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Abstract. In most (sub)-tropical African cultivated regions, more than one cropping cyclecropping season exists following the 

(one or two) rainy seasons. During the dry season, an additional cropping cyclecropping season is possible when irrigation is 10 

applied, which could result in 3 cropping seasons. However, most studies for mapping the blue and green water with agro-

hydrological models such as SWAT do not better represent these cropping seasonsIn most agro-hydrological model 

applications such as SWAT+ in Africa, only one cropping season per year is represented. In this paper, we derived dynamic 

and static trajectories from seasonal land-use maps to represent the land-use dynamics following the major growing seasons, 

for the purpose of improving simulated   blue and green water consumption from simulated evapotranspiration (ET) in 15 

SWAT+. This study builds upon earlier research that proposed an approach on how to incorporate seasonal land use dynamics 

in the SWAT+ model but mainly focused on the temporal pattern of LAI and tested the approach in a small catchment (240 

km2). Together with information obtained from the cropping calendar, we implemented agricultural management operations 

for the dominant trajectory of each agricultural land-use class for the Kikuletwa basin (6650km2 area coverage) in Tanzania. 

A comparison between the default SWAT+ (with static land use representation) set up, and a dynamic SWAT+ model (with 20 

seasonal land use representation) is done by spatial mapping of the evapotranspiration (ET) results. MoreoverAdditionally, the 

SWAT+ blue and green ET were compared with the results from the four remote sensing data based methods namely: SN 

(Senay et al., 2016), EK (van Eekelen et al., 2015), Budyko method and Soil Water Balance method (SWB). The results show 

that ET with seasonal representation is closer to remote sensing estimationsestimates, giving higher performance than ET with 

static land use representation. than default: Tthe Root Mean Squared Error decreased from 181 to 69 mm/year; the percent bias 25 

decreased from 20 % to 13% and Nash Sutcliffe Efficiency increased from -0.46 to 0.4. It is concluded that representation of 

seasonal land-use dynamics produces better ET results which provide better estimations of blue and green agricultural water 

consumption. The results of blue and green ET from the dynamic SWAT+ model as compared to the four remote sensing 

methods further shows that the SWAT+ blue and green ET are similar to the van Eekelen method that performed better that 

the other three remote sensing methods. It is concluded that representation of seasonal land-use dynamics produces better ET 30 

results which provide better estimations of blue and green agricultural water consumption. 
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1. Introduction 

Freshwater availability will becomeis a limitinged resource in many regions throughout the world and the 

problem is projected to increase in the near future due to the increasing risks of land use change, 

population growth, and climate change.  The availability of freshwater is mostly determined by 35 

precipitation on land. When rain falls on land, it travels via either green or blue waterways (Velpuri and 

Senay, 2017; Hoekstra, 2019). The green water resource is the water that is held in the unsaturated soil 

layer, whereas the blue water resource is the water that is stored in rivers, streams, surface-water bodies, 

and groundwater (Falkenmark and Rockström, 2006). One of the solutions to lessen the threat of 

freshwater scarcity is to minimize consumptive water use in agriculture. However, for water resource 40 

management, it is critical to understand water use in agricultural production by source (rainwater or 

irrigation water from surface and groundwater) (Velpuri and Senay, 2017). For efficient water resource 

management, knowing how much direct rainwater (green water) and non-rainwaterabstracted water (blue 

water) is being utilized for irrigation is crucial. Yet such information is not readily available, especially 

forin developing countries. 45 

Hydrological models such as the Soil Water Assessment Tool (SWAT) arecan be used to provide 

information on blue and green water onat a basin and continental scales (Xie et al., 2020; Jeyrani et al., 

2021; Liang et al., 2020; Serur, 2020). For instance, (Schuol et al., (2008) used the SWAT model to 

simulate blue and green water availability for the African continent. to (Xie et al., (2020), evaluated the 

evolution of the blue and green water resources, water footprints, and water scarcities in time and space 50 

in the Yellow River basin in China from 2010–2018. The study accounts for the effects of irrigation on 

blue and green water resources. (Liang et al., (2020) used the SWAT model combined with future land 

use and climate scenarios, which was successfully applied to quantify the spatiotemporal distribution of 

blue and green water change for the Xiangjiang River Basin in China between 2015 and 2050. 

However, a few of these studies have implemented annual land-use dynamics. Since land-use refers to 55 

manmade socio-economic activities and management practices on the land, these anthropogenic activities 

may change depending on a season, specifically on cultivated land (Anderson et al., 1976). These changes 



3 

 

per season are called seasonal land-use dynamics (Msigwa et al., 2019). Hence, mapping the blue and 

green water with agro-hydrological models such as SWAT need a better representation of the 

seasonality/cropping seasons. To best of our knowledge there are no studiesy that implemented seasonal 60 

land-use dynamics in estimation of blue and green water resources. For example, Jeyran et al. (2021), 

assessed basin blue and green available water components under different management and climatic 

scenario using SWAT. The annual land-use dynamicchange implementation showed that the 30% 

increase in agricultural land use from 1987 to 2015 has caused significant changes in water shortages of 

Tashk-Bakhtegan basin in Iran. However, other studies do not implement even the annual land-use 65 

dynamic in order to decrease the computational time of the very large-scale models. In most cases,, the 

dominant soil and land cover are used. For instance, (Serur, (2020) used a 10-year land use map to model 

blue and green water availability for the Weyb River basin in Ethiopia.  

The major problem with the previouslimitation of applying thisese approaches is thatin,  ttTropical 

African cultivated areas is  typicallythat typically they have more than one growing cycle, most of the 70 

time ranging between 2 to 3 depending on the sequence of rainy and dry seasons and availability of 

irrigation water (Msigwa et al.,2019). The right representation and timing of these cropping seasons is 

therefore important in order to quantify the crop water consumption.  

A Representation of land-use dynamics in agro-hydrological models is important due to the numerous 

impacts of land-use changes on water resources (Wagner et al., 2019; Woldesenbet et al., 2017). LULC 75 

changes affect hydrologic processes such as infiltration, groundwater recharge, evapotranspiration, and 

runoff (Welde and Gebremariam, 2017; Liu et al., 2008; Schilling et al., 2010). Several studies have 

demonstrated the importance of incorporating dynamic land-use change in models (Chiang et al., 2010; 

Wagner et al., 2016). For instance, Wagner et al., (2016) found a continuous decrease of annual 

evapotranspiration of up to -53mm (-7%) when dynamic land-use change is implemented per sub-basin 80 

scale.  

However, most of these studies have implemented annual land-use dynamic. Since land-use refers to 

manmade socio-economic activities and management practices on the land, these anthropogenic activities 
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may change depending on a season, specifically on cultivated land (Anderson et al., 1976). These changes 

per season are called seasonal land-use dynamics (Msigwa et al., 2019). Few studies that have 85 

implemented seasonal land-use dynamic for other purposes such as nNitrogen leaching and plant growth 

(Glavan et al., 2015), when estimating water withdrawals (Msigwa et al., 2019) and Leaf Area Index 

(LAI) simulation (Nkwasa et al., 2020), have found an impact of representing seasonal land-use dynamics 

in models. For instance, Nkwasa et al. (2020) found that the implementation of seasonal land-use 

dynamics in SWAT and SWAT+ models led to an improved vegetation simulation. The LAI dynamics 90 

of the seasonal land-use dynamic implementation showed more realistic temporal advancement patterns 

that corresponded to the seasonal rainfall within the basin. Moreover, Msigwa et al., (2019) found that 

water withdrawals for irrigated mixed crops increased by 482 Mm3/year when seasonal land-use maps 

are used. Also, the implementation of seasonal land-use dynamic in SWAT and SWAT+ models led to 

an improved vegetation simulation (Nkwasa et al., 2020). The LAI dynamics of the seasonal land-use 95 

dynamic implementation showed more realistic temporal advancement patterns that corresponded to the 

seasonal rainfall within the basin. 

In hydrological models, such as SWAT, the seasonal land-use dynamics could be implemented using 

trajectory analysis. Nkwasa et al., (2020) implemented seasonal land-use dynamic in SWAT and SWAT+ 

through land-use trajectories, and not land-cover classes. Trajectories represent changes of land-use over 100 

time by comparing changes between two or several land-use maps at a grid scale. Trajectory analysis has 

been applied widely to assess the changes and impact of Land Use and Land Cover (LULC) (Feng et al., 

2014; Wang et al., 2012), and as a pre-processing tool for LULC (Zomlot et al., 2017). In these studies, 

change analysis is done pixel by pixel for each year in order to identify land use change (Mertens and 

Lambin, 2000; Swetnam, 2007; Zhou et al., 2008; Wang et al., 2012; Zomlot et al., 2017). However, none 105 

of these studies have analysed pixel by pixel within a year with the aim of identifying the different 

(cropping) seasons, further referred to as land use dynamics. 

Tropical African cultivated areas typically have more than one growing cycle, most of the time ranging 

between 2 to 3 depending on the sequence of rainy and dry seasons and availability of irrigation water 

(Msigwa et al.,2019). The right representation and timing of these cropping seasons is important in order 110 
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to quantify the crop water consumption. Agro-hydrological model applications in Africa basins do 

typically not represent different cropping seasons (Ndomba et al., 2008; Koch et al., 2012; Gashaw et al., 

2018). Lack of consideration of the seasonal land-use dynamics in hydrologic modelling studies, 

especially in African cultivated basins, may be attributed to past constraints of model capabilities, as well 

as lack of availability of crop-specific and agricultural management practices data (Van Griensven et al., 115 

2012). 

The SWAT model incorporates crop rotation and its management at the level of the Hydrological 

Response Unit (HRU) within a sub-basin (Neitsch et al., 2002). It is represented as a sequence of planting 

and harvesting operations within the same HRU supplemented with management operations (Gao et al., 

2017). The representation of agricultural management is done through a separate management file by 120 

specifying the planting, harvesting, tillage, irrigation, fertilizer and pesticide application by heat units or 

month and date (Arnold et al., 2018). There has been a lot of improvement in how to represent the 

management operations by utilizing decision tables in the SWAT+ model, which is the revised and 

improved version of SWAT (Arnold et al., 2018; Bieger et al., 2017). A recent study by Nkwasa et al., 

(2020) in the Usa catchment with in Kikuletwa basin in northern Tanzania has shown how to represent 125 

seasonal land-use dynamics using trajectories in the SWAT model using the management file and the 

SWAT+ model using decision tables for accurate hydrological simulation. Although the SWAT (+) model 

is capable of representing multiple cropping seasons, this is rarely implemented. By default, SWAT 

simulates a single growing cycle every year. There is increasing availability of satellite imagery suitable 

for land-use monitoring with high resolution e.g. Landsat (up to 30m) (Bolton et al., 2020; Al-Hamdan et 130 

al., 2017) or Sentinel mission of the European Space Agency (ESA) (up to 5m) (Bergsma and Almar, 

2020; Drusch et al., 2012; Berger et al., 2012). After further analysis, these images provide frequent land-

use information such as crop types, cropping rotations and irrigation seasons even for small scale 

agricultural areas in African basins.  

This paper builds from previous work that proposed an approach on how to incorporate seasonal land use 135 

dynamics in SWAT and SWAT+ models but was only evaluated for the temporal pattern of LAI 

simulations at a small catchment of 240 km2 (Nkwasa et al., 2020). This study builds on the Nkwasa et 
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al. (2020)’s approach aims to evaluate the effects of seasonal land-use dynamics on blue and green 

evapotranspirationET, with two main objectivesto; (i) investigate the effect of implementing seasonal 

land-use dynamics on the water balance component in Kikuletwa basin (6650 km2) with focus on the ET 140 

using SWAT+ and (ii) to estimate blue and green water consumption from simulated ET. Seasonal land-

use maps were obtained from remote sensing to derive dynamic and static trajectories at 30m resolution 

(Msigwa et al., 2019). Together with information obtained from the cropping calendar, we implemented 

agricultural operations for the dominant dynamic trajectory of each land-use class using the approach 

proposed by Nkwasa et al., (2020). The paper compares spatial mapping of ET obtained from the default 145 

SWAT+ model set up with a static land-use map and a SWAT+ model set up with seasonal dynamic land-

use representation. Findings from this study are intended to enhance the understanding of the spatial-

temporal variability of water consumption (e.g. expressed as blue and green water uses) through improved 

ET estimations.   

2. Methods 150 

2.1. Study Area 

The Kikuletwa basin is a sub-basin of the Pangani basin that covers approximately 6,650 km2 (Figure 1). 

Rainfall within the basin is bi-modalbimodal, meaning that the area receives long rains (masikaMasika) 

from March to June and short rains (vuliVuli) from November to December, as shown in Figure 2. Annual 

rainfall ranges between 300-800 mm in the lower part of the basin to 1200-2000 mm in the highlands of 155 

Mount Meru and Kilimanjaro. The maximum temperature ranges from 25 to 330C and minimum 

temperature ranges from 15 to 200C. The basin comprises of diverse LULC classes such as agricultural 

land, dense forest on Mount Kilimanjaro (5880m) and Meru (4562m), grazed land, mixed urban and 

shrubland/thickets. Shrubland and thickets in the study area are found mainly in the lowlands where rain-

fed agriculture is dominant. Urban areas concentrate around Arusha, although there are also emerging 160 

small towns. Moreover, grazed land is mainly found in the Maasai land of Monduli and Simanjiro 

districts. Irrigated agriculture in Kikuletwa is mainly practiced in the highlands and lowlands along the 

river of Moshi, Moshi urban, Hai, Arumeru, Arusha, and Siha districts. The main crops in the highlands 
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are banana, coffee, and maize, while the lowlands are dominated by mixed vegetable crops such as 

tomatoes, onions, and beans.  165 
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Figure 1. Location and main features of the Kikuletwa basin with google terrain background in Tanzania  The location of the 

Kikuletwa catchment in Africa (inset map). The catchment map shows the river networks and the 

location of ground water level, rainfall and temperature station in and around the catchment.  (by 170 

Authors). 
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Figure 2. Monthly average rainfall (mm) and temperature of Kikuletwa basin ground rainfall stations 
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2.2 Input dataset for SWAT+ 175 

The required rainfall, river discharge, climate data, topography, soil map and land-use map were collected 

from different sources. The 90m resolution Digital Elevation Model (DEM) was obtained from the United 

States Geological Survey (USGS) website (https://earthexplorer.usgs.gov/); the soil map was extracted 

from the African Soil Information Service (AFSIS;  (Hengl et al., 2015)Hengl et al., 2015). Daily rainfall 

records for 10 stations were obtained from the Tanzania Meteorological Agency (TMA) and Pangani 180 

Basin Water Office (PBWO). Daily discharge records were obtained from PBWO. The daily climate 

records of temperature (maximum and minimum) for three stations were obtained from PBWO and TMA. 

The different data sets had variable record length and quality. However, for the selected 10 rainfall and 4 

temperature stations, only good quality data records for the overlapping period (2006 to 2013) were 

selected. 185 

The LULC maps were created using Landsat 8 (30m resolution) image of three months (March, August 

and October) representing three seasons in the basin (Msigwa et al., 2019). The March map represents 

the LULC during the long-wet season (Masika), the August map represents the dry season, and the 

October map represents the short rainy seasons (Vuli). The overall classification accuracy for the land use 

maps of March, August, and October 2016 were 85.5%, 88.5%, and 91.6% with a kappa coefficient of 190 

0.84, 0.87 and 0.91, respectively (Msigwa et al., 2019). About 20 and 19 LULC classes in the Kikuletwa 

catchment were mapped for the wet and dry seasons, respectively. More details on the land use classes 

and their accuracies are found in Msigwa et al. (2019). The LULC maps were reclassified to match the 

SWAT land-use classification (see Table 3B in Appendix B). For instance, the SWAT land-use code 

‘PAST’ was used to represent grazed grassland in the maps see Table 3B in Appendix B. 195 

2.3 Land-use Trajectories 

The LULC change trajectory methodology has been widely applied in many areas to assess LULC change 

and its impact on the environment. Researchers use trajectories to analyse the change happening between 

two images pixel by pixel (Mertens and Lambin, 2000; Swetnam, 2007; Zhou et al., 2008; Wang et al., 

2012; Zomlot et al., 2017). 200 
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In this study, we extended the meaning of land-use trajectories from ‘land-use change’ to ‘seasonal 

succession of land-use types for a given sample unit (pixel) with more than two observations at different 

times' (Zhou et al., 2008). We applied the method in this study to assess the agricultural seasonal dynamics 

for the meteorological dry and wet seasons of the Kikuletwa basin. 

The land-use change trajectories were obtained by integrating three classified images to represent the 205 

three cropping seasons so that pixel-based change trajectories could be found using GIS. A land-use 

trajectory is the trajectory of a certain pixel in each of the three images. For example, a trajectory of 

2→3→0 means for that pixel the land-use in March was rain-fed Maize (2), then in August, irrigated 

mixed crop (3) and finally, in October, Bare land (0). This type of trajectory is classified as dynamic, 

whereas a trajectory of 4→4→4 meaning the land-use is irrigated banana and coffee (4) in March, August, 210 

and October, is a static trajectory. Thus, the LULC change trajectories were categorized into dynamic and 

static land-use trajectories. We only implemented the trajectories from all agricultural land-uses except 

irrigated banana and coffee and irrigated banana, maize and coffee land-uses which were combined as 

irrigated banana and coffee land-use. About 74% of the trajectories were static while 26% of the 

trajectories were dynamic. Figure 3 shows the spatial distribution of static and dynamic land-use 215 

trajectories found in the study area. Only agricultural land-use and extensive agriculture LULC such as 

grazed grassland and shrubland were considered when analysing the seasonal changes (dynamic land-

uses) and implemented in the SWAT+ model. We analyzed and implemented 40 land-use trajectories, 

Appendix B, Table 1B shows few trajectories that were implemented. 

 220 
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Figure 3. Spatial distribution of main dynamic and static land-use trajectories and distinction 

between dynamic and static land-use identified in the study area. 225 
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Legend   

Id Main Trajectory 
1 AGRL-BSVG-AGRL 

2 CORN-AGRL-PAST 

3 CORN-AGRL-BSVG 

4 AGRL-AGRL-BSVG 

5 CORN-AGRL-AGRL 

6 AGRL-AGRL-AGRL 

7 AGRL-AGRL-PAST 

8 AGRL-AGRL-PAST 

9 SUGC-AGRL-AGRL 

10 AGRL-AGRL-AGRL 

 

2.4. SWAT+ Model 230 

SWAT+ is a physically based, semi-distributed hydrological model and a restructured version of the Soil 

and Water Assessment Tool (SWAT) designed to face present and future challenges in water resources 

modelling and management (Bieger et al., 2017). SWAT+ is more flexible in simulating the basin 

processes such as evapotranspiration, runoff, crop growth, nutrientnutrient, and sediment transport due to 

its watershed discretization and configuration. The HRUs are defined as a contiguous area, i.e., a 235 

representative field, with an associated user-defined length and width. The actual HRU is calculated based 

on the DEM, soil and land-use map inputs. Sub basins are delineated during the model construction, but 

they are divided into water areas and one or more landscape units (LSU) (Bieger et al., 2017)(Bieger et 

al., 2017). 

Land-use and management representation in SWAT+ can be done through the management file or using 240 

decision tables. Decision tables are an accurate yet compact way to model complex rule sets and their 

corresponding actions (Arnold et al., 2018). Nkwasa et al., (2020) highlighted the greater flexibility 

provided by decision tables during the representation of agricultural practices in SWAT+. The model 

gives room for two or more crops growing at the same time by defining the plant community in the 

specific plant file. The model enables the representation of the reality of cultivated tropical basins. 245 
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The ET in the model is estimated at HRU level. There are different methods (Priestley-Taylor, Penman-

Monteith and Hargreaves) used to estimate ET in the SWAT+ model. More detailed information can be 

found in (Abiodun et al., 2017; Neitsch et al., 2002; Alemayehu et al., 2016). Our study adopted the 

Hargreaves method (Hargreaves and Samani, 1982) to estimate ET due to the limited amount of input 

dataset such as solar radiation. The method has been tested to be useful in tropical basins such as the Mara 250 

basin linking Tanzania and Kenya, rather than using remote sensing climate data which is associated with 

uncertainties (Alemayehu et al., 2016). Our aim was to use available ground dayta and not rely on remote 

sensing climate data such as solar radiation which is reported to have  uncertainties (Alemayehu et al., 

2016). 

2.5 Land-use Trajectories Implementation in SWAT+ 255 

We combined three land-use maps (March, August and October) to obtain the trajectory land-use map. 

Forty land-use trajectories were produced from the three seasonal land-use maps. Then each trajectory 

was assigned a placeholder SWAT+ land-use code (placeholder). For instance, a placeholder SWAT+ 

land-use code ‘MIXC’ signifies a trajectory CORN→AGRLTOMA→AGRL TOMA trajectory (rainfed 

maize to tomato to tomato land use trajectory) or ‘MIGS’ signifies a CORN →AGRL TOMA →BSVG 260 

trajectory ( rainfed(rainfed maize to tomato to sparse vegetation land use trajectory) as shown in Ttable 

1B of (aAppendix B). Further, the SWAT+ dynamic model was set up with the A trajectory land-use map 

represented with the placeholder SWAT+ land-use codes using the lookup Table 1B (Appendix B) for 

Kikuletwa basin was created.  

The final model was then implemented by assigning each placeholder SWAT+ land-use codes according 265 

to its respective trajectory using the lookup Table 1B, in Appendix B. A python code (Appendix A) was 

used to first assign trajectories of the placeholder SWAT+ land-use codes, and to create the trajectories’ 

management files i.e.i.e., such as ‘landuse.lum’, ‘management.sch’ and ‘hru-data.hru’ files. In the 

‘Landuse.lum’ file, the trajectories were defined with respect to the plant community. ‘Management.sch’ 

file controls the timing of the planting and harvesting of the individual crops in the community (Table 1). 270 

For instance the tomato and soya beans are planted in the same field with different planting and harvesting 
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schedule. The ‘hru-data.hru’ file links the HRUs to the corresponding land-use management. The 

irrigation schedules were implemented using decisions tables. The sources of irrigation water in the 

catchment was river and irrigation techniques were mostly furrow. The irrigation schedules were 

implemented using decisions tables.   275 

Table 1. An example of a ‘management.sch’ file input in dynamic SWAT+ model 

 

1 name of the land-use management, 2 points to the irrigation decision tables, 3 planting operation, 4 

harvesting operation, 5 rainfed maize, 6 soy bean, 7 tomato, 8 harvest the grain portion of the crop, 9 number 

of operations, 10 number of auto-operations, 11 operation type, 12 month, 13 day, 14 heat unit schedule, * 280 

operations 

name numb_ops9    numb_auto10 op_typ11 Mon12 Day13 hu_sch14 op_data1* op_data2* op_data3* 

cor_agr_agr_m1 8 2               

      irr_toma_soy2             

      irr_corn2             

      plnt3 3 15 0 corn5 grain8  0 

      hvkl4 8 15 0 corn grain 1 

      plnt 7 1 0 soyb6 grain 2 

      plnt 8 20 0 toma null 3 

      hvkl 10 1 0 soyb grain 4 

      hvkl 10 20 0 toma7 null 5 

      plnt 10 30 0 corn grain 6 

      hvkl 2 28 0 corn grain 7 

agr_agr_agr_m1 8 2               

      irr_toma_soy2             

      irr_corn2             

      plnt 3 15 0 soyb grain 0 

      hvkl 6 30 0 soyb grain 1 

      plnt 7 1 0 soyb grain 2 

      plnt 8 20 0 toma null 3 

      hvkl 10 1 0 soyb grain 4 

      hvkl 10 20 0 toma null 5 

      plnt 10 30 0 corn grain 6 

      hvkl 2 28 0 corn grain 7 
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2.6 Model Configuration for both Static and Dynamic SWAT+ Models 

The SWAT+ model was setup using DEM, soil map and land-use map of March 2016 for the static 

representation scenario (sStatic model) and using a trajectory map and files (described in section 2.5) for 

the dynamic representation scenario (dynamic Model). The same ground observations of rainfall and 285 

temperature were used (Appendix C, Table 1C) for both models. The precipitation stations were adjusted 

manually according to elevation and the potential maximum leaf area index of maize was adjusted to 

correspond to the field measurements of the basin. USDA Soil Conservation Service (SCS) curve number 

was used to estimate surface runoff and first order markov chain for rainfall distribution and the 

muskingum method used for channel routing. 290 

For the static SWAT+ model, 23 sub-basins, 171 land scape units and 6086hru were generated with 14 

land-use classes, while for the dynamic SWAT+ model, 23 sub-basins, 171 land scape units and 9333hru 

were generated with 40 land use classes representing the 40 different trajectories. The difference in the 

number of HRUs is related to the higher number of land-use classes in the dynamic land-use mapping. 

The irrigation schedules were implemented through decisions tables (Arnold et al., 2018) by specifying a 295 

furrow irrigation method and using the rivers within the sub-basins as the source of irrigation. The model 

was run fromfor a period of 8 years (20068 to 2013). The year 2006 and 2007first two years were used as 

a warm up period. was a warming period. 

2.7 Model Evaluation  

Both the static and dynamic SWAT+ models were compared on how they simulate the water balance and 300 

with specific focus on the ET component since evapotranspiration estimations as the focus of this study 

isaims at mainly to improveimproving the spatial distribution of blue and green water consumption.  and 

not discharge simulation. is to estimate the land use fluxes to estimate blue and green water consumption.  

Hence, the SWAT+ models waswere not calibrated. The ET from both static and dynamic SWAT+ 

representation scenarios at basin level werewas compared with the remote sensing ET at a basin level. 305 

The remote sensing ET is an ensemble ET product from six seven existing global scale ET products (IHE 

Delft, 2020)(IHE Delft, 2020). All the ET products are based on multi-spectral satellite measurements 
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and surface energy balance models i.e.: Global Land Evaporation Amsterdam Model (GLEAM) (Miralles 

et al., 2011), CSIRO MODIS Reflectance-based Evapotranspiration (CMRS-ET) (Guerschman et al., 

2009), Operational Simplified Surface Energy Balance (SSEBop) (Senay et al., 2013), Atmosphere-Land 310 

Exchange Inverse Model (ALEXI) (Anderson et al., 2007), Surface Energy Balance System (SEBS) (Su, 

2002), ETMonitor (Hu and Lia, 2015) and MODIS Global Terrestrial Evapotranspiration Algorithm 

(MOD16) (Mu et al., 2011). The ET maps produced by IHE Delft have a resolution of 250x250m at a monthly scale. 

The detailed information on the ET products description and method are found in (Hugo et al., (2019).The 

product was evaluated for the study area by comparing the basin water balance at three gauged stations; 315 

Karangai, Kikuletwa Power station and Tanzania Plantation Company (TPC) over a period of six years 

(2008-2013). The comparison of ET calculated using the water balance and remote sensing showed good 

agreement (NSE= 0.77) for Kikuletwa Power station which covered 86% of the total basin area (Msigwa 

et al., 2019, 2021)(Msigwa et al., 2019). Statistical metrices such as Nash-Sutcliffe efficiency (NSE), 

Root Mean Square Error (RMSE), Percent Bias (PBIAS) and adjusted R squared (R2) were used to 320 

evaluate the both monthly ET from static and dynamic SWAT+ models against the remote sensing ET. 

Moreover, the Paired T-test statistical analysis was performed to find if there is significant difference 

between the ET from the static model and that of dynamic model for only the dynamic land uses.  NSE is 

a normalized statistic that determines the relative magnitude of the residual variance ("noise") compared 

to the measured data variance ("information") (Nash and Sutcliffe, 1970). NSE is computed as shown in 325 

Eq. (1): 

𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)2𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑖

𝑚𝑒𝑎𝑛)2𝑛
𝑖=1

]   (1) 

RMSE is one of the commonly used error index statistics in many models (Kiptala et al., 2014; Jia et al., 

2012; Yang et al., 2016; Miralles et al., 2011). RMSE is computed as shown in Eq. (2): 

𝑅𝑀𝑆𝐸 = [√∑ (𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑖

𝑠𝑖𝑚)2𝑛
𝑖=1 ]   (2) 330 
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PBIAS measures the average tendency of the simulated data to be larger or smaller than their observed 

data (Gupta et al., 1999). The ideal value of PBIAS is 0.0, with low-magnitude values indicating accurate 

model simulation. Positive values indicate model underestimation bias, and negative values indicate 

model overestimation bias (Gupta et al., 1999). PBIAS is calculated with Eq. (3): 

𝑃𝐵𝐼𝐴𝑆 = [
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠)𝑛

𝑖=1

∗ 100]   (3) 335 

R2 describes the degree of collinearity between simulated and measured data. It describes the proportion 

of the variance in measured data explained by the model. R2 ranges from 0 to 1, with higher values 

indicating less error variance, and typically values greater than 0.5 are considered acceptable (Santhi et 

al., 2001). For more details of statistical matrices, see Moriasi et al., (2007). 

2.8 Estimating blue and green ET 340 

The blue ET is a portion of crop evapotranspiration after application of irrigation. The blue ET in this 

study was estimated as a difference between ET under irrigation and ET without irrigation (Liu and Yang, 

2010). The SWAT+ dynamic land-use implementation was run without irrigation and then later irrigation 

was applied. The green ET is the actual evapotranspiration from precipitation which can be kept in 

unsaturated soil and absorbed by plants and is then returned to the atmosphere via evapotranspiration. In 345 

this study, only the portion of blue water consumed from irrigation was considered and not all the blue 

water resources like other studies (Xie et al., 2020). 

  

The SWAT+ model was run first assuming that no irrigation was carried out. The computed ET is called 

ETgreen. Then the SWAT+ model was run again with irrigation being implemented and the ET computed 350 

is called ETtotal as explained in the two scenarios below. ETblue is computed by the difference of ETtotal 

from the run with irrigation implantation and ETgreen “Eq. (4)”.  

The two scenarios to estimate blue ET 
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1. The seasonal dynamic SWAT+ is carried out by assuming the soil does not receive any irrigation 

water. The evapotranspiration computed using this first run is referred to as ETgreen 355 

2. The seasonal dynamic SWAT+ is carried out by assuming the soil receives sufficient irrigation 

water. The evapotranspiration computed using this second run is referred to as ETtotal 

Hence, ETblue is computed from the “Eq. (4)” below 

𝐸𝑇𝑏𝑙𝑢𝑒 = 𝐸𝑇𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑇𝑔𝑟𝑒𝑒𝑛        (4) 

It should be noted that the trajectory implementation involves only two of the agricultural land-uses i.e. 360 

rainfed maize and mixed crop with exception of irrigated banana and coffee land-use and irrigated banana, 

coffee and maize land-use. 

2.9 Comparison of SWAT+ results with other remote sensing methods 

The SWAT+ blue and green ET were compairedcompared with the results from the four remote sensing 

data based methods namely: SN (Senay et al., 2016), EK (van Eekelen et al., 2015), Budyko method 365 

(Simons et al., 2020) and Soil Water Balance method -SWB (FAO and IHE Delft, 2019).  

The SN method (Senay et al., 2016) is the simplest method whereby blue water is estimated as a difference 

between precipitation (P) and ET, followed by the modified method of van Eekelen et al., (2015) where 

the effective fraction was introduced to reduce the amount of precipitation that evaporates. The Budyko 

method, as described in Simons et al., (2020), estimates green water from precipitation using an empirical 370 

relationship between actual evapotranspiration, precipitation and reference evapotranspiration. The 

Budyko equation, also called the Budyko curve, assumes a relationship between the evaporation ratio 

(ET/P) and climate aridity index (ETo/P) to describe the water-energy balance for long term analysis. 

The soil moisture balance model computes green (ETgreen) and blue (ETblue) water components of ET, 

by keeping track of the soil moisture balance and determining whether ET can be satisfied through direct 375 

precipitation and precipitation stored as soil moisture alone or if an additional water (surface or 

groundwater supply) is required.  The study compares blue and green water estimations for all LULC 

classes for the Kikuletwa catchment. Further detailed description of each method is presented below. 
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3. Results  

3.1 Comparison of Simulated basin ET from Remote Sensing 380 

Figure 4 shows the average monthly ET at the basin scale of Kikuletwa for the two model scenarios of 

SWAT+ and that from remote sensing. The dynamic SWAT+ model shows higher ET (by 20mm/month) 

matching the remote sensing pattern in the dry seasons (July to October) than the static SWAT+ model 

implementation. This shows that there are agricultural activities occurring in the dry seasons. In the 

dynamic SWAT+ model, we implemented irrigation irrigated cropping during the dry seasons on the 385 

growing crops, which led to an increase in ET. 

The statistical analysis (Table 2) shows that both the SWAT+ simulations have a correlation (R2) of above 

0.5, when compared with monthly remote sensing monthly ET. However, the monthly average ET value 

for the dynamic land-use scenario is closer to the remote sensing ET, especially during the dry months 

from July to November where we implement more than one cropping season. 390 

Unlike the commonly used static land-use scenario where only one cropping season was implemented per 

year, the monthly ET for the dynamic SWAT+ model implementation shows acceptable PBIAS of 13% 

whereas, the static SWAT+ model shows higher PBIAS of 30%. Moreover, the dynamic SWAT+ model 

shows a good NSE of 0.4 while the static SWAT+ shows very low performance with an NSE of -0.46. 

Table 3 shows the water balance component for the two scenarios. The A notable difference is seen in ET 395 

increase (24%) and decrease in other water balance components (lateral flow; 27%, percolation; 42%, 

surface runoff; 32%). The mass balance (change in soil water balance) in percentage for the static SWAT+ 

model is higher (1.8%) than the dynamic SWAT+ model (0.5%). The most pronounced differences are 

found when comparing the dynamic land-use representation on basin scale and the commonly used static 

land-use approach with remote sensing. Figure 5 shows the spatial distribution of ET from remote sensing, 400 

dynamic land-use and static land-use representation. 

The average basin ET is 461mm/y, 573mm/y and 642 mm/y for the static SWAT+ model, dynamic 

SWAT+ model, and remote sensing, respectively. Generally, all the simulated ET from SWAT+ shows 
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lower annual average ET than remote sensing ET. However, the ET from static land-use representation 

shows a higher difference of 181mm/y whereas with the use of dynamic land-use, the difference in ET is 405 

only 69mm/y. The paired T-test results show that there is a significant difference between the ET from 

the static model and that of the dynamic model for the dynamic land-uses. A P value of 0.013 was 

obtained, which was less than the 0.05 confidence interval. Spatial distribution of ET from the SWAT+ 

models is different from remote sensing. However, visually, the spatial distribution of ET from the 

dynamic land-use scenario is closer and shows similar patches to remote sensing than the ET from the 410 

static land-use scenario (Figure 5). 

The differences in ET spatial distribution (Figure 5) are vivid mostly in the trajectory implemented areas 

in the lowlands see Figure 3. Figure 6 shows the ET on the dynamic land-uses alone, the differences of 

the amount of the ET in these areas is more than 100mm per year. The vivid differences are seen on the 

right lower corner of the catchment where the differences in ET are more than 200mm/y. There are more 415 

areas with less that 400mm/y in the static model as compared to the dynamic model. However, the pattern 

of ET in SWAT+ is also influenced by the rainfall pattern. Likewise, the changes seen in the high land 

areas of irrigated banana and coffee and the forested areas might be due to the increase in the number of 

HRUs in the dynamic SWAT+ model that contributed to the more accurate results. 
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420 

 

Figure 4. Average monthly ET for basin-scale summarized from remote sensing, dynamic land-use 

scenario and static land-use scenario. 

Table 2. Statistical analysis of ET comparison of SWAT scenarios from Remote sensing 

Statistic Parameter Static SWAT+ Dynamic SWAT+ 

PBIAS 30% 13% 

Nash-Sutcliffe efficiency (NSE) -0.46 0.4 

Adjusted R Square 0.6 0.6 

RMSE (mm/month) 20.8 13.3 

Table 3. Comparison of water balance component for the basin level 425 

Water balance component (mm) Static Dynamic 
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Precipitation 814 814 

Irrigation 0 8.25 

Evapotranspiration 461 573 

Lateral flow 139 101 

Surface runoff 207 140 

Percolation 21.7 12.6 

%mass balance 1.8 0.53 

 

 

Figure 5. Spatial distribution of ET from a) Remote sensing b) dymanic land-use scenario and c) static 

land-use scenario. 430 
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Figure 6. Spatial distribution of ET from dynamic Land-use for both a) dynamic and b) static SWAT+ 

Models. 

3.2 Blue and Green ET 

Figure 6 7 shows the trends of blue and green annual ET in the Kikuletwa basin for annual (Figure 6) and 435 

from a period from 2008 to 2013. The implemented blue and green ET were mainly for irrigated mixed 

crop land-use due to implementation of trajectories. The annual average blue ET for irrigated mixed crops 

is 138mm which accounts for 25.5% of the annual average total ET and the annual average green ET is 

402mm which accounts for 74.5% of the annual average total ET. 
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 440 

Figure 67. The annual variation of blue and green ET for from 2008–2013. 

Figure 7 8 shows that the spatial distribution of blue ET for agricultural areas in the Kikuletwa basin for 

implemented trajectories such as rainfed maize to tomato to irrigated maize land use trajectory.  (See 

Appendix 2, Table 2). The blue water is calculated from the irrigated implemented trajectories that mainly 

include irrigated mixed crops (soybeans, tomato and irrigated maize). Figure 7 8 shows that more than 445 

half of the total area consumes less than 200mm of blue ET. The higher blue ET is seen in the lower right 

corner where the irrigated sugarcane plantation is found. 
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Figure 78. Spatial distribution of Blue ET for the implemented trajectories of rainfed and irrigated 

mixed crops land-use. 450 

Figure 8 9 shows the comparison of average blue and green ET from four methods (Msigwa et al., 

2021)(Msigwa et al 2021 forthcoming) with dynamic SWAT+. The value of both blue and green ET is 

closer to two methods, EK (van Eekelen) and SWB (Soil Water Balance) methods, which were indicated 

to have realistic values of blue and green ET. Van Eekelen et al., (2015) is the method that analysed 

precipitation (P) and ET, andET and applied an effective rainfall factor since not all rainfall will infiltrate 455 

and be stored in the unsaturated zone to be available for uptake by plants. Both ground data and remote 

sensing data could be used for data analysis-based approaches on an annual basis. The SWB model is a 

pixel by pixel vertical soil water balance model that splits green and blue ET by tracking of soil moisture 

balance and determining if the ET is satisfied only from rainfall or stored in the soil moisture or additional 

sources if required (FAO and IHE Delft, 2019). 460 
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Figure 89. Blue and green ET comparison with other four methods from forthcoming publication by 

Msigwa et al., (2020)(Msigwa et al., (2021). 

4. Discussion  

Some previous studies have represented annual land-use changes in SWAT and found that these have a 465 

significant impact on hydrology (Wagner et al., 2016; Woldesenbet et al., 2017; Wagner et al., 

2019)(Wagner et al., 2016, 2019; Woldesenbet et al., 2017). However, none of these studies has 

represented the seasonal dynamics of land use within a single year. Nkwasa et al., (2020) incorporated 

the seasonal land-use dynamic in SWAT and SWAT+ and found that models led to an improved 

vegetation simulation. This study did not show how the seasonal land-use dynamic improved water 470 

balance component such as ET. Our study uses of agro-hydrological model (SWAT+) to represent blue 

and green ET for different cropping seasons (represented by trajectory with time and space) and the use 

of remote sensing ET to evaluate the simulated ET from SWAT+. The study has compared a common 

default modelling approach where a static land-use map is used together with its management practices 

and a seasonal dynamic land-use representation where more than one cropping cyclecropping season is 475 

represented in a year. The spatial and temporal ET estimates from two model setups were compared with 

remote sensing ET. An increase of 112mm/y of the ET is seen when seasonal dynamic land-use is 

implemented in the dynamic model to match the remote sensing ET as compared to when a static land-
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use map is used in the static model. The ET results from dynamic model are significant difference from 

the ET in the static model for the dynamic land-use. The models show differences in water balance 480 

components, this is due to implementation of the land-use trajectory in the dynamic model. 

A remarkable difference is seen in the spatial distribution of ET from static and dynamic land-use SWAT+ 

representation. The dynamic land-use SWAT+ visually is similar to a remote sensing map compared to 

the static land-use SWAT+. This is because of the added management practices such as irrigation irrigated 

cropping in the dry seasons, unlike the default SWAT+ where there were no activities in the dry 485 

seasonswith a static land use throughout the simulation period. The ET from dynamic could not reach 

maximum satellite ET because the satellite ET estimates also have uncertainties in the mountainous areas 

because of the presence of cloud cover. Moreover, different data for estimating ET could lead to these 

differences. Rainfall ground stations were used for ET simulation in SWAT+ model while the remote 

sensing use the energy balance models, mostly remote sensing data. 490 

Furthermore, the ET estimates from the dynamic SWAT+ model were used to estimate blue and green 

ET. The blue and green ET estimates from SWAT+ for the mixed crop land-use show no significant 

difference in the values from the two methods (EK and SWB) assessed in the (Msigwa et al., 2021). 

upcoming paper by Msigwa et al., (2021).. 

These findings demonstrate the importance of the representation of seasonal land-use dynamic in 495 

modelling hydrological models when quantifying blue and green water consumption. Normally, most 

models use NDVI to represent seasonal changes (Amri et al., 2011; Ferreira et al., 2003), whereas the use 

of dynamic land-use leads to improved accuracy of seasonal simulations of the water uses (Nkwasa et al., 

2020). Seasonal land-use maps can add information on management practices of changes in temporal crop 

rotation and irrigation water use at a spatial scale. However, to account for accurate seasonality of land-500 

use, more than 3 maps within a year should be represented, ideally 12 maps each year. This would enable 

a more complete understanding of the agricultural land-use classes and minimize errors in the trajectory 

analysis. However, Landsat 8 is associated with cloud most especially in the rainy season. Cloud masking 

techniques is needed before further analysis of the images. Also, there were uncertainties associated with 



30 

 

the trajectories for example unrealistic trajectories like change from crop to forest then crop again. These 505 

types of trajectories were corrected and reclassified. 

The Landsat 8 images used in this study to map seasonal land-use dynamics did not have a revisit time 

(16-day) that is small enough to acquire an adequate number of monthly images to represent the year. 

More products are now becoming available (Sentinel-2, 5-day revisit time) that have a higher temporal 

resolution, which would aid in the collection of more cloud free images to represent seasonality within 510 

the year. 

Although it appears important to include seasonal land use dynamic, one may claim that the annual land-

use implementation is enough when studying the effect of land use in hydrology. Our study shows a 

significant impact of the representation of seasonal land-use in the SWAT+ model by reducing the errors 

in water consumption estimations.  515 

5. Conclusion 

Understanding of the spatial-temporal variability of agricultural water consumption in terms of blue 

water, requires accurate estimates of ET. This study has demonstrated the importance of incorporating 

seasonal land-use dynamic to improve simulated ET for further blue and green ET estimates in using a 

SWAT+ model. Although the static representation gives equally reasonabley good R2 results of more than 520 

0.5, we found out that the RMSE for the static model result is significantly higher as compared to the 

RMSE of the dynamic seasonal model result by about 112 mm per year. Moreover, the ET from the 

dynamic SWAT+ model gave a low a PBIAS of (13%) and an relatively good NSE of 0.4 compared to 

the ET from static SWAT+ that gives a higher PBIAS (20.8%) and a very lownegative NSE of -0.46. The 

study showed that a dynamic land use representation in the SWAT+ model gave a closer comparison 525 

toET estimates closer to the remote sensing ET as compared to the default model with a static land-use 

representation. The improved ET maps with calculated blue water use from the dynamic SWAT+ model 

improved the blue ET estimates as compared to use of static ET maps that does not implement irrigation 

in dry season. Hence, estimated blue ET correspond to the known irrigated area and the calculatedto the  
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blue water ET amount is in lineconforms with previousof past studies study done in the basin (Msigwa et 530 

al., 2021). It is concluded that the representation of seasonal land use dynamics is essential to correctly 

simulate the agricultural (blue and green) water consumption. Also, for land use change studies, it is 

important to correctly represent the seasonal land use dynamics. 
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Appendices 

Appendix A. Make Management Script 

import sys 
from PIL import Image 650 

import numpy as np 
 
def open_tif_as_array(tif_file): 
    im = Image.open(tif_file) 
    imarray = np.array(im) 655 

    return imarray 
 

def empty_line(): 
    print("") 
 660 

def write_to(filename, text_to_write, report = False): 
    ''' 
    a function to write to file 
    ''' 
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    g = open(filename, 'w') 665 

    try: 
        g.write(text_to_write) 
        if report: 
            print('\n\t> file saved to ' + filename) 
    except: 670 

        print("\t> error writing to {0}, make sure the file is not open in another program"
.format( 
            filename)) 
        response = input("\t> continue? (Y/N): ") 
        if response == "N" or response == "n": 675 

            sys.exit() 
    g.close 
 
def show_progress(count, end_val, string_before = "percent complete", string_after = "", ba
r_length = 30): 680 

    percent = float(count) / end_val 
    hashes = "#" * int(round(percent * bar_length)) 
    spaces = '_' * (bar_length - len(hashes)) 
    sys.stdout.write("\r{str_b} [{bar}] {pct}% {str_after}\t\t".format( 
        str_b = string_before, 685 

        bar = hashes + spaces, 
        pct = '{0:.2f}'.format(percent * 100), 
        str_after = string_after)) 
    sys.stdout.flush() 
 690 

def read_from(filename): 
    ''' 
    a function to read ascii files 
    ''' 
    try: 695 

        g = open(filename, 'r') 
    except: 
        print("\t> error reading {0}, make sure the file exists".format(filename)) 
        return 
    file_text = g.readlines() 700 

    g.close 
    return file_text 
 
class schedule_data: 
    def __init__(self, crop_name): 705 

        self.crop_name = crop_name 
        self.oct_plant = "" 
        self.oct_harvest = "" 
        self.aug_plant = "" 
        self.aug_harvest = "" 710 

        self.mar_plant = "" 
        self.mar_harvest = "" 
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base_txt = "C:/Users/james/Desktop/root/anna/new/new_swat_plus_model/kikuletwa/Scenarios/De
fault/TxtInOut" 715 

inputs_path = "trajectory_files" 
 
# read trajectory data 
trajectories = open_tif_as_array("{base}/{fn}".format(base = inputs_path, fn = "trajectory_
map_thres.tif")) 720 

legend_raw = read_from("{base}/{fn}".format(base = inputs_path, fn = "trajectory_lookup_fin
al.csv")) 
dates_raw = read_from("{base}/{fn}".format(base = inputs_path, fn = "crop_plant_harvest.csv
")) 
 725 

landuse_lum_raw = """landuse.lum: created for trajectories 
name                         cal_group          plnt_com               mgt               cn
2         cons_prac             urban            urb_ro           ov_mann              tile
               sep               vfs              grww               bmp   
""" 730 

plant_ini_raw = """plant.ini: created for trajectories 
pcom_name          plt_cnt rot_yr_ini  plt_name  lc_status      lai_init       bm_init     
 phu_init      plnt_pop      yrs_init      rsd_init   
""" 
 735 

management_raw = """management.sch: created for trajectories 
name                       numb_ops  numb_auto            op_typ       mon       day       
 hu_sch          op_data1          op_data2      op_data3   
""" 
 740 

landuse_lum = landuse_lum_raw 
plant_ini = plant_ini_raw 
 
trajectories_dictionary = {} 
# trajectory_hru_lum_dict = {} 745 

crop_schedule_dictionary = {} 
month_dictionary = {'':"None", "Jan": "1", "Feb": "2", "Mar": "3", "Apr": "4", "May": "5", 
"Jun": "6", "Jul": "7", "Aug": "8", "Sep": "9", "Oct": "10", "Nov": "11", "Dec": "12"} 
 
for line in dates_raw[1:]: 750 

    parts = line.split(",") 
    crop_schedule_dictionary[parts[0].lower()] = schedule_data(parts[0]) 
    crop_schedule_dictionary[parts[0].lower()].oct_plant = "{0}".format(parts[5]).strip("\n
") 
    crop_schedule_dictionary[parts[0].lower()].oct_harvest = "{0}".format(parts[6]).strip("755 

\n") 
    crop_schedule_dictionary[parts[0].lower()].aug_plant = "{0}".format(parts[3]).strip("\n
") 
    crop_schedule_dictionary[parts[0].lower()].aug_harvest = "{0}".format(parts[4]).strip("
\n") 760 
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    crop_schedule_dictionary[parts[0].lower()].mar_plant = "{0}".format(parts[1]).strip("\n
") 
    crop_schedule_dictionary[parts[0].lower()].mar_harvest = "{0}".format(parts[2]).strip("
\n") 
 765 

for line in legend_raw[1:]: 
    trajectories_dictionary[line.split(",")[1].lower()] = line.split(",")[2].strip("\n").lo
wer() 
 
growing_list = ["FRST", "BANA", "SHRB", "SUGC"] 770 

 
for crop_name in trajectories_dictionary: 
    # create lum 
    parts = trajectories_dictionary[crop_name].split("-") 
    com_mgt_prefix = "{0}_{1}_{2}".format(parts[0][:3], parts[1][:3], parts[2][:3]) 775 

    com_mgt_prefix = com_mgt_prefix.lower() 
    if True: #not ((parts[0] == parts[1]) and (parts[0] == parts[2])): 
        line_ = "{lum_t}                    null         {plt_comm}  {mgt}       rc_strow_g
       cross_slope              null              null    convtill_nores              null 
             null              null              null              null  \n".format( 780 

            lum_t = trajectories_dictionary[crop_name].lower().replace("-", "_"), 
            plt_comm = "{0}_c".format(com_mgt_prefix), 
            mgt = "{0}_m".format(com_mgt_prefix), 
        ) 
        landuse_lum += line_ 785 

        # print(trajectories_dictionary[crop_name]) 
 
    # create comm 
    comm__ = "{comm_n}_c            //no         1  \n".format(comm_n = com_mgt_prefix) 
    plt_count = 0 790 

    done = [] 
    for plt in parts: 
        if plt == "AGRL": 
            for agrl_crop in ["TOMA","CORN","SOYB"]: 
                if not agrl_crop.lower() in done: 795 

                    if plt in growing_list: 
                        grow_ini = "y" 
                    else: 
                        grow_ini = "n" 
                    plt_count += 1 800 

                    comm__ += "                                        {agrl_crop}         
    {growing}       0.00000       0.00000       0.00000       0.00000       0.00000   10000
.00000  \n".format(agrl_crop = agrl_crop.lower(), growing = grow_ini) 
                    done.append(agrl_crop) 
     805 

            continue 
 
        if not plt.lower() in done: 
            if plt in growing_list: 
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                grow_ini = "y" 810 

            else: 
                 grow_ini = "n" 
            plt_count += 1 
            comm__ += "                                        {plt_l}             {growing
}       0.00000       0.00000       0.00000       0.00000       0.00000   10000.00000  \n".815 

format(plt_l = plt.lower(), growing = grow_ini) 
            done.append(plt) 
     
    comm__ = comm__.replace("//no", str(plt_count)) 
    plant_ini += comm__ 820 

 
    # create_management 
    schedule_name = "{0}_m".format(com_mgt_prefix) 
    number_of_manual_ops = 0 
    number_of_auto_ops = 0 825 

 
    done_2 = [] 
 
    management_section_head = "{mgt_name}                          {number_manual}         
 {number_auto}  " 830 

    management_section_body = "" 
    counter_mgt = 0 
 
    for plant_index in range(0, 3): 
 835 

        date_day_plant = None 
        date_mnt_plant = None 
 
        date_day_harvest = None 
        date_mnt_harvest = None 840 

        agrl_list = [] 
 
        if plant_index == 0: 
            agrl_list = ["soyb"] 
 845 

        if plant_index == 1: 
            agrl_list = ["soyb", "toma"] 
 
        if plant_index == 2: 
            agrl_list = ["corn"] 850 

 

        if parts[plant_index] == "agrl": 
            for agrl_crop_mgt in agrl_list: 
                if plant_index == 0: 
                    date_day_plant = crop_schedule_dictionary[agrl_crop_mgt].mar_plant.spli855 

t("-")[0] 
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                    date_mnt_plant = crop_schedule_dictionary[agrl_crop_mgt].mar_plant.spli
t("-")[1] 
                if plant_index == 1: 
                    date_day_plant = crop_schedule_dictionary[agrl_crop_mgt].aug_plant.spli860 

t("-")[0] 
                    date_mnt_plant = crop_schedule_dictionary[agrl_crop_mgt].aug_plant.spli
t("-")[1] 
                if plant_index == 2: 
                    date_day_plant = crop_schedule_dictionary[agrl_crop_mgt].oct_plant.spli865 

t("-")[0] 
                    date_mnt_plant = crop_schedule_dictionary[agrl_crop_mgt].oct_plant.spli
t("-")[1] 
 
                management_body_line = "                                                   870 

         {activity}{mnt}{day}       0.00000              {crp}              null       {ord
er}.00000  ".format( 
                    activity = "plnt", 
                    mnt = month_dictionary[date_mnt_plant].strip(" ").rjust(10), 
                    day = date_day_plant.rjust(10), 875 

                    crp = agrl_crop_mgt.lower(), 
                    order = counter_mgt, 
                ) 
                management_section_body += "{0}\n".format(management_body_line) 
                counter_mgt += 1 880 

            for agrl_crop_mgt in agrl_list: 
                if plant_index == 0: 
                    date_day_harvest = crop_schedule_dictionary[agrl_crop_mgt].mar_harvest.
split("-")[0] 
                    date_mnt_harvest = crop_schedule_dictionary[agrl_crop_mgt].mar_harvest.885 

split("-")[1] 
                if plant_index == 1: 
                    date_day_harvest = crop_schedule_dictionary[agrl_crop_mgt].aug_harvest.
split("-")[0] 
                    date_mnt_harvest = crop_schedule_dictionary[agrl_crop_mgt].aug_harvest.890 

split("-")[1] 
                if plant_index == 2: 
                    date_day_harvest = crop_schedule_dictionary[agrl_crop_mgt].oct_harvest.
split("-")[0] 
                    date_mnt_harvest = crop_schedule_dictionary[agrl_crop_mgt].oct_harvest.895 

split("-")[1] 
 
                management_body_line = "                                                   
         {activity}{mnt}{day}       0.00000              {crp}              null       {ord
er}.00000  ".format( 900 

                    activity = "hvkl", 
                    mnt = month_dictionary[date_mnt_harvest].strip(" ").rjust(10), 
                    day = date_day_harvest.rjust(10), 
                    crp = agrl_crop_mgt.lower(), 
                    order = counter_mgt, 905 
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                ) 
                management_section_body += "{0}\n".format(management_body_line) 
                counter_mgt += 1 
 

        elif parts[plant_index] in crop_schedule_dictionary: 910 

            if not parts[plant_index] == "past": 
 
                if plant_index == 0: 
                    date_day_plant = crop_schedule_dictionary[parts[plant_index]].mar_plant
.split("-")[0] 915 

                    date_mnt_plant = crop_schedule_dictionary[parts[plant_index]].mar_plant
.split("-")[1] 
                if plant_index == 1: 
                    date_day_plant = crop_schedule_dictionary[parts[plant_index]].aug_plant
.split("-")[0] 920 

                    date_mnt_plant = crop_schedule_dictionary[parts[plant_index]].aug_plant
.split("-")[1] 
                if plant_index == 2: 
                    date_day_plant = crop_schedule_dictionary[parts[plant_index]].oct_plant
.split("-")[0] 925 

                    date_mnt_plant = crop_schedule_dictionary[parts[plant_index]].oct_plant
.split("-")[1] 
 
                management_body_line = "                                                   
         {activity}{mnt}{day}       0.00000              {crp}              null       {ord930 

er}.00000  ".format( 
                    activity = "plnt", 
                    mnt = month_dictionary[date_mnt_plant].strip(" ").rjust(10), 
                    day = date_day_plant.rjust(10), 
                    crp = parts[plant_index].lower(), 935 

                    order = counter_mgt, 
                ) 
                management_section_body += "{0}\n".format(management_body_line) 
                counter_mgt += 1 
 940 

                if plant_index == 0: 
                    date_day_harvest = crop_schedule_dictionary[parts[plant_index]].mar_har
vest.split("-")[0] 
                    date_mnt_harvest = crop_schedule_dictionary[parts[plant_index]].mar_har
vest.split("-")[1] 945 

                if plant_index == 1: 
                    date_day_harvest = crop_schedule_dictionary[parts[plant_index]].aug_har
vest.split("-")[0] 
                    date_mnt_harvest = crop_schedule_dictionary[parts[plant_index]].aug_har
vest.split("-")[1] 950 

                if plant_index == 2: 
                    date_day_harvest = crop_schedule_dictionary[parts[plant_index]].oct_har
vest.split("-")[0] 
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                    date_mnt_harvest = crop_schedule_dictionary[parts[plant_index]].oct_har
vest.split("-")[1] 955 

 
                management_body_line = "                                                   
         {activity}{mnt}{day}       0.00000              {crp}              null       {ord
er}.00000  ".format( 
                    activity = "hvkl", 960 

                    mnt = month_dictionary[date_mnt_harvest].strip(" ").rjust(10), 
                    day = date_day_harvest.rjust(10), 
                    crp = parts[plant_index].lower(), 
                    order = counter_mgt, 
                ) 965 

                management_section_body += "{0}\n".format(management_body_line) 
                counter_mgt += 1 
 
    if counter_mgt == 0: 
        continue 970 

 
    management_raw += management_section_head.format(mgt_name = schedule_name, number_manua
l = counter_mgt, number_auto = number_of_auto_ops) + "\n" +  management_section_body 
 
# fix hrus based on dictionary 975 

 
hru_data_string = """hru-data.hru: for trajectories 
id  name                                topo             hydro              soil           
       lu_mgt   soil_plant_init         surf_stor              snow             field   
""" 980 

 
hru_data_hru_raw = read_from("{base}/{fn}".format(base = base_txt, fn = "hru-data.hru")) 
 
for line in hru_data_hru_raw[2:]: 
    for_part = line 985 

    for i in range(0, 20): 
        for_part = for_part.replace("  ", " ") 
    parts = for_part.split(" ") 
    # print(parts[6].split("_")[0]) 
    hru_data_string += line.replace(parts[6], trajectories_dictionary[parts[6].split("_")[0990 

]].lower().replace("-", "_")) 
 
write_to("{base}/{fn}".format(base = 'model_files\Scenarios\Default\TxtInOut', fn = "landus
e.lum"), landuse_lum) 
write_to("{base}/{fn}".format(base = 'model_files\Scenarios\Default\TxtInOut', fn = "manage995 

ment.sch"), management_raw) 
write_to("{base}/{fn}".format(base = 'model_files\Scenarios\Default\TxtInOut', fn = "plant.
ini"), plant_ini) 
write_to("{base}/{fn}".format(base = 'model_files\Scenarios\Default\TxtInOut', fn = "hru-
data.hru"), hru_data_string) 1000 
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Appendix B. Trajectories Description 

Table 1B. Trajectories examples for each fake land-use code use for dynamic SWAT+ implementation. 1015 

Map_id Code Trajectory 

1 TUWO TUWO-TUWO-TUWO 

2 GRAS GRAS-GRAS-GRAS 

6 BSVG BSVG-BSVG-BSVG 

11 FRST FRST-FRST-FRST 

78 BANA BANA-BANA-BANA 

110 HMEL SHRB-SHRB-SHRB 

121 INDN CORN-BSVG-BSVG 

146 LETT CORN-BSVG-PAST 

167 PAST PAST-PAST-PAST 

182 SUGC SUGC-SUGC-SUGC 

204 ASPN FRST-BSVG-FRST 

224 LIMA CORN-PAST-PAST 

225 MAPL CORN-PAST-BSVG 

243 MESQ CORN-AGRLTOMA-PAST 

248 MIGS CORN-AGRLTOMA-BSVG 

249 MINT AGRLTOMA-AGRLTOMA-BSVG 

254 MIXC CORN-AGRLTOMA-AGRLTOMA 

262 AGRRL AGRL-AGRL-AGRL 

 

Table 2B. Dynamic agricultural land-use trajectory and their crop or vegetation cover meaning 

ID Trajectory Crop/vegetation cover Meaning 

1 CORN-PAST-PAST rainfed maize-grass-grass 
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2 CORN-PAST-BSVG rainfed maize-grass- sparse vegetation 

3 CORN-AGRLTOMA-PAST rainfed maize- tomato-grass 

4 CORN-AGRLTOMA-BSVG rainfed maize-tomato-sparse vegetation 

5 AGRL-AGRLTOMA-BSVG Beans-tomato-sparse vegetation 

6 CORN-AGRLTOMA-AGRLIRRM rainfed maize-tomato-irrigated maize 

7 CORN-PAST-IRRMAGRL Rainfed maize-grass-irrigated maize 

Table 3B. Land use classes as represented in the Static SWAT+ Model 

LANDUSE_ID Land use Class SWAT_CODE 

1 Water WATR 

2 Grazed grassland PAST 

3 Grazed shrubland CRGR 

4 Space vegetation BSVG 

5 Rainfed Maize CORN 

6 Irrigated Sugarcane SUGC 

7 Dense forest FRST 

8 Sub_Alpine grassland GRAS 

9 Woodland TUWO 

10 Mixed Crops TOMAAGRL 

11 Irrigated Banana and Coffee BANA 

12 Wetland WEHB 

13 Urban URMD 

14 Shrubland SHRB 

 

 1020 

 

 

 

Appendix C. Data used in this study 

Table 1C. Summary of the different data used in the study with description and sources 1025 

Data Type Description Source/ reference 

Climate Ten station data of rainfall and four stations of 

maximum/minimum temperature 

Tanzania Meteorological 

Agency (TMA) and Pangani 

Basin Water Office (PBWO) 

Digital Elevation 

Model (DEM) 

Elevation data from at 90m resolution United States Geological 

Survey (USGS) website 
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Seasonal land use 

maps 

Seasonal land use maps at 30m (Msigwa et al., 2019) 

Soil Africa Soil Information System (AFSIS) at 250m 

resolution 

(Hengl et al., 2015) 

Remotely sensed 

based Actual ET 

Ensemble ET from six remote sensing products (IHE Delft, 2020) 

Land management 

data 

Planting dates, harvesting dates and irrigation 

application dates and frequency 

Farmers interview 

 


