name, number_manua
l = counter_mgt, number_auto = number_of_auto_ops) + "\n" +  management_section_body 
 945 

# fix hrus based on dictionary 
 
hru_data_string = """hru-data.hru: for trajectories 
id  name                                topo             hydro              soil           
       lu_mgt   soil_plant_init         surf_stor              snow             field   950 

""" 
 



39 

 

hru_data_hru_raw = read_from("{base}/{fn}".format(base = base_txt, fn = "hru-data.hru")) 
 
for line in hru_data_hru_raw[2:]: 955 

    for_part = line 
    for i in range(0, 20): 
        for_part = for_part.replace("  ", " ") 
    parts = for_part.split(" ") 
    # print(parts[6].split("_")[0]) 960 

    hru_data_string += line.replace(parts[6], trajectories_dictionary[parts[6].split("_")[0
]].lower().replace("-", "_")) 
 
write_to("{base}/{fn}".format(base = 'model_files\Scenarios\Default\TxtInOut', fn = "landus
e.lum"), landuse_lum) 965 

write_to("{base}/{fn}".format(base = 'model_files\Scenarios\Default\TxtInOut', fn = "manage
ment.sch"), management_raw) 
write_to("{base}/{fn}".format(base = 'model_files\Scenarios\Default\TxtInOut', fn = "plant.
ini"), plant_ini) 
write_to("{base}/{fn}".format(base = 'model_files\Scenarios\Default\TxtInOut', fn = "hru-970 

data.hru"), hru_data_string) 

 

 

 

 975 
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Appendix B. Trajectories Description 985 

Table 1B. Trajectories examples for each fake land use code use for dynamic SWAT+ implementation. 

Map_id Code Trajectory 

1 TUWO TUWO-TUWO-TUWO 

2 GRAS GRAS-GRAS-GRAS 

6 BSVG BSVG-BSVG-BSVG 

11 FRST FRST-FRST-FRST 

78 BANA BANA-BANA-BANA 

110 HMEL SHRB-SHRB-SHRB 
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121 INDN CORN-BSVG-BSVG 

146 LETT CORN-BSVG-PAST 

167 PAST PAST-PAST-PAST 

182 SUGC SUGC-SUGC-SUGC 

204 ASPN FRST-BSVG-FRST 

224 LIMA CORN-PAST-PAST 

225 MAPL CORN-PAST-BSVG 

243 MESQ CORN-TOMA-PAST 

248 MIGS CORN-TOMA-BSVG 

249 MINT TOMA-TOMA-BSVG 

254 MIXC CORN-TOMA-TOMA 

262 AGRR AGRL-AGRL-AGRL 

 

Table 2B. Dynamic agricultural land use trajectory and their crop or vegetation cover meaning 

ID Trajectory Crop/vegetation cover Meaning 

1 CORN-PAST-PAST rainfed maize-grass-grass 

2 CORN-PAST-BSVG rainfed maize-grass- sparse vegetation 

3 CORN-TOMA-PAST rainfed maize- tomato-grass 

4 CORN-TOMA-BSVG rainfed maize-tomato-sparse vegetation 

5 AGRL-TOMA-BSVG Beans-tomato-sparse vegetation 

6 CORN-TOMA-IRRM rainfed maize-tomato-irrigated maize 

7 CORN-PAST-IRRM Rainfed maize-grass-irrigated maize 

Table 3B. Land use classes as represented in the Static SWAT+ Model 

LANDUSE_ID Land use Class SWAT_CODE 

1 Water WATR 

2 Grazed grassland PAST 

3 Grazed shrubland CRGR 

4 Space vegetation BSVG 

5 Rainfed Maize CORN 

6 Irrigated Sugarcane SUGC 

7 Dense forest FRST 

8 Sub_Alpine grassland GRAS 

9 Woodland TUWO 

10 Mixed Crops AGRL 

11 Irrigated Banana and Coffee BANA 

12 Wetland WEHB 

13 Urban URMD 

14 Shrubland SHRB 
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Appendix C. Data used in this study 995 

Table 1C. Summary of the different data used in the study with description and sources 

Data Type Description Source/ reference 

Climate Ten station data of rainfall and four stations of 

maximum/minimum temperature 

Tanzania Meteorological 

Agency (TMA) and Pangani 

Basin Water Office (PBWO) 

Digital Elevation 

Model (DEM) 

Elevation data from at 90m resolution United States Geological 

Survey (USGS) website 

Seasonal land use 

maps 

Seasonal land use maps at 30m (Msigwa et al., 2019) 

Soil Africa Soil Information System (AFSIS) at 250m 

resolution 

(Hengl et al., 2015) 

Remotely sensed 

based Actual ET 

Ensemble ET from six remote sensing products (IHE Delft, 2020) 

Land management 

data 

Planting dates, harvesting dates and irrigation 

application dates and frequency 

Farmers interview 

 


