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Abstract. Personification can be annoying, but also instructive.  If a Rainfall-Runoff (RR) model was a hydrologist it could 5 

be called the Modelled Hydrologist, MH.  Ideally, an MH used when tackling real–world problems such as flooding and climate 

change would be acquainted with hydrologic laws at the catchment scale and with a diverse panel of desk and field hydrologists 

who have between them thousands of years of experience.  In practice, though, the MHs for RR models are largely ignorant 

of hydrology.  Some of this ignorance is real (e.g. the hydrologic laws are unknown).  The rest is selective ignorance, as is 

practised throughout science whenever there is a need for complex system analysis, parsimony, or similar.  It is a form of 10 

designed neglect.  In lumped RR modelling, the classic MH is that used in Jakeman and Hornberger’s experiment on their 

question “How much complexity is warranted in a rainfall–runoff model?”.  Based on what that MH “knows” it is a statistician 

dilettante–hydrologist.  When studying difficult and confusing problems (conundrums) like RR modelling it is helpful to have 

simple concrete examples to use as benchmarks and when generating hypotheses.  Here, an MH for lumped modelling is built 

which is a layman with an interest in the weather and river flows (e.g. a river fisherman).  The MH is created in a novel 15 

experiment in which statements of knowledge in everyday English are transformed systematically into a novel parameterless 

RR model.  For a set of 38 UK catchments, the relative importance is measured as 1 and 6, respectively, for the layman’s 

knowledge about seasonality and wetness, and 2 for the knowledge that runoff records are always unpredictable to some degree.  

Hydrologic laws are discussed and hydrologic similarly in time and place is explored. 

1 Introduction 20 

Rainfall–Runoff (RR) modelling is sometimes used when making life and death decisions about drought, flood, land use, soil 

erosion, pollution, and climate change.  Over the last few decades there have been many notable contributions to discussions 

on the difficulties and dangers inherent in RR modelling.  These include: (1) Dooge’s (1986, p.50S) observation that hydrologic 

laws at the catchment scale should amount to more than “mere data fitting”;  (2) The comments from Klemeŝ (1986a) on 

“dilettantism in hydrology”;  (3) Kirchner’s (2006) memorable comment that “models ... may succeed as mathematical 25 

marionettes, dancing to match the calibration data even if their underlying premises are unrealistic”;  (4) Beven’s writings on 

the notion of “equifinality”, defined in his textbook (Beven, 2012) as “the concept that there may be many models of a 

catchment that are acceptably consistent with the observations available”, and his writings on parameter uncertainty (e.g. 
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Beven, 1993); and (5)  Jakeman and Hornberger’s (1993) experiment on their question  “How much complexity is warranted 

in a rainfall–runoff model?”. 30 

 

There is huge scope for drawing hydrologic conclusions on the basis of RR modelling:  e.g. (1) the values in a given simulated 

runoff time series for catchment X are good as estimates to fill the gaps in the runoff record for catchment X; (2) the effect on 

peak runoff resulting from planting forest W in catchment X is Y; (3) it can be proved that there was snowmelt on 8th January 

1962 in catchment X even though the collection of runoff records did not start until 1970; and (4) for catchment X, 14 th June 35 

2002 is hydrologically similar to 28th May 1985.  In engineering hydrology, one role for such conclusions is to support decisions.  

As noted by Baker (2017): “engineering hydrology incorporates the best available theory (science–as–knowledge) into models 

in order to achieve accurate representation (simulation) of the system of interest for some problem of control to be solved 

within limitations of time and available resources”.  The management of drought, flood, land use, etc are clearly problems of 

control which must be solved within limitations of time and available resources.  There are substantial deficits in what is 40 

labelled above as science–as–knowledge.  In his famous lectures on natural laws, Richard Feynman (1967) concluded that the 

simplicity and beauty of physical laws is linked directly to the fact that they are mathematical.  Catchment RR science, however, 

is still at the stage of relying on common sense, statistical methods, and small–scale (essentially point–scale) physics.  Note 

that problem 6 in the current list of 23 unsolved problems in hydrology is as follows:  “What are the hydrologic laws at the 

catchment scale and how do they change with scale?” (Blöschl et al., 2019).  For the purpose here it is convenient to use the 45 

general term hydrologic knowledge to denote hydrologic things which are (or are treated as if they are) widely thought true or 

valid by hydrologists.  It can therefore be said (and is depicted in Panel A in Fig. 1) that decisions depend on hydrologic 

conclusions which in turn depend, via RR modelling, on hydrologic knowledge.  Panel A does not show feedback loops (e.g. 

a loop back from performance if there was parameter calibration).  Panel B in Fig. 1 will be discussed later.   

 50 
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Figure 1 Hydrologic knowledge flow in the absence of feedback (Panel A) and within the knowledge experiment, showing the table 

numbers (Panel B) 55 

 

There are real–world risks associated with the flow of hydrologic knowledge.  The obvious risk is that something to the right 

of “hydrologic knowledge” in Panel A in Fig. 1 might not be justified by the hydrologic knowledge employed.  The inverse of 

this is also relevant: i.e. false hydrologic knowledge might be “discovered” which is not justified by the simulations it helps 

create (false conclusions and poor decisions can result from false discoveries).  These risks cannot be addressed using 60 

traditional split–sample validation testing (a fact well understood by Klemeŝ, 1986b).  The following are two, relevant, 

appropriate, concrete examples of ways that have been used to deal with these risks:  (1) the “blind validation method” 

developed by Ewen and Parkin (1996) forces the modellers to focus on knowledge rather than data fitting when predicting the 

effects of changes in land use and climate (this method was developed in work on the use of RR modelling in post–closure 

radiological safety assessments of deep geological repositories for solid radioactive wastes); and (2) Jakeman and Hornberger 65 

(J&H; 1993) used sophisticated statistical techniques to help avoid making false discoveries about the complexity warranted 

when simulating runoff hydrographs.  

 

The work here is exploratory scientific work driven by curiosity about: (1) the role played by hydrologic knowledge in RR 

modelling; and (2) how hydrologic knowledge flows within RR modelling (e.g. if it is lost or corrupted, exactly where does 70 
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that happen, and how).  Experience shows that understanding the flow of hydrologic knowledge is a difficult and confusing 

problem (a conundrum).  Scientific hydrology, like all science, is an activity and attitude rather than a method or a set of 

knowledge or a set of rules.  When there are significant deficits, difficulties or dangers, one of the most powerful tools for 

exploratory work in science is the construction of simple, complete, concrete examples.  Such examples can serve as references, 

benchmarks, exemplars, as the basis for generating hypotheses, or simply as supports (e.g. support of the type given in Pfister 75 

and Kirchner, 2017, where their commentary on the nature and value of hypothesis testing in hydrology gained significantly 

in strength and clarity simply by citing four concrete examples).  The notion of using examples is entirely consistent with 

something which for convenience will be called selective ignorance.  Science is always practised with some degree of selective 

ignorance.  This is not wilful neglect in support of the unsupportable, but rather the designed neglect implicit in what Mitchell 

(2009, p. 38) described as idea models: “...models that are simple enough to study via mathematics or computers but that 80 

nonetheless capture fundamental properties of natural complex systems”. 

 

A simple, complete, concrete example is created transparently here, albeit for a simple RR model.  A slightly disruptive, 

idiosyncratic approach is adopted: after all, there would be little point in driving towards a long–standing conundrum along 

ruts in the road.  The difficulties and dangers mentioned earlier arise because the flow in Panel A in Fig. 1 is not well behaved;  85 

one problem is the feedback mentioned earlier, and another is “cherry–picking” (Pfister and Kirchner, 2017) where researches 

and engineers see and use what they want to see and use.  In the concrete example, the aim is that the knowledge flow is simple 

and well behaved:  the simulations are derived systematically from the hydrologic knowledge in a way which is as close as 

practical to deduction.  It is a little grand to claim that the work falls within the general scope of what has been called the 

“fourth paradigm for hydrology” (data–intensive studies of scaling and similarity, Peters–Lidard et al., 2017), but it does 90 

exploit similarity within RR records and exploit scale–free similarity between the RR records for different catchments.   Any 

type of RR model could probably be used in work on the flow of hydrologic knowledge.  The ideal modelling, though, would 

not rely on data fitting and would have a direct, explicit representation of hydrologic knowledge.  No suitable parameterless 

model exists.  Some models do incorporate knowledge explicitly, including fuzzy models (e.g. Seibert and McDonnell, 2002). 

For example, the fuzzy–autoregressive model for daily river flows developed by Greco (2012) has linguistic statements of 95 

simple hydrologic knowledge, one of which is: “If inflow rate is low, then surface runoff is low”.  As a means to an end here 

(i.e. to meet the requirements for working with the flow of knowledge, and not just for the sake of developing yet more, or 

better, or different RR models), simple parameterless RR models are developed from scratch based directly on statements of 

hydrologic knowledge. 

 100 

1.1 Aim and Layout 

People who find personification annoying will be disappointed to discover that the idiosyncratic approach adopted here 

involves thinking of an RR model as a hydrologist (called the Modelled Hydrologist, MH) who works in concert with a real 

https://doi.org/10.5194/hess-2021-170
Preprint. Discussion started: 12 April 2021
c© Author(s) 2021. CC BY 4.0 License.



5 

 

hydrologist (the model user) who applies and runs the model.  Ideally, an MH would be acquainted with hydrologic laws at 

the catchment scale and with a diverse panel of desk and field hydrologists who have between them thousands of years of 105 

experience.  In creating the concrete example, care is taken in designing and studying the selective ignorance for a novel MH.  

The nearest similar work is J&H’s experiment, in that the work here can be interpreted as being about the hydrologic knowledge 

warranted in RR modelling.  The case for saying that this work addresses the problem of understanding the flow of hydrologic 

knowledge is that: (1) hydrologic knowledge is made explicit and is measured; (2) considerable efforts are made to minimise 

the loss or corruption of hydrologic knowledge in the modelling; and (3) efforts are made to understand the information in RR 110 

records in terms of their direct usefulness to hydrologists, specifically the need to draw valid hydrologic conclusions from 

using RR models.  Some definitions are given in Sect. 2 and the method is outlined in Sect. 3. There is some detailed theory 

in Sect. 4 about the numerical method used.  The data set is introduced in Sect. 5 and an experiment on knowledge (i.e. a 

knowledge experiment) is designed in Sect. 6 and run in Sect 7.  The work is summarised in Sect. 8, and discussed in Sect. 9. 

2 Definitions 115 

Given that the aim is to keep everything as simple as practical, it is appropriate to work with the minimum data set (i.e. the set 

comprising the catchment–average rainfall and the runoff at the catchment outfall, plus the catchment area if the records do 

not have the same physical units).  Transposability in time relates to using one part of a runoff record to predict another part 

(Klemeŝ, 1986b).  Transposability in place relates to using the RR record from one catchment when simulating the runoff for 

another catchment.  Note that the problem of prediction for ungauged catchments can be approached as a problem in 120 

transposability in place (Hrachowitz et al., 2013). 

 

There must be knowledge hygiene when hydrologic conclusions are to be drawn using RR modelling:  the hydrologic 

knowledge injected by the model developer must be transparent and must flow with minimal loss or corruption all the way 

from the processes of model development and testing, into the application of the model, then into the production of simulations, 125 

and finally into the conclusions drawn.  One way to perform studies involving selective and real ignorance is simply to 

document comprehensively what is assumed known, so that the ignorance can be deduced when necessary.  For convenience, 

such documents will be called knowledge documents and the method will be called knowledge documentation.  To give a 

practical example of selective ignorance, the entire fields of philosophy and epistemology are rendered here into the following 

single knowledge statement in everyday English: It is necessary that the work is common sense, transparent, repeatable by 130 

others and testable.  Knowledge documentation is the method used here to maintain hygiene.  Panel B in Fig. 1 shows the 

scope for the knowledge document created later:  it includes everything in Panel A in Fig. 1 up to and including “performance” 

(NSE in the figure is the Nash Sutcliffe Efficiency; Nash and Sutcliffe, 1970).  Essentially, the flow of hydrologic knowledge 

is made visible and tangible by being rendered in the form of statements in everyday English.  

 135 
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The hydrologic information content of an RR record is large and diverse.  Experience of studying RR records show that one 

storm hydrograph can look like another, and one catchment can respond in much the same way as another.  There would, in 

fact, be little point in RR simulation modelling if such similarity in time and place could not be detected in RR records.  Here, 

two days will be said to have hydrologic similarity if they have similar forcing (and, if relevant, also have similar runoff). 

 140 

A hydrologist might defend conclusion 3 in Sect. 1 using an argument along the lines that snowmelt is sometimes visible in 

the RR records as the presence of sustained runoff in the absence of precipitation.  For want of a better word, such a fingerprint 

in an RR record, whether it is in visual form or just as a set of data, will be called a SITH (Something Interesting To 

Hydrologists).  Clearly, then, a storm runoff hydrograph can be a SITH, as can the timeseries of antecedent rainfall for a given 

day.  The experiment run by Crochemore et al. (2014) is probably a good starting point for anyone interested in what 145 

hydrologists see in RR records:  a large number of hydrologists were asked to look at a set of simulated hydrographs and assess 

their quality. 

 

The day of the year is a trivial SITH which can be extracted from the dates in RR records.  It is the basis for the Peasant’s 

Model (Garrick et al., 1978):  the runoff on a simulation day is set to the mean for the runoff observed on the same day of the 150 

year in other years.  This is a parameterless model.  It can be described as a time–matching RR model because the simulation 

day is matched with a set of other days, and the runoff observed on these other days is used in calculating the simulated runoff.  

If the SITHs used in a time–matching RR model are sophisticated enough so that their (dis)similarity can be measured, then 

potential matching days can be ranked by similarity and only the best matches used when calculating the simulated runoff.  

Such sophisticated time–matching RR models are essentially nearest neighbour models (see Karlsson and Yakowitz, 1987).  155 

See also see the ghost RR modelling in Ewen and O’Donnell (2012) where the “ghosts” visible in simulations are echoes of 

previous storms. 

 

When using only the minimum data set, performance measurement is the only mechanism by which hydrologic conclusions 

can be drawn:  performance measurement is the gatekeeper to hydrologic conclusions.  In such work, performance 160 

measurement simply means measuring how well and/or reliably a simulation reproduces some SITHs of interest.  The mean 

square simulation error for an entire simulation is the classic example of a general performance measurement (i.e. a single, 

full duration, measurement for which each SITH is an entire runoff hydrograph).   Note that the NSE is linear in the mean 

square simulation error.  Traditional lumped RR models such as GR4J (Perrin et al., 2003) are based on man–centuries of 

accumulated community effort in the art and practice of calibration against general performance measurements, so are well 165 

suited to give a predictive benchmark (Shmueli, 2010) in the form of an upper limit for the NSE achievable for a given 

catchment. 
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3. Method 

The details of the method are as follows.  Building everything from scratch, and using knowledge documentation, a hydrologic 

modelling study for UK catchments is undertaken in which simulations are produced and analysed.  The study is an integral 170 

part of a knowledge experiment in which statements of hydrologic knowledge lead to a set of parameterless time–matching 

RR models.  The NSE is used as a general measure for performance and the RR modelling uses a custom–designed MH which 

is a layman who takes an interest in the weather and river flows and therefore knows some basic hydrology (e.g. a river 

fisherman).  One of the aims in the analysis is to measure the importance of the hydrologic knowledge held by the MH.  This 

importance is measured in terms of its impact on the NSE.  175 

4 Theory 

It would be all too easy to create a knowledge document which is simply a gateway to the tip of an enormous untestable cone–

shaped bulk of arguments and citations. Therefore: (1) the statements in knowledge documents must be designed to be taken 

at face value; and (2) the hydrologic conclusions drawn from the documents must depend on taking the statements at face 

value.  Note that knowledge documents can be inspected by specialists from other fields, and will remain useful over time 180 

because they can be re–examined by hydrologists and others in the future, when more is known.  The authors of such documents 

have nowhere to hide.  An extreme form of knowledge documentation is used here in which new knowledge is added as a 

statement in everyday English and this is then translated into other such statements, and these translated into other such 

statements, and so on until the final such statements define the required algorithm.   

 185 

If each day in an RR record has its own SITH, the degree of dissimilarity between two days can be calculated as the difference 

between their SITHs.  Each such difference is a performance metric and fits the wide, general definition given by McMillan 

(2021) for a hydrologic signature.  The whole process of detecting similarity can be generalised in obvious fashions.  For 

example, each day can have many SITHs and similarity can be calculated as a function of differences.  Note that the case for 

claiming that the hydrologic information content in RR records is large and diverse rests on the fact that thousands of SITHs 190 

can be generated for a record (e.g. several per day), and these can relate to many different things (e.g. evaporation, storms, 

flow volumes, snow melt, errors, similarity itself, etc.). 

4.1 Sensitivity 

When working with only the minimum data set, a study of the flow of hydrologic knowledge will usually degenerate into a 

study of sensitivity.  Sensitivity in RR modelling has a few different guises.  The relevant guise here is as follows.  If a model 195 

developer introduces constants which must be fixed precisely (e.g. fixed at 74.2, say, rather than at an imprecise equivalent 

such as 100), it seems reasonable to assume that the need for precision has an explanation.  Clearly, then, if a model developer 

must fix a constant precisely, the MH should know why (i.e. the MH should have the appropriate hydrologic knowledge).  In 
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the experiment run here, the risk that any hydrologic knowledge is misused or missing is minimised by eschewing data fitting 

and checking if the model developer must fix any constant precisely.  This makes it possible to draw conclusions which relate 200 

to hydrological knowledge.  It is important to note, though, that any conclusions drawn from such an experiment, no matter 

how that experiment is designed or performed, will have a narrow context.  This is a consequence of performance measurement 

being the gatekeeper to conclusions: any conclusions drawn will implicitly depend on how performance is measured.  Strictly, 

then, it is correct to say that the conclusions drawn from the experiment run here relate to hydrological knowledge in the 

context of general performance measurement using the NSE. 205 

 

Sensitivity can play a complicated and misleading role in exercises involving data fitting.  The main point to note about J&H’s 

experiment is that by the act of measuring relative parameter errors the experiment was transformed from being a simple 

exercise in data fitting into an experiment on complexity in the context of general performance measurement using the mean 

square simulation error (or the NSE).  Looking dispassionately at the experiment, the MH in the modelling can be characterised 210 

as a statistician dilettante–hydrologist (albeit one created in a seminal work of scientific hydrology).  This characterisation is 

based on noting that data fitting was used and that the main concept involved relies on little more than noting that runoff 

recessions look like exponential decay. 

 

4.2 Time–Matching RR Modelling 215 

Given that the simulations here are for 26 years and include 7 leap days, the maximum possible size of a list of matches for 

any given simulation day is 9,497 days (26×365+7).  If this full list was used, the resulting time–matching RR model would 

give an NSE of zero because it would be identical to the benchmark model implicit in the definition of the NSE (i.e. it simulates 

the runoff as being constant at the mean rate observed over the simulation period).  This model would be affected by what can 

be called self–contamination, because the runoff simulated for day d depends (slightly) on the runoff observed for day d.  To 220 

avoid all risk of self–contamination, a 729 day self–contamination exclusion window will be used here which extends from 

364 days before the simulation day to 364 days after, inclusive.  The name Trivial RR Model is given to the model which uses 

the full list in conjunction with this exclusion window. 

 

One of the time–matching models used here is the Seasonal RR Model which results when the following new statement is 225 

added to the Trivial RR Model:  “Runoff is seasonal”.  The full set of statements which entail are given later, but it is instructive 

to work through the process without worrying about generating statements.  Various translations are possible for the new 

statement.  For example, a translation might introduce the concept of metrological seasons, leading to statements to the effect 

that each day is associated with only one of four time classes.  The actual translation used introduces the concept of a seasonal–

scale (i.e. 91 day) inclusion window which is centred on the relevant day of the year.  In a simulation run for N years using the 230 

Seasonal RR Model, the simulated runoff for each day would be the mean for the runoff observed on a total of 91(N-2) other 
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days.  Note that this total includes the effects of the self–contamination exclusion window (that is where the factor N-2 comes 

from) but neglects any end effects which arise for simulation days which lie near the start or end of the simulation period. 

 

Once all the exclusion and inclusion windows have been applied, if the days remaining in the list can be ranked in terms of the 235 

quality of the match then the best 10 days can be picked and only these used when calculating the simulated runoff.  Note that 

there is insensitivity to this sample size (i.e. 10) so there is very little risk that fixing the sample size at 10 is associated with 

missing hydrologic knowledge.  Tests show that, in the experiment, any sample size between 3 and 100 would be fine.  The 

inbuilt mechanism for this insensitivity is that the quality of the matches tends to fall off only slowly with the sample size 

(which helps explain why the sample size could be as high as 100), whereas the incremental gain in accuracy from using a 240 

mean falls off very rapidly with the sample size (which helps explain why the sample size could be a low as 3).   

5 Data 

Daily records were abstracted for 38 UK catchments (Table 1) for the period October 1978 to December 2005, inclusive, using 

publicly available data from the UK National River Flow Archive (NRFA; National River Flow Archive, 2019) and the UK 

Met Office (Met Office, 2017).  The catchments range in size from 12.4 km2 to 1480 km2.  Some are at the coast, some inland, 245 

and some in the uplands, and there is a wide range of different types of response to rainfall.  To create the necessary data sets 

for RR, catchment boundary and daily flow data were combined with daily gridded rainfall data. 

 

Table 1 The 38 catchments. 

Symbol Code Name Sq. km 

A 27035 Aire at Kildwick Bridge 282.3 

B 55013 Arrow at Titley Mill 126.4 

C 24004 Bedburn Beck at Bedburn 74.9 

D 36003 Box at Polstead 53.9 

E 53017 Boyd at Bitton 47.9 

F 52010 Brue at Lovington 135.2 

G 31010 Chater at Fosters Bridge 68.9 

H 42008 Cheriton Stream at Sewards Bridge 75.1 

I 37005 Colne at Lexden 238.2 

J 39020 Coln at Bibury 106.7 

K 22001 Coquet at Morwick 569.8 

L 67018 Dee at New Inn 53.9 

M 28046 Dove at Izaak Walton 83.0 
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Symbol Code Name Sq. km 

N 27042 Dove at Kirkby Mills 59.2 

O 28008 Dove at Rocester Weir 399.0 

P 39028 Dun at Hungerford 101.3 

Q 48003 Fal at Tregony 87.0 

R 26003 Foston Beck at Foston Mill 57.2 

S 25006 Greta at Rutherford Bridge 86.1 

T 31025 Gwash South Arm at Manton 24.5 

U 60006 Gwili at Glangwili 129.5 

V 41022 Lod at Halfway Bridge 52.0 

W 29003 Lud at Louth 55.2 

X 55014 Lugg at Byton 203.3 

Y 28031 Manifold at Ilam 148.5 

Z 38003 Mimram at Panshanger Park 133.9 

a 43006 Nadder at Wilton 220.6 

b 32006 Nene/Kislingbury at Upton 223.0 

c 45005 Otter at Dotton 202.5 

d 54016 Roden at Rodington 259.0 

e 23006 South Tyne at Featherstone 321.9 

f 33029 Stringside at Whitebridge 98.8 

g 44006 Sydling Water at Sydling St Nicholas 12.4 

h 50001 Taw at Umberleigh 826.2 

i 54029 Teme at Knightsford Bridge 1480.0 

j 60010 Tywi at Nantgaredig 1090.0 

k 27034 Ure at Kilgram Bridge 510.2 

l 53009 Wellow Brook at Wellow 72.6 

6 Experimental design 250 

The knowledge document developed here is for the entire first part of the knowledge experiment and not just for the RR 

modelling used in the experiment.  The document comprises Tables 2–7.   Given that the document is designed to be taken at 

face value it will not be discussed in any detail in the main text.  KERR (the Knowledge Experiment RR Model) lies at the 

centre of the flow diagram in Panel B in Fig. 1.  The locations of the tables relative to the model are shown in the diagram.  

Knowledge flows from the MH and Developer into, within, and out of the model.  Given that there is an experiment, there is 255 
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an Experimenter.  The Experimenter designs and controls the experiment, so their knowledge flows through the entire 

experiment.  Note that when obtaining results for drawing conclusions, KERR is sometimes replaced by one of its three 

simplified versions:  the Trivial, Seasonal and Wetness Models. 

6.1 Experimenter’s Knowledge 

The knowledge document must stand on its own feet.  The Experimenter’s knowledge (Table 2) therefore includes the essential 260 

elements from the discussion earlier.  If success is to be claimed for the simulations, then requirements c and d in statement 

EK6 must be met.  If success is to be claimed for the experiment as a whole, requirements a and b in EK6 must also be met.  

These relate to knowledge. 

 

Table 2 Experimenter’s Knowledge (EK) 265 

Label Statement 

EK1 It is necessary that the work is common sense, transparent, repeatable by others and testable. 

EK2 This work uses the concept of selective ignorance, so only knowledge which appears in tables such as these is 

assumed known.  The tables must contain only statements in everyday English. 

EK3 Parameterless modelling is to be used, so although statements can include text constants such as “365” they cannot 

include text parameters such as “leakage factor b” which would require evaluation for each catchment. 

EK4 The RR modelling is to be consistent with the hydrologic knowledge held by a Modelled Hydrologist who is a 

layman who takes some interest in the weather and river flows (e.g. a river fisherman). 

EK5 The performance measure of interest to the Model User is the NSE for entire simulations. 

EK6 For success: (a) hydrologic knowledge must not be lost or corrupted; (b) none of the hydrologic knowledge 

statements can be redundant; (c) the predictive headroom, as measured against an independent traditional lumped 

RR model, must be small; and (d) each catchment must have at least one proxy catchment such that there is little 

loss in performance when a simulation is not based on the catchment’s own runoff record but on the runoff record 

for the proxy. 

 

6.2 The MH’s Knowledge 

In terms of physical concepts, a river fisherman would likely know quite a lot about seasonality and wetness.  The MHK 

statements in Table 3 are written in a form more compact than would usually be uttered by a river fisherman, but that does not 

alter their meaning.  Note, also, that the statements are complete in themselves: they imply nothing about, say, the nature or 270 

magnitude of things such as evaporation. 

 

Table 3 MH Knowledge (MHK) 

Label Statement Source 

MHK1 (Seasonal statement) Runoff is seasonal. Layman 

MHK2 (Wetness statement) Runoff rate depends on the temporal pattern of antecedent rainfall. Layman 
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6.3 The Model Developer’s Knowledge 275 

The knowledge held by the Model Developer comprises common knowledge and knowledge about time–matching and RR 

records (Table 4). 

 

Table 4 Developer’s Knowledge (DK) 

Label Statement 

DK1 (Unpredictability statement) Runoff records are always unpredictable to some degree because they are an imperfect 

reflection of reality and RR modelling is an approximation. 

DK2 In the algorithms, each simulation day is matched to a set of other days.  The simulated runoff is the mean for the 

runoff observed on those other days.  If self–contamination is to be avoided, all the days in the set must lie at least 

365 days from the simulation day.  If the quality of match is known, the set contains only the 10 best days. 

DK3 The simplest familiar generic measure for the distance between a pair of series is the root mean square difference. 

DK4 The simplest possible measure for how wet it is over a period of days is the mean rainfall rate for those days. 

DK5 A season lasts around 91 days. 

 280 

 

6.4 Translations 

All the translations are simple and transparent (Table 5; and see the demonstration in Fig. 2).  Note that: (1) statement TK2 is 

a selectively very ignorant and simple translation for the phrase “temporal pattern of antecedent rainfall” which appears in 

MHK2; and (2) the patterns for rainfall and wetness associated with any day d starts on day d and run back to the first day of 285 

its self–contamination exclusion window (i.e. day d-364).  It can be quite confusing looking at plots in which time runs 

backwards, so in Fig. 2 the patterns are plotted backwards so that time runs forward.  This figure shows there is a powerful 

inbuilt mechanism for insensitivity to the pattern length: storms on or just prior to day d have high wetness, whereas earlier 

storms have low wetness.  As a result of this insensitivity, there is very little risk of there being missing hydrologic knowledge 

associated with fixing the pattern length at 365 days (as a rough check, the entire experiment was repeated successfully with 290 

the pattern length fixed at 100 rather than 365). 
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 295 

Table 5 Translation Knowledge (TK) 

Label Statement 

TK1 (Seasonal)  A day should not be matched with any day lying more than 45 days from itself in terms of day of the 

year (day 1 follows day 365 or 366). 

TK2 (Wetness)  For any day, the “temporal pattern of antecedent rainfall” has the following elements: the rainfall for 

the day; the average rainfall for the period covering the day and the previous day; the average rainfall for the period 

covering the day and the previous two days; and so on until the final period is 365 days. 

TK3 (Similarity)  The root mean square difference between the 365–element–long patterns of rainfall for any two days 

will be called their rainfall pattern difference.  It is a measure for the difference in wetness between them, so is a 

measure for how dissimilar they are. 

 

Figure 2  The top panel shows the daily rainfall in the Aire catchment for the 365 day periods ending on 15/12/93 and 9/12/99.  The 

bottom panel shows the antecedent wetness associated with the two days (calculated as mean rainfall rates, using the method 

described in statement TK2).  It also shows the difference in wetness.  According to TK3, the measure for the dissimilarity between 300 
the two days is called their rainfall pattern difference.  It is the root mean square for the plotted differences (0.75 mm day-1). 
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6.4.1 Similarity in Time 

Although it is a slight detour, it is instructive here to use the translations above to explore similarity in time using a SITH 

which comprises the wetness pattern for day d and the runoff observed on day d.  It will be assumed that two days are 305 

hydrologically similar if their rainfall pattern difference is small and the difference between their observed rainfall is also small.  

Figure 3 shows the most hydrologically similar days for the Aire catchment (i.e. catchment A).  For every day, the 10 days 

with the lowest rainfall pattern difference were found and then the best of these picked (i.e. the one closest in observed runoff, 

irrespective of its rank in the set of 10).  The two days in Fig. 2 are the most hydrologically similar for each other.  Their 

rainfall pattern difference is 0.75 mm day-1 and their runoffs differ by only 0.2 mm day-1.  Their rainfall pattern difference is 310 

the 8th smallest for 15/12/93 and 10th smallest for 9/12/99. 

 

In Fig. 3, the blank space running diagonally from bottom left to top right is the effect of the self–contamination exclusion 

window.  There is some horizontal and vertical alignment of blank spaces, especially around 1996.  This is associated with 

prolonged drought.  The effect of seasonality can be seen in the figure in the form of alignments of dots (note that these 315 

alignments arose naturally: seasonality statement MHK1 was not used in finding the similar days).  The four anomalous 

horizontal alignments of dots associated with 1996 arise because the drought–affected days match best to days lying within 

four narrow time periods.  This figure gives some insight into the nature and (large) extent of the hydrologic information 

content in RR records. 
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 320 

 

 Figure 3  Hydrologic similarity in time: best matching day for the Aire catchment. 

6.5  Algorithms 

The statements for the algorithms are given in Table 6.  It should be possible to reproduce all the knowledge experiment 

modelling using the tables.  Note that a few runoff values are missing from the records, so steps were taken to skip over these 325 

(the rainfall data are complete).  The Model User’s knowledge is given in Table 7. 
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Table 6  Algorithms 

Label Statement 

A1 (Trivial Model) Using DK2, accept every possible day apart from those lying in the self–contamination exclusion 

window. 

A2 (Seasonal Model) As A1, but also exclude the days which lie more than 45 days–of–the–year from the simulation 

day. 

A3 (Wetness Model) As A1, but then select the 10 days with the smallest rainfall pattern difference. 

A4 (KERR Model)  As A2, but then select the 10 days with the smallest rainfall pattern difference. 

 

Fortran 2008 was used to build the models.  The following code in the language R was written when testing the modelling.  It 330 

is optimised for simplicity and clarity, not speed, and is for calculating the simulated runoff (sim) for day d in a KERR 

simulation.  The observed rainfall is in p, the observed runoff in q, and md is the list of matchable days (i.e. the days remaining 

after accounting for all the exclusion and inclusion windows).  In the first line, the 10 best matches are found by sorting the 

matchable days by their rainfall pattern difference (RPD) and then taking the first 10 days in the sorted list.  In the line starting 

with “return”, wetness is calculated as cumulative sums of rainfall, running backwards in time, and then the root mean square 335 

differences in wetness is calculated.  The other lines are simply a device which exploits the capabilities of R to work with lists.  

This device gives compact code and avoids the need to loop over the matchable days. 

 

sim[d] <- mean(q[md[sort(RPD(d,md),index.return=TRUE)$ix[1:10]]]) 

dummy <- function(a,b) {    340 

    return(sqrt(mean(((cumsum(p[a:(a-364)])-cumsum(p[b:(b-364)]))/(1:365))^2))) } 

RPD <- Vectorize(dummy,vectorize.args="b") 

 

 

Table 7 User’s Knowledge 345 

Label Statement 

UK1 High NSE is required. 

7 Results 

Typical results from a simulation run using the KERR Model is shown in Fig. 4.  The NSE achieved for the 38 catchments for 

the simulation period 1st October 1979 to 30th September 2005, inclusive, are plotted in Fig. 5.  For the experiment, the 

predictive benchmark for a catchment is the average NSE calculated for that catchment using the results presented in the 
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evaluation columns in the supplementary material supplied by Harrigan et al. (2018) for the GR4J Model (Perrin et al., 2003).  350 

In Fig. 5, the catchments are ranked according to this benchmark.  Note that Harrigan et al. used data for the potential 

evapotranspiration in addition to the minimum data set, and did not use the NSE when calibrating the model parameters.  This 

is not ideal, but these are the best independent results found (Deckers et al., 2010, was also considered).  When working with 

the NSE, a change of 0.1 corresponds to a 10 percentage point change in the explained variance of the observed runoff.  Given 

the nature of this work, 0.1 seems reasonable as a resolution to adopt when drawing conclusions.   355 

 

Figure 4  Short section from the hydrograph for the Aire catchment (catchment A), demonstrating that the KERR modelling 

captures low flows as well as storm responses.  The day of the highest peak (15/12/93) was discussed earlier for Figs. 2 and 3. 

 

 360 
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Figure 5.  NSE for GR4J and the KERR Model for the 38 catchments. 

7.1  Transposability in time 

Table 8 gives the median NSE for the 38 catchments for all the models.  For any catchment, the predictive headroom for 365 

transposability in time is the GR4J NSE minus the KERR NSE.  The predictive headroom is 0.2 or less for 36 out of the 38 

catchments, 0.1 or less for 33 out of the 38 catchments, and the performance exceeded that of the predictive benchmark for 3 

out of the 38 catchments.  This seems adequate.   

 

For the layman’s knowledge, on rounding to one significant figure, Table 9 shows that the relative importance for the 370 

seasonality and wetness statements are 1 and 6, respectively.  This seems adequate as evidence for lack of redundancy.  It may 

be that the statements are dependent: wetness is defined based solely on rainfall, and rainfall might vary seasonally for some 

catchments.  The level of dependence could be examined by using each model in turn as the reference, but that would probably 
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need some theory (beyond the scope here) to allow meaning to be attached to differences in NSE when the differences do not 

have a common datum. 375 

 

Table 8 NSE for transposability in time 

Model Median Algorithm 

Trivial  -0.005 A1 

Seasonal 0.194 A2 

Wetness 0.700 A3 

KERR 0.803 A4 

GR4J 0.852  - 

 

Table 9 Importance measured relative to the KERR Model 

Statement Mean St. Dev. Definition 

Seasonality 0.117 0.119 Loss in NSE if seasonality statement MHK1 is forgotten 

Wetness 0.581 0.068 Loss in NSE if wetness statement MHK2 is forgotten 

Unpredictability 0.216 0.091 Maximum gain achievable in NSE if the unpredictability statement 

DK1 is wrong 

 380 

7.2 Transposability in place 

It is required that each catchment must have at least one proxy catchment such that there is little loss in performance when the 

matching is to the runoff record for the proxy catchment rather than to the runoff record for the simulated catchment.  A total 

of 1406 (i.e. 3837) proxy catchment simulation were run using KERR (the self–contamination exclusion window is not 

needed so was not used), and the best proxy catchment found for each catchment.  The NSE when using this best proxy 385 

catchment is plotted in Fig. 5.  The median NSE is 0.75.   Note that there is no loss in performance for 10 out of the 38 

catchments, and a loss greater than 0.2 for only 2 catchments.  This seems adequate. 
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8 Summary 

1. Knowledge hygiene in Rainfall–Runoff (RR) modelling requires that the hydrologic knowledge injected by the model 

developer should be transparent and should flow with minimal loss or corruption all the way from the processes of model 390 

development and testing, into the application of the model, then into the production of simulations, then into the conclusions 

drawn, and finally into the decisions made based on the simulations and conclusions 

 

2.  The fundamental problem of understanding the flow of hydrologic knowledge in RR modelling is a conundrum of great 

importance to both engineering hydrology and scientific hydrology. 395 

 

3.  In exploratory scientific work, simple concrete examples can serve as references, benchmarks, exemplars, a basis for 

generating hypotheses, and as supports when developing a line of argument. 

 

4.  In the concrete example created here, the flow of hydrologic knowledge into runoff simulations and performance 400 

measurement is made visible using a custom–designed method (knowledge documentation) applied to custom–designed 

parameterless RR modelling which uses only the minimum data set: i.e. catchment–average rainfall, the runoff at the catchment 

outfall, and the catchment area.  It is made visible in the form of a set of statements in everyday English.  

 

5.  The hydrologic information content of an RR record comprises thousands of SITHs (Something Interesting To Hydrologists 405 

in the form of a visual fingerprint and/or the data associated with the fingerprint).  The SITH used in the parameterless 

modelling applies to a day and is simply a wetness pattern derived from the antecedent rainfall pattern for the day.  The 

hydrologic signature which is the difference between two of these patterns (called here the rainfall pattern difference) is a 

measure for the dissimilarity of the days. 

 410 

6. If a RR model was a hydrologist (the Modelled Hydrologist, MH) it would know only a limited amount of hydrology.  It 

can be said that an MH is selectively ignorant of hydrology.  The experiment run by Jakeman and Hornberger (1993) on the 

complexity warranted in RR modelling was discussed, given that it is the closest published work to that presented here.  Using 

the terminology of Klemeŝ (1986a), the MH in that experiment is a statistician dilettante–hydrologist.  

 415 

7.  The MH created here is a layman who takes an interest in the weather and river flows (e.g. a river fisherman).  Using this 

MH, a median Nash Sutcliffe Efficiency (NSE) of 0.80 was achieved for daily modelling for 38 UK catchments, and 0.75 

when using RR records for proxy catchments. 
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8. The importance of hydrologic knowledge was measured in terms of the loss in NSE when statements of hydrologic 420 

knowledge were “forgotten”.  The layman has only two pieces of hydrologic knowledge: runoff is seasonal, and runoff rate 

depends on the temporal pattern of antecedent rainfall (i.e. wetness).  The relative importance for these are 1 and 6, respectively, 

for a set of 38 UK catchments. 

 

9.  The relative importance is 2 for hydrologists’ knowledge about unpredictability (specifically, knowledge that RR records 425 

are always unpredictable to some degree because they are an imperfect reflection of reality and RR modelling is an 

approximation). 

 

10. The three pieces of hydrologic knowledge given in 8 and 9 above are adequate if the aim is simply to achieve high values 

of NSE.  Note that this conclusion, and the conclusions above about importance, and those drawn by Jakeman and Hornberger, 430 

all apply only in the context of general performance measurement using the NSE.   

 

11.  There are three constants in the modelling: 365, 91 and 10.  Where relevant, checks were made to ensure that the act of 

fixing these constants did not need (hidden) hydrologic knowledge. 

9 Discussion 435 

The detailed conclusions from this work are given in the summary in Sect 8.  RR modelling lies at the very core of catchment 

engineering hydrology and catchment scientific hydrology, yet it remains a conundrum.  Science itself is a conundrum and 

keeps shifting and evolving, so it is inevitable that RR modelling is, at some level, a conundrum.  That, though, is not a reason 

or excuse for failing to have hydrologic laws at the catchment scale.  Laws might emerge soon from big data and artificial 

intelligence, but might not.  A little light was shone here.  This light is in the form of: (1) disruptive, unsettling discussions 440 

about the nature of RR modelling; and (2) the creation of a simple, complete, concrete example for how hydrologic knowledge 

held by a model developer ends up affecting simulation performance. 

 

For decades there has been a kernel idea (the wetness kernel) in RR hydrology.  Here, it appears as a statement from a layman: 

“runoff rate depends on the temporal pattern of antecedent rainfall”.  It’s more familiar forms are as a leaky reservoir, an 445 

antecedent precipitation index, and an (inverted) unit hydrograph.  A traditional RR modeller who focusses on implementation 

details and mathematical structures would immediately spot the kernel in the modelling here and could with a little thought 

link it to each of the familiar forms.  The (valuable) unusual feature here is that, compared to traditional implementations, the 

kernel has been deconstructed and de-parameterised.  It is odd that the wetness kernel has not evolved into a physical 

hydrologic law or been used to support a richer, perhaps non-physical, hydrologic law of some kind.   450 
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9.1 Future Work 

There is huge scope for future work.  It would, for example, be interesting to try and bridge some of the gap between an MH 

which is a layman and an MH which is acquainted with a panel of experienced hydrologists.  Perhaps this would qualify as 

what Beven (2001) described as “modelling as collective intelligence”.  One of the most surprising results here is that 455 

successful proxy catchment simulation does not require scaling, alteration or transformation of any kind.  This indicates strong 

and fundamental similarity.  If a search was mounted for a hydrologic law which corresponds to this similarity, the task would 

amount to discovering the hydrologic knowledge needed to pick a good proxy. 

 

Section 6.4.1. gave a template for future work on hydrologic similarity.  One interesting question about the direct use of 460 

similarity in RR modelling is whether it gives different simulations compared to traditional modelling even if both use the 

wetness kernel.  Note that the hydrologic knowledge resulting in leaky reservoirs amounts to knowledge that runoff 

hydrographs can be decomposed efficiently into sets of exponential decays, but the layman’s knowledge is used simply as a 

“release agent” which releases part of the hydrologic information content of the RR record. 

  Code Availability 465 

The essential part of the code was given in the main text as a snippet in the language R. 
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