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Abstract. In most (sub)-tropical African cultivated regions, more than one erepping-eyelecropping season exists following the
(one or two) rainy seasons. During the dry season, an additional erepping-cyelecropping season is possible when irrigation is

applied, which could result in 3 cropping seasons. However, most studies for mapping the blue and green waterET with agro-

hydrological models such as SWAT do not better—represent these cropping seasonstr—mest—agro-hydrological-medel
ications-such-as-SWA in-Africa—only-one cropping-season-perVearisrepresented. Blue ET is a portion of crop

evapotranspiration after application of irrigation while green ET is the evapotranspiration as a result of rainfall. In this paper,

we derived dynamic and static trajectories from seasonal land-use maps to represent the land-use dynamics following the major

growing seasons, for the purpose of improving simulated— blue and green water consumption from simulated

coverage)y-in-Tanzania—A comparison between the default SWAT+ (with static land use representation) set up, and a dynamic
SWAT+ model (with seasonal land use representation) is done by spatial mapping of the-evapeotranspiration{ET} results.
MoeoreoverAdditionally, the SWAT+ blue and green ET were compared with the results from the four remote sensing data-
based methods namely: SN (Senay-etal-2016), EK (van Eekelen-etal-2015), Budyko method and Soil Water Balance method
(SWB). The results show that ET with seasonal representation is closer to remote sensing estimationsestimates, giving higher

performance than ET with static land use representation.-than-defautt: Tthe Root Mean Squared Error decreased from 181 to

69 mm/year; the percent bias decreased from 20 % to 13% and Nash Sutcliffe Efficiency increased from -0.46 to 0.4. Further

compared to the four remote sensing methods. The results furthershows that the SWAT+ blue and green ET are similar to the

van Eekelen method that performed better thant the other three remote sensing methods. It is concluded that representation of
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seasonal land-use dynamics produces better ET results which provide better estimations of blue and green agricultural water
consumption.

1. Introduction

Freshwater availability wi-becomeis a limitinged resource in many regions throughout the world and the
problem is projected to increase in the near future due to theincreasing—risks—of-land use change,

population growth, and climate change. The availability of freshwater is mostly determined by

precipitation on land. When rain falls on land, it travels via either green or blue waterways (Velpuri and

Senay, 2017; Hoekstra, 2019). The green water resource is the water that is held in the unsaturated soil

layer, whereas the blue water resource is the water that is stored in rivers, streams, surface-water bodies,

and groundwater (Falkenmark and Rockstrém, 2006). One of the solutions to lessen the threat of

freshwater scarcity is to minimize consumptive water use in agriculture. However, for water resource

management, it is critical to understand water use in agricultural production by source (rainwater or

irrigation water from surface and groundwater) (Velpuri and Senay, 2017). For efficient water resource

management, knowing how much direct rainwater (green water) and ren-rainwaterabstracted water (blue

water) is being utilized forirrigation-is crucial. Yet such information is not readily available, especially

forin developing countries.

Hydrological models such as the Soil Water Assessment Tool (SWAT) arecan be used to provide

information on blue and green water enat a-basin and continental scales (Xie et al., 2020; Jeyrani et al.,
2021; Liang et al., 2020; Serur, 2020). For instance, {Schuol et al.; (2008) used the SWAT model to
simulate blue and green water availability for the African continent. te-{Xie et al.; (2020), evaluated the

evolution of the blue and green water resources, water footprints, and water scarcities in time and space

in the Yellow River basin in China from 2010—2018. The study accounts for the effects of irrigation on

blue and green water resources. {Liang et al.; (2020)_used the SWAT model combined with future land

use and climate scenarios, which was successfully applied to guantify the spatiotemporal distribution of

blue and green water change for the Xiangjiang River Basin in China between 2015 and 2050.
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However, a few of these studies have implemented annual land-use dynamics. Since land-use refers to
manmade socio-economic activities and management practices on the land, these anthropogenic activities
may change depending on a season, specifically on cultivated land (Anderson et al., 1976). These changes
per season are called seasonal land-use dynamics (Msigwa et al., 2019). Hence, mapping the blue and

green water with agro-hydrological models such as SWAT need a better representation of the

seasonality/cropping seasons. To best of our knowledge there are no studiesy that implemented seasonal

land-use dynamics in estimation of blue and green water resources. For example, Jeyran et al. (2021),

assessed basin blue and green available water components under different management and climatic

scenario using SWAT. The annual land-use dynamiechange implementation showed that the 30%

increase in agricultural land use from 1987 to 2015 has caused significant changes in water shortages of

Tashk-Bakhtegan basin in Iran. However, other studies do not implement even the annual land-use

dynamic in order to decrease the computational time of the very large-scale models. In most cases,: the

dominant soil and land cover are used. For instance, {Serur; (2020) used a 10-year land use map to model

blue and green water availability for the Weyb River basin in Ethiopia.

The major . teuslimitation of applying thisese approaches is-thatin— ttFropical
African cultivated areas is : that typically they have more than one growing cycle, most of the
time ranging between 2 to 3 depending on the sequence of rainy and dry seasons and availability of
irrigation water (Msigwa et al.,2019). The right representation and timing of these cropping seasons is

therefore important in order to quantify the crop water consumption.
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implemented seasonal land-use dynamic for other purposes such as nNitrogen leaching and plant growth

(Glavan et al., 2015),-when estimating water withdrawals (Msigwa et al., 2019) and Leaf Area Index

(LAI) simulation (Nkwasa et al., 2020), have found an impact of representing seasonal land-use dynamics

in models. For instance, Nkwasa et al. (2020) found that the implementation of seasonal land-use

dynamics in SWAT and SWAT+ models led to an improved vegetation simulation. The LAI dynamics
of the seasonal land-use dynamic implementation showed more realistic temporal advancement patterns

that corresponded to the seasonal rainfall within the basin. Moreover, Msigwa et al.; (2019) found that
water withdrawals for irrigated mixed crops increased by 482 Mm?®/year when seasonal land-use maps

are used. On the other hand, the seasonal land use-dynamics have been studied and evaluated using four

methods that use multi-scalar datasets to assess cropping intensity of smallholder farms. In this study, the

cropping intensity is the number of crops planted annually (Jain et al., 2013). However, in this case, the

impact of seasonal land use on water resources has not been studied. Alse;-the-implementation-efseasenal

In hydrological models, such as SWAT, the seasonal land-use dynamics could be implemented using

trajectory analysis. Niwa

through-land-use-trajectories,and-not-land-cover-classes-Trajectories represent changes of land-use over

time by comparing changes between two or several land-use maps at a grid scale. Trajectory analysis has

been applied widely to assess the changes and impact of Land Use and Land Cover (LULC) (Feng et al.,
2014; Wang et al., 2012), and as a pre-processing tool for LULC (Zomlot et al., 2017). In these studies,
change analysis is done pixel by pixel for each year in order to identify land use change (Mertens and
Lambin, 2000; Swetnam, 2007; Zhou et al., 2008; Wang et al., 2012; Zomlot et al., 2017). However, none
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of these studies have analysed pixel by pixel within a year with the aim of identifying the different

(cropping) seasons, further referred to as land use dynamics.

(2020) in the Usa catchment with in Kikuletwa basin in northern Tanzania has shown how to represent
seasonal land-use dynamics_using trajectories in the SWAT model using the management file and the
SWAT+ model using decision tables for accurate hydrological simulation.-Altheugh-the SWAT(+}-medel
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simulations-at-a-smal-catchment-of-240-km?(Nkwasa-et-al—2020)-This study builds on-the Nkwasa et

al. (2020)*s approach aims to evaluate the effects of seasonal land-use dynamics on blue and green
evapetranspirationET, with two main objectiveste; (i) investigate the effect of implementing seasonal

land-use dynamics on the water balance component in Kikuletwa basin (6650 km?) with focus on the ET

using SWAT+ and (ii)_to estimate blue and green water consumption from simulated ET. Seasenal-tand-

2. Methods

2.1. Study Area

The Kikuletwa basin is a sub-basin of the Pangani basin that covers approximately 6,650 km? (Figure 1).
Rainfall within the basin is bi-medalbimodal, meaning that the area receives long rains (mastkaMasika)
from March to June and short rains (v«H\Vuli) from November to December, as shown in Figure 2. Annual
rainfall ranges between 300-800 mm in the lower part of the basin to 1200-2000 mm in the highlands of

Mount Meru and Kilimanjaro. The maximum temperature ranges from 25 to 33°C and minimum

temperature ranges from 15 to 20°C. The basin comprises of diverse LULC classes such as agricultural

land, dense forest on Mount Kilimanjaro (5880m) and Meru (4562m), grazed land, mixed urban and

6



shrubland/thickets. Shrubland and thickets in the study area are found mainly in the lowlands where rain-
165 fed agriculture is dominant. Urban areas concentrate around Arusha, although there are also emerging

small towns. Moreover, grazed land is mainly found in the Maasai land of Monduli and Simanjiro

districts. Irrigated agriculture in Kikuletwa is mainly practiced in the highlands and lowlands along the

river of Moshi, Moshi urban, Hai, Arumeru, Arusha, and Siha districts. The main crops in the highlands

are banana, coffee, and maize, while the lowlands are dominated by mixed vegetable crops such as
170 tomatoes, onions, and beans.
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nia— 1 he location of the

Kikuletwa catchment in Africa (inset map). The catchment map shows the river networks and the

location of ground water level, rainfall and temperature station in and around the catchment. (by

Authors).
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180  Figure 2. Monthly average rainfall (mm)_and temperature of Kikuletwa basin ground rainfall stations
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2.2 Input dataset for SWAT+

The required rainfall, river discharge, climate data, topography, soil map and land-use map were collected
from different sources. The 90-m Shuttle Radar Topographic Mission (SRTM) 90m-reselution-Digital
Elevation Model (DEM) was obtained from the United States Geological Survey (USGS) website

(https://earthexplorer.usgs.gov/); the soil map was extracted from the African Soil Information Service
(AFSIS;- {(Hengl et al., 2015)Hengletal-2015). Daily rainfall records for 10 stations were obtained from
the Tanzania Meteorological Agency (TMA) and Pangani Basin Water Office (PBWO). Datly-discharge
recerds-were-obtained-from-PBWO-The daily climate records of temperature (maximum and minimum)
for three stations were obtained from PBWO and TMA. The different data sets had variable record length

and quality. However, for the selected 10 rainfall and 4 temperature stations, only good quality data

records for the overlapping period (2006 to 2013) were selected.

Our study used an improved LULC maps with local observation unlike other studies in the same

catchment such as (Notter et al., 2012; Ndomba et al., 2008). For instance, Notter et al. 2012 used only a

few herbaceous crops in model parametrization without a cropping calendar. The LULC maps were

created using Landsat 8 (30m resolution) image of three months (March, August and October)
representing three seasons in the basin-{Msigwa-etal-2619}. The March map represents the LULC during
the long-wet season (Masika), the August map represents the dry season, and the October map represents
the short rainy seasons (Vuli). The overall classification accuracy for the land use maps of March, August,
and October 2016 were 85.5%, 88.5%, and 91.6% with a kappa coefficient of 0.84, 0.87 and 0.91,
respectively (Msigwa et al., 2019). About 20 and 19 LULC classes in the Kikuletwa catchment were

mapped for the wet and dry seasons, respectively. More details on the land use classes and their accuracies

are found in Msigwa et al. (2019). The LULC maps were reclassified to match the SWAT land-use

classification (see Table 3B in Appendix B). For instance, the SWAT land-use code ‘PAST’ was used to
represent grazed grassland in the maps-seeFable 3B-in-AppendixB.

2.3 Land-use Trajectories

12
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The LULC change trajectory methodology has been widely applied in many areas to assess LULC change
and its impact on the environment. Researchers use trajectories to analyse the change happening between
two images pixel by pixel (Mertens and Lambin, 2000; Swetnam, 2007; Zhou et al., 2008; Wang et al.,
2012; Zomlot et al., 2017).

In this study, we extended the meaning of land-use trajectories from ‘land-use change’ to ‘seasonal
succession of land-use types for a given sample unit (pixel) with more than two observations at different
times' (Zhou et al., 2008). We applied the method in this study to assess the agricultural seasonal dynamics

for the meteorological dry and wet seasons of the Kikuletwa basin.

The land-use change trajectories were obtained by integrating three classified images to represent the
three cropping seasons so that pixel-based change trajectories could be found using GIS. A land-use
trajectory is the trajectory of a certain pixel in each of the three images. For example, a trajectory of
2—3—0 means for that pixel the land-use in March was rain-fed Maize (2), then in August, irrigated
mixed crop (3) and finally, in October, Bare land (0). This type of trajectory is classified as dynamic,
whereas a trajectory of 4—4—4 meaning the land-use is irrigated banana and coffee (4) in March, August,
and October, is a static trajectory. Thus, the LULC change trajectories were categorized into dynamic and
static land-use trajectories. We only implemented the trajectories from all agricultural land-uses except
irrigated banana and coffee and irrigated banana, maize and coffee land-uses which were combined as
irrigated banana and coffee land-use. About 74% of the trajectories were static while 26% of the
trajectories were dynamic. Figure 3 shows the spatial distribution of static and dynamic land-use
trajectories found in the study area. Only agricultural land-use and extensive agriculture LULC such as
grazed grassland and shrubland were considered when analysing the seasonal changes (dynamic land-

uses) and implemented in the SWAT+ model. We analyzed and implemented 40 land-use trajectories,

Appendix B, Table 1B shows few trajectories that were implemented.

13
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Id Main Trajectory Crop/ vegetation cover meaning

1 AGRL-BSVG-AGRL Beans-space vegetation-beans

2 CORN-AGRL-PAST Rainfed maize-beans-grassland

3 CORN-AGRL-BSVG Rainfed maize-beans-space vegetation
Irrigated mixed crops- irrigated mixed crops -space

4 AGRL-AGRL-BSVG vegetation

5 CORN-AGRL-AGRL Rainfed maize- Irrigated mixed crops - Irrigated mixed crops
Irrigated mixed crops - Irrigated mixed crops - Irrigated

6 AGRL-AGRL-AGRL mixed crops

7 AGRL-AGRL-PAST Irrigated mixed crops - Irrigated mixed crops -grassland

8 AGRL-AGRL-PAST Irrigated mixed crops - Irrigated mixed crops -grassland
Irrigation sugarcane- Irrigated mixed crops - Irrigated mixed

9 SUGC-AGRL-AGRL crops
Irrigated mixed crops - Irrigated mixed crops - Irrigated

10 AGRL-AGRL-AGRL mixed crops

2.4, SWAT+ Model

SWATH+ is a physically based, semi-distributed hydrological model and a restructured version of the Soil
and Water Assessment Tool (SWAT) designed to face present and future challenges in water resources
modelling and management (Bieger et al., 2017). SWAT+ is more flexible in simulating the basin

processes such as evapotranspiration, runoff, crop growth, autrientnutrient, and sediment transport due to

its watershed discretization and configuration. The HRUs are defined as a contiguous area, i.e., a
representative field, with an associated user-defined length and width. The actual HRU is calculated based
on the DEM, soil and land-use map inputs. Sub basins are delineated during the model construction, but
they are divided into water areas and one or more landscape units (LSU)-(Biegeretal—2017)(Bieger et
al., 2017).

Land-use and management representation in SWAT+ can be done through the management file or using
decision tables. Decision tables are an accurate yet compact way to model complex rule sets and their
corresponding actions—{Arneold-et-al—2018). Nkwasa et al.; (2020) highlighted the greater flexibility
provided by decision tables during the representation of agricultural practices in SWAT+. The model

15
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gives room for two or more crops growing at the same time by defining the plant community in the

specific plant file. The model enables the representation of the reality of cultivated tropical basins.

The ET in the model is estimated at HRU level. There are different methods (Priestley-Taylor, Penman-
Monteith and Hargreaves) used to estimate ET in the SWAT+ model. More detailed information can be
found in (Abiodun et al., 2017; Neitsch et al., 2002; Alemayehu et al., 2016). Our study adopted the
Hargreaves method (Hargreaves and Samani, 1982) to estimate ET due to the limited amount of input
dataset such as solar radiation. The method has been tested to-be-useful-in tropical basins such as the Mara

basin linking Tanzania and Kenya; ratherthan-usingremote-sensing-climate-data-which-is-asseciated-with
uneertainties-(Alemayehu et al., 2016). Our aim was to use available ground dayta and not rely on remote

sensing climate data such as solar radiation which is reported to have -uncertainties (Alemayehu et al.,

2016). SWAT model have also been successfully used in Pangani basin for different purposes (Ndomba
et al., 2008; Notter et al., 2012).

2.5 Land-use Trajectories Implementation in SWAT+

We combined three land-use-maps (March, August and October) to obtain the trajectory land-use map.

Forty land-use trajectories were produced from the three seasonal land-use maps. These trajectories differ

from the traditional approach as they not only use the agricultural statics but use land use maps to define
the space. Then each trajectory was assigned a placehelder-SWAT+ land-use code (placeholder). For
instance, a placeholder SWAT+ land-use code ‘MIXC’ signifies a  trajectory
CORN—AGRLTOMA—-AGRL-TOMA trajectory (rainfed maize to tomato to tomato land use
trajectory) or ‘MIGS’ signifies a CORN —-AGRL-TOMA —BSVG trajectory {+ainfed(rainfed maize to
tomato to sparse vegetation land use trajectory) as shown in Ttable 1B-ef (aAppendix B). Further,—the
SWAT+-dynamic-moedelwas-set-up-with-the-A trajectory land-use map represented with the placeholder

SWAT+ land-use codes using the lookup Table 1B (Appendix B) for Kikuletwa basin was created.

used to first-assign trajectories of the placeholder SWAT+ land-use codes, and to create the trajectories’

16



management files kei.e., sueh—as—‘landuse.lum’, ‘management.sch’ and ‘hru-data.hru’ files. In the
280 ‘Landuse.lum’ file, the trajectories were defined with respect to the plant community. ‘Management.sch’
file controls the timing of the planting and harvesting of the individual crops in the community (Table 1).

For instance, the tomato and soya beans are planted in the same field with different planting and

harvesting seheduleschedule but grown at the same period. However, each crop was defined by its own

plant community in new SWAT+ to make distinction between these crops. The ‘hru-data.hru’ file links

285 the HRUSs to the corresponding land-use management. The irrigation schedules were implemented using

decisions tables. The sources of irrigation water in the catchment was river and irrigation technigues were

mostly furrow. Fhe-irrigation-schedules-were-implemented-using-decisions-tables:

Table 1. An example of a ‘management.sch’ file input in dynamic SWAT+ model

name numb ops® numb_auto!® op typ!! Mon* Day® hu sch* op datal* op data2* op data3*
cor_agr_agr_m?! 8 2
irr_toma_soy?
irr_corn?
pint3 3 15 0 corn® grain® 0
hvkl* 8 15 0 cormn grain 1
pint 7 1 0 soyh® grain 2
pint 8 20 0 toma null 3
hvkl 10 1 0 soyb grain 4
hvkl 10 20 0 toma’ null 5
pint 10 30 0 corn grain 6
hvkl 2 28 0 corn grain 7
agr_agr_agr_m?! 8 2
irr_toma_soy?
irr_corn?
pint 3 15 0 soyb grain 0
hvkl 6 30 0 soyb grain 1
pint 7 1 0 soyb grain 2
pint 8 20 0 toma null 3
hvkl 10 1 0 soyb grain 4
hvkl 10 20 0 toma null 5
pint 10 30 0 corn grain 6
hvkl 2 28 0 corn grain 7

290 ! name of the land-use management, 2 points to the irrigation decision tables, 3 planting operation, *

harvesting operation, ® rainfed maize, ® soy bean, 7 tomato, & harvest the grain portion of the crop, ® number

17
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of operations, 1° number of auto-operations, 1! operation type, > month, 13 day, ** heat unit schedule, *

operations

2.6 Model Configuration_for both Static and Dynamic SWAT+ Models

The SWAT+ model was setup using DEM, soil map and land-use map of March 2016 for the static

representation scenario_(sStatic model) and using a trajectory map and files (described in section 2.5) for

the dynamic representation scenario_(dynamic Model). The same ground observations of rainfall and

temperature were used (Appendix C, Table 1C) for both models. The precipitation stations were adjusted

manually according to elevation and the potential maximum leaf area index_of maize was adjusted to
correspond to the field measurements of the basin. USDA Soil Conservation Service (SCS) curve number
was used to estimate surface runoff and-firstorder-markev—chainforrainfalldistribution—and the

muskingum_method used for channel routing.

For the static SWAT+ model, 23 sub-basins, 171 land scape units and 6086hru were generated with 14
land-use classes, while for the dynamic SWAT+ model, 23 sub-basins, 171 land scape units and 9333hru
were generated with 40 land use classes representing the 40 different trajectories. The difference in the
number of HRUs is related to the higher number of land-use classes in the dynamic land-use mapping.

The irrigation schedules were implemented through decisions tables (Arnold et al., 2018) by specifying a

furrow irrigation method and using the rivers within the sub-basins as the source of irrigation. The model
was run fremfor a period of 8 years (20068 to 2013). The year2006-and-2007first two years were used as
a warm up period. was-a-warming-period-

2.7 Model Evaluation

Both the static and dynamic SWAT+ models were compared on how they simulate the water balance and

with specific focus on the ET component since evapetranspiration-estimations-as-the-focus-ef-this study

isaims at mainly te-impreveimproving the spatial distribution of blue and green water consumption. -and

Hence, the SWAT+ models waswere not calibrated. The ET from both static and dynamic SWAT+

18



representation scenarios at-basin-tevelwerewas compared with the remote sensing ET at a basin level for

the same simulation period from 2008 to 2013. The remote sensing ET is an ensemble ET product from
six-seven existing global scale ET products (HHE-Belt-2020)(IHE Delft, 2020). All the ET products are
320 based on multi-spectral satellite measurements and surface energy balance models i.e.: Global Land
Evaporation Amsterdam Model (GLEAM) (Miralles et al., 2011), CSIRO MODIS Reflectance-based
Evapotranspiration (CMRS-ET) (Guerschman et al., 2009), Operational Simplified Surface Energy
Balance (SSEBop) (Senay et al., 2013), Atmosphere-Land Exchange Inverse Model (ALEXI) (Anderson
et al., 2007), Surface Energy Balance System (SEBS) (Su, 2002), ETMonitor (Hu and Lia, 2015) and
325 MODIS Global Terrestrial Evapotranspiration Algorithm (MOD16) (Mu et al., 2011). FheEFmaps
produced-by HHE Delft-have a resolution-of 250x250m-at-a-monthly scale—The detailed information on the ET
products description and method are found in {Hugo et al.; (2019).The product was evaluated for the study

area by comparing the basin water balance at three gauged stations; Karangai, Kikuletwa Power station
and Tanzania Plantation Company (TPC) over a period of six years (2008-2013). The comparison of ET
330 calculated using the water balance and remote sensing showed good agreement (NSE= 0.77) for
Kikuletwa Power station which covered 86% of the total basin area (Msigwa et al., 2019, 2021){Msigwa
et-al—2019). Statistical metrices such as Nash-Sutcliffe efficiency (NSE), Root Mean Square Error
(RMSE), Percent Bias (PBIAS) and adjusted R squared (R?) were used to evaluate the both monthly ET

from static and dynamic SWAT+ _models against the remote sensing ET._Moreover, the Paired T-test

335 statistical analysis was performed to find if there is significant difference between the ET from the static
model and that of dynamic model for only the dynamic land uses. NSE-is-a-nhormalized-statistic-that
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2.8 Estimating blue and green ET

The blue ET is a portion of crop evapotranspiration after application of irrigation while green ET is the

evapotranspiration as a result of rainfall. The blue ET in this study was estimated as a difference between

ET under irrigation and ET without irrigation (Liu and Yang, 2010). The SWAT+ dynamic land-use
implementation was run without irrigation and then later irrigation was applied. The green ET is the actual
evapotranspiration from precipitation which can be kept in unsaturated soil and absorbed by plants and is
then returned to the atmosphere via evapotranspiration. In this study, only the portion of blue water
consumed from irrigation was considered and not all the blue water resources like other studies (Xie et
al., 2020).

The SWAT+ model was run first assuming that no irrigation was carried out. The computed ET is called
ETgreen. Then the SWAT+ model was run again with irrigation being implemented and the ET computed
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is called ETota as explained in the two scenarios below. ETwiwe is computed by the difference of ETiotal

from the run with irrigation implantation and ETgreen “EQ. (4)”.

The two scenarios to estimate blue ET
1. The seasonal dynamic SWAT+ is carried out by assuming the soil does not receive any irrigation
water. The evapotranspiration computed using this first run is referred to as ETgreen
2. The seasonal dynamic SWAT+ is carried out by assuming the soil receives sufficient irrigation

water. The evapotranspiration computed using this second run is referred to as ETiotal

Hence, EToie is computed from the “Eq. (4)” below

ETpiue = ETtotar — ETgreen (4)

It should be noted that the trajectory implementation involves only two of the agricultural land-uses i.e.
rainfed maize and mixed crop with exception of irrigated banana and coffee land-use and irrigated banana,

coffee and maize land-use.

2.9 Comparison of SWAT+ results with other remote sensing methods

The SWAT+ blue and green ET were eempatredcompared with the results from the four remote sensing
data based methods namely: SN (Senay et al., 2016), EK (van Eekelen et al., 2015), Budyko method
(Simons et al., 2020) and Soil Water Balance method -SWB (FAO and IHE Delft, 2019).

The SN method (Senay et al., 2016) is the simplest method whereby blue water is estimated as a difference

between precipitation (P) and ET, followed by the modified method of van Eekelen et al., (2015) where

the effective fraction was introduced to reduce the amount of precipitation that evaporates. The Budyko

method, as described in Simons et al., (2020), estimates green water from precipitation using an empirical

relationship between actual evapotranspiration, precipitation and reference evapotranspiration. The

Budyko equation, also called the Budyko curve, assumes a relationship between the evaporation ratio

(ET/P) and climate aridity index (ETo/P) to describe the water-energy balance for long term analysis.

The soil moisture balance model computes green (ETgreen) and blue (ETbhlue) water components of ET,

by keeping track of the soil moisture balance and determining whether ET can be satisfied through direct

precipitation and precipitation stored as soil moisture alone or if an additional water (surface or
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groundwater supply) is required. The study compares blue and green water estimations for all LULC

classes for the Kikuletwa catchment.

3. Results
3.1 Comparison of Simulated basin ET from Remote Sensing

Figure 4 shows the average monthly ET at the basin scale of Kikuletwa for the two model scenarios of
SWAT+ and that from remote sensing. The dynamic SWAT+ model shows higher ET (by 20mm/month)
matching the remote sensing pattern in the dry seasons (July to October) than the static SWAT+ model
implementation. This shows that there are agricultural activities occurring in the dry seasons. In the
dynamic SWAT+ model, we implemented #+igation-irrigated cropping during_the dry seasons en-the

growing-erops;-which led to an increase in ET.

The statistical analysis (Table 2) shows that both the SWAT+ simulations have a correlation (R?) of above
0.5, when compared with monthly remote sensing menthhy+-ET. However, the monthly average ET value
for the dynamic land-use scenario is closer to the remote sensing ET, especially during the dry months

from July to November where we implement more than one cropping season.

Unlike the commonly used static land-use scenario where only one cropping season was implemented per
year, the monthly ET for the dynamic SWAT+ model implementation shows acceptable PBIAS of 13%
whereas, the static SWAT+ model shows higher PBIAS of 30%. Moreover, the dynamic SWAT+ model
shows a good NSE of 0.4 while the static SWAT+ shows very low performance with an NSE of -0.46.

Table 3 shows the water balance component for the two scenarios. Fhe-A notable difference is seen in ET

increase (24%) and decrease in other water balance components (lateral flow; 27%, percolation; 42%,

surface runoff; 32%). The mass balance (change in soil water balance) in percentage for the static SWAT+
model is higher (1.8%) than the dynamic SWAT+ model (0.5%). The most pronounced differences are
found when comparing the dynamic land-use representation on basin scale and the commonly used static
land-use approach with remote sensing. Figure 5 shows the spatial distribution of ET from remote sensing,

dynamic land-use and static land-use representation.
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The average basin ET is 461mm/y, 573mm/y and 642 mm/y for the static SWAT+ model, dynamic
SWAT+ model, and remote sensing, respectively. Generally, all the simulated ET from SWAT+ shows
lower annual average ET than remote sensing ET. However, the ET from static land-use representation
shows a higher difference of 181mm/y whereas with the use of dynamic land-use, the difference in ET is

only 69mm/y. The paired T-test results show that there is a significant difference between the ET from

the static model and that of the dynamic model for the dynamic land-uses. A P value of 0.013 was

obtained, which was less than the 0.05 confidence interval. Spatial distribution of ET from the SWAT+

models is different from remote sensing. However, visually, the spatial distribution of ET from the
dynamic land-use scenario is closer and shows similar patches to remote sensing than the ET from the

static land-use scenario (Figure 5).

The differences in ET spatial distribution (Figure 5) are vivid mostly in the trajectory implemented areas

in the lowlands see Figure 3. Figure 6 shows the ET on the dynamic land-uses alone, the differences of

the amount of the ET in these areas is more than 100mm per year. The vivid differences are seen on the

right lower corner of the catchment where the differences in ET are more than 200mm/y. There are more
areas with less that 400mm/y in the static model as compared to the dynamic model. Hewever-the-pattern
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435 Figure 4. Average monthly ET for basin-scale summarized from remote sensing, dynamic land-use

scenario and static land-use scenario.
Table 2. Statistical analysis of ET comparison of SWAT scenarios from Remote sensing

Statistic Parameter Static SWAT+ Dynamic SWAT+
PBIAS 30% 13%
Nash-Sutcliffe efficiency (NSE) -0.46 0.4
Adjusted R Square 0.6 0.6
RMSE (mm/month) 20.8 13.3

Table 3. Comparison of water balance component for the basin level

Water balance component (mm) Static Dynamic
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Precipitation
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Figure 5. Spatial distribution of ET from a) Remote sensing b) dymanic land-use scenario and c) static
land-use scenario.
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Figure 6. Spatial distribution of ET from dynamic Land-use for both a) dynamic and b) static SWAT+
Models.
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3.2 Blue and Green ET

Figure 6-7 shows the trends of blue and green annual ET in the Kikuletwa basin for annual{Figure-6)-and

from-a period from 2008 to 2013. The implemented blue and green ET were mainly for irrigated mixed
crop land-use due to implementation of trajectories. The annual average blue ET for irrigated mixed crops

is 138mm which accounts for 25.5% of the annual average total ET and the annual average green ET is

402mm which accounts for 74.5% of the annual average total ET.

2008 2009 2010 2011 2012 2013

Rainfall (mm/y) or
Blue and green ET mm/year)
W
(o]

(=]

s P ———ETblue ETgreen

Figure 67. The annual variation of blue and green ET for-from 2008-2013.

Figure 7-8 shows that the spatial distribution of blue ET for agricultural areas in the Kikuletwa basin for
implemented trajectories such as rainfed maize to tomato to irrigated maize land use trajectory— (See

Appendix 2, Table 2). The blue water is calculated from the irrigated implemented trajectories that mainly
include irrigated mixed crops (soybeans, tomato and irrigated maize). Figure 7-8 shows that more than
half of the total area consumes less than 200mm of blue ET. The higher blue ET is seen in the lower right

corner where the irrigated sugarcane plantation is found.
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Figure #8. Spatial distribution of Blue ET for the implemented trajectories of rainfed and irrigated

mixed crops land-use.

Figure 8-9 shows the comparison of average blue and green ET from four methods (Msigwa et al.,

2021){Msigwa-—et-al-2021fortheoming) with dynamic SWAT+. The value of both blue and green ET is

closer to two methods, EK (van Eekelen) and SWB (Soil Water Balance) methods, which were indicated
to have realistic values of blue and green ET. Van Eekelen et al., (2015) is the method that analysed
precipitation (P) and EFandET and applied an effective rainfall factor since not all rainfall will infiltrate
and be stored in the unsaturated zone to be available for uptake by plants. Both ground data and remote
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sensing data could be used for data analysis-based approaches on an annual basis. The SWB model is a

pixel by pixel vertical soil water balance model that splits green and blue ET by tracking of soil moisture

475 balance and determining if the ET is satisfied only from rainfall or stored in the soil moisture or additional
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sources if required (FAO and IHE Delft, 2019).
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Figure 89. Blue and green ET comparison with other four methods from fertheoming-pubhicationby
Msigwa-et-al+{20201Msigwa et al.; (2021).

4. Discussion

Some previous studies have represented annual land-use changes in SWAT and found that these have a
significant impact on hydrology (Wagner et al., 2016; Woldesenbet et al., 2017; Wagner et al.,
2019)(Wagner—et—al,—2016, 2019 Weldesenbet—et—al—20617). However, none of these studies has

represented the seasonal dynamics of land use within a single year in a spatially distributed manner.

Nkwasa et al.; (2020) incorporated the seasonal land-use dynamic in SWAT and SWAT+ and found that
models led to an improved vegetation simulation. This study did not show how the seasonal land-use

dynamic improved water balance component such as ET. Our study uses of agro-hydrological model

(SWATH) to represent blue and green ET for different cropping seasons (represented by trajectory with

time and space) and the use of remote sensing ET to evaluate the simulated ET from SWAT+. The study
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has compared a common default modelling approach where a static land-use map is used together with
its management practices and a seasonal dynamic land-use representation where more than one erepping

eyelecropping season is represented in a year. The spatial and temporal ET estimates from two model

setups were compared with remote sensing ET. An increase of 112mm/y of the ET is seen when seasonal

dynamic land-use is implemented in the dynamic model to match the remote sensing ET as compared to

when a static land-use map is used_in the static model. The ET results from the dynamic model are

significantly differencet from the ET in the static model for the dynamic land-use. The models show

differences in water balance components, this is due to implementation of the land-use trajectory in the

dynamic model.

A remarkable difference is seen in the spatial distribution of ET from static and dynamic land-use SWAT+
representation. The dynamic land-use SWAT+ visually is similar to a remote sensing map compared to
the static land-use SWAT+. This is because of the added management practices such as H+igatien-irrigated
cropping in the dry seasons, unlike the default SWAT+ where-there—were—no—activities—in—the—dry

seasenswith a static land use throughout the simulation period. The ET from dynamic land-use setup

could not reach maximum satellite ET because the satellite ET estimates also have uncertainties in the

mountainous areas because of the presence of cloud cover. Moreover, different —datamethods for

estimating ET could lead to these differences. RainfallClimate ground stations (temperature, wind speed,

relative humidity and solar radiation) were used for ET simulation in SWAT+ model while the remote

sensing use the enerqgy balance models, mostly remote sensing data.

On the other hand, the ET from the static land cover such as forest from the static and dynamic model

setup show different ET values this could be because of the difference in the initial model setup. The

model setup for static used a March land use map with only 14 land use classes, while the dynamic model

used a land use map with 40 trajectories. Hence, the changes in the ET might be due to the different land

use maps vielding different number of HRUs. In order to avoid such difference, one could have a initial

setup with same land uses then trajectory implementation could only be with the agricultural land use
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Furthermore, the ET estimates from the dynamic SWAT+ model were used to estimate blue and green
ET. The blue and green ET estimates from SWAT+ for the mixed crop land-use show no significant
difference in the values from the two methods (EK and SWB) assessed in the_(Msigwa et al., 2021)-

These findings demonstrate the importance of the representation of seasonal land-use dynamic in
modelling hydrelogical-models-when-guantifying-blue and green water consumption. Normally, most
models use NDVI to represent seasonal changes (Amri et al., 2011; Ferreira et al., 2003), whereas the use
of dynamic land-use leads to improved accuracy of seasonal simulations of the water uses (Nkwasa et al.,
2020). Seasonal land-use maps can add information on management practices of changes in temporal crop
rotation and irrigation water use at a spatial scale. However, to account for accurate seasonality of land-
use, more than 3 maps within a year should be represented, ideally 12 maps each year. This would enable
a more complete understanding of the agricultural land-use classes and minimize errors in the trajectory

analysis. However, Landsat 8 is associated with cloud most especially in the rainy season. Cloud masking

techniques is needed before further analysis of the images. Also, there were uncertainties associated with

the trajectories for example unrealistic trajectories like change from crop to forest then crop again. These

types of trajectories were corrected and reclassified.

The Landsat 8 images used in this study to map seasonal land-use dynamics did not have a revisit time
(16-day) that is small enough to acquire an adequate number of monthly images to represent the year.
More products are now becoming available (Sentinel-2, 5-day revisit time) that have a higher temporal
resolution, which would aid in the collection of more cloud free images to represent seasonality within

the year.

Although it appears important to include seasonal land use dynamic, one may claim that the annual land-
use implementation is enough when studying the effect of land use in hydrology. Our study shows a
significant impact of the representation of seasonal land-use in the SWAT+ model by reducing the errors

in water consumption estimations.
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5. Conclusion

Understanding of the spatial-temporal variability of agricultural water consumption in terms of blue
water, requires accurate estimates of ET. This study has demonstrated the importance of incorporating
seasonal land-use dynamic to improve simulated ET for further blue and green ET estimates +a-using a

SWAT+ model. Although the static representation gives equally reasonabley good R? results of more than

0.5, we found out that the RMSE for the static model result is significantly higher as compared to the
RMSE of the dynamic seasenal-model result by about 112 mm per year. Moreover, the ET from the
dynamic SWAT+ model gave a low a-PBIAS of(13%) and an relatively good NSE of 0.4 compared to
the ET from static SWAT+ that gives a higher PBIAS (20.8%) and a very-tewnegative NSE of -0.46. The
study showed that a dynamic_land use representation in the SWAT+ model gave a-clesercemparisen
teET estimates closer to the remote sensing ET as compared to the default model with a static land-use
representation. The improved ET maps with-caleutated-blue-water-use-from the dynamic SWAT+ model
improved the blue ET estimates as compared to use of static ET maps that does not implement irrigation

in dry season. Hence, estimated blue ET correspond te-the-knewn-rigated-area-and-the-caleulatedto the

blue waterET amount is-in-tineconforms-with-previeusof past studies-study dene-in the basin (Msigwa et
al., 2021). It is concluded that the representation of seasonal land use dynamics is essential to correctly

simulate the agricultural (blue and green) water consumption. Also, for land use change studies, it is

important to correctly represent the seasonal land use dynamics.
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Appendices

Appendix A. Make Management Script

680 import sys
from PIL import Image
import numpy as np

def open_tif_as_array(tif_file):
685 im = Image.open(tif_file)
imarray = np.array(im)
return imarray

def empty_line():
690 print("")

def write_to(filename, text_to_write, report = False):

a function to write to file

695 e
g = open(filename, 'w')
try:
g.write(text_to_write)
if report:
700 print('\n\t> file saved to ' + filename)
except:
print("\t> error writing to {0}, make sure the file is not open in another program"
.format(
filename))
705 response = input("\t> continue? (Y/N): ")
if response == "N" or response == "n":
sys.exit()
g.close
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710

715

720

725

730

735

740

745

750

755

def show_progress(count, end_val, string before = "percent complete", string_after = , ba
r_length = 30):
percent = float(count) / end_val
hashes = "#" * int(round(percent * bar_length))
spaces = '_' * (bar_length - len(hashes))
sys.stdout.write("\r{str_b} [{bar}] {pct}% {str_after}\t\t".format(
str_b = string_before,
bar = hashes + spaces,
pct = '{0:.2f}"'.format(percent * 100),
str_after = string_after))
sys.stdout.flush()

def read_from(filename):

a function to read ascii files

try:
g = open(filename, 'r')

except:
print("\t> error reading {0}, make sure the file exists".format(filename))
return

file_text = g.readlines()

g.close

return file_text

class schedule_data:
def __init_ (self, crop_name):
self.crop_name = crop_name
self.oct_plant = ""
self.oct_harvest =
self.aug_plant =
self.aug_harvest =
self.mar_plant =
self.mar_harvest =

base_txt = "C:/Users/james/Desktop/root/anna/new/new_swat_plus_model/kikuletwa/Scenarios/De
fault/TxtInOut"
inputs_path = "trajectory_files"

# read trajectory data

trajectories = open_tif_as_array("{base}/{fn}".format(base = inputs_path, fn = "trajectory_
map_thres.tif"))

legend _raw = read_from("{base}/{fn}".format(base = inputs_path, fn = "trajectory lookup fin

al.csv"))

dates_raw = read_from("{base}/{fn}".format(base = inputs_path, fn = "crop_plant_harvest.csv
"))

landuse_lum_raw = """landuse.lum: created for trajectories

40



760

765

770

775

780

785

790

795

800

805

name cal_group plnt_com mgt cn

2 cons_prac urban urb_ro ov_mann tile
sep vfs grww bmp

plant_ini_raw = """plant.ini: created for trajectories

pcom_name plt_cnt rot_yr_ini plt_name 1c_status lai_init bm_init

phu_init plnt_pop yrs_init rsd_init

management_raw = management.sch: created for trajectories
name numb_ops numb_auto op_typ mon day
hu_sch op_datal op_data2 op_data3

landuse_lum = landuse_lum_raw
plant_ini = plant_ini_raw

trajectories_dictionary = {}

# trajectory_hru_lum dict = {}

crop_schedule_dictionary = {}

month_dictionary = {'':"None", "Jan": "1", "Feb": "2", "Mar": "3", "Apr": "4", "May": "5",
"Jun": "6", "Jul": "7", "Aug": "8", "Sep": "9", "Oct": "10", "Nov": "11", "Dec": "12"}

for line in dates_raw[1:]:
parts = line.split(",")
crop_schedule_dictionary[parts[0].lower()] = schedule_data(parts[0])

crop_schedule_dictionary[parts[@].lower()].oct_plant = "{0}".format(parts[5]).strip("\n

) crop_schedule_dictionary[parts[@].lower()].oct_harvest = "{0}".format(parts[6]).strip("
v )crop_schedule_dictionary[parts[0].lower()].aug_plant = "{0}".format(parts[3]).strip("\n

) crop_schedule_dictionary[parts[0].lower()].aug_harvest = "{0}".format(parts[4]).strip("
v )crop_schedule_dictionary[parts[0].lower()].mar_plant = "{0}".format(parts[1]).strip("\n

) )crop_schedule_dictionary[parts[0].lower()].mar_harvest = "{0}".format(parts[2]).strip("
\n"

for line in legend_raw[1:]:
trajectories_dictionary[line.split(",")[1].lower()] = line.split(",")[2].strip("\n").1lo
wer()

growing list = ["FRST", "BANA", "SHRB", "SUGC"]
for crop_name in trajectories_dictionary:
# create lum

parts = trajectories_dictionary[crop_name].split("-")
com_mgt_prefix = "{0}_ {1} {2}".format(parts[0@][:3], parts[1][:3], parts[2][:3])
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810

815

820

825

830

835

840

845

850

855

com_mgt_prefix = com_mgt_prefix.lower()

if True: #not ((parts[@] == parts[1l]) and (parts[@] == parts[2])):

line_ = "{lum_t} null {plt_comm} {mgt} rc_strow_g
cross_slope null null convtill nores null
null null null null \n".format(
lum_t = trajectories_dictionary[crop_name].lower().replace("-", " "),

plt_comm = "{@} c".format(com_mgt_prefix),
mgt = "{0}_m".format(com_mgt_prefix),

)

landuse_lum += line_

# print(trajectories_dictionary[crop_name])

# create comm
comm__ = "{comm_n} c
plt_count = ©
done = []
for plt in parts:
if plt == "AGRL":
for agrl crop in ["TOMA","CORN","SOYB"]:
if not agrl _crop.lower() in done:
if plt in growing_list:

//no 1

grow_ini = "y
else:
grow_ini = "n"
plt_count += 1
comm__ += "
{growing} 0.00000 0.00000 0.00000

\n".format(comm_n = com_mgt_prefix)

{agrl_crop}

.00000 \n".format(agrl crop = agrl crop.lower(), growing = grow_ini)

done.append(agrl_crop)
continue

if not plt.lower() in done:
if plt in growing_list:
grow_ini = "y"
else:
grow_ini = "n"
plt _count += 1

comm__ +=
} 0.00000 0.00000 0.00000
format(plt_1 = plt.lower(), growing = grow_ini)

done.append(plt)

0.00000

comm__ = comm__.replace("//no", str(plt_count))
plant_ini += comm__

# create_management

schedule_name = "{0}_m".format(com_mgt_prefix)
number_of_manual_ops = ©
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860

865

870

875

880

885

890

895

900

number_of_auto_ops = 0

done_2 = []

management_section_head
{number_auto} "

management_section_body =

counter_mgt = ©

for plant_index in range(0, 3):

date_day_plant = None
date_mnt_plant = None

None
None

date_day_harvest
date_mnt_harvest
agrl_list = []

if plant_index ==
agrl list = ["soyb"]

if plant_index ==
agrl list = ["soyb", "toma"]

if plant_index ==
agrl list = ["corn”

if parts[plant_index] == "agrl":
for agrl crop_mgt in agrl list:
if plant_index == 0:

date_day_plant = crop_schedule_dictionary[agrl_crop_mgt].mar_plant.
t("-")[el]
date_mnt_plant = crop_schedule dictionary[agrl_crop_mgt].mar_plant.
t("—")[l]
if plant_index ==
date_day_plant = crop_schedule_dictionary[agrl_crop_mgt].aug_plant.
t("-")[el]
date_mnt_plant = crop_schedule_dictionary[agrl crop_mgt].aug_plant.
t("—")[l]
if plant_index ==
date_day_plant = crop_schedule_dictionary[agrl_crop_mgt].oct_plant.
t("—")[@]
date_mnt_plant = crop_schedule_dictionary[agrl crop_mgt].oct_plant.
t("—")[l]
management_body_line = "
{activity}{mnt}{day} 0.00000 {crp} null

er}.00000 ".format(
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905

910

915

920

925

930

935

940

945

950

for

split("-")[e]

split("-")[1]

split("-")[e]

split("-")[1]

split("-")[e]

split("-")[1]

activity = "plnt",

mnt = month_dictionary[date_mnt_plant].strip(" ").rjust(10),

day = date_day_plant.rjust(10),
crp = agrl _crop_mgt.lower(),
order = counter_mgt,

)

management_section_body += "{0}\n".format(management_

counter_mgt += 1
agrl _crop_mgt in agrl_list:
if plant_index == 0:

date_day_harvest

date_mnt_harvest = crop_schedule_dictionary[agrl_

if plant_index ==

date_day_harvest = crop_schedule_dictionary[agrl_

date_mnt_harvest = crop_schedule_dictionary[agrl_

if plant_index == 2:

date_day_harvest = crop_schedule_dictionary[agrl_

date_mnt_harvest = crop_schedule dictionary[agrl_

n

management_body_line =

{activity}{mnt}{day} 0.00000 {crp}
er}.00000 ".format(

activity = "hvkl",

mnt = month_dictionary[date_mnt_harvest].strip("
day = date_day_harvest.rjust(10),

crp = agrl_crop_mgt.lower(),

order = counter_mgt,

)

management_section_body += "{@}\n".format(management_

counter_mgt += 1

elif parts[plant_index] in crop_schedule_dictionary:
if not parts[plant_index] == "past":

.split("-")[e]

split("-")[1]

.split("-")[e]

if plant_index ==

crop_schedule_dictionary[agrl_

body line)

crop_mgt].mar_harvest.

crop_mgt].mar_harvest.

crop_mgt].aug_harvest.

crop_mgt].aug_harvest.

crop_mgt].oct_harvest.

crop_mgt].oct_harvest.

null

").rjust(10),

body_line)

{ord

date_day_plant = crop_schedule_dictionary[parts[plant_index]].mar_plant

date_mnt_plant = crop_schedule_dictionary[parts[plant_index]].mar_plant

if plant_index ==

date_day_plant = crop_schedule_dictionary[parts[plant_index]].aug_plant
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960

965

970

975

980

985

990

995

1000

date_mnt_plant = crop_schedule_dictionary[parts[plant_index]].aug_plant

split("-")[1]

if plant_index == 2:
date_day_plant = crop_schedule_dictionary[parts[plant_index]].oct_plant

.split("-")[0]

date_mnt_plant = crop_schedule_dictionary[parts[plant_index]].oct_plant

Lsplit("-")[1]

vest

vest.

vest.

vest.

vest.

vest.

management_body_line =

"

{activity}{mnt}{day} 0.00000 {crp} null
er}.00000 ".format(

activity = "plnt",

mnt
day
crp
orde

)

r

month_dictionary[date_mnt_plant].strip(" ").rjust(10e),
date_day plant.rjust(10),

parts[plant_index].lower(),

= counter_mgt,

management_section_body += "{@}\n".format(management_body_line)
counter_mgt += 1

if plant_index ==
date_day_harvest = crop_schedule_dictionary[parts[plant_index]].

.split("-")[e]

date_mnt_harvest = crop_schedule dictionary[parts[plant_index]].

split("-")[1]

if plant_index ==
date_day_harvest = crop_schedule_dictionary[parts[plant_index]].

split("-")[0]

date_mnt_harvest = crop_schedule dictionary[parts[plant_index]].

split("-")[1]

if plant_index ==
date_day_harvest = crop_schedule_dictionary[parts[plant_index]].

split("-")[e]

date_mnt_harvest = crop_schedule dictionary[parts[plant_index]].

split("-")[1]

management_body_line =

n

{activity}{mnt}{day} 0.00000 {crp} null
er}.00000 ".format(

activity = "hvkl",

mnt
day
crp

month_dictionary[date_mnt_harvest].strip(" ").rjust(10),
date_day_harvest.rjust(10),
parts[plant_index].lower(),

order = counter_mgt,

)

management_section_body += "{@}\n".format(management_body_line)
counter_mgt += 1

if counter_mgt ==
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1005

1010

1015

1020

1025

1030

1035

1040

continue

management_raw += management_section_head.format(mgt_name = schedule_name, number_manua

1 = counter_mgt, number_auto = number_of_auto_ops) + "\n" + management_section_body

# fix hrus based on dictionary

hru_data_string = """hru-data.hru: for trajectories
id name topo hydro soil
lu_mgt soil plant_init surf_stor snow field

hru_data_hru_raw = read_from("{base}/{fn}".format(base = base_txt, fn = "hru-data.hru"))

for line in hru_data_hru_raw[2:]:

for_part = line
for i in range(9, 20):
for_part = for_part.replace(" ", " ")
parts = for_part.split(" ")
# print(parts[6].split("_")[@])
hru_data_string += line.replace(parts[6], trajectories_dictionary[parts[6].split("_")[©

11.1lower().replace("-", "_"))

write_to("{base}/{fn}".format(base = 'model_files\Scenarios\Default\TxtInOut', fn = "landus
e.lum"), landuse_lum)

write_to("{base}/{fn}".format(base = 'model_files\Scenarios\Default\TxtInOut', fn = "manage
ment.sch"), management_raw)

write_to("{base}/{fn}".format(base = 'model_files\Scenarios\Default\TxtInOut', fn = "plant.
ini"), plant_ini)

write_to("{base}/{fn}".format(base = 'model files\Scenarios\Default\TxtInOut', fn = "hru-
data.hru"), hru_data_string)
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1045 Appendix B. Trajectories Description

Table 1B. Trajectories examples for each fake land-use code use for dynamic SWAT+ implementation.

Map id Code Trajectory
1 TUuwoO TUWO-TUWO-TUWO
2 GRAS GRAS-GRAS-GRAS
6 BSVG BSVG-BSVG-BSVG
11 FRST FRST-FRST-FRST
78 BANA BANA-BANA-BANA
110 HMEL SHRB-SHRB-SHRB
121 INDN CORN-BSVG-BSVG
146 LETT CORN-BSVG-PAST
167 PAST PAST-PAST-PAST
182 SUGC SUGC-SUGC-SUGC
204 ASPN FRST-BSVG-FRST
224 LIMA CORN-PAST-PAST
225 MAPL CORN-PAST-BSVG
243 MESQ CORN-AGRLTOMA-PAST
248 MIGS CORN-AGRLTOMA-BSVG
249 MINT AGRETOMA-AGRLTOMA-BSVG
254 MIXC CORN-AGRLTOMA-AGRLTOMA
262 AGRRL AGRL-AGRL-AGRL

Table 2B. Dynamic agricultural land-use trajectory and their crop or vegetation cover meaning

ID Trajectory Crop/vegetation cover Meaning

1 CORN-PAST-PAST rainfed maize-grass-grass

2 CORN-PAST-BSVG rainfed maize-grass- sparse vegetation
3 CORN-AGRLTOMA-PAST rainfed maize- tomato-grass

4 CORN-AGRLTOMA-BSVG rainfed maize-tomato-sparse vegetation
5 AGRL-AGRLTOMA-BSVG Beans-tomato-sparse vegetation

6 CORN-AGRLTOMA-AGRLIRRM  rainfed maize-tomato-irrigated maize

7 CORN-PAST-IRRMAGRL Rainfed maize-grass-irrigated maize

Table 3B. Land use classes as represented in the Static SWAT+ Model

LANDUSE ID Land use Class SWAT CODE
1 Water WATR
2 Grazed grassland PAST
3 Grazed shrubland CRGR
4 Space vegetation BSVG
5 Rainfed Maize CORN
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Irrigated Sugarcane

Dense forest

Sub_Alpine grassland
Woodland

Mixed Crops

Irrigated Banana and Coffee
Wetland

Urban

Shrubland

1055 Appendix C. Data used in this study

Table 1C. Summary of the different data used in the study with description and sources

Data Type Description Source/ reference
Climate Ten station data of rainfall and four stations of | Tanzania Meteorological
maximum/minimum temperature Agency (TMA) and Pangani
Basin Water Office (PBWO)
Digital ~ Elevation | Elevation data from at 90m resolution United  States  Geological
Model (DEM) Survey (USGS) website
Seasonal land use | Seasonal land use maps at 30m (Msigwa et al., 2019)
maps
Soil Africa Soil Information System (AFSIS) at 250m | (Hengl et al., 2015)
resolution
Remotely  sensed | Ensemble ET from six remote sensing products (IHE Delft, 2020)
based Actual ET
Land management | Planting dates, harvesting dates and irrigation | Farmers interview
data application dates and frequency
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