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Abstract 

Soil temperature (Ts) plays a critical role in land-surface hydrological processes and agricultural 15 

ecosystems. However, soil temperature data are limited in both temporal and spatial scales due to the 

configuration of early weather station networks in the U.S. Great Plains. Here, we examined an 

empirical model (EM02) for predicting daily soil temperature (Ts) at the 10 cm depth across Nebraska, 

Kansas, Oklahoma, and parts of Texas that comprise the U.S. winter wheat belt. An improved empirical 

model (iEM02) was developed and calibrated using available historical climate data prior to 2015 from 20 

87 weather stations. The calibrated models were then evaluated independently using the latest 5-year 

observations from 2015 to 2019. Our results suggested that the iEM02 had, on average, an improved 

root mean square error (RMSE) of 0.6oC for 87 stations when compared to the original EM02 model. 

Specifically, after incorporating changes in soil moisture and daily snow depth, the improved model 

was 50% more accurate as demonstrated by the decrease in RMSE. We conclude that in the U.S. Great 25 

Plains the iEM02 model can better estimate soil temperature at the surface soil layer where most 

hydrological and biological processes occur. Both seasonal and spatial improvements made in the 

improved model suggest that it can provide a daily soil temperature modeling tool that overcomes the 

deficiencies of soil temperature data used in assessments of climatic changes, hydrological modeling, 

and winter wheat production in the U.S. Great Plains.  30 
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1 Introduction 

A reliable estimate of soil temperature (Ts) is useful to understand agricultural ecological systems, 

hydrological processes, and land-atmosphere interactions (Lembrechts et al., 2020; Qi et al., 2016; 

Zhang et al., 2018) due to the fact that Ts governs physical, chemical, and biological processes of the 

soil and interactions between the atmosphere and land-surface  (Smith, 2000; Soong et al., 2020). In 35 

particular, Ts has been widely used for a better understanding of changes in soil moisture (Lakshmi et 

al., 2003), the ecosystem carbon balance (Goulden et al., 1998), and the nitrogen mineralization process 

(Persson and Wirén, 1995) although a larger prevalence of air temperature observations are available as 

a soil temperature proxy. From a practical perspective, Ts is critical for agricultural system models such 

as the crop environmental resource synthesis (CERES) models to assess the impacts of extreme climate 40 

on crop production and stress tolerance, thereby allowing producers to better prepare for proactive and 

reactive field management (Bergjord et al., 2008; Persson et al., 2017; Williams et al., 1989). Frequent 

extreme climate events such as spring freezes and summer heat stress can impact winter wheat 

[Triticum aestivum L.] growth and development, reducing grain yields by more than 7% in the U.S. 

winter wheat belt (Tack et al., 2015; Paulsen and Heyne, 1983). These effects are also modulated 45 

through land-surface interaction processes (Hillel, 1998; Araghi et al., 2017).  

 

To improve the accuracy of crop management modeling, a bare soil temperature (Ts) at the 10 cm depth, 

a standard soil temperature variable, has commonly been considered as a more direct and useful 

variable than air temperature (Ta) measured at 1.5 or 2 m height in crop phenology (Onwuka and Mang, 50 

2018), plant photosynthesis and soil respiration (Meyer et al., 2018; Wu and Jansson, 2013), plant 
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nutrient uptake (Yan et al., 2012), and estimate of crop production (Araghi et al., 2017; Hillel, 1998). 

There are many Ts modeling techniques mostly based on the land-surface interaction process (Qi et al., 

2019; Yener et al., 2017). Most Ts models are rooted in theories of soil heat exchange and surface 

energy balance (Rankinen et al., 2004; Nobel and Geller, 1987; Chalhoub et al., 2017). The theory-55 

based simulation for surface energy balance usually includes solar radiation (incoming and outgoing), 

infrared radiation (absorbed and reflected), turbulent flux energy (latent heat and sensible heat), and net 

ground heat flux through the ground surface into soil layers thermodynamically (Mihalakakou et al., 

1997; Chalhoub et al., 2017). Obviously, the energy-balance based model usually requires more detailed 

near-surface and soil variables such as turbulent flux quantities (sensible heat flux and latent heat flux) 60 

to make the model reliable and accurate; however, determining quality turbulent flux quantities is not a 

trivial task (Kutikoff et al., 2021; Dhungel et al., 2021). In addition, seasonal variations of soil thermal 

conductivity and underestimates of actual evapotranspiration usually lead to overestimated surface soil 

temperatures (Bittelli et al., 2008). Therefore, simpler empirical models with fewer dynamic processes 

needed to predict Ts have been explored (Zheng et al., 1993; Plauborg, 2002; Liang et al., 2014; 65 

Badache et al., 2016; Kang et al., 2000). However, these empirical models might result in relatively 

large estimated errors of over 2°C due to the lack of details about physical process such as uncertainties 

of the soil volumetric heat capacity and thermal conductivity (Badía et al., 2017). For example, the 

volumetric heat capacity was higher for a clay soil, which ranged between 1.48 and 3.54 MJ m-3 oC-1, 

than for a sand soil, which ranged between 1.09 and 3.04 MJ m-3 oC-1 when the soil moisture content 70 

was between 0 to 0.25 kg kg-1 (Abu-Hamdeh, 2003).  
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Currently, the U.S. Department of Agriculture (USDA) provides a high-resolution Gridded Soil Survey 

Geographic (gSSURGO) Database product (https://gdg.sc.egov.usda.gov/) that includes static soil 

physical property data at 10 km resolution (USDA NRCS, 2013). The gSSURGO data facilitate Ts 75 

modeling, especially for better performance in large-scale Ts modeling due to its spatial variations in 

soil properties and soil moisture (USDA NRCS, 2013). These datasets have been widely used in the 

estimation of root-zone soil water content (Miller et al., 2018) and sub-surface hydrologic properties 

(Dirmeyer and Norton, 2018). The empirical model proposed by Plauborg (2002) performed better than 

energy-balance based models when applied in the U.S. Great Plains for the last five years. Due to the 80 

lack of information about static soil properties on a large scale one or two decades ago, either over- or 

underestimates of Ts occurred, which gave a large deviations in the assessment of crop stress and crop 

production (Gupta et al., 1990; Stone et al., 1999).  

 

Recent studies have shown that estimated soil temperature usually deviates from observed soil 85 

temperature in the winter due to snow cover, frozen soil, and wide spatial and temporal heterogeneity in 

frozen soil properties (Nagare et al., 2012; Zhang et al., 2008; Rankinen et al., 2004). The impact of 

snow cover on soil temperature has been investigated (Rankinen et al., 2004) and is partially accounted 

for by incorporating correcting factors in land-surface modeling as well as ecosystem models (Zhang et 

al., 2008) and soil and water assessment tools (SWAT) (Qi et al.2019). For both empirically and 90 

physically-based soil temperature modules embedded in SWAT, the predictions of soil temperature in 

regions with thick snow cover seldom agree with field measurements in winter (Qi et al. 2019).       
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In the U.S. Great Plains, there has been increasing interest in improving hydrological process modeling 

of surface water and groundwater due to the Ogallala aquifer's depletion in recent decades (Haacker et 

al., 2019). However, observed soil temperature information has been provided by the automated 95 

weather station networks in this region that was commissioned in the late 1980s and early 1990s (Brock 

and Crawford, 1995). Not only were there few continuous observations for Ts earlier than the 1990s, 

these automated weather station networks also had limited stations in each state of the U.S. Great 

Plains. Such a lack of reliable soil temperature data both spatially and temporally makes the long-term 

assessment of water resources, crop phenology, and crop production modeling difficult.  100 

 

The objectives of this study include: (1) develop a robust Ts model using limited surface climate 

variables by integrating soil moisture estimates dynamically as well as snow depth observations; (2) 

demonstrate the error to contributions in soil temperature modeling; and (3) evaluate the performance of 

an improved model to predict Ts compared to current models. The datasets and methods used are 105 

described in section 2. Section 3 provides modeling results and conclusions are presented in section 4. 

 

2 Datasets and Methods 

2.1 Weather stations and datasets 

The spatial domain of this study covers the winter wheat belt in the U.S. Great Plains, comprising the 110 

states of Nebraska (NE), Kansas (KS), Oklahoma (OK), and part of Texas (TX) where soil texture and 

bulk density vary (Fig. 1). In this study, three surface climate datasets were obtained from the 

Automated Weather Data Networks (AWDN) (https://hprcc.unl.edu/awdn/), commissioned in the 1980s 
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for Nebraska and Kansas. The Oklahoma Mesonet is a daily climate data source for Oklahoma, which 

started in the 1990s (http://www.mesonet.org/). For Texas, we selected the Soil and Climate Analysis 115 

Network for its daily climate observations (https://www.wcc.nrcs.usda.gov/scan/) due to limited quality 

data available in its automated weather station network. The selected stations included 26 in NE, 8 in 

KS, 44 in OK, and 9 in TX. The selection of these 87 stations was based on the completeness of climate 

data and data length (at least longer than a continuous 15-year periods). In addition to the weather 

station datasets, soil datasets providing soil attributes and characteristics were obtained from the 120 

standard USDA-NRCS Soil Survey Geographic (gSSURGO) Database product 

(https://gdg.sc.egov.usda.gov/), in which soil bulk density (ρb, g cm-3), soil organic matter (fOM, %), 

sand (fsa, %), clay (fcl, %), silt (fsl, %) contents, soil porosity (Ø, %), and soil surface albedo (a, -) were 

used for all weather stations. Note that all symbols and corresponding descriptions for variables used in 

this study are listed in the Table A1 (see the Appendix). The snow depth data were taken from the daily 125 

Global Historical Climatology Network (GHCN) (Menne et al., 2009; Lin et al., 2017). Detailed dataset 

sources and data variables used in each dataset are shown in Table A2 (see the Appendix).  

 

2.2 Soil temperature models 

2.2.1 Empirical model 130 

There are two common soil temperature models: empirical and process-based. After examining both 

types of models for our study region, the current empirical model was selected because it was more 

accurate than the process-based model in this area. Plauborg (2002) developed a statistical soil 

temperature (Ts, oC) model based on the current and previous two-day air temperatures (Ta, oC), annual 
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and semi-annual cycles in the soil temperature fluctuations, and a daily soil temperature offset at a 135 

specific site, as shown in Eq. (1) (called EM02, thereafter): 

𝑇",$ = 𝛾 + 𝛼)𝑇*,$ + 𝛼+𝑇*,$,+ + 𝛼-𝑇*,$,-+𝛽+ 𝑠𝑖𝑛(𝜔𝑗) + 𝛿+ 𝑐𝑜𝑠(𝜔𝑗) + 𝛽- 𝑠𝑖𝑛(2𝜔𝑗) + 𝛿- 𝑐𝑜𝑠(2𝜔𝑗)                                                                                                                              

                                                                                                                                             (1)	

where γ is an offset constant (oC) and coefficients α0, α1, and α2 are dimensionless. The units of the 

coefficients β1, β2, δ1, and δ2 are Celsius (oC). The j and ω denote day of the year and annual frequency 140 

(2π/365 or 2π/366 in leap years) in an annual soil temperature signal. 

 

2.2.2 Improved empirical model 

The improved model, based on the EM02, was developed through the following three steps: (1) 

prolonging the time window of Ta to include one extra prior day Ta; (2) constructing a new fictive 145 

environmental temperature (Tenv, oC) defined as a function of air temperature and surface skin 

temperature (Tsfc, oC) (Williams et al., 1984) utilizing Tenv to replace the original Ta; and most 

importantly (3), incorporating site-specific daily soil thermal diffusivity and snow depth (Fig. 2). This 

improved empirical model (iEM02) can be described by Eqs. (2-6): 

𝑇",$ = ;𝛾 + 𝛼)𝑇<=>,$ + 𝛼+𝑇<=>,$,++𝛼-𝑇<=>,$,- + 𝛼?𝑇<=>,$,? + 𝛽+ 𝑠𝑖𝑛(𝜔𝑗) + 𝛿+ 𝑐𝑜𝑠(𝜔𝑗) +150 

𝛽- 𝑠𝑖𝑛(2𝜔𝑗) + 𝛿- 𝑐𝑜𝑠(2𝜔𝑗)@ ×	𝑓;𝐷D,$@ × 𝐷𝑅<FF,$																																																														(2)	

𝑇<=>,$ = 	𝛽𝑇*,$ + (1 − 𝛽)𝑇"FI,$																																																																																																	(3)	

𝑇"FI,$ = (1 − 𝛼) J𝑇K*,$ + ;𝑇KL*M,$ − 𝑇K*,$@N
OP,Q
??.S

T + 𝛼𝑇"FI,$,+																																													(4)	

𝑓;𝐷D,$@ = 𝑒𝑥𝑝	(−𝑓D𝐷D,$)																																																																																																												(5)	
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𝐷𝑅<FF,$ = 𝑒𝑥𝑝	(𝑘)N−ℎ
Z

[P,Q	\
)																																																																																																				(6) 155 

where β refers to the weighting coefficient for air temperature Ta (-). The Tsfc in Eq. (3) was estimated 

iteratively from the three-day running average of daily air temperature (𝑇K*), daily maximum 

temperature (𝑇KL*M, oC), and daily solar radiation (Rs, MJ m-2 d-1). The α denotes soil surface albedo (-) 

and initial Tsfc, j-1 was set as annual mean Ta in Eq. (4). The constant 33.5 is an empirical constant (MJ m-

2 d-1) (Williams et al., 1984). The function of snow cover on the jth day is given as f(DS, j) and was 160 

introduced based on the work of Rankinen et al., (2004). The fS and DS are empirical soil heat damping 

parameters (m-1) and snow depth (m). The damping ratio of soil at the soil depth of h (h = 0.1 m in this 

study) is DReff, j  (Rosenberg et al., 1983). The weighting coefficient for the damping ratio (-) is k0. The p 

represents the period (365 days or 366 days in a leap year) in an annual cycle. The thermal diffusivity ks, 

j (m2 s-1) is equivalent to thermal conductivity (λ, W m-1 K-1) divided by volumetric heat capacity (C, J 165 

m-3 K-1) and reflects both the ability of soil to transfer heat and to change temperature when the heat is 

supplied or dissipated. The estimate of thermal conductivity (λ) and volumetric heat capacity (C) can be 

described by Eqs. (7-11) (Lu et al., 2014): 

𝜆$ = 	 𝜆^_` + exp	(𝑏+ − 𝜃$,fg)                                                                                     (7) 

𝜆^_` = 	−0.56∅ + 0.51                                                                                               (8) 170 

 𝑏+ = 1.97𝑓"* + 1.87𝜌f − 1.36𝑓"*𝜌f − 0.95                                                              (9)	

 𝑏- = 0.67𝑓Iq + 0.24                                                                                                   (10) 

𝐶$ = 1.92 × 10t𝑓L + 2.51 × 10t𝑓uv + 4.18 × 10t𝜃$	                                             (11)	
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where λdry is oven-dried soil thermal conductivity derived from a linear function of soil porosity (Ø, %). 

Both b1 and b2 are the shape factors of the λ curve that are estimated by soil texture components. Soil 175 

water content is defined as θj on the jth day (cm3 cm-3) and was calculated by the soil water balance 

model (Chalhoub et al., 2017). Briefly, the iEM02 operates on a daily time step as daily soil moisture is 

a function of soil moisture storage capacity (θ*, mm), 24-hour precipitation (P, mm), and Penman-

Monteith reference evapotranspiration (ET0, mm) and are estimated by Eqs. (12-15): 

𝜃_ = 0.026 + 0.005𝑓Iq + 0.0158𝑓uv                                                                       (12) 180 

𝛽^,$ = 1 − exp	(− t.twxQy
(xP	,	xz)y

)                                                                                     (13) 

𝐸$ = |
𝑃$ + 𝛽^,$;𝐸𝑇),$ − 𝑃$@																																											𝑃$ < 𝐸𝑇),$				
𝐸𝑇),$																																																																					𝑃$ ≥ 𝐸𝑇),$	

                            (14) 

𝜃$ℎ = 	�
𝜃_ℎ																																																																							𝜃$ℎ ≤ 𝜃_ℎ
𝜃$,+ℎ + ;𝑃$,+ − 𝐸$,+@																							𝜃_ℎ < 𝜃$ℎ < 𝜃∗ℎ	
𝜃"ℎ																																																																								𝜃$ℎ ≥ 𝜃∗ℎ

                               (15) 

where θr and θs define residual and saturated volumetric soil water contents (cm3 cm-3). θs is assumed to 

be equal to soil porosity while βd, j is a weighting coefficient for the difference between ET0 (Allen et al., 185 

1998) and P on the jth day (-). The initial soil water content (θj-1) is assumed to be equal half of soil 

porosity. 

 

Climate observation data prior to the year 2015 were selected to calibrate the iEM02 for each station. 

For NE, KS, and OK, daily soil temperature observations at each station had at least 10 years in daily 190 

time series for calibrations. Datasets from TX had at least 4 years available for calibrations. Climate 

variables used for calibration included air temperature, precipitation, snow depth, and solar radiation 
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daily observations and the site’s static soil property. The optimal parameter values for each weather 

station were estimated when a minimum root mean square (RMSE) between estimated and observed 

soil temperature was achieved. These parameters for all 87 stations are listed in Table A3 (see the 195 

Appendix).  

                                                                                                                                                                    

2.3 iEM02 evaluation 

In the datasets selected, all 87 station observations were longer than 15 years except for stations located 

in Texas. The last five-year observations (2015 to 2019) were used to independently conduct model 200 

validation for all 87 stations. The metrics used to evaluate model performance were root mean square 

error (RMSE) and mean absolute error (MAE). Soil temperature modeling improvement was evaluated 

by relative RMSE changes [−+));OvD����z����	,OvD��z������@
OvD��z������

 ] and by intercomparison between the fully 

complete model and the reduced model.  

 205 

3 Results and discussion 

3.1 Improved empirical model (iEM02) 

The iEM02 was evaluated from 2015 to 2019 for 87 weather stations. Soil temperature modeling using 

different soil textures was improved in different ways in the iEM02 model (Fig. 3). The improvement of 

soil temperature modeling improvement by relative RMSE changes was different for different sites. The 210 

weather stations located in NE and KS as well as TX showed less improvement by introducing the air 

temperature of Ta, j-3 compared to OK (Fig. 3a). The soil types in OK are more clay and silt compared to 

NE and KS (Fig. 1). However, the improvement by using the fictive environmental temperature was 
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significant in northern areas of NE and KS but not in the southern area of OK and part of TX (Fig. 3b). 

Overall, latitude-dominated air temperature should play a role in improving estimated soil temperature. 215 

Most of the 87 stations achieved a 15% to 40% improvement in simulated soil temperature by 

introducing air temperature Ta, j-3 and replacing Ta with Tenv. This improvement was in agreement with a 

previous study (Dolschak et al., 2015). By incorporating changes in soil moisture and daily snow depth, 

additional improvements in soil temperature simulation of up to 50% could be achieved (Fig. 3c) 

compared to the original model EM02. It should be noted that there were fewer stations available in KS 220 

and TX compared to NE and OK. Overall, integrating snow cover and soil moisture data in iEM02 

improved the simulated soil temperature (Fig. 3).   

 

3.2 iEM02’s parameters 

The parameters described in iEM02 for each weather station are indicative of soil temperature 225 

sensitivities for each independent variable in Eq. (2) although strictly speaking, they are not 

mathematical sensitivities (Fig. 4 & Table A2). For Tenv, the current day Tenv was the most weighted as 

expected (Fig. 4a). The parameters of Tenv for the prior day 1 to day 3 were relatively weak in terms of 

absolute magnitudes due to autoregression properties in the soil temperature (Figs. 4b-d). Interestingly, 

in the iEM02 model, the prior day 2 was negatively associated with soil temperature (Fig. 4c) which 230 

cannot be interpreted by soil physical processes but in a more autoregressive sense in which the soil 

temperature signals are superimposed. The periodic property embedded in iEM02 was two low-

frequency components (semi-annual and annual signals). Obviously, the annual signal strength 

indicated by b1 and d1 was one-order stronger than the semi-annual signal strengths in soil temperature 
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(Fig. 4e-h). The result also suggested the strong b1 and d1 spatial contexts of the northern region (e.g., in 235 

Nebraska and Kansas) were differently weighted than those from the southern region (e.g., in Oklahoma 

and Texas). For the snow damping factor, the snow cover had a larger impact on soil temperature in the 

northern region when compared to the southern region (Fig. 4i). However, the soil damping ratio factor 

was relatively evenly distributed (Fig. 4j).  

RMSE performance is shown in Figure 5 when the iEM02 was a complete model vs. the reduced model 240 

iEM02 where one independent variable term was removed. When removing any one independent 

variable, the modeled soil temperature RMSE increased from 110% to 130% (Fig. 5), indicating a 20% 

drop in RMSE if one independent variable was removed in the iEM02 model. Specifically, the iEM02 

model performance decreased (i.e., RMSE increased from 0.1 to 0.4oC) when the a0 term was removed 

(Fig. 5, a-d). Unlike a0, removing the b1 term was not as sensitive and gave an increase of 0.1-0.2oC 245 

RMSE on average for all states in the region (Fig. 5, e-h). However, it is clear that the iEM02 model 

was most sensitive to d1. With the removal of d1 from the complete iEM02 model, the RMSE increased 

0.3-0.4oC for all four states (Fig. 5, i-l). Due to the location-dependency of the above coefficients, 

further spatial interpolation of the iEM02 model would be beneficial to predict soil temperature for 

irrigated agricultural areas without weather stations in the U.S. Great Plains and to improve water and 250 

crop management modeling.  

 

3.3 Spatial and temporal modeling performance 

A graphical summary of how closely the modeled soil temperature agreed with the observed soil 

temperature for each weather station is shown in Figure 6. Daily Ts estimated in the iEM02 model 255 
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outperformed that in the original EM02 model for all 87 weather stations. For example, both mean 

absolute error (MAE) and root mean square error (RMSE) were decreased on average by 0.6oC when 

the iEM02 model was used to estimate Ts. Individually, the improved model showed a less than 1.6oC 

RMSE for any individual station but 16% of the stations had larger than 2oC RMSE in the original 

EM02. In addition, we compared the performance of iEM02 against a recent energy-balance model 260 

(Chalhoub et al., 2017). Our prediction of Ts was improved by 1.2oC RMSE compared to the energy-

balance model (not shown).  

 

Spatial distributions of RMSE showed that the majority of weather stations had better performance in 

Oklahoma with a mean RMSE of 1.9 and 1.1oC for EM02 and iEM02, respectively, whereas Nebraska 265 

had a RMSE of 2.1 and 1.3oC for EM02 and iEM02, respectively. The different modeling performance 

was associated with the soil heat transport process and how frequent snowfall could be observed in 

Nebraska and Oklahoma Similar results were presented in a recent study by (Huang et al., 2017). On the 

other hand, the high quality of weather data from the Oklahoma Mesonet considered to be the "gold 

standard" for the statewide weather network (Lin et al., 2016) thus ensured quality of both model 270 

calibrations and observed soil temperature in Oklahoma.   

 

Seasonal Ts indicated that iEM02 modeling was mostly improved in the spring season from 2oC to 

1.3oC RMSE (Fig. 7a) but the original model EM02 showed the uncertainty was in good agreement 

with the performance achieved in Plauborg (2002). All other seasons were improved in similar ways 275 

from 1.8oC to 1.2 or 1.3oC RMSE. The improvement for all seasons could be attributed to introducing 
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soil diffusivity, which changed with daily soil moisture and snow cover, and this affected the soil 

thermal conductivity (Rankinen et al., 2004; Zhang, 2005). Moreover, although modeling wintertime 

soil temperature improved from 1.8oC to 1.3oC RMSE, which was the same as in the summer (Fig. 7), 

the soil temperature located in more frequent snow-covered states, (e.g., Nebraska and Kansas), was 280 

better improved when Tenv and snow depth were introduced (Rankinen et al., 2004; Dutta et al., 2018).  

 

Since precipitation gradients exist in the U.S. Great Plains from western to eastern regions (Evett et al., 

2020), three subregions were classified for each state as western (100oW towards west), central 

(between 97o and 100oW), and eastern ( 97oW towards east). Figure 8 displays the time series of EM02 285 

modeled, iEM02 modeled, and observed soil temperatures only covering winter wheat growing seasons 

(October 1 to June 30) for four growing seasons from 2015 to 2019 (validation periods) in Nebraska and 

Kansas. All subregions in Nebraska and Kansas showed improvement when using the iEM02 model 

(Fig. 8). Similarly, the iEM02 improved the RMSE during four growing seasons in Oklahoma and 

Texas (Fig. 9). The EM02 model had the best performance in Oklahoma with a mean RMSE of 1.0oC, 290 

while the mean RMSE in Kansas was 1.4oC in EM02. Soil temperatures estimated by iEM02 had 

approximately a 0.3 to 0.4oC RMSE (Figs. 8 and 9). In addition, larger improvements by iEM02 were 

observed in most subregions during wintertime, which would be beneficial for modeling accurately 

winter wheat yields and potential yields (Persson et al., 2017).  

 295 

4. Conclusion 
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The primary intention of this work was to develop an improved soil temperature model for the U.S. 

Great Plains that can predict soil temperature by using common weather station variables as inputs. The 

improved empirical model (iEM02) integrated soil thermal diffusivity and snow cover factors, and they 

significantly improved the estimate of soil temperature for 87 weather stations in the U.S. Great Plains 300 

that were studied. Specifically, after incorporating changes in soil moisture and daily snow depth, the 

improved model showed a near 50% gain in performance in terms of RMSE decrease in the improved 

model compared to the original model. The value of RMSE across 87 stations was 0.6oC lower on 

average than the original model from 2015 to 2019. We concluded that the iEM02 model can estimate 

better soil temperature at the surface soil layer where most hydrological and biological processes occur. 305 

Both seasonal and spatial improvements made in the improved model demonstrated the robustness of 

the iEM02 model, suggesting this improved model can provide a reliable simulation of soil temperature 

to use in modeling hydrological process and crop production in the U.S. Great Plains. 
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Appendix 310 

Table1 A1. Table of symbols and corresponding descriptions used in this paper. 

Symbols Descriptions Units 
α soil surface albedo  (-) 
α0, α1, α2, α3  empirical parameters of air temperature to estimate soil temperature (-) 
β empirical parameter of air temperature to calculate environmental temperature (-) 
β1, β2 empirical parameters of sine wave to estimate soil temperature (oC) 
βd empirical parameter of evapotranspiration for actual evapotranspiration (-) 
δ1, δ2 empirical parameters of cosine wave to estimate soil temperature (oC) 
γ offset constant  (oC) 
λ soil thermal conductivity  (W m-1 K-1) 
λdry oven-dried soil thermal conductivity  (W m-1 K-1) 
∅ soil porosity (%) 
ω annual frequency (2π/365 or 2π/366 in any leap years) (-) 
θ, θr, θs actual, residual, and saturated soil water content  (m3 m-3) 
ρb soil bulk density (g cm-3) 
b1, b2 shape factors of soil thermal conductivity curve  (-) 
C soil volumetric heat capacity  (J m-3 K-1) 
Ds snow depth (m) 
DReff effective soil damping ratio (-) 
E, ET0 actual and reference evapotranspiration (mm) 
fcl, fm, fOM, fsa clay, mineral, organic matter, and sand content in the soil profile (%) 
fS empirical parameters of snow depth (m-1) 
h soil depth  (m) 
j day of year (day) 
k0 empirical parameter of soil damping ratio (-) 
ks soil thermal diffusivity  (m2 s-1) 
p period of year (365 days or 366 days in any leap year) days 
P precipitation mm 
Rs solar radiation  (MJ m-2 d-1) 
Ta, Tmax mean and maximum air temperature at 2 m height (oC) 
Tenv fictive environmental temperature  (oC) 
Ts bared soil temperature at 0.1 m depth (oC) 
Tsfc surface skin temperature (oC) 
RMSE, MAE root mean square error and mean absolute error (oC) 
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Table A2. List of datasets used in this study including the data source (Networks), state names 
(Coverage States), and specific data variables (Variables). Data sources include the Gridded Soil Survey 315 
Geographic (gSSURGO), the Automated Weather Data Network – High Plains Regional Climate 
Center (AWDN), the Oklahoma Mesonet (OK Mesonet), the Soil Climate Analysis Network (SCAN), 
and the daily Global History Climatology Network (dGHCN). Weather stations from four states were 
located in the U.S. Great Plains including Nebraska (NE), Kansas (KS), Oklahoma (OK), and Texas 
(TX). Climate data reports daily maximum (Tmax, oC) and minimum air temperature (Tmin, oC) at 2 m 320 
height, relative humidity (RH, %), rainfall (prcp, mm), solar radiation (Rs, MJ m-2 day-1), wind speed at 
2 m (WS, m s-1), and snow depth (Ds, mm). Soil data consists of the daily bare soil temperature at 10 cm 
depth (Ts, oC), albedo of soil surface (a, -), organic matter content (fOM, %), bulk density (rb, g cm-3), 
porosity (Ø, %), sand (fsa), silt (fsl), and clay (fcl) content (%).  

Networks Coverage States Variables 

gSSURGO NE, KS, OK, TX a, fOM, rb, Ø, fsa, fsl, and fcl 

AWDN NE and KS Tmax, Tmin, RH, prcp, Rs, WS, and Ts 

OK Mesonet OK Tmax, Tmin, RH, prcp, Rs, WS, and Ts 

SCAN TX Tmax, Tmin, RH, prcp, Rs, WS, and Ts 

dGHCN NE, KS, OK, TX Ds 
 325 
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Table A3. List of model parameters for each weather station in the U.S. Great Plains. The location 
consists of latitude (Lat) and longitude (Lon). There are 12 parameters in the improved EM model 
including parameters of air temperature (b, -); parameters for current day to previous three-day of Tenv: 
a0 (-), a1 (-), a2 (-), a3 (-), and constant offset γ (oC); annual and semi-annual waves of sine and cosine 330 
functions parameters: b1, b2, d1, d2 (oC); parameters for snow depth damping factor (fS, m-1) and the soil 
damping factor (k0, -). The bold font indicates that estimated coefficients are not statistically significant 
at 95% confidence intervals. 

Location           Parameters in iEM02 

Lat Lon b α0 α1 α2 α3 γ β1 δ1 β2 δ2 fS k 0 
26.52 -98.06 0.2 0.402 0.132 -0.18 0.237 7.684 -0.895 -2.212 -0.233 -0.171 -0.05 -0.001 

29.33 -103.2 0.3 0.517 0.162 -0.22 0.174 6.221 -0.717 -3.852 0.037 -0.398 -0.106 -0.001 

30.27 -97.74 0.8 0.247 0.191 0.017 0.1 8.416 -1.373 -3.454 0.03 -0.269 -0.079 -0.001 

31.62 -102.8 0.3 0.369 0.193 -0.13 0.165 6.647 -1.195 -4.451 0.127 -0.365 0.093 -0.001 

32.75 -97 0.8 0.216 0.217 0.015 0.088 9.768 -1.338 -2.746 -0.048 -0.167 0.001 0.002 

33.59 -102.4 0.3 0.359 0.186 -0.161 0.163 5.656 -1.153 -4.435 0.335 -0.314 0.696 -0.064 

33.63 -102.8 0.1 0.421 0.087 -0.175 0.228 4.153 -1.366 -4.637 0.201 -0.077 -0.27 -0.047 

33.89 -97.27 0.7 0.415 0.196 -0.01 0.054 4.712 -0.732 -4.197 0.18 0.019 1.187 -0.034 

33.96 -102.8 0.3 0.411 0.14 -0.13 0.134 4.949 -1.002 -4.61 0.456 -0.256 0.695 0.001 

34.03 -95.54 0.8 0.535 0.136 -0.003 0.058 4.076 -1.164 -2.726 0.306 0.065 -2.045 -0.049 

34.04 -96.94 0.6 0.475 0.143 -0.054 0.064 5.196 -1.152 -4.172 0.199 0.054 2.23 -0.066 

34.17 -97.99 0.7 0.39 0.103 -0.02 0.056 5.867 -1.032 -3.753 0.136 -0.173 0.232 -0.156 

34.19 -97.59 0.8 0.407 0.099 0.009 0.043 4.471 -0.809 -3.197 0.085 -0.091 -1.257 -0.194 

34.22 -95.25 0.8 0.408 0.154 0.018 0.049 5.564 -1.358 -3.863 0.104 0.168 -4.133 -0.053 

34.31 -96 0.8 0.476 0.097 0.001 0.048 5.499 -1.161 -3.493 0.06 0.015 0.133 -0.108 

34.31 -94.82 0.9 0.408 0.139 0.025 0.062 5.947 -0.934 -3.235 0.066 0.006 6.601 -0.065 
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Location                                                                              Parameters in iEM02 

lat lon b α0 α1 α2 α3 γ β1 δ1 β2 δ2 fS k 0 

34.57 -96.95 0.5 0.451 0.142 -0.083 0.091 6.331 -1.225 -4.095 0.016 0.075 -1.584 -0.079 

34.59 -99.34 0.9 0.266 0.158 0.032 0.071 6.781 -1.68 -4.029 0.345 -0.198 3.081 -0.094 

34.61 -96.33 0.5 0.502 0.176 -0.081 0.099 4.733 -1.073 -4.454 0.103 -0.234 -4.241 -0.015 
34.66 -95.33 0.9 0.466 0.165 0.021 0.06 5.079 -0.917 -3.484 0.13 0.183 -14.03 -0.029 

34.69 -99.83 0.7 0.49 0.153 -0.029 0.056 5.682 -1.341 -4.035 0.139 0.121 -0.068 -0.048 

34.73 -98.57 0.9 0.338 0.134 0.019 0.055 4.763 -1.015 -3.158 0.18 0.003 1.937 -0.179 

34.8 -96.67 0.7 0.454 0.105 -0.02 0.065 5.742 -1.185 -3.628 0.088 -0.056 -1.26 -0.102 

34.81 -98.02 0.8 0.328 0.138 0.008 0.053 5.727 -1.1 -3.811 0.124 -0.05 0.761 -0.129 
34.88 -95.78 0.8 0.404 0.111 0.005 0.052 4.723 -1.099 -3.134 0.179 0.018 -0.012 -0.2 

35.03 -97.91 0.7 0.52 0.141 -0.028 0.052 5.008 -1.008 -3.33 0.136 0.163 0.845 -0.065 

35.19 -102.1 0.6 0.239 0.139 -0.014 0.088 5.715 -1.807 -4.526 0.267 -0.208 -0.129 -0.131 

35.27 -97.96 0.8 0.381 0.176 0.011 0.055 5.053 -1.161 -3.341 0.22 -0.093 -0.502 -0.101 

35.51 -98.78 0.8 0.39 0.17 0.006 0.05 3.781 -0.779 -2.908 0.078 -0.321 4.582 -0.16 

35.55 -99.73 0.5 0.533 0.124 -0.09 0.116 4.372 -1.198 -3.711 0.291 -0.041 0.086 -0.062 

35.58 -95.91 0.7 0.391 0.152 -0.015 0.05 5.284 -1.013 -4.053 0.128 0.114 1.057 -0.113 

35.59 -99.27 0.8 0.467 0.136 0.011 0.056 5.461 -1.244 -3.594 0.182 0.143 1.237 -0.042 

35.68 -94.85 0.6 0.446 0.148 -0.049 0.076 4.758 -1.353 -4.102 0.187 0.248 -3.491 -0.059 
35.84 -96 0.6 0.341 0.178 -0.026 0.097 6.618 -1.783 -4.72 0.358 -0.191 -1.872 -0.023 

35.85 -97.48 0.9 0.333 0.174 0.021 0.066 5.67 -1.493 -3.899 0.143 0.083 0.914 -0.092 

35.97 -94.99 0.7 0.45 0.136 -0.016 0.05 5.637 -1.502 -3.517 0.233 0.094 0.225 -0.047 
36 -97.05 0.7 0.414 0.114 -0.007 0.038 4.93 -0.909 -3.849 0.154 -0.037 3.355 -0.156 

36.03 -96.5 0.7 0.385 0.149 -0.012 0.053 5.87 -1.13 -4.099 0.093 -0.006 2.131 -0.088 

36.07 -99.9 0.7 0.354 0.176 -0.002 0.055 5.608 -1.196 -4.61 0.169 -0.252 1.315 -0.075 

36.12 -97.1 0.7 0.377 0.172 -0.009 0.056 5.897 -1.314 -4.027 0.162 0.031 2.05 -0.062 
36.26 -98.5 0.7 0.429 0.15 -0.021 0.055 4.908 -1.27 -4.183 0.25 0.265 0.169 -0.067 

36.41 -97.69 0.6 0.397 0.175 -0.038 0.079 5.029 -1.188 -4.643 0.089 -0.276 1.137 -0.062 

36.42 -96.04 0.9 0.36 0.144 0.017 0.048 5.533 -1.159 -3.882 0.118 0.069 3.667 -0.104 

36.52 -96.34 0.7 0.308 0.157 -0.005 0.063 5.684 -1.494 -4.43 0.29 0.149 0.563 -0.13 

36.6 -101.6 0.7 0.453 0.173 -0.015 0.078 5.052 -1.21 -3.919 0.261 -0.057 1.796 -0.03 
36.63 -96.81 0.6 0.545 0.151 -0.08 0.067 4.993 -0.829 -3.553 0.061 0.031 0.66 -0.061 

36.69 -102.5 0.7 0.223 0.16 0.008 0.057 5.711 -1.795 -5.263 0.235 -0.155 1.458 -0.125 

36.75 -98.36 0.5 0.474 0.152 -0.083 0.082 4.968 -1.198 -4.11 0.191 -0.011 3.696 -0.072 
36.75 -97.25 0.7 0.383 0.167 -0.02 0.056 5.197 -1.086 -4.062 0.005 0.001 4.13 -0.083 

36.83 -99.64 0.7 0.354 0.189 -0.004 0.074 5.242 -1.28 -4.03 0.204 0.047 0.367 -0.054 

36.84 -96.43 0.6 0.382 0.209 -0.028 0.066 5.279 -1.386 -4.9 0.418 -0.258 -7.259 -0.014 

36.9 -96.91 0.6 0.374 0.16 -0.031 0.06 5.007 -1.266 -4.123 0.152 0.021 4.473 -0.103 
36.91 -95.89 0.6 0.415 0.169 -0.045 0.053 5.844 -1.22 -4.352 0.235 -0.255 6.361 -0.063 

37.37 -95.3 0.7 0.373 0.173 -0.016 0.076 4.535 -1.64 -4.396 0.047 -0.009 -0.77 -0.021 
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  Location                                                                              Parameters in iEM02 

lat lon b α0 α1 α2 α3 γ β1 δ1 β2 δ2 fS k 0 
37.98 -100.8 0.7 0.346 0.185 0.001 0.077 4.153 -1.319 -4.886 0.084 -0.441 1.602 -0.074 

38.45 -101.8 0.4 0.297 0.142 -0.073 0.124 5.091 -2.004 -6.426 0.18 -0.585 1.573 -0.038 

38.53 -95.25 0.6 0.46 0.176 -0.053 0.071 3.971 -1.302 -3.761 0.128 -0.075 1.529 -0.054 

39.07 -95.78 0.6 0.387 0.162 -0.033 0.089 4.229 -1.715 -4.991 0.019 0.126 0.279 -0.048 

39.2 -96.6 0.5 0.4 0.163 -0.077 0.107 4.461 -1.724 -4.951 -0.021 0.081 1.77 -0.025 

39.38 -101.1 1 0.252 0.188 0.055 0.075 4.641 -1.501 -5.624 0.062 -0.369 1.507 -0.078 

39.82 -97.85 0.8 0.437 0.182 0.008 0.058 3.385 -1.482 -4.33 -0.004 -0.109 -0.429 -0.068 

40.08 -98.28 0.5 0.44 0.151 -0.076 0.076 4.164 -1.339 -4.958 -0.017 -0.093 7.636 -0.046 

40.3 -96.93 0.7 0.381 0.205 -0.014 0.072 3.293 -1.615 -4.407 0.204 0.088 0.342 -0.064 

40.32 -99.38 0.6 0.319 0.199 -0.027 0.055 4.414 -1.593 -5.523 0.25 -0.063 6.898 -0.1 

40.4 -101.7 0.6 0.364 0.145 -0.031 0.079 3.559 -1.151 -5.266 0.402 -0.162 8.794 -0.12 

40.5 -99.37 0.6 0.337 0.202 -0.029 0.08 4.765 -1.676 -5.194 0.307 0.153 2.688 -0.029 

40.52 -99.05 0.6 0.379 0.172 -0.031 0.068 3.676 -1.45 -4.852 0.281 -0.026 5.941 -0.086 

40.57 -99.7 0.5 0.329 0.18 -0.051 0.085 3.856 -1.901 -5.549 0.302 0.214 9.566 -0.085 

40.57 -98.15 0.8 0.28 0.158 0.013 0.056 4.244 -1.671 -4.596 0.205 0.072 0.708 -0.245 

40.63 -100.5 0.7 0.36 0.199 -0.015 0.064 3.888 -1.484 -5.794 0.089 -0.136 3.376 -0.054 

40.72 -99.02 0.6 0.406 0.195 -0.034 0.076 3.572 -1.456 -5.1 0.205 0.043 0.756 -0.032 

40.75 -98.77 0.5 0.437 0.158 -0.075 0.081 3.778 -1.502 -5.411 0.35 0.097 2.179 -0.078 

40.82 -96.67 0.6 0.384 0.193 -0.048 0.066 4.302 -1.619 -4.854 0.111 0.079 3.63 -0.102 

40.85 -96.62 0.2 0.588 0.032 -0.209 0.173 3.744 -1.616 -4.753 0.141 0.275 11.447 -0.048 

40.86 -98.47 0.5 0.521 0.151 -0.089 0.074 2.731 -1.53 -4.791 0.114 0.309 7.99 -0.067 

41.15 -96.5 0.7 0.354 0.169 -0.011 0.065 4.615 -1.819 -4.679 0.124 0.05 4.403 -0.07 

41.15 -96.42 0.6 0.42 0.172 -0.055 0.071 3.925 -1.883 -5.022 0.105 0.102 3.669 -0.053 

41.22 -103 0.7 0.323 0.188 -0.001 0.054 3.392 -1.118 -5.154 0.263 -0.119 10.875 -0.072 

41.4 -97.53 0.5 0.489 0.131 -0.082 0.082 3.624 -1.5 -4.763 0.389 0.074 5.878 -0.057 

41.62 -98.95 0.6 0.403 0.164 -0.039 0.077 3.52 -1.649 -5.573 0.136 0.093 2.696 -0.074 

41.85 -96.75 0.7 0.336 0.201 -0.025 0.076 4.125 -1.82 -5.053 0.296 0.099 11.111 -0.057 

41.88 -103.7 0.7 0.346 0.2 -0.007 0.07 3.58 -1.41 -5.435 0.44 -0.079 4.335 -0.061 

41.9 -100.2 0.3 0.548 0.125 -0.195 0.144 2.915 -1.653 -4.817 0.187 0.146 1.078 -0.043 

41.93 -98.2 0.5 0.417 0.159 -0.073 0.074 3.353 -1.279 -4.421 0.243 -0.076 10.447 -0.078 

42.47 -98.77 0.5 0.509 0.13 -0.104 0.091 3.542 -1.505 -4.489 0.129 0.231 2.505 -0.056 

42.57 -99.83 0.3 0.54 0.074 -0.182 0.156 3.049 -1.454 -5.465 0.202 0.286 1.976 -0.077 

42.75 -102.2 0.7 0.43 0.144 -0.024 0.068 2.82 -1.142 -5.151 0.141 0.249 3.492 -0.089 

https://doi.org/10.5194/hess-2021-164
Preprint. Discussion started: 30 March 2021
c© Author(s) 2021. CC BY 4.0 License.



22 
 

Code availability 
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Figure Captions (9 Figures) 

Figure 1: Specific soil textures (a) and soil bulk density (b) at 87 weather stations in the U.S. winter 
wheat belt including the states of Nebraska (NE), Kansas (KS), Oklahoma (OK), and part of Texas (TX) 535 
in the U.S. Great Plains. 

Figure 2: Effects of soil moisture on (a) thermal conductivity (l) and (b) soil thermal diffusivity (k) 
obtained by Eqs. (7-11).  

Figure 3: Percentage increments of soil temperature modeling improvement in iEM02 as determined by 

RMSE changes [− +));OvD����z����	,OvD��z������@
OvD��z������

 ] (a) after introducing air temperature of Ta, j-3, (b) 540 

after substituting air temperature Ta by fictive environmental temperature (Tenv), and (c) after integrating 
the impacts of soil thermal diffusivity and snow cover. The colorbar was coded by the improved 
percentage of iEM02 against the EM02 model. 

Figure 4: Spatial variations of the improved empirical model (iEM) coefficients: (a-d) for a0, a1, a2, 

and a3, (e-h) for b1, d1, b2, and d2, (i) snow damping ratio (fs) and (j) soil damping ratio coefficients 545 
(k0). The colorbar defines the values of the model’s coefficients. 

Figure 5: One-to-one plots of absolute mean errors between the complete model and reduced model in 
the improved empirical model (iEM02): (a-d) with vs. without α4 in Nebraska (NE), Kansas (KS), 
Oklahoma (OK), and Texas (TX), respectively, (e-h) with vs. without b1 in Nebraska (NE), Kansas 
(KS), Oklahoma (OK), and Texas (TX), respectively; (i-l) with vs. without d1 in NE, KS, OK, and TX, 550 
respectively. RMSEreduced and RMSEcomplete refer to root mean square error for reduced and complete 
models, respectively. The colorbar indicates the number of observed data points. 

Figure 6: Spatial distribution of mean absolute error (MAE) (a, c) and RMSE (b, d) for an empirical 
model (EM02, a, b), and improved modelEM02 (iEM02, c, d). The colorbar defines values of MAE 
(oC) and RMSE (oC). 555 

Figure 7: Seasonal comparison between estimated and observed soil temperatures: (a-d) the empirical 
model (EM), and (e-h) the improved empirical model (iEM02). RMSE was calculated as the root mean 
square error between estimated and observed soil temperature. "N" refers to the sample size and the 
gray line represents the 1:1 line. The colorbar describes the number of data points. 

Figure 8: Comparison between observed (grey line), complete model (EM02, green line) and improved 560 
model (iEM02, blue line) daily soil temperature in western (>100oW), central (between 97o and 100o 
W), and eastern (<97oW) Nebraska (a-c) and Kansas (d-f) during the winter wheat growing seasons 
from 2015 to 2019. RMSE is the root mean square error (oC). Shaded areas indicate winter season (Dec-
Feb). 

Figure 9: The same as Fig. 9 but for western, central, and eastern Oklahoma (a-c) and Texas (d-f). 565 
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Figure 1. 

 Figure 1: Specific soil textures (a) and soil bulk density (b) at 87 weather stations in the U.S. winter 
wheat belt including the states of Nebraska (NE), Kansas (KS), Oklahoma (OK), and part of Texas (TX) 
in the U.S. Great Plains. 
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Figure 2. 

 
Figure 2: Effects of soil moisture on (a) thermal conductivity (l) and (b) soil thermal diffusivity (k) 
obtained by Eqs. (7-11).  575 
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Figure 3.  

 
Figure 3: Percentage increments of soil temperature modeling improvement in iEM02 as determined by 

RMSE changes [− +));OvD����z����	,OvD��z������@
OvD��z������

 ] (a) after introducing air temperature of Ta, j-3, (b) 580 

after substituting air temperature Ta by fictive environmental temperature (Tenv), and (c) after integrating 
the impacts of soil thermal diffusivity and snow cover. The colorbar was coded by the improved 
percentage of iEM02 against the EM02 model. 
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Figure 4. 585 

 
Figure 4: Spatial variations of the improved empirical model (iEM) coefficients: (a-d) for a0, a1, a2, 

and a3, (e-h) for b1, d1, b2, and d2, (i) snow damping ratio (fs) and (j) soil damping ratio coefficients 
(k0). The colorbar defines the values of the model’s coefficients. 
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Figure 5. 

Figure 5: One-to-one plots of absolute mean errors between the complete model and reduced model in 
the improved empirical model (iEM02): (a-d) with vs. without α4 in Nebraska (NE), Kansas (KS), 
Oklahoma (OK), and Texas (TX), respectively, (e-h) with vs. without b1 in Nebraska (NE), Kansas 
(KS), Oklahoma (OK), and Texas (TX), respectively; (i-l) with vs. without d1 in NE, KS, OK, and TX, 595 
respectively. RMSEreduced and RMSEcomplete refer to root mean square error for reduced and complete 
models, respectively. The colorbar indicates the number of observed data points. 
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Figure 6.  

 600 

Figure 6: Spatial distribution of mean absolute error (MAE) (a, c) and RMSE (b, d) for an empirical 
model (EM02, a, b), and improved modelEM02 (iEM02, c, d). The colorbar defines values of MAE 
(oC) and RMSE (oC).  
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Figure 7. 

Figure 7: Seasonal comparison between estimated and observed soil temperatures: (a-d) the empirical 605 
model (EM), and (e-h) the improved empirical model (iEM02). RMSE was calculated as the root mean 
square error between estimated and observed soil temperature. "N" refers to the sample size and the 
gray line represents the 1:1 line. The colorbar describes the number of data points. 
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Figure 8. 610 

Figure 8: Comparison between observed (grey line), complete model (EM02, green line) and improved 
model (iEM02, blue line) daily soil temperature in western (>100oW), central (between 97o and 100o 
W), and eastern (<97oW) Nebraska (a-c) and Kansas (d-f) during the winter wheat growing seasons 
from 2015 to 2019. RMSE is the root mean square error (oC). Shaded areas indicate winter season (Dec-
Feb). 615 
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Figure 9.  

Figure 9: The same as Fig. 9 but for western, central, and eastern Oklahoma (a-c) and Texas (d-f). 
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