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Abstract. The role of rainfall space-time structure, as well as its complex interactions with land surface properties, in 11 

flood response remains an open research issue. This study contributes to this understanding, specifically in small (<15 km2) 12 

urban watersheds. Using a flood frequency analysis framework that combines stochastic storm transposition-based rainfall 13 

scenarios with the physically-based distributed GSSHA model, we examine the role of rainfall spatial and temporal 14 

variability in flood frequency across drainage scales in the highly-urbanized Dead Run watershed (14.3 km2) outside of 15 

Baltimore, Maryland, USA. The results show the complexities of flood response within several subwatersheds for both 16 

short (<50 years) and long (>100 years) rainfall return periods. The impact of impervious area on flood response decreases 17 

with increasing rainfall return period. For extreme storms, the maximum discharge is closely linked to the spatial structure 18 

of rainfall, especially storm core spatial coverage. The spatial heterogeneity of rainfall increases flood peak magnitudes by 19 

50% on average at the watershed outlet and its subwatersheds for both small and large return periods. The results imply 20 

that commonly-made assumption of spatially uniform rainfall in urban flood frequency modeling is problematic even for 21 

relatively small basin scales. 22 

1. Introduction 23 

Rainfall spatiotemporal structure plays an important role in flood generation in urban watersheds (Ogden et al., 1995; 24 

Saghafian et al., 1995; Smith et al., 2005b; Emmanuel et al., 2012; Nikolopoulos et al., 2014). Spatial heterogeneities in 25 

land use and land cover complicate the translation of rainfall spatiotemporal distribution into flood responses (Galster et 26 

al., 2006; Morin et al., 2006; Ntelekos et al., 2008; Ogden et al., 2011), especially for small catchments (Faurès et al., 1995; 27 

Smith et al., 2005a; Zhou et al., 2017). Due to the varying nature of rainfall and complexities of urban characteristics, the 28 

influence of rainfall spatial-temporal structure on flood frequency analysis in urban areas remains an open research issue. 29 
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Many studies have examined the interaction between rainfall variability and flood response. By necessity, early studies 30 

tended to explore rainfall variability using rain gages, which were the main source of rainfall measurements until relatively 31 

recently. The accuracy of flood simulations using spatially-detailed rainfall scenarios has been examined (Dawdy and 32 

Bergmann, 1969; Schilling, 1991), along with the sensitivity of hydrologic response to rainfall gage network density 33 

(Faurès et al., 1995; Arnaud et al., 2002; Younger et al., 2009; Notaro et al., 2013). Beven and Hornberger (1982) argued 34 

that the spatial variability affects the response time more than the peak magnitude, whereas Wilson et al. (1979) found the 35 

reverse. These studies were limited, however, by the general sparsity of rain gages, which may not adequately capture the 36 

spatial distribution of rainfall. Following the advent of rainfall measurement using weather radar (Fulton et al., 1998; 37 

Krajewski and Smith, 2002), many studies have highlighted the use of high-resolution rainfall data in assessing rainfall 38 

variability over various range of spatial and temporal scales (Berne et al., 2004; Gebremichael and Krajewski, 2004; 39 

Moreau et al., 2009; Emmanuel et al., 2012) and how their use could improve runoff estimation (Morin et al., 2006; Smith 40 

et al., 2007; Schellart et al., 2012; Wright et al., 2014b; Bruni et al., 2015; Rafieeinasab et al., 2015; Gourley et al., 2017). 41 

There are conflicting findings on the relative importance of rainfall temporal and spatial characteristics. Ochoa-Rodriguez 42 

et al. (2015) and Yang et al. (2016), for example, found that “coarsening” temporal resolution has a stronger impact than 43 

coarsening spatial resolution, especially for small watersheds. Similar results were found in the study of Paschalis et al. 44 

(2014) in a 477 km2 catchment in Switzerland. Adams et al. (2012) found the space-time averaging effects of routing 45 

through the catchment noticeably remove the impact of spatially variable rainfall at a 150-km2 catchment scale. Bruni et 46 

al. (2015), in contrast, found a higher sensitivity of modeled flow peaks to spatial resolution rather than the temporal 47 

resolution. Peleg et al. (2017) showed an increasing contribution of the spatial variability of rainfall to the variability of 48 

flow discharge with longer return periods. Cristiano et al. (2018); Cristiano et al. (2019) found the spatial aggregation of 49 

rainfall data can have a strong effect on hydrological responses. Zhu et al. (2018) examined the influence of rainfall 50 

variability on flood frequency analysis and addressed the impact of antecedent moisture in flood generation for basin scales 51 

ranging from 16 km2 up to 4,400 km2. Using observational data, Zhou et al. (2017) showed that the impact of antecedent 52 

moisture is low in a highly-urbanized catchment. 53 

Previous studies have demonstrated the sensitivity of hydrological response to rainfall variability in both space and time 54 

(Smith et al., 2012; Ochoa-Rodriguez et al., 2015; Rafieeinasab et al., 2015). The relationship between rainfall and flood 55 

are scale-dependent, varying with rainfall patterns, basin characteristics, and runoff generation processes. However, there 56 

is still no clear answer on the relative importance of temporal and spatial features of rainfall on flood responses (Cristiano 57 

et al., 2017). Moreover, studies focusing on small (< 15 km2) urbanized basins are relatively few (Peleg et al., 2017) and 58 

the issues remain poorly understood. 59 
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Stochastic Storm Transposition (SST) was developed as a physically-based stochastic rainfall generator for rainfall 60 

frequency analysis. Previous studies show that SST with relatively short-term records (10 or more years) of high-resolution 61 

radar rainfall field can produce reasonable rainfall scenarios with spatial-temporal structure, which cannot be provided by 62 

conventional methods (Wright et al., 2013; Wright et al., 2017; Zhou et al., 2019). Coupled with hydrological models, the 63 

SST-based framework can be used for multiscale rainfall frequency analysis and flood frequency analysis that accounts for 64 

rainfall variability and surface characteristics (Wright et al., 2014a; Perez et al., 2019; Yu et al., 2019; Wright et al., 2020).  65 

This study contributes to the interaction between rainfall variability and flood response over small-scale urbanized 66 

watersheds (<15 km2) for a short-duration rainfall and quick hydrologic response setting. We build on the SST-based rainfall 67 

study of Zhou et al. (2019) using the physically-based hydrological model implementation introduced by Smith et al. (2015) 68 

in the Dead Run watershed outside of Baltimore, Maryland, USA by addressing the following questions: (1) How does 69 

flood frequency in small urban watersheds vary with diverse space-time rainfall structure and rainfall magnitude? (2) 70 

Among the space-time feature of rainfall, what are the dominant features that control flood peak distribution in small urban 71 

watersheds?  72 

Using a framework that combines high-resolution realistic SST- and radar-based rainfall scenarios with model-based flood 73 

frequency analysis, we characterize the spatial and temporal features of rainfall events under different return periods and 74 

examine their roles in determining flood frequency in small urban watersheds. The paper is organized as follows: in Section 75 

2, we introduce the study region and describe the SST-based methodology, GSSHA model, and the metrics used to 76 

characterize rainfall and flood response. In Section 3, we present model validation and analyses of flood frequency 77 

distributions and rainfall-flood relationships. A summary and conclusions are presented in Section 4. 78 

2. Data and method 79 

2.1 Study region and data 80 

The study focuses on the highly-urbanized 14.3 km2 Dead Run (DR) watershed located west of Baltimore, Maryland, USA 81 

(Fig. 1). DR is a tributary to the Gwynns Falls watershed, which is the principal study catchment of the Baltimore 82 

Ecosystem Study (BES) (Pickett and Cadenasso, 2006). The basin has an impervious fraction of approximately 52.3% 83 

(Table 1). The watershed has a dense network of six stream gauges with drainage areas ranging from 1.2 to 14.3 km2 (Fig. 84 

1; Table 1). The subwatersheds are developed after the implementation of the Maryland Stormwater Management Act of 85 

1982 (Maryland, 1982) with many detention infrastructures such as small local ponds. The wealth of data for Dead Run 86 

provides exceptional resources to examine rainfall and hydrologic response (Beighley and Moglen, 2002; Nelson et al., 87 

2006; Meierdiercks et al., 2010; Smith et al., 2015). For example, Meierdiercks et al. (2010) analyzed the impact of storm 88 
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drains and detention basins on a single storm event in DR, while Ogden et al. (2011) used the Gridded Surface Subsurface 89 

Hydrologic Analysis (GSSHA) model to analyze the effects of storm drains, impervious area, and drainage density on 90 

hydrologic response. Smith et al. (2015) created a DR model using GSSHA to examine the effects of storage and runoff 91 

generation processes through analyses of a large number of storm events. 92 

 93 

High resolution (15-min temporal resolution, 1-km2 spatial resolution) radar rainfall fields for the 2000-2015 period were 94 

derived from volume scan reflectivity fields from the Sterling, Virginia WSR-88D (Weather Surveillance Radar-1988 95 

Doppler) radar. The Hydro-NEXRAD algorithms (Krajewski et al., 2011; Seo et al., 2011) which have been used in rainfall 96 

and hydrological studies (Smith et al., 2007; Lin et al., 2010; Smith et al., 2013; Wright et al., 2014b; Zhou et al., 2017) 97 

are used to estimate rainfall from reflectivity fields. A network of 54 rain gauges in and around Baltimore City is used for 98 

mean field bias correction of the radar rainfall. The reader is directed to Zhou et al. (2019) and references therein for further 99 

details on the rainfall data and bias correction methods. 100 

Instantaneous discharge data with a resolution of five minutes from the U.S. Geological Survey (USGS) were used for each 101 

of the six gaged watersheds. Streamflow observations for the outlet station at Franklintown extend back to 1960, while the 102 

DR1 – DR5 stations have records beginning in 2008. 103 

2.2 GSSHA Hydrological Model 104 

The distributed physics-based GSSHA model is used to simulate multi-scale flood response. GSSHA is a two-dimensional, 105 

distributed-parameter raster-based (i.e. square computational cell-based) hydrologic modeling system. It uses explicit finite 106 

difference and finite volume methods in two dimensions on a structured grid to simulate overland flow and in one dimension 107 

to simulate channel flow (Downer and Ogden, 2004; 2006). Previous studies of the GSSHA model show that the model 108 

with fine grid resolution can produce adequate simulations of flood response, especially when driven by high-resolution 109 

radar rainfall fields (Sharif et al., 2010; Sharif et al., 2013; Wright et al., 2014a; Cristiano et al., 2019). 110 

In this study, we use the Dead Run model created by Smith et al. (2015). A brief description of the model is provided here; 111 

see Smith et al. (2015) for more details. The delineation of the watershed and channel network was based on a 30-m USGS 112 

digital elevation model (Gesch et al., 2002). Channel flow overland flow was set with different Manning’s roughness 113 

coefficients. Additional stream channels were added based on the Baltimore County hydrography Geographic Information 114 

Systems  (GIS) map. Stream cross sections were extracted from a 1-m resolution topography data set for Dead Run 115 

developed from lidar. Storm sewers in DR-2 and DR-5 were added using the Baltimore County Stormwater Management 116 

GIS map and digitized storm sewer maps. The semicircle’s diameter was set to the pipe diameter. Detention basins were 117 
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represented within the channel with cross sections extracted from the 1-m lidar topographic data. 118 

Several aspects of the model were modified from those used in Smith et al. (2015), primarily to improve computational 119 

speed. Infiltration is calculated using Richards’ equation (RE) in Smith et al. (2015), while this study uses the three-layer 120 

Green-Ampt (GA) scheme. A uniform Manning’s roughness coefficient of 0.01 is set for all the stream channels for model 121 

simplification. Initial soil moisture is approximated to be one third of field capacity for each storm event. 122 

2.3 SST procedure 123 

The rainfall scenarios in this study are developed using RainyDay, an open-source SST software package (Wright et al., 124 

2017). The steps used are briefly summarized here; the reader is directed to Zhou et al. (2019) and references therein for 125 

further details. 126 

The first step is to identify a geospatial “transposition domain” that contains the watershed of interest. In this study, we use 127 

a square 7,000 km2 transposition domain centered on the DR watershed. (Zhou et al., 2019) presented a detailed 128 

examination of heterogeneity in extreme rainfall over the transposition domain using a variety of metrics, including storm 129 

counts, mean storm depths and intensities, convective activity indicated by lightning observations, and analysis of spatial 130 

and temporal rainfall structure. 131 

The second step is to identify the largest m storms within the domain at the t-hr time scale. This collection of storms is 132 

referred to as a storm catalog. The storms are selected with respect to the size, shape and orientation of the DR watershed. 133 

We henceforth refer to these as “DR-shaped storms.” The m DR-shaped storms are selected from an n-year rainfall record, 134 

such that an average of λ=m/n storms per record year are included in the storm catalog. In this study, we chose m = 200 135 

storms over the 16-year radar record. 136 

The third step is to randomly sample a subset of k storms from the storm catalog, where k refers to a stochastic number of 137 

storms per year. The k is assumed to follow a Poisson-distributed number of storm occurrences with rate parameter λ=m/n 138 

storms per year. All rainfall fields associated with a storm are transposed by an east-west distance ∆x and a north-south 139 

distance ∆y, where ∆x and ∆y are drawn from distributions DX(x) and DY(y) which are bounded by the limits of the 140 

transposition domain. Based on the spatial heterogeneity analysis of extreme rainfall in the domain, distributions DX(x) and 141 

DY(y) can be set as uniform or non-uniform. In Zhou et al. (2019) and this study, since the assumption of regional 142 

homogeneity cannot be relaxed, we used the non-uniform distribution. A two-dimensional probability density function 143 

(PDF) of spatial storm occurrence (Wright et al., 2017) and an intensity factor that rescales the rainfall magnitude (Zhou 144 

et al., 2019) are used as the basis for non-uniform spatial transposition (Fig. A1 in Appendix A). This step can be understood 145 

as generating a “synthetic year” of extreme rainfall events over the domain based on resampling and transposing 146 
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observations. For each of the k transposed storms, compute the t-hr basin-average rainfall depth over the watershed. Among 147 

the k rainfall depths, the maximum depth is retained as a synthetic t-hr annual rainfall maximum for the watershed, while 148 

the transposed rainfall fields are saved for use as inputs to a GSSHA model simulation. 149 

The fourth step simply repeats Step 3 many times to recreate multiple years of synthetic t-hour “annual” rainfall maxima 150 

and associated transposed rainfall fields for the watershed. In this study, these steps are repeated 1,000 times and the ordered 151 

“annual” maxima are used to generate rainfall return period estimates up to 500 years. 1,000 such realizations of 500-yr 152 

series are generated, and the median value of 1,000 realizations are used to generate estimates for return periods up to 500 153 

years. 154 

2.4 Characteristics of rainfall and hydrologic response 155 

2.4.1 Spatio-temporal characteristics of rainfall 156 

Rainfall statistics were computed for each event, based on radar rainfall data at 15-min, 1-km2 resolution, to characterize 157 

the spatial and temporal variability of rainfall (following Smith et al. (2002); Smith et al. (2005b); see also Zoccatelli et al. 158 

(2011) and Emmanuel et al. (2015)). Basin-average rainfall rate at time t during the storm is given by: 159 

M(t) =  ∫ 𝑅(𝑡, 𝑥)𝑑𝑥
𝑇

0
                  (1) 160 

where 𝑅(𝑡, 𝑥) is the rain rate at radar grid x at time t, and T is the time period of rainfall event. Peak basin-average rainfall 161 

rate is denoted: 162 

M𝑚𝑎𝑥 = max{M(t); 𝑡 ∈ [0, 𝑇]}                 (2) 163 

and storm total rainfall depth is: 164 

R𝑠𝑢𝑚 = ∑ 𝑀(𝑡)𝑇
0                    (3) 165 

To characterize the spatial properties of rainfall, several quantities are computed. Fractional coverage of storm core at t is 166 

given by: 167 

Z(t) =
1

𝐴
∫ 𝐼(𝑅(𝑡,𝑥))𝑑𝑥

𝐴
                  (4) 168 

where 𝐼(𝑅(𝑡,𝑥))is the indicator function and equals 1 when 𝑅(𝑡, 𝑥) > 25 𝑚𝑚/ℎ or 0 otherwise. 169 

Rainfall location is given by: 170 

L(t) = ∫ 𝜔(𝑡, 𝑥)𝑑(𝑥)𝑑𝑥
𝐴

                  (5) 171 
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where 𝜔(𝑡, 𝑥) =
𝑅(𝑡,𝑥)

∫ 𝑅(𝑡,𝑥)𝑑𝑥𝐴

, d(x) is the linear distance from point x to the outlet.  The rainfall-weighted flow distance is: 172 

RWD(t) = ∫ 𝜔(𝑡, 𝑥)𝑑𝑓(𝑥)𝑑𝑥
𝐴

                 (6) 173 

where distance function 𝑑𝑓(𝑥) is the flow distance between point x and the outlet. It is calculated as the sum of the 174 

overland flow distance from x to the nearest channel and the distance along the channel to the basin outlet. The flow distance 175 

𝑑𝑓(𝑥) is normalized by the maximum flow distance, ranging from 0 to 1. RWD with values close to 0 indicates that rainfall 176 

is distributed near the basin outlet; with values close to 1 indicates rainfall concentrated at the far periphery of the basin. 177 

For a uniformly distributed rainfall, the mean RWD is: 178 

RWD̅̅ ̅̅ ̅̅ ̅ = ∫ 𝑑𝑓(𝑥)𝑑𝑥
𝐴

                  (7) 179 

The dispersion of RWD: 180 

S(t) =
1

𝑠̅
∫ 𝜔(𝑡, 𝑥)[𝑑𝑓(𝑥) − 𝑑̅]2𝑑𝑥

𝐴
                (8) 181 

where s̅ = ∫ [𝑑𝑓(𝑥) − 𝑑̅]2𝑑𝑥
𝐴

, S is a spatial indicator with values < 1 indicates that rainfall is a unimodal distribution; S 182 

with values >1 indicates that rainfall is a multimodal distribution. 183 

2.4.2 Spatiotemporal characteristics of hydrologic response 184 

Flood peak (Qpeak, mm3/s), total runoff (Qsum, mm), and lag time (Tlag, min) are defined as: 185 

Q𝑝𝑒𝑎𝑘 = max{ 𝑄(𝑡); 𝑡 ∈ 𝑇𝑑}                 (9) 186 

Q𝑠𝑢𝑚 = ∑ 𝑄(𝑡)
𝑇𝑑
0                    (10) 187 

𝑇𝑙𝑎𝑔 = 𝑇𝐹𝑝𝑒𝑎𝑘 − 𝑇𝑅𝑝𝑒𝑎𝑘                  (11) 188 

Respectively, where 𝑄(𝑡) is the flow discharge at time t; 𝑇𝑑 is the duration of hydrological response, which is from the 189 

start of rainfall event to the time when f(t)<0.05*Qpeak. 190 

3. Results and Discussion 191 

3.1 Model validation 192 

We validated the Dead Run GSSHA model through analyses of the 21 largest warm season (April-September) flood events 193 

with peak discharges ranging from 70.3 to 253 m3/s in the 2008-2012 period. The simulated discharge was compared to 194 

USGS streamflow observations for all six gaging stations. We assessed the peak discharge and peak time to examine the 195 
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performance of the model. The GSSHA modeled and USGS gage measured hydrographs for three storm events are 196 

compared in Fig. A2-A4 in Appendix A.  197 

Peak discharge difference is calculated as the difference between the modeled peak and measured peak as a percentage of 198 

the measured peak. Median peak discharge differences across all 21 events range from -35% to 57% (Fig. 2a). The largest 199 

difference is in sub-basin DR-1. The reason is likely that DR-1 has a large area of land which was not represented fully on 200 

county storm sewer maps (Smith et al., 2015). The median peak discharge difference at the watershed outlet was -14%. 201 

The peak time difference is calculated as the time difference between the simulated peak time and measured peak time (Fig. 202 

2b). The median difference ranges from -15 to +10 minutes, which is within the temporal resolution of the data (15 minutes 203 

for rainfall; 5 minutes for streamflow). The results show that the main tendency of flood response is captured by the model. 204 

Overall, the validation shows that the physically-based, minimally-calibrated model can capture the main shape and timing 205 

of the measured response in Dead Run. We therefore conclude that the model is suitable for the subsequent flood frequency 206 

analysis. It should be noted that the errors in simulated response may be attributable to measurement errors tied to stage 207 

discharge curves and to conversions of radar reflectivity to rainfall rate, as well as to the features that were simplified within 208 

the model, such as initial soil moisture and some aspects of the storm drain network (Smith et al., 2015). 209 

3.2 Flood frequency distribution 210 

Under the SST framework, 3-h rainfall scenarios for 10-yr, 50-yr, 100-yr and 200-yr return periods were generated (Fig. 211 

A5 in Appendix A). We then simulated hydrographs using the GSSHA model and rainfall scenarios for Franklintown and 212 

the five DR subwatershedss. 213 

3.2.1 Flow discharge estimates 214 

The distribution of maximum discharge at the Franklintown gage for rainfall return periods ranging 215 

from 10 to 200 years is illustrated in Fig. 3a. To compare the distributions of rainfall and flood peaks, 216 

the values are normalized to range from 0 to 1. The most striking feature is that the distributions of 217 

total rainfall and flood peaks are highly variable across the four return periods. The kernel density 218 

distribution of rainfall shows a peak at the position of 50th quantile for four return periods. The 219 

distribution of flood peak is more complex. For the 100-yr rainfall return period, the kernel density 220 

distribution of flood peaks shows a multimodal trend with two small peaks around the 25th and 75th 221 

quantiles, which contrasts with the unimodal distribution of rainfall. For the 200-yr rainfall return 222 

period, the interquartile range (IQR) is larger than other return periods. The relative standard deviation, 223 
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known as the coefficient of variation (CV), is used to present the dispersion of peak distribution. CV 224 

is defined as the ratio of the standard deviation to the mean. Unlike the IQR results, CV decreases with 225 

increasing return period. According to Zhou et al. (2019), the variability of basin-average total rainfall 226 

increases with return period. The pronounced difference in the distributions of total rainfall and flood 227 

peaks highlights a complex relationship between rainfall properties and flood response in this relatively 228 

small urbanized watershed. 229 

The flood response time is calculated as the difference between the time of maximum rainfall rate and 230 

maximum discharge (Fi. 3b). Median values of response time are similar under all return periods, 231 

ranging from 70 to 83 minutes, which, given the temporal resolution of rainfall is 15 minutes, can be 232 

similar for all four return periods. It can be concluded that although the flood peak magnitude increases 233 

with rainfall return period, the response time is consistent for various rainfall scenarios. This implies 234 

in this small highly urbanized watershed the response time is more linked to the drainage system rather 235 

than to rainfall characteristics. 236 

Figure 4 demonstrates the simulated hydrographs for the four return periods. The upper and lower 237 

spread (75th and 25th quantiles) of the hydrograph indicates the range of variability of simulated 238 

hydrographs. For the 10-yr return period, the hydrograph is relatively smooth with smaller spread. 239 

With increasing return period, the hydrograph is peakier with shorter duration of high magnitude 240 

discharge. The hydrograph for the 50-yr return period shows a transitional shape between small (10-241 

yr) and large (100-yr and 200-yr) rainfall return periods. For the 100-yr return period, the upper spread 242 

shows a tendency toward dual peaks, which cannot be revealed from conventional design flood 243 

practices. For the 200-yr return period, the hydrograph is peakiest with a large upper spread. 244 

3.2.2 Spatial distribution of flood magnitude 245 

The distribution of flood peaks over the five subwatersheds exhibits contrasting variation with rainfall return periods 246 

ranging from 10 to 200 years (Fig. 5). Generally, basin scale plays an important role in determining the distribution of flood 247 

magnitudes. Under the 10-yr rainfall return period, DR1 and DR2, with basin scales of 1.3 and 2.0 km2, have higher flood 248 

peaks and interquartile ranges than other subwatersheds. DR5 (2.1 km2) has comparable flood magnitude with DR4 (6.3 249 

km2) and Franklintown (14.3 km2), while has a larger interquartile range than the latter two. DR3 with a basin scale of 4.95 250 

km2, has comparable flood magnitudes with DR1 and DR2. Under the 200-yr rainfall return period, DR2 and DR3 has a 251 

slightly larger flood magnitude than DR1. DR5 has the largest interquartile range than others, though its flood peaks are 252 
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smaller than other small watersheds. 253 

Results show that sub-basin flood distributions vary significantly with rainfall return periods. DR1 with larger impervious 254 

area and dentention controlled area than DR2 (Table 1), has larger flood peaks under small rainfall return period. For large 255 

return periods, DR2 has larger peak and interquartile range than DR1, implying that flood peaks are less impacted by 256 

impervious area for extreme storms. DR5, with the smallest dentention controlled area by detention infrastructure, has the 257 

smallest flood peaks under small rainfall return period. Under large return period, however, it has the largest changes in 258 

peak discharges with comparable flood peaks with subwatersheds larger than 6 km2. DR3 and DR4, with basin scale of 259 

4.95 and 6.29 km2, have contrasting flood magnitude under small and large return periods. DR3 with larger impervious 260 

area and dentention controlled area has larger flood peaks than DR4. The difference is more significant for small rainfall 261 

events with the median value of flood peak for DR3 more than double that of DR4. From these results, it can be concluded 262 

that impervious area and dentention controlled area play a significant role in determining the peak discharges, but the 263 

impact reduces with increasing rainfall return period. The less dentention controlled sub-basin has larger flood variability 264 

under large return period. The detention infrastructure impacts flood peak and its variability. 265 

We further examine the spatial distribution of flood magnitude over the Dead Run watershed under the 100-yr return period 266 

of flood at Franklintown (Fig. 6). The dimensionless flood index is used to compare flood peak magnitudes over the 267 

watershed (Lu et al., 2017). The flood index is computed as the maximum flow discharge divided by the computed 10-yr 268 

flood (Q10-y) at the same location, which is set as the median value of 10-yr peak discharge at the watershed outlet for each 269 

100-yr design storm simulation. At Franklintown, the flood index and its interquartile range are largest across the 270 

watersheds, with the median value greater than 2.5. The flood index in the five sub-watersheds is relatively lower, within 271 

a median value between 1.5 and 2. DR2, as a sub-watershed of DR3, has a larger median value than DR1 and DR3. The 272 

flood indices at DR1 and DR3 have similar median values and interquartile ranges. Values in DR4 are higher than its sub-273 

watershed, DR5, with a median value of 2. The variability of flood magnitudes, indicated by the CV, is stable among the 274 

watersheds, ranging from 0.30 to 0.39. The spatial distribution of flood magnitude points to the significant heterogeneity 275 

of flood distributions over the 14.3-km2 watershed. For storm events that produce the same peak discharge return period at 276 

the watershed outlet, the subsequent upstream flood response can vary substantially in the Dead Run watershed. 277 

3.3 Rainfall-Flood Relationships 278 

3.3.1 Rainfall structure and flood response 279 

We investigate the relationship between the spatial and temporal characteristics of rainfall and flood response for small and 280 

large rainfall return periods based on Spearman’s rank correlation (Fig. A6 in Appendix A). The peak rainfall rate (Mmax), 281 
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total rainfall (Rsum), fractional coverage (Z), rainfall location (L), rainfall-weighted flow distance (RWD) and the dispersion 282 

of RWD (S) are used to characterize rainfall spacetime structure. For the 10-yr return period, the flood peak is somewhat 283 

correlated with total rainfall, peak rainfall rate and storm core coverage with correlation coefficient of 0.16. For the 200-yr 284 

return period, in contrast, there is no significant correlation between these features with correlation coefficients of -0.09, 285 

0.07 and -0.02, respectively, implying a complex and nonlinear relationship between extreme storms and floods in the 286 

watershed. 287 

We used random forest regression models to examine the importance of rainfall characteristics to the flood response. 288 

Rainfall spacetime structure characteristics are used as RF model features. The flood peak is set as the model target. The 289 

main parameters of RF model are tuned by a grid search approach(Probst et al., 2019). The prediction performance is 290 

assessed using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and explained variance regression score (E 291 

score)(Achen, 2017). Smaller values of MAE and RMSE indicate better model performance. E score ranges from 0 to 1 and 292 

a larger value indicates a better model (The training process of RF model is shown in Fig. A7 in Appendix A). The difference 293 

in feature importance is compared between the 10-yr and 200-yr return periods (Fig. 7). For the 10-yr return period, peak 294 

rainfall rate (Mmax) and total rainfall (Rsum) are the most two important features. For the 200-yr return period, however, the 295 

dispersion of RWD (S) and fractional coverage of storm core (Z) are more important than peak rainfall rate and total rainfall. 296 

The rainfall location (L) has the smallest importance for both return periods. The results demonstrate the different 297 

relationships between rainfall structure and flood response under small and extreme rainfall events. For extreme storms, 298 

the maximum discharge is more closely linked to the spatial structure of rainfall, which is consistent with the results in 299 

(Peleg et al., 2017; Zhu et al., 2018). 300 

The temporal shapes of hydrographs and hyetographs are compared by using the coefficient of skewness (Fig. 8). The 301 

skewness is used to assess the shape of rainfall process and discharge process. A negative value of skew indicates a left tail 302 

of the distribution, and positive indicates a right tail. For the 10-yr return period, the rainfall skewness ranges from -0.1 to 303 

3.5, demonstrating the mixed shapes of temporal distribution. Similar features are found for discharge shapes. For the 200-304 

yr return periods, the skewness of discharge is mostly positive while the skewness of rainfall events still varies from -1 to 305 

2.5. The general conclusion of these analyses is that regardless of the temporal distribution of rainfall, the flood response 306 

is relatively rapid, highlighting the role of the urban drainage system for the hydrographic response. The relationship 307 

between the variability of discharge and rainfall is not significant for the four return periods, which implies that in a highly-308 

urbanized watershed, the drainage system smooths rainfall variability somewhat. 309 
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3.3.2 Rainfall return period vs. flood return period 310 

In conventional design storm/flood practices, the return period of rainfall and peak discharge is often assume to be 311 

equivalent (Rahman et al., 2002). Under the SST framework, we can examine this assumption (Wright et al., 2014a). For 312 

each SST realization containing 100 rainfall scenarios with return period from 5 years up to 100 years, the peak discharge 313 

can be simulated and ordered. Flood frequency for return periods from 5 years up to 100 years are then estimated from the 314 

ordered peaks. We run 30 SST realizations in total. The Spearman’s rank correlation of the two return periods is 0.5 (Fig. 315 

9). The results quantitatively confirm that the assumption of a 1:1 return period equivalency between design storm and 316 

design flood cannot hold, even in a small highly-urbanized watershed where drainage network and rainfall structure play 317 

an important role in flood response. 318 

3.3.3 Impact of rainfall spatial heterogeneity on flood responses 319 

We also compared the simulated flood response resulting when rainfall is uniform over the watershed, rather than spatially 320 

distributed as in previous analyses (Fig. 4 and Table 2). Generally, the flood peaks generated from uniform rainfall have 321 

lower peaks than for non-uniform rainfall. The difference increases with return period. Under the 10-yr return period, the 322 

shapes of the two hydrographs have similar upper and lower bounds (75% and 25% quantiles). The median flood peak 323 

using non-uniform scenarios is 22% higher than the uniform scenarios. Under the 200-yr return period, the hydrograph 324 

resulting from non-uniform rainfall is much peakier than the uniform SST scenarios with higher upper and lower bounds. 325 

The lower bound of hydrograph by non-uniform SST scenarios is close to the median hydrograph of uniform SST scenarios. 326 

The impact of rainfall spatial heterogeneity among the five subwatersheds is different. DR1, with a basin scale of 1.32 km2 327 

and located in the north-west boundary of the watershed, was the least-impacted by rainfall spatial distribution for all return 328 

periods. In DR2, on the other hand, which is similar in drainage area to DR1, the flood peak increased by 46% for the 200-329 

yr return period. For DR3 and DR4, the spatial heterogeneity of rainfall contributes more to the flood peaks in DR4 than 330 

in DR3. The most striking difference in flood peaks is in DR5 for the 50-yr return period. The difference in flood magnitude 331 

is 75%. As mentioned above, DR5 is the sub-basin with the least dentention controlled area. This finding is likely tied to 332 

the complex relationship between space-time rainfall structure and the drainage network. We can thus conclude that the 333 

spatial heterogeneity of rainfall can increase flood peaks dramatically under both small and large return periods. The impact 334 

increases with return period. This result shows that the assumption of spatially uniform rainfall will underestimate flood 335 

frequency. 336 
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4. Summary and conclusions 337 

This paper addresses the problem of the impacts of short-duration rainfall variability on hydrologic response in small 338 

urbanized watershed. By coupling a high-resolution radar rainfall dataset and stochastic storm transposition (SST) with the 339 

GSSHA distributed physics-based model (see also (Wright et al., 2014a; Zhu et al., 2018), the relationships between rainfall 340 

spatiotemporal structure and urban flood response is examined. The main findings are as follows: 341 

1. The flood frequency distributions for subwatersheds within the highly-urbanized 14.3 km2 Dead Run watershed 342 

demonstrates the complexities of flood response for both short and long rainfall return periods. Especially for 3-h extreme 343 

storms, the distribution of flood peaks shows large variability. The variability of flood magnitude shows a pronounced role 344 

of rainfall space-time structure in flood production. This calls into question the commonly-made design storm assumption 345 

of spatially uniform rainfall. The response time is less affected by rainfall structure and appears to be more closely 346 

associated with the basin scale and drainage network features. 347 

2. The spatial heterogeneity of flood frequency over the 14.3-km2 watershed is striking for the 100-yr return period. The 348 

intercomparison between subwatersheds show that the impact of impervious area decreases with increasing return periods. 349 

The subbasin with the least detention infrastructure shows the largest flood variability for long return periods. For the100-350 

yr return period, the flood index of five subwatersheds are different from that of their downstream outlet. It shows that 351 

storm events that produce the same peak discharge return period at the basin outlet can be the result of very different 352 

upstream flood responses. 353 

3. The relationship between the spacetime structure of rainfall and flood response is complex. The random forest-based 354 

feature importance analysis shows very different relationships between rainfall structure and flood response for frequent 355 

vs. extreme rainfall events. For smaller and more frequent rainfall events, flood peaks are more closely linked to the 356 

temporal features of rainfall (total rainfall and peak rainfall rate). For extreme storms, the maximum discharge is closely 357 

linked to the spatial structure of rainfall (storm core coverage). This finding is broadly consistent with (Peleg et al., 2017) 358 

and (Zhu et al., 2018), despite the very different drainage scales considered in those studies. There is no significant 359 

correlation between rainfall peak, total rainfall and flood peaks, implying an important role of surface properties in 360 

urbanized watersheds. Similar to (Wright et al., 2014a), this comparison calls into question the conventional design storm 361 

assumption of a 1:1 equivalency between rainfall and flood peak return periods. 362 

4. The spatial heterogeneity of rainfall is a key driver of flood response across scales. Relative to spatially uniform rainfall, 363 

spatially distributed rainfall can increase flood peaks by 50% on average at the watershed outlet and its subwatersheds for 364 

both small and large return periods. This finding is broadly consistent with prior results at much larger scales in an 365 
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agricultural setting ((Zhu et al., 2018)) and suggests both spatial and temporal rainfall distributions need to be considered 366 

in flood frequency analyses, even in relatively small urban watersheds. This study also implies that the drainage network 367 

substantially alters the impact of rainfall characteristics on the runoff. 368 

Coupling the GSSHA model and SST-based rainfall frequency analysis, this study provides an effective approach for 369 

regional flood frequency analysis for urban watersheds. It can be used to explore the dominant control on the upper tail of 370 

urban flood peaks, without many of the limiting assumptions associated with design storm methods. The study area could 371 

be extended in future work with larger basin scales and by manipulating the spatial heterogeneity of basin characteristics 372 

within GSSHA or other similar modeling systems. 373 
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Figure 1. Overview of Dead Run study region including (a) location of DR, elevation, and transposition domain of 554 

SST; (b) land use land cover and stream gages. Land use land cover was obtained from the National Land Cover 555 

Data set (NLCD, http://www.mrlc. gov) 556 

 557 

Figure 2. Comparison of (a) flood peak discharges and (b) response times for 21 historical rainfall events. 558 

 559 

Figure 3. Violin plots of (a) normalized flood peak and normalized total rainfall; and (b) response time based on the 560 

3-h design storms from 10-y to 200-y return periods. (The red dot indicates mean value. Dashed line in the middle 561 

indicates the median value. Upper and lower dashed lines indicate the 75th and 25th quantiles, respectively.) 562 
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 563 

Figure 4. Time series of simulated hydrographs for Franklintown based on the 3-h design storms from 10-yr to 200-564 

yr return periods with spatially uniform (blue) and spatially distributed (red) rainfall. The grey bar indicates the 565 

median value of basin-averaged rainfall rate. 566 

 567 

Figure 5. Boxplots of normalized flood peaks for Franklintown and five subwatersheds. 568 
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 569 
Figure 6. Boxplot of flood index across the DR subwatersheds for the 100-yr design storms. 570 

  571 
Figure 7. Feature importance analysis of RF model for space-time rainfall structure and 10-yr (red) and 200-yr (blue) 572 

flood peaks. 573 
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 574 

Figure 8. Scatter plots of skewness of rainfall and peak discharge—left: 10-yr return period; right: 200-yr return 575 

period. 576 

 577 

Figure 9. Scatterplot comparison return periods for rainfall and peak discharge for individual SST-based 578 

simulations. 579 

 580 

Table 1: Characteristics of Dead Run watershed. 581 

 

USGS ID 
Area 

(km2) 

Developed Land 

(%) 

Imperviousness 

(%) 

Controlled 

area (%) 
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DR1 01589317 1.32 99% 73.6 41.9 

DR2 01589316 1.92 98% 55.5 18.5 

DR3 01589320 4.95 98% 62.2 24.4 

DR4 01589315 6.29 98% 51.5 12.2 

DR5 01589312 2.05 96% 47.9 3.2 

Franklintown 01589330 14.3 96% 52.3 25.1 

Table 2. The median flood peak reductions using spatially uniform and spatially distributed 582 

rainfall. 583 
 T=10 yr T=50 yr T=100 yr T=200 yr 

DR1 14% 20% 13% 26% 

DR2 19% 40% 28% 42% 

DR3 24% 33% 27% 31% 

DR4 32% 51% 38% 35% 

DR5 15% 75% 37% 30% 

Franklin 22% 36% 31% 42% 

 584 
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