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Abstract. In most (sub)-tropical African cultivated regions, more than one cropping season exists following the (one or two) 

rainy seasons. During the dry season, an additional cropping season is possible when irrigation is applied, which could result 10 

in 3 cropping seasons. However, most studies for mapping the blue and green ET with agro-hydrological models such as 

SWAT do not represent these cropping seasons. Blue ET is a portion of crop evapotranspiration after application of irrigation 

while green ET is the evapotranspiration as a result of rainfall. In this paper, we derived dynamic and static trajectories from 

seasonal land-use maps to represent the land-use dynamics following the major growing seasons, for the purpose of improving 

simulated blue and green water consumption from simulated evapotranspiration (ET) in SWAT+. A comparison between the 15 

default SWAT+ (with static land use representation) set up, and a dynamic SWAT+ model (with seasonal land use 

representation) is done by spatial mapping of ET results. Additionally, the SWAT+ blue and green ET were compared with 

the results from the four remote sensing data-based methods namely: SN (Senay), EK (van Eekelen), Budyko method and Soil 

Water Balance method (SWB). The results show that ET with seasonal representation is closer to remote sensing estimates, 

giving higher performance than ET with static land use representation.: The Root Mean Squared Error decreased from 181 to 20 

69 mm/year; the percent bias decreased from 20 % to 13% and Nash Sutcliffe Efficiency increased from -0.46 to 0.4. Further 

the results of blue and green ET from the dynamic SWAT+ model were compared to the four remote sensing methods. The 

results shows that the SWAT+ blue and green ET are similar to the van Eekelen method that performed better than the other 

three remote sensing methods. It is concluded that representation of seasonal land-use dynamics produces better ET results 

which provide better estimations of blue and green agricultural water consumption. 25 

1. Introduction 

Freshwater availability is a limiting resource in many regions throughout the world and the problem is 

projected to increase in the near future due to land use change, population growth, and climate 

change.  The availability of freshwater is mostly determined by precipitation on land. When rain falls on 

land, it travels via either green or blue waterways (Velpuri and Senay, 2017; Hoekstra, 2019). The green 30 
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water resource is the water that is held in the unsaturated soil layer, whereas the blue water resource is 

the water that is stored in rivers, streams, surface-water bodies, and groundwater (Falkenmark and 

Rockström, 2006). One of the solutions to lessen the threat of freshwater scarcity is to minimize 

consumptive water use in agriculture. However, for water resource management, it is critical to 

understand water use in agricultural production by source (rainwater or irrigation water from surface and 35 

groundwater) (Velpuri and Senay, 2017). For efficient water resource management, knowing how much 

direct rainwater (green water) and abstracted water (blue water) is being utilized is crucial. Yet such 

information is not readily available, especially in developing countries. 

Hydrological models such as the Soil Water Assessment Tool (SWAT) can be used to provide information 

on blue and green water at basin and continental scales (Xie et al., 2020; Jeyrani et al., 2021; Liang et al., 40 

2020; Serur, 2020). For instance, Schuol et al. (2008) used the SWAT model to simulate blue and green 

water availability for the African continent. Xie et al. (2020), evaluated the evolution of the blue and 

green water resources, water footprints, and water scarcities in time and space in the Yellow River basin 

in China from 2010–2018. The study accounts for the effects of irrigation on blue and green water 

resources. Liang et al. (2020) used the SWAT model combined with future land use and climate scenarios, 45 

which was successfully applied to quantify the spatiotemporal distribution of blue and green water change 

for the Xiangjiang River Basin in China between 2015 and 2050. 

However, a few of these studies have implemented annual land-use dynamics. Since land-use refers to 

manmade socio-economic activities and management practices on the land, these anthropogenic activities 

may change depending on a season, specifically on cultivated land (Anderson et al., 1976). These changes 50 

per season are called seasonal land-use dynamics (Msigwa et al., 2019). Hence, mapping the blue and 

green water with agro-hydrological models such as SWAT need a better representation of the 

seasonality/cropping seasons. To best of our knowledge there are no studies that implemented seasonal 

land-use dynamics in estimation of blue and green water resources. For example, Jeyran et al. (2021), 

assessed basin blue and green available water components under different management and climatic 55 

scenario using SWAT. The annual land-use change implementation showed that the 30% increase in 

agricultural land use from 1987 to 2015 has caused significant changes in water shortages of Tashk-
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Bakhtegan basin in Iran. However, other studies do not implement even the annual land-use dynamic in 

order to decrease the computational time of the very large-scale models. In most cases, the dominant soil 

and land cover are used. For instance, Serur (2020) used a 10-year land use map to model blue and green 60 

water availability for the Weyb River basin in Ethiopia.  

The major limitation of applying these approaches in tropical African cultivated areas is that typically 

they have more than one growing cycle, most of the time ranging between 2 to 3 depending on the 

sequence of rainy and dry seasons and availability of irrigation water (Msigwa et al.,2019). The right 

representation and timing of these cropping seasons is therefore important in order to quantify the crop 65 

water consumption.  

A Few studies that have implemented seasonal land-use dynamic for other purposes such as nitrogen 

leaching and plant growth (Glavan et al., 2015), estimating water withdrawals (Msigwa et al., 2019) and 

Leaf Area Index (LAI) simulation (Nkwasa et al., 2020), have found an impact of representing seasonal 

land-use dynamics in models. For instance, Nkwasa et al. (2020) found that the implementation of 70 

seasonal land-use dynamics in SWAT and SWAT+ models led to an improved vegetation simulation. The 

LAI dynamics of the seasonal land-use dynamic implementation showed more realistic temporal 

advancement patterns that corresponded to the seasonal rainfall within the basin. Moreover, Msigwa et 

al. (2019) found that water withdrawals for irrigated mixed crops increased by 482 Mm3/year when 

seasonal land-use maps are used. On the other hand, the seasonal land use-dynamics have been studied 75 

and evaluated using four methods that use multi-scalar datasets to assess cropping intensity of smallholder 

farms. In this study, the cropping intensity is the number of crops planted annually (Jain et al., 2013). 

However, in this case, the impact of seasonal land use on water resources has not been studied.  

The SWAT model incorporates crop rotation and its management at the level of the Hydrological 

Response Unit (HRU) within a sub-basin (Neitsch et al., 2002). It is represented as a sequence of planting 80 

and harvesting operations within the same HRU supplemented with management operations (Gao et al., 

2017). The representation of agricultural management is done through a separate management file by 

specifying the planting, harvesting, tillage, irrigation, fertilizer and pesticide application by heat units or 
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month and date (Arnold et al., 2018).  Although, the SWAT (+) model is capable of representing multiple 

cropping seasons, however this is mainly implemented outside Africa catchments. Agro-hydrological 85 

model applications in Africa basins do typically not represent different cropping seasons. Rather 

implement the default SWAT simulation of a single growing cycle every year (Ndomba et al., 2008; Koch 

et al., 2012; Gashaw et al., 2018). Lack of consideration of the seasonal land-use dynamics in hydrologic 

modelling studies, especially in African cultivated basins, may be attributed to past constraints of model 

capabilities, as well as lack of availability of crop-specific and agricultural management practices data 90 

(van Griensven et al., 2012).  

Hence, the crop-specific and data management practices could be obtained from the seasonal land use 

maps using trajectory analysis. Trajectories represent changes of land-use over time by comparing 

changes between two or several land-use maps at a grid scale. Trajectory analysis has been applied widely 

to assess the changes and impact of Land Use and Land Cover (LULC) (Feng et al., 2014; Wang et al., 95 

2012), and as a pre-processing tool for LULC (Zomlot et al., 2017). In these studies, change analysis is 

done pixel by pixel for each year in order to identify land use change (Mertens and Lambin, 2000; 

Swetnam, 2007; Zhou et al., 2008; Wang et al., 2012; Zomlot et al., 2017). However, none of these studies 

have analysed pixel by pixel within a year with the aim of identifying the different (cropping) seasons, 

further referred to as land use dynamics. 100 

A recent study by Nkwasa et al. (2020) in the Usa catchment with in Kikuletwa basin in northern Tanzania 

has shown how to represent seasonal land-use dynamics using trajectories in the SWAT model using the 

management file and the SWAT+ model using decision tables for accurate hydrological simulation. This 

study builds on Nkwasa et al. (2020) approach to evaluate the effects of seasonal land-use dynamics on 

blue and green ET, with two main objectives; (i) investigate the effect of implementing seasonal land-use 105 

dynamics on the water balance component in Kikuletwa basin (6650 km2) with focus on the ET using 

SWAT+ and (ii) to estimate blue and green water consumption from simulated ET.  
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2. Methods 

2.1. Study Area 110 

The Kikuletwa basin is a sub-basin of the Pangani basin that covers approximately 6,650 km2 (Figure 1). 

Rainfall within the basin is bimodal, meaning that the area receives long rains (Masika) from March to 

June and short rains (Vuli) from November to December, as shown in Figure 2. Annual rainfall ranges 

between 300-800 mm in the lower part of the basin to 1200-2000 mm in the highlands of Mount Meru 

and Kilimanjaro. The maximum temperature ranges from 25 to 330C and minimum temperature ranges 115 

from 15 to 200C. The basin comprises of diverse LULC classes such as agricultural land, dense forest on 

Mount Kilimanjaro (5880m) and Meru (4562m), grazed land, mixed urban and shrubland/thickets. 

Shrubland and thickets in the study area are found mainly in the lowlands where rain-fed agriculture is 

dominant. Urban areas concentrate around Arusha, although there are also emerging small towns. 

Moreover, grazed land is mainly found in the Maasai land of Monduli and Simanjiro districts. Irrigated 120 

agriculture in Kikuletwa is mainly practiced in the highlands and lowlands along the river of Moshi, 

Moshi urban, Hai, Arumeru, Arusha, and Siha districts. The main crops in the highlands are banana, 

coffee, and maize, while the lowlands are dominated by mixed vegetable crops such as tomatoes, onions, 

and beans.  
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 125 

Figure 1. The location of the Kikuletwa catchment in Africa (inset map). The catchment map shows the 

river networks and the location of ground water level, rainfall and temperature station in and around the 

catchment.  (by Authors). 
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Figure 2. Monthly average rainfall (mm) and temperature of Kikuletwa basin ground rainfall stations 130 

2.2 Input dataset for SWAT+ 

The required rainfall, river discharge, climate data, topography, soil map and land-use map were collected 

from different sources. The 90-m Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model 

(DEM) was obtained from the United States Geological Survey (USGS) website 

(https://earthexplorer.usgs.gov/); the soil map was extracted from the African Soil Information Service 135 

(AFSIS; Hengl et al., 2015). Daily rainfall records for 10 stations were obtained from the Tanzania 

Meteorological Agency (TMA) and Pangani Basin Water Office (PBWO). The daily climate records of 

temperature (maximum and minimum) for three stations were obtained from PBWO and TMA. The 

different data sets had variable record length and quality. However, for the selected 10 rainfall and 4 
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temperature stations, only good quality data records for the overlapping period (2006 to 2013) were 140 

selected. 

Our study used an improved LULC maps with local observation unlike other studies in the same 

catchment such as (Notter et al., 2012; Ndomba et al., 2008). For instance, Notter et al. 2012 used only a 

few herbaceous crops in model parametrization without a cropping calendar. The LULC maps were 

created using Landsat 8 (30m resolution) image of three months (March, August and October) 145 

representing three seasons in the basin. The March map represents the LULC during the long-wet season 

(Masika), the August map represents the dry season, and the October map represents the short rainy 

seasons (Vuli). The overall classification accuracy for the land use maps of March, August, and October 

2016 were 85.5%, 88.5%, and 91.6% with a kappa coefficient of 0.84, 0.87 and 0.91, respectively 

(Msigwa et al., 2019). About 20 and 19 LULC classes in the Kikuletwa catchment were mapped for the 150 

wet and dry seasons, respectively. More details on the land use classes and their accuracies are found in 

Msigwa et al. (2019). The LULC maps were reclassified to match the SWAT land-use classification (see 

Table 3B in Appendix B). For instance, the SWAT land-use code ‘PAST’ was used to represent grazed 

grassland in the maps. 

2.3 Land-use Trajectories 155 

The LULC change trajectory methodology has been widely applied in many areas to assess LULC change 

and its impact on the environment. Researchers use trajectories to analyse the change happening between 

two images pixel by pixel (Mertens and Lambin, 2000; Swetnam, 2007; Zhou et al., 2008; Wang et al., 

2012; Zomlot et al., 2017). 

In this study, we extended the meaning of land-use trajectories from ‘land-use change’ to ‘seasonal 160 

succession of land-use types for a given sample unit (pixel) with more than two observations at different 

times' (Zhou et al., 2008). We applied the method in this study to assess the agricultural seasonal dynamics 

for the meteorological dry and wet seasons of the Kikuletwa basin. 
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The land-use change trajectories were obtained by integrating three classified images to represent the 

three cropping seasons so that pixel-based change trajectories could be found using GIS. A land-use 165 

trajectory is the trajectory of a certain pixel in each of the three images. For example, a trajectory of 

2→3→0 means for that pixel the land-use in March was rain-fed Maize (2), then in August, irrigated 

mixed crop (3) and finally, in October, Bare land (0). This type of trajectory is classified as dynamic, 

whereas a trajectory of 4→4→4 meaning the land-use is irrigated banana and coffee (4) in March, August, 

and October, is a static trajectory. Thus, the LULC change trajectories were categorized into dynamic and 170 

static land-use trajectories. We only implemented the trajectories from all agricultural land-uses except 

irrigated banana and coffee and irrigated banana, maize and coffee land-uses which were combined as 

irrigated banana and coffee land-use. About 74% of the trajectories were static while 26% of the 

trajectories were dynamic. Figure 3 shows the spatial distribution of static and dynamic land-use 

trajectories found in the study area. Only agricultural land-use and extensive agriculture LULC such as 175 

grazed grassland and shrubland were considered when analysing the seasonal changes (dynamic land-

uses) and implemented in the SWAT+ model. We analyzed and implemented 40 land-use trajectories, 

Appendix B, Table 1B shows few trajectories that were implemented. 
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Figure 3. Spatial distribution of main dynamic land-use trajectories and distinction between 180 

dynamic and static land-use identified in the study area. 

Legend    

Id Main Trajectory Crop/ vegetation cover meaning 
1 AGRL-BSVG-AGRL Beans-space vegetation-beans 

2 CORN-AGRL-PAST Rainfed maize-beans-grassland 

3 CORN-AGRL-BSVG Rainfed maize-beans-space vegetation 

4 AGRL-AGRL-BSVG 

Irrigated mixed crops- irrigated mixed crops -space 

vegetation 

5 CORN-AGRL-AGRL Rainfed maize- Irrigated mixed crops - Irrigated mixed crops 

6 AGRL-AGRL-AGRL 

Irrigated mixed crops - Irrigated mixed crops - Irrigated 

mixed crops 

7 AGRL-AGRL-PAST Irrigated mixed crops - Irrigated mixed crops -grassland 

8 AGRL-AGRL-PAST Irrigated mixed crops - Irrigated mixed crops -grassland 

9 SUGC-AGRL-AGRL 

Irrigation sugarcane- Irrigated mixed crops - Irrigated mixed 

crops 

10 AGRL-AGRL-AGRL 

Irrigated mixed crops - Irrigated mixed crops - Irrigated 

mixed crops 

2.4. SWAT+ Model 

SWAT+ is a physically based, semi-distributed hydrological model and a restructured version of the Soil 

and Water Assessment Tool (SWAT) designed to face present and future challenges in water resources 

modelling and management (Bieger et al., 2017). SWAT+ is more flexible in simulating the basin 185 

processes such as evapotranspiration, runoff, crop growth, nutrient, and sediment transport due to its 

watershed discretization and configuration. The HRUs are defined as a contiguous area, i.e., a 

representative field, with an associated user-defined length and width. The actual HRU is calculated based 

on the DEM, soil and land-use map inputs. Sub basins are delineated during the model construction, but 

they are divided into water areas and one or more landscape units (LSU)(Bieger et al., 2017). 190 

Land-use and management representation in SWAT+ can be done through the management file or using 

decision tables. Decision tables are an accurate yet compact way to model complex rule sets and their 

corresponding actions. Nkwasa et al. (2020) highlighted the greater flexibility provided by decision tables 

during the representation of agricultural practices in SWAT+. The model gives room for two or more 

crops growing at the same time by defining the plant community in the specific plant file. The model 195 

enables the representation of the reality of cultivated tropical basins. 
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The ET in the model is estimated at HRU level. There are different methods (Priestley-Taylor, Penman-

Monteith and Hargreaves) used to estimate ET in the SWAT+ model. More detailed information can be 

found in (Abiodun et al., 2017; Neitsch et al., 2002; Alemayehu et al., 2016). Our study adopted the 

Hargreaves method (Hargreaves and Samani, 1982) to estimate ET due to the limited amount of input 200 

data such as solar radiation. The method has been tested in tropical basins such as the Mara basin linking 

Tanzania and Kenya (Alemayehu et al., 2016). Our aim was to use available ground data and not rely on 

remote sensing climate data such as solar radiation which is reported to have uncertainties (Alemayehu 

et al., 2016). SWAT model have also been successfully used in Pangani basin for different purposes 

(Ndomba et al., 2008; Notter et al., 2012). 205 

2.5 Land-use Trajectories Implementation in SWAT+ 

We combined three maps (March, August and October) to obtain the trajectory land-use map. Forty land-

use trajectories were produced from the three seasonal land-use maps. These trajectories differ from the 

traditional approach as they not only use the agricultural statics but use land use maps to define the space.  

Then each trajectory was assigned a SWAT+ land-use code (placeholder). For instance, a placeholder 210 

SWAT+ land-use code ‘MIXC’ signifies a CORN→TOMA→TOMA trajectory (rainfed maize to tomato 

to tomato land use trajectory) or ‘MIGS’ signifies a CORN →TOMA →BSVG trajectory (rainfed maize 

to tomato to sparse vegetation land use trajectory) as shown in Table 1B (Appendix B). A trajectory land-

use map represented with the placeholder SWAT+ land-use codes using the lookup Table 1B (Appendix 

B) for Kikuletwa basin was created. A python code (Appendix A) was used to assign trajectories of the 215 

placeholder SWAT+ land-use codes, and to create the trajectories’ management files i.e., ‘landuse.lum’, 

‘management.sch’ and ‘hru-data.hru’ files. In the ‘Landuse.lum’ file, the trajectories were defined with 

respect to the plant community. ‘Management.sch’ file controls the timing of the planting and harvesting 

of the individual crops in the community (Table 1). For instance, the tomato and soya beans are planted 

in the same field with different planting and harvesting schedule but grown at the same period. However, 220 

each crop was defined by its own plant community in new SWAT+ to make distinction between these 

crops. The ‘hru-data.hru’ file links the HRUs to the corresponding land-use management. The irrigation 
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schedules were implemented using decisions tables. The sources of irrigation water in the catchment was 

river and irrigation techniques were mostly furrow.  

Table 1. An example of a ‘management.sch’ file input in dynamic SWAT+ model 225 

1 name of the land-use management, 2 points to the irrigation decision tables, 3 planting operation, 4 

harvesting operation, 5 rainfed maize, 6 soy bean, 7 tomato, 8 harvest the grain portion of the crop, 9 number 

of operations, 10 number of auto-operations, 11 operation type, 12 month, 13 day, 14 heat unit schedule, * 

operations 

2.6 Model Configuration for both Static and Dynamic SWAT+ Models 230 

The SWAT+ model was setup using DEM, soil map and land-use map of March 2016 for the static 

representation scenario (static model) and using a trajectory map and files (described in section 2.5) for 

the dynamic representation scenario (dynamic Model). In the static model the crops were grown in the 

rain seasons from March till July and the land would be left bare. This is normally the case with most 

name numb_ops9    numb_auto10 op_typ11 Mon12 Day13 hu_sch14 op_data1* op_data2* op_data3* 

cor_agr_agr_m1 8 2               

      irr_toma_soy2             

      irr_corn2             

      plnt3 3 15 0 corn5 grain8  0 

      hvkl4 8 15 0 corn grain 1 

      plnt 7 1 0 soyb6 grain 2 

      plnt 8 20 0 toma null 3 

      hvkl 10 1 0 soyb grain 4 

      hvkl 10 20 0 toma7 null 5 

      plnt 10 30 0 corn grain 6 

      hvkl 2 28 0 corn grain 7 

agr_agr_agr_m1 8 2               

      irr_toma_soy2             

      irr_corn2             

      plnt 3 15 0 soyb grain 0 

      hvkl 6 30 0 soyb grain 1 

      plnt 7 1 0 soyb grain 2 

      plnt 8 20 0 toma null 3 

      hvkl 10 1 0 soyb grain 4 

      hvkl 10 20 0 toma null 5 

      plnt 10 30 0 corn grain 6 

      hvkl 2 28 0 corn grain 7 
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SWAT model Application in SWAT (Ndomba et al., 2008; Gashaw et al., 2018; Koch et al., 2012). The 235 

same ground observations of rainfall and temperature were used (Appendix C, Table 1C) for both models. 

The precipitation stations were adjusted manually according to elevation and the potential maximum leaf 

area index of maize was adjusted to correspond to the field measurements of the basin. USDA Soil 

Conservation Service (SCS) curve number was used to estimate surface runoff and the muskingum 

method used for channel routing. 240 

For the static SWAT+ model, 23 sub-basins, 171 land scape units and 6086hru were generated with 14 

land-use classes, while for the dynamic SWAT+ model, 23 sub-basins, 171 land scape units and 9333hru 

were generated with 40 land use classes representing the 40 different trajectories. The difference in the 

number of HRUs is related to the higher number of land-use classes in the dynamic land-use mapping. 

The irrigation schedules were implemented through decisions tables (Arnold et al., 2018) by specifying a 245 

furrow irrigation method and using the rivers within the sub-basins as the source of irrigation. The model 

was run for a period of 8 years (2006 to 2013). The first two years were used as a warm up period.  

2.7 Model Evaluation  

Both the static and dynamic SWAT+ models were compared on how they simulate the water balance with 

specific focus on the ET component since this study aims at mainly improving the spatial distribution of 250 

blue and green water consumption.  Hence, the SWAT+ models were not calibrated. The ET from both 

static and dynamic SWAT+ representation scenarios was compared with the remote sensing ET at a basin 

level for the same simulation period from 2008 to 2013. The remote sensing ET is an ensemble ET product 

from seven existing global scale ET products (IHE Delft, 2020). All the ET products are based on multi-

spectral satellite measurements and surface energy balance models i.e. Global Land Evaporation 255 

Amsterdam Model (GLEAM) (Miralles et al., 2011), CSIRO MODIS Reflectance-based 

Evapotranspiration (CMRS-ET) (Guerschman et al., 2009), Operational Simplified Surface Energy 

Balance (SSEBop) (Senay et al., 2013), Atmosphere-Land Exchange Inverse Model (ALEXI) (Anderson 

et al., 2007), Surface Energy Balance System (SEBS) (Su, 2002), ETMonitor (Hu and Lia, 2015) and 

MODIS Global Terrestrial Evapotranspiration Algorithm (MOD16) (Mu et al., 2011). The detailed 260 
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information on the ET products description and method are found in Hugo et al. (2019).The product was 

evaluated for the study area by comparing the basin water balance at three gauged stations; Karangai, 

Kikuletwa Power station and Tanzania Plantation Company (TPC) over a period of six years (2008-2013). 

The comparison of ET calculated using the water balance and remote sensing showed good agreement 

(NSE= 0.77) for Kikuletwa Power station which covered 86% of the total basin area (Msigwa et al., 2019, 265 

2021). Statistical metrices such as Nash-Sutcliffe efficiency (NSE), Root Mean Square Error (RMSE), 

Percent Bias (PBIAS) and adjusted R squared (R2) were used to evaluate the both monthly ET from static 

and dynamic SWAT+ models against the remote sensing ET. Moreover, the Paired T-test statistical 

analysis was performed to find if there is significant difference between the ET from the static model and 

that of dynamic model for only the dynamic land uses.   270 

2.8 Estimating blue and green ET 

The blue ET is a portion of crop evapotranspiration after application of irrigation while green ET is the 

evapotranspiration as a result of rainfall. The blue ET in this study was estimated as a difference between 

ET under irrigation and ET without irrigation (Liu and Yang, 2010). The SWAT+ dynamic land-use 

implementation was run without irrigation and then later irrigation was applied. The green ET is the actual 275 

evapotranspiration from precipitation which can be kept in unsaturated soil and absorbed by plants and is 

then returned to the atmosphere via evapotranspiration. In this study, only the portion of blue water 

consumed from irrigation was considered and not all the blue water resources like other studies (Xie et 

al., 2020). 

 The SWAT+ model was run first assuming that no irrigation was carried out. The computed ET is called 280 

ETgreen. Then the SWAT+ model was run again with irrigation being implemented and the ET computed 

is called ETtotal as explained in the two scenarios below. ETblue is computed by the difference of ETtotal 

from the run with irrigation implantation and ETgreen “Eq. (4)”.  

The two scenarios to estimate blue ET 

1. The seasonal dynamic SWAT+ is carried out by assuming the soil does not receive any irrigation 285 

water. The evapotranspiration computed using this first run is referred to as ETgreen 
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2. The seasonal dynamic SWAT+ is carried out by assuming the soil receives sufficient irrigation 

water. The evapotranspiration computed using this second run is referred to as ETtotal 

Hence, ETblue is computed from the “Eq. (4)” below 

𝐸𝑇𝑏𝑙𝑢𝑒 = 𝐸𝑇𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑇𝑔𝑟𝑒𝑒𝑛        (4) 290 

It should be noted that the trajectory implementation involves only two of the agricultural land-uses i.e. 

rainfed maize and mixed crop with exception of irrigated banana and coffee land-use and irrigated banana, 

coffee and maize land-use. 

2.9 Comparison of SWAT+ results with other remote sensing methods 

The SWAT+ blue and green ET were compared with the results from the four remote sensing data based 295 

methods namely: SN (Senay et al., 2016), EK (van Eekelen et al., 2015), Budyko method (Simons et al., 

2020) and Soil Water Balance method -SWB (FAO and IHE Delft, 2019).  

The SN method (Senay et al., 2016) is the simplest method whereby blue water is estimated as a difference 

between precipitation (P) and ET, followed by the modified method of van Eekelen et al., (2015) where 

the effective fraction was introduced to reduce the amount of precipitation that evaporates. The Budyko 300 

method, as described in Simons et al., (2020), estimates green water from precipitation using an empirical 

relationship between actual evapotranspiration, precipitation and reference evapotranspiration. The 

Budyko equation, also called the Budyko curve, assumes a relationship between the evaporation ratio 

(ET/P) and climate aridity index (ETo/P) to describe the water-energy balance for long term analysis. 

The soil moisture balance model computes green (ETgreen) and blue (ETblue) water components of ET, 305 

by keeping track of the soil moisture balance and determining whether ET can be satisfied through direct 

precipitation and precipitation stored as soil moisture alone or if an additional water (surface or 

groundwater supply) is required.  The study compares blue and green water estimations for all LULC 

classes for the Kikuletwa catchment.  
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3. Results  310 

3.1 Comparison of Simulated basin ET from Remote Sensing 

Figure 4 shows the average monthly ET at the basin scale of Kikuletwa for the two model scenarios of 

SWAT+ and that from remote sensing. The dynamic SWAT+ model shows higher ET (by 20mm/month) 

matching the remote sensing pattern in the dry seasons (July to October) than the static SWAT+ model 

implementation. This shows that there are agricultural activities occurring in the dry seasons. In the 315 

dynamic SWAT+ model, we implemented irrigated cropping during the dry seasons which led to an 

increase in ET. 

The statistical analysis (Table 2) shows that both the SWAT+ simulations have a correlation (R2) of above 

0.5, when compared with monthly remote sensing ET. However, the monthly average ET value for the 

dynamic land-use scenario is closer to the remote sensing ET, especially during the dry months from July 320 

to November where we implement more than one cropping season. 

Unlike the commonly used static land-use scenario where only one cropping season was implemented per 

year, the monthly ET for the dynamic SWAT+ model implementation shows acceptable PBIAS of 13% 

whereas, the static SWAT+ model shows higher PBIAS of 30%. Moreover, the dynamic SWAT+ model 

shows a good NSE of 0.4 while the static SWAT+ shows very low performance with an NSE of -0.46. 325 

Table 3 shows the water balance component for the two scenarios. A notable difference is seen in ET 

increase (24%) and decrease in other water balance components (lateral flow; 27%, percolation; 42%, 

surface runoff; 32%). The mass balance (change in soil water balance) in percentage for the static SWAT+ 

model is higher (1.8%) than the dynamic SWAT+ model (0.5%). The most pronounced differences are 

found when comparing the dynamic land-use representation on basin scale and the commonly used static 330 

land-use approach with remote sensing. Figure 5 shows the spatial distribution of ET from remote sensing, 

dynamic land-use and static land-use representation. 

The average basin ET is 461mm/y, 573mm/y and 642 mm/y for the static SWAT+ model, dynamic 

SWAT+ model, and remote sensing, respectively. Generally, all the simulated ET from SWAT+ shows 
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lower annual average ET than remote sensing ET. However, the ET from static land-use representation 335 

shows a higher difference of 181mm/y whereas with the use of dynamic land-use, the difference in ET is 

only 69mm/y. The paired T-test results show that there is a significant difference between the ET from 

the static model and that of the dynamic model for the dynamic land-uses. A P value of 0.013 was 

obtained, which was less than the 0.05 confidence interval. Spatial distribution of ET from the SWAT+ 

models is different from remote sensing. However, visually, the spatial distribution of ET from the 340 

dynamic land-use scenario is closer and shows similar patches to remote sensing than the ET from the 

static land-use scenario (Figure 5). 

The differences in ET spatial distribution (Figure 5) are vivid mostly in the trajectory implemented areas 

in the lowlands see Figure 3. Figure 6 shows the ET on the dynamic land-uses alone, the differences of 

the amount of the ET in these areas is more than 100mm per year. The vivid differences are seen on the 345 

right lower corner of the catchment where the differences in ET are more than 200mm/y. There are more 

areas with less that 400mm/y in the static model as compared to the dynamic model.  

 

Figure 4. Average monthly ET for basin-scale summarized from remote sensing, dynamic land-use 

scenario and static land-use scenario. 350 

 

 

 

 



18 

 

Table 2. Statistical analysis of ET comparison of SWAT scenarios from Remote sensing 355 

Statistic Parameter Static SWAT+ Dynamic SWAT+ 

PBIAS 30% 13% 

Nash-Sutcliffe efficiency (NSE) -0.46 0.4 

Adjusted R Square 0.6 0.6 

RMSE (mm/month) 20.8 13.3 

Table 3. Comparison of water balance component for the basin level 

Water balance component (mm) Static Dynamic 

Precipitation 814 814 

Irrigation 0 8.25 

Evapotranspiration 461 573 

Lateral flow 139 101 

Surface runoff 207 140 

Percolation 21.7 12.6 

%mass balance 1.8 0.53 
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Figure 5. Spatial distribution of ET from a) Remote sensing b) dymanic land-use scenario and c) static 

land-use scenario. 360 
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Figure 6. Spatial distribution of ET from dynamic Land-use for both a) dynamic and b) static SWAT+ 

Models. 

3.2 Blue and Green ET 

Figure 7 shows the trends of blue and green annual ET in the Kikuletwa basin for a period from 2008 to 365 

2013. The implemented blue and green ET were mainly for irrigated mixed crop land-use due to 

implementation of trajectories. The annual average blue ET for irrigated mixed crops is 138mm which 

accounts for 25.5% of the annual average total ET and the annual average green ET is 402mm which 

accounts for 74.5% of the annual average total ET. 
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 370 

Figure 7. The annual variation of blue and green ET from 2008–2013. 

Figure 8 shows that the spatial distribution of blue ET for agricultural areas in the Kikuletwa basin for 

implemented trajectories such as rainfed maize to tomato to irrigated maize land use trajectory (See 

Appendix 2, Table 2). The blue water is calculated from the irrigated implemented trajectories that mainly 

include irrigated mixed crops (soybeans, tomato and irrigated maize). Figure 8 shows that more than half 375 

of the total area consumes less than 200mm of blue ET. The higher blue ET is seen in the lower right 

corner where the irrigated sugarcane plantation is found. 
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Figure 8. Spatial distribution of Blue ET for the implemented trajectories of rainfed and irrigated mixed 

crops land-use. 380 

Figure 9 shows the comparison of average blue and green ET from four methods (Msigwa et al., 2021) 

with dynamic SWAT+. The value of both blue and green ET is closer to two methods, EK (van Eekelen) 

and SWB (Soil Water Balance) methods, which were indicated to have realistic values of blue and green 
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ET. Van Eekelen et al., (2015) is the method that analysed precipitation (P) and ET and applied an 

effective rainfall factor since not all rainfall will infiltrate and be stored in the unsaturated zone to be 385 

available for uptake by plants. Both ground data and remote sensing data could be used for data analysis-

based approaches on an annual basis. The SWB model is a pixel by pixel vertical soil water balance model 

that splits green and blue ET by tracking of soil moisture balance and determining if the ET is satisfied 

only from rainfall or stored in the soil moisture or additional sources if required (FAO and IHE Delft, 

2019). 390 

 

Figure 9. Blue and green ET comparison with other four methods from Msigwa et al. (2021). 

4. Discussion  

Some previous studies have represented annual land-use changes in SWAT and found that these have a 

significant impact on hydrology (Wagner et al., 2016; Woldesenbet et al., 2017; Wagner et al., 2019). 395 

However, none of these studies has represented the seasonal dynamics of land use within a single year in 

a spatially distributed manner. Nkwasa et al. (2020) incorporated the seasonal land-use dynamic in SWAT 

and SWAT+ and found that models led to an improved vegetation simulation. This study did not show 

how the seasonal land-use dynamic improved water balance component such as ET. Our study uses of 

agro-hydrological model (SWAT+) to represent blue and green ET for different cropping seasons 400 
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(represented by trajectory with time and space) and the use of remote sensing ET to evaluate the simulated 

ET from SWAT+. The study has compared a common default modelling approach where a static land-

use map is used together with its management practices and a seasonal dynamic land-use representation 

where more than one cropping season is represented in a year. The spatial and temporal ET estimates 

from two model setups were compared with remote sensing ET. An increase of 112mm/y of the ET is 405 

seen when seasonal dynamic land-use is implemented in the dynamic model to match the remote sensing 

ET as compared to when a static land-use map is used in the static model. The ET results from the dynamic 

model are significantly different from the ET in the static model for the dynamic land-use. The models 

show differences in water balance components, this is due to implementation of the land-use trajectory in 

the dynamic model. 410 

A remarkable difference is seen in the spatial distribution of ET from static and dynamic land-use SWAT+ 

representation. The dynamic land-use SWAT+ visually is similar to a remote sensing map compared to 

the static land-use SWAT+. This is because of the added management practices such as irrigated cropping 

in the dry seasons, unlike the default SWAT+ with a static land use throughout the simulation period. The 

ET from dynamic land-use setup could not reach maximum satellite ET because the satellite ET estimates 415 

also have uncertainties in the mountainous areas because of the presence of cloud cover. Moreover, 

different methods for estimating ET could lead to these differences. Climate ground stations (temperature, 

wind speed, relative humidity and solar radiation) were used for ET simulation in SWAT+ model while 

the remote sensing use the energy balance models, mostly remote sensing data. 

On the other hand, the ET from the static land cover such as forest from the static and dynamic model 420 

setup show different ET values this could be because of the difference in the initial model setup. The 

model setup for static used a March land use map with only 14 land use classes, while the dynamic model 

used a land use map with 40 trajectories. Hence, the changes in the ET might be due to the different land 

use maps yielding different number of HRUs. In order to avoid such difference, one could have a initial 

setup with same land uses then trajectory implementation could only be with the agricultural land use 425 
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Furthermore, the ET estimates from the dynamic SWAT+ model were used to estimate blue and green 

ET. The blue and green ET estimates from SWAT+ for the mixed crop land-use show no significant 

difference in the values from the two methods (EK and SWB) assessed in the (Msigwa et al., 2021). 

These findings demonstrate the importance of the representation of seasonal land-use dynamic in 

modelling blue and green water consumption. Normally, most models use NDVI to represent seasonal 430 

changes (Amri et al., 2011; Ferreira et al., 2003), whereas the use of dynamic land-use leads to improved 

accuracy of seasonal simulations of the water uses (Nkwasa et al., 2020). Seasonal land-use maps can add 

information on management practices of changes in temporal crop rotation and irrigation water use at a 

spatial scale. However, to account for accurate seasonality of land-use, more than 3 maps within a year 

should be represented, ideally 12 maps each year. This would enable a more complete understanding of 435 

the agricultural land-use classes and minimize errors in the trajectory analysis. However, Landsat 8 is 

associated with cloud most especially in the rainy season. Cloud masking techniques is needed before 

further analysis of the images. Also, there were uncertainties associated with the trajectories for example 

unrealistic trajectories like change from crop to forest then crop again. These types of trajectories were 

corrected and reclassified. 440 

The Landsat 8 images used in this study to map seasonal land-use dynamics did not have a revisit time 

(16-day) that is small enough to acquire an adequate number of monthly images to represent the year. 

More products are now becoming available (Sentinel-2, 5-day revisit time) that have a higher temporal 

resolution, which would aid in the collection of more cloud free images to represent seasonality within 

the year. 445 

Although it appears important to include seasonal land use dynamic, one may claim that the annual land-

use implementation is enough when studying the effect of land use in hydrology. Our study shows a 

significant impact of the representation of seasonal land-use in the SWAT+ model by reducing the errors 

in water consumption estimations.  
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5. Conclusion 450 

Understanding of the spatial-temporal variability of agricultural water consumption in terms of blue 

water, requires accurate estimates of ET. This study has demonstrated the importance of incorporating 

seasonal land-use dynamic to improve simulated ET for further blue and green ET estimates using a 

SWAT+ model. Although the static representation gives equally reasonable good R2 results of more than 

0.5, we found out that the RMSE for the static model result is significantly higher as compared to the 455 

RMSE of the dynamic model result by about 112 mm per year. Moreover, the ET from the dynamic 

SWAT+ model gave a low PBIAS (13%) and a relatively good NSE of 0.4 compared to the ET from 

static SWAT+ that gives a higher PBIAS (20.8%) and a negative NSE of -0.46. The study showed that a 

dynamic land use representation in the SWAT+ model gave ET estimates closer to the remote sensing ET 

as compared to the default model with a static land-use representation. The improved ET map from the 460 

dynamic SWAT+ model improved the blue ET estimates as compared to use of static ET maps that does 

not implement irrigation in dry season. Hence, estimated blue ET correspond to the blue ET amount of 

past study in the basin (Msigwa et al., 2021). It is concluded that the representation of seasonal land use 

dynamics is essential to correctly simulate the agricultural (blue and green) water consumption. Also, for 

land use change studies, it is important to correctly represent the seasonal land use dynamics. 465 
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Appendices 

Appendix A. Make Management Script 600 

import sys 
from PIL import Image 
import numpy as np 
 
def open_tif_as_array(tif_file): 605 

    im = Image.open(tif_file) 
    imarray = np.array(im) 
    return imarray 
 

def empty_line(): 610 

    print("") 
 
def write_to(filename, text_to_write, report = False): 
    ''' 
    a function to write to file 615 

    ''' 
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    g = open(filename, 'w') 
    try: 
        g.write(text_to_write) 
        if report: 620 

            print('\n\t> file saved to ' + filename) 
    except: 
        print("\t> error writing to {0}, make sure the file is not open in another program"
.format( 
            filename)) 625 

        response = input("\t> continue? (Y/N): ") 
        if response == "N" or response == "n": 
            sys.exit() 
    g.close 
 630 

def show_progress(count, end_val, string_before = "percent complete", string_after = "", ba
r_length = 30): 
    percent = float(count) / end_val 
    hashes = "#" * int(round(percent * bar_length)) 
    spaces = '_' * (bar_length - len(hashes)) 635 

    sys.stdout.write("\r{str_b} [{bar}] {pct}% {str_after}\t\t".format( 
        str_b = string_before, 
        bar = hashes + spaces, 
        pct = '{0:.2f}'.format(percent * 100), 
        str_after = string_after)) 640 

    sys.stdout.flush() 
 

def read_from(filename): 
    ''' 
    a function to read ascii files 645 

    ''' 
    try: 
        g = open(filename, 'r') 
    except: 
        print("\t> error reading {0}, make sure the file exists".format(filename)) 650 

        return 
    file_text = g.readlines() 
    g.close 
    return file_text 
 655 

class schedule_data: 
    def __init__(self, crop_name): 
        self.crop_name = crop_name 
        self.oct_plant = "" 
        self.oct_harvest = "" 660 

        self.aug_plant = "" 
        self.aug_harvest = "" 
        self.mar_plant = "" 
        self.mar_harvest = "" 
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 665 

base_txt = "C:/Users/james/Desktop/root/anna/new/new_swat_plus_model/kikuletwa/Scenarios/De
fault/TxtInOut" 
inputs_path = "trajectory_files" 
 
# read trajectory data 670 

trajectories = open_tif_as_array("{base}/{fn}".format(base = inputs_path, fn = "trajectory_
map_thres.tif")) 
legend_raw = read_from("{base}/{fn}".format(base = inputs_path, fn = "trajectory_lookup_fin
al.csv")) 
dates_raw = read_from("{base}/{fn}".format(base = inputs_path, fn = "crop_plant_harvest.csv675 

")) 
 
landuse_lum_raw = """landuse.lum: created for trajectories 
name                         cal_group          plnt_com               mgt               cn
2         cons_prac             urban            urb_ro           ov_mann              tile680 

               sep               vfs              grww               bmp   
""" 
plant_ini_raw = """plant.ini: created for trajectories 
pcom_name          plt_cnt rot_yr_ini  plt_name  lc_status      lai_init       bm_init     
 phu_init      plnt_pop      yrs_init      rsd_init   685 

""" 
 
management_raw = """management.sch: created for trajectories 
name                       numb_ops  numb_auto            op_typ       mon       day       
 hu_sch          op_data1          op_data2      op_data3   690 

""" 
 
landuse_lum = landuse_lum_raw 
plant_ini = plant_ini_raw 
 695 

trajectories_dictionary = {} 
# trajectory_hru_lum_dict = {} 
crop_schedule_dictionary = {} 
month_dictionary = {'':"None", "Jan": "1", "Feb": "2", "Mar": "3", "Apr": "4", "May": "5", 
"Jun": "6", "Jul": "7", "Aug": "8", "Sep": "9", "Oct": "10", "Nov": "11", "Dec": "12"} 700 

 
for line in dates_raw[1:]: 
    parts = line.split(",") 
    crop_schedule_dictionary[parts[0].lower()] = schedule_data(parts[0]) 
    crop_schedule_dictionary[parts[0].lower()].oct_plant = "{0}".format(parts[5]).strip("\n705 

") 
    crop_schedule_dictionary[parts[0].lower()].oct_harvest = "{0}".format(parts[6]).strip("
\n") 
    crop_schedule_dictionary[parts[0].lower()].aug_plant = "{0}".format(parts[3]).strip("\n
") 710 

    crop_schedule_dictionary[parts[0].lower()].aug_harvest = "{0}".format(parts[4]).strip("
\n") 
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    crop_schedule_dictionary[parts[0].lower()].mar_plant = "{0}".format(parts[1]).strip("\n
") 
    crop_schedule_dictionary[parts[0].lower()].mar_harvest = "{0}".format(parts[2]).strip("715 

\n") 
 
for line in legend_raw[1:]: 
    trajectories_dictionary[line.split(",")[1].lower()] = line.split(",")[2].strip("\n").lo
wer() 720 

 
growing_list = ["FRST", "BANA", "SHRB", "SUGC"] 
 
for crop_name in trajectories_dictionary: 
    # create lum 725 

    parts = trajectories_dictionary[crop_name].split("-") 
    com_mgt_prefix = "{0}_{1}_{2}".format(parts[0][:3], parts[1][:3], parts[2][:3]) 
    com_mgt_prefix = com_mgt_prefix.lower() 
    if True: #not ((parts[0] == parts[1]) and (parts[0] == parts[2])): 
        line_ = "{lum_t}                    null         {plt_comm}  {mgt}       rc_strow_g730 

       cross_slope              null              null    convtill_nores              null 
             null              null              null              null  \n".format( 
            lum_t = trajectories_dictionary[crop_name].lower().replace("-", "_"), 
            plt_comm = "{0}_c".format(com_mgt_prefix), 
            mgt = "{0}_m".format(com_mgt_prefix), 735 

        ) 
        landuse_lum += line_ 
        # print(trajectories_dictionary[crop_name]) 
 
    # create comm 740 

    comm__ = "{comm_n}_c            //no         1  \n".format(comm_n = com_mgt_prefix) 
    plt_count = 0 
    done = [] 
    for plt in parts: 
        if plt == "AGRL": 745 

            for agrl_crop in ["TOMA","CORN","SOYB"]: 
                if not agrl_crop.lower() in done: 
                    if plt in growing_list: 
                        grow_ini = "y" 
                    else: 750 

                        grow_ini = "n" 
                    plt_count += 1 
                    comm__ += "                                        {agrl_crop}         
    {growing}       0.00000       0.00000       0.00000       0.00000       0.00000   10000
.00000  \n".format(agrl_crop = agrl_crop.lower(), growing = grow_ini) 755 

                    done.append(agrl_crop) 
     
            continue 
 
        if not plt.lower() in done: 760 

            if plt in growing_list: 
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                grow_ini = "y" 
            else: 
                 grow_ini = "n" 
            plt_count += 1 765 

            comm__ += "                                        {plt_l}             {growing
}       0.00000       0.00000       0.00000       0.00000       0.00000   10000.00000  \n".
format(plt_l = plt.lower(), growing = grow_ini) 
            done.append(plt) 
     770 

    comm__ = comm__.replace("//no", str(plt_count)) 
    plant_ini += comm__ 
 
    # create_management 
    schedule_name = "{0}_m".format(com_mgt_prefix) 775 

    number_of_manual_ops = 0 
    number_of_auto_ops = 0 
 
    done_2 = [] 
 780 

    management_section_head = "{mgt_name}                          {number_manual}         
 {number_auto}  " 
    management_section_body = "" 
    counter_mgt = 0 
 785 

    for plant_index in range(0, 3): 
 
        date_day_plant = None 
        date_mnt_plant = None 
 790 

        date_day_harvest = None 
        date_mnt_harvest = None 
        agrl_list = [] 
 
        if plant_index == 0: 795 

            agrl_list = ["soyb"] 
 
        if plant_index == 1: 
            agrl_list = ["soyb", "toma"] 
 800 

        if plant_index == 2: 
            agrl_list = ["corn"] 
 

        if parts[plant_index] == "agrl": 
            for agrl_crop_mgt in agrl_list: 805 

                if plant_index == 0: 
                    date_day_plant = crop_schedule_dictionary[agrl_crop_mgt].mar_plant.spli
t("-")[0] 
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                    date_mnt_plant = crop_schedule_dictionary[agrl_crop_mgt].mar_plant.spli
t("-")[1] 810 

                if plant_index == 1: 
                    date_day_plant = crop_schedule_dictionary[agrl_crop_mgt].aug_plant.spli
t("-")[0] 
                    date_mnt_plant = crop_schedule_dictionary[agrl_crop_mgt].aug_plant.spli
t("-")[1] 815 

                if plant_index == 2: 
                    date_day_plant = crop_schedule_dictionary[agrl_crop_mgt].oct_plant.spli
t("-")[0] 
                    date_mnt_plant = crop_schedule_dictionary[agrl_crop_mgt].oct_plant.spli
t("-")[1] 820 

 
                management_body_line = "                                                   
         {activity}{mnt}{day}       0.00000              {crp}              null       {ord
er}.00000  ".format( 
                    activity = "plnt", 825 

                    mnt = month_dictionary[date_mnt_plant].strip(" ").rjust(10), 
                    day = date_day_plant.rjust(10), 
                    crp = agrl_crop_mgt.lower(), 
                    order = counter_mgt, 
                ) 830 

                management_section_body += "{0}\n".format(management_body_line) 
                counter_mgt += 1 
            for agrl_crop_mgt in agrl_list: 
                if plant_index == 0: 
                    date_day_harvest = crop_schedule_dictionary[agrl_crop_mgt].mar_harvest.835 

split("-")[0] 
                    date_mnt_harvest = crop_schedule_dictionary[agrl_crop_mgt].mar_harvest.
split("-")[1] 
                if plant_index == 1: 
                    date_day_harvest = crop_schedule_dictionary[agrl_crop_mgt].aug_harvest.840 

split("-")[0] 
                    date_mnt_harvest = crop_schedule_dictionary[agrl_crop_mgt].aug_harvest.
split("-")[1] 
                if plant_index == 2: 
                    date_day_harvest = crop_schedule_dictionary[agrl_crop_mgt].oct_harvest.845 

split("-")[0] 
                    date_mnt_harvest = crop_schedule_dictionary[agrl_crop_mgt].oct_harvest.
split("-")[1] 
 
                management_body_line = "                                                   850 

         {activity}{mnt}{day}       0.00000              {crp}              null       {ord
er}.00000  ".format( 
                    activity = "hvkl", 
                    mnt = month_dictionary[date_mnt_harvest].strip(" ").rjust(10), 
                    day = date_day_harvest.rjust(10), 855 

                    crp = agrl_crop_mgt.lower(), 
                    order = counter_mgt, 
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                ) 
                management_section_body += "{0}\n".format(management_body_line) 
                counter_mgt += 1 860 

 

        elif parts[plant_index] in crop_schedule_dictionary: 
            if not parts[plant_index] == "past": 
 
                if plant_index == 0: 865 

                    date_day_plant = crop_schedule_dictionary[parts[plant_index]].mar_plant
.split("-")[0] 
                    date_mnt_plant = crop_schedule_dictionary[parts[plant_index]].mar_plant
.split("-")[1] 
                if plant_index == 1: 870 

                    date_day_plant = crop_schedule_dictionary[parts[plant_index]].aug_plant
.split("-")[0] 
                    date_mnt_plant = crop_schedule_dictionary[parts[plant_index]].aug_plant
.split("-")[1] 
                if plant_index == 2: 875 

                    date_day_plant = crop_schedule_dictionary[parts[plant_index]].oct_plant
.split("-")[0] 
                    date_mnt_plant = crop_schedule_dictionary[parts[plant_index]].oct_plant
.split("-")[1] 
 880 

                management_body_line = "                                                   
         {activity}{mnt}{day}       0.00000              {crp}              null       {ord
er}.00000  ".format( 
                    activity = "plnt", 
                    mnt = month_dictionary[date_mnt_plant].strip(" ").rjust(10), 885 

                    day = date_day_plant.rjust(10), 
                    crp = parts[plant_index].lower(), 
                    order = counter_mgt, 
                ) 
                management_section_body += "{0}\n".format(management_body_line) 890 

                counter_mgt += 1 
 
                if plant_index == 0: 
                    date_day_harvest = crop_schedule_dictionary[parts[plant_index]].mar_har
vest.split("-")[0] 895 

                    date_mnt_harvest = crop_schedule_dictionary[parts[plant_index]].mar_har
vest.split("-")[1] 
                if plant_index == 1: 
                    date_day_harvest = crop_schedule_dictionary[parts[plant_index]].aug_har
vest.split("-")[0] 900 

                    date_mnt_harvest = crop_schedule_dictionary[parts[plant_index]].aug_har
vest.split("-")[1] 
                if plant_index == 2: 
                    date_day_harvest = crop_schedule_dictionary[parts[plant_index]].oct_har
vest.split("-")[0] 905 
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                    date_mnt_harvest = crop_schedule_dictionary[parts[plant_index]].oct_har
vest.split("-")[1] 
 
                management_body_line = "                                                   
         {activity}{mnt}{day}       0.00000              {crp}              null       {ord910 

er}.00000  ".format( 
                    activity = "hvkl", 
                    mnt = month_dictionary[date_mnt_harvest].strip(" ").rjust(10), 
                    day = date_day_harvest.rjust(10), 
                    crp = parts[plant_index].lower(), 915 

                    order = counter_mgt, 
                ) 
                management_section_body += "{0}\n".format(management_body_line) 
                counter_mgt += 1 
 920 

    if counter_mgt == 0: 
        continue 
 
    management_raw += management_section_head.format(mgt_name = schedule_name, number_manua
l = counter_mgt, number_auto = number_of_auto_ops) + "\n" +  management_section_body 925 

 
# fix hrus based on dictionary 
 
hru_data_string = """hru-data.hru: for trajectories 
id  name                                topo             hydro              soil           930 

       lu_mgt   soil_plant_init         surf_stor              snow             field   
""" 
 
hru_data_hru_raw = read_from("{base}/{fn}".format(base = base_txt, fn = "hru-data.hru")) 
 935 

for line in hru_data_hru_raw[2:]: 
    for_part = line 
    for i in range(0, 20): 
        for_part = for_part.replace("  ", " ") 
    parts = for_part.split(" ") 940 

    # print(parts[6].split("_")[0]) 
    hru_data_string += line.replace(parts[6], trajectories_dictionary[parts[6].split("_")[0
]].lower().replace("-", "_")) 
 
write_to("{base}/{fn}".format(base = 'model_files\Scenarios\Default\TxtInOut', fn = "landus945 

e.lum"), landuse_lum) 
write_to("{base}/{fn}".format(base = 'model_files\Scenarios\Default\TxtInOut', fn = "manage
ment.sch"), management_raw) 
write_to("{base}/{fn}".format(base = 'model_files\Scenarios\Default\TxtInOut', fn = "plant.
ini"), plant_ini) 950 

write_to("{base}/{fn}".format(base = 'model_files\Scenarios\Default\TxtInOut', fn = "hru-
data.hru"), hru_data_string) 
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 965 

Appendix B. Trajectories Description 

Table 1B. Trajectories examples for each fake land-use code use for dynamic SWAT+ implementation. 

Map_id Code Trajectory 

1 TUWO TUWO-TUWO-TUWO 

2 GRAS GRAS-GRAS-GRAS 

6 BSVG BSVG-BSVG-BSVG 

11 FRST FRST-FRST-FRST 

78 BANA BANA-BANA-BANA 

110 HMEL SHRB-SHRB-SHRB 

121 INDN CORN-BSVG-BSVG 

146 LETT CORN-BSVG-PAST 

167 PAST PAST-PAST-PAST 

182 SUGC SUGC-SUGC-SUGC 

204 ASPN FRST-BSVG-FRST 

224 LIMA CORN-PAST-PAST 

225 MAPL CORN-PAST-BSVG 

243 MESQ CORN-TOMA-PAST 

248 MIGS CORN-TOMA-BSVG 

249 MINT TOMA-TOMA-BSVG 

254 MIXC CORN-TOMA-TOMA 

262 AGRR AGRL-AGRL-AGRL 

 

Table 2B. Dynamic agricultural land-use trajectory and their crop or vegetation cover meaning 

ID Trajectory Crop/vegetation cover Meaning 

1 CORN-PAST-PAST rainfed maize-grass-grass 
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2 CORN-PAST-BSVG rainfed maize-grass- sparse vegetation 

3 CORN-TOMA-PAST rainfed maize- tomato-grass 

4 CORN-TOMA-BSVG rainfed maize-tomato-sparse vegetation 

5 AGRL-TOMA-BSVG Beans-tomato-sparse vegetation 

6 CORN-TOMA-IRRM rainfed maize-tomato-irrigated maize 

7 CORN-PAST-IRRM Rainfed maize-grass-irrigated maize 

Table 3B. Land use classes as represented in the Static SWAT+ Model 970 

LANDUSE_ID Land use Class SWAT_CODE 

1 Water WATR 

2 Grazed grassland PAST 

3 Grazed shrubland CRGR 

4 Space vegetation BSVG 

5 Rainfed Maize CORN 

6 Irrigated Sugarcane SUGC 

7 Dense forest FRST 

8 Sub_Alpine grassland GRAS 

9 Woodland TUWO 

10 Mixed Crops AGRL 

11 Irrigated Banana and Coffee BANA 

12 Wetland WEHB 

13 Urban URMD 

14 Shrubland SHRB 
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Appendix C. Data used in this study 

Table 1C. Summary of the different data used in the study with description and sources 

Data Type Description Source/ reference 

Climate Ten station data of rainfall and four stations of 

maximum/minimum temperature 

Tanzania Meteorological 

Agency (TMA) and Pangani 

Basin Water Office (PBWO) 

Digital Elevation 

Model (DEM) 

Elevation data from at 90m resolution United States Geological 

Survey (USGS) website 
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Seasonal land use 

maps 

Seasonal land use maps at 30m (Msigwa et al., 2019) 

Soil Africa Soil Information System (AFSIS) at 250m 

resolution 

(Hengl et al., 2015) 

Remotely sensed 

based Actual ET 

Ensemble ET from six remote sensing products (IHE Delft, 2020) 

Land management 

data 

Planting dates, harvesting dates and irrigation 

application dates and frequency 

Farmers interview 

 


