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Abstract. The role of rainfall space-time structure, as well as its complex interactions with land surface properties, in flood 11 

response remains an open research issue. This study contributes to this understanding, specifically in small (<15 km2) urban 12 

watersheds. Using a flood frequency analysis framework that combines stochastic storm transposition-based (SST) rainfall 13 

scenarios with the physically-based distributed GSSHA model, we examine the role of rainfall spatial and temporal 14 

variability in flood frequency across drainage scales in the highly-urbanized Dead Run watershed (14.3 km2) outside of 15 

Baltimore, Maryland, USA. The results show the complexities of flood response within several subwatersheds for both 16 

short (<50 years) and long (>100 years) rainfall return periods. The impact of impervious area on flood response decreases 17 

with increasing rainfall return period. For extreme storms, the maximum discharge is closely linked to the spatial structure 18 

of rainfall, especially storm core spatial coverage. The spatial heterogeneity of rainfall increases flood peak magnitudes by 19 

50% on average at the watershed outlet and its subwatersheds for both small and large return periods. The framework of 20 

SST-GSSHA-coupled frequency analysis also highlights  results imply that commonly-made assumption of spatially- 21 

uniform distributed rainfall scenarios are needed in urban quick-response flood frequency modeling is problematic even 22 

for  relatively small basin scales. 23 

1. Introduction 24 

Rainfall spatiotemporal structure plays an important role in flood generation in urban watersheds (Saghafian et al., 1995; 25 

Smith et al., 2005b; Emmanuel et al., 2012; Nikolopoulos et al., 2014). Spatial heterogeneities in land use and land cover 26 

complicate the translation of rainfall spatiotemporal distribution into flood responses (Galster et al., 2006; Morin et al., 27 

2006; Ntelekos et al., 2008; Ogden et al., 2011; Yin et al., 2016; ten Veldhuis et al., 2018), especially for small catchments 28 

(Faurès et al., 1995; Smith et al., 2005a; Zhou et al., 2017; Zhou et al., 2019; Yang et al., 2020). Due to the varying nature 29 
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of rainfall and complexities of urban characteristics, tThe influence of rainfall spatial-temporal structure on flood frequency 30 

analysis in urban areas remains an open research issue. 31 

Previous studies have demonstrated the sensitivity of hydrological response to rainfall variability in both space and time 32 

(Smith et al., 2012; Ochoa-Rodriguez et al., 2015; Rafieeinasab et al., 2015). Many studies have examined the interaction 33 

between rainfall variability and flood response. By necessity, early studies tended to explore rainfall variability using rain 34 

gages, which were the main source of rainfall measurements until relatively recently. The accuracy of flood simulations 35 

using spatially-detailed rainfall scenarios has been examined (Dawdy and Bergmann, 1969; Schilling, 1991), along with 36 

the sensitivity of hydrologic response to rainfall gage network density (Faurès et al., 1995; Arnaud et al., 2002; Younger et 37 

al., 2009; Notaro et al., 2013). Beven and Hornberger (1982) argued that the spatial variability affects the response time 38 

more than the peak magnitude, whereas Wilson et al. (1979) found the reverse. These studies were limited, however, by 39 

the general sparsity of rain gages, which may not adequately capture the spatial distribution of rainfall. Following the 40 

advent of rainfall measurement using weather radar (Fulton et al., 1998; Krajewski and Smith, 2002), many studies have 41 

highlighted the use of high-resolution rainfall data in assessing rainfall variability over various range of spatial and temporal 42 

scales (Berne et al., 2004; Gebremichael and Krajewski, 2004; Moreau et al., 2009; Emmanuel et al., 2012) and how their 43 

use could improve runoff estimation (Morin et al., 2006; Smith et al., 2007; Schellart et al., 2012; Wright et al., 2014b; 44 

Rafieeinasab et al., 2015; Gourley et al., 2017).{Wright, 2014 #230}{Wright, 2013 #4} 45 

 46 

There are conflicting findings on the relative importance of rainfall temporal and spatial characteristics. Paschalis et al. 47 

(2014), Ochoa-Rodriguez et al. (2015) and Yang et al. (2016), for example, found that “coarsening” temporal resolution 48 

has a stronger impact than coarsening spatial resolution, especially for small watersheds. Similar results were found in the 49 

study of Paschalis et al. (2014) in a 477 km2 catchment in Switzerland. Adams et al. (2012) found the space-time averaging 50 

effects of routing through the catchment noticeably remove the impact of spatially variable rainfall at a 150-km2 catchment 51 

scale. Bruni et al. (2015), in contrast, found a higher sensitivity of modeled flow peaks to spatial resolution rather than the 52 

temporal resolution. Peleg et al. (2017) showed an increasing contribution of the spatial variability of rainfall to the 53 

variability of flow discharge with longer return periods. Cristiano et al. (2018); Cristiano et al. (2019) found the spatial 54 

aggregation of rainfall data can have a strong effect on hydrological responses. Zhu et al. (2018) examined the influence 55 

of rainfall variability on flood frequency analysis and addressed the impact of antecedent moisture in flood generation for 56 

various basin scales ranging from 16 km2 up to 4,400 km2. Using observational data, Zhou et al. (2017) showed that the 57 

impact of antecedent moisture is low in a highly-urbanized catchment. 58 

Previous studies have demonstrated the sensitivity of hydrological response to rainfall variability in both space and time 59 
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(Smith et al., 2012; Ochoa-Rodriguez et al., 2015; Rafieeinasab et al., 2015). The relationship between rainfall and flood 60 

are scale-dependent, varying with rainfall patterns, basin characteristics, and runoff generation processes. However, there 61 

is still no clear answer on the relative importance of temporal and spatial features of rainfall on flood responses (Cristiano 62 

et al., 2017). Moreover, studies focusing on small (< 15 km2) urbanized basins are relatively few (Peleg et al., 2017) and 63 

the issues remain poorly understood. 64 

Stochastic Storm Transposition (SST) was developed as a physically-based stochastic rainfall generator for rainfall 65 

frequency analysis. Previous studies show that SST with relatively short-term rainfall records (10 or more years) of high-66 

resolution radar rainfall fields can produce reasonable rainfall scenarios with realistic spatial-temporal structure, which 67 

cannot be provided by conventional design storm methods (Wright et al., 2013; Wright et al., 2017; Zhou et al., 2019). In 68 

the conventional approach, the idealized assumtions include idealized rainfall temporal structure, uniformed spatial 69 

distribution and 1:1 rainfall-flood return periods equivalence (see (Wright et al., 2013; Wright et al., 2017; Zhou et al., 70 

2019), and references therein). These assumtions ignore the interaction between spatiotemporal structure of rainfall and 71 

flood responses, which increases the uncertainty of frequency estimations. Coupled with hydrological models, the SST-72 

based framework can be used for multiscale rainfall frequency analysis and flood frequency analysis that accounts for 73 

rainfall variability and surface characteristics (Wright et al., 2014a; Perez et al., 2019; Yu et al., 2019; Wright et al., 2020).  74 

Previous studies have demonstrated the sensitivity of hydrological response to rainfall variability in both space and time 75 

(Smith et al., 2012; Ochoa-Rodriguez et al., 2015; Rafieeinasab et al., 2015). The relationship between rainfall and flood 76 

are scale-dependent, varying with rainfall patterns, basin characteristics, and runoff generation processes. However, there 77 

is still no clear answer on the relative importance of temporal and spatial features of rainfall on flood responses (Cristiano 78 

et al., 2017). Moreover, studies focusing on small (< 15 km2) urbanized basins are relatively few (Peleg et al., 2017) and 79 

the issues remain poorly understood. 80 

 81 

This study contributes to the understanding of the interaction between rainfall variability and flood response over small-82 

scale urbanized watersheds (<15 km2) for a short-duration rainfall and quick hydrologic response setting. We build on the 83 

SST-based rainfall study of Zhou et al. (2019) using the physically-based hydrological model implementation introduced 84 

by Smith et al. (2015) in for the Dead Run watershed outside of Baltimore, Maryland, USA. The framework of SST-based 85 

rainfall frequency analysis coupled with a hydrological model provides an effective approach for detailed flood frequency 86 

study (Wright et al., 2014a; Yu et al., 2019). Under the framework, we characterize the spatial and temporal features of 87 

rainfall events under different return periods and examine their roles in determining flood frequency in small urban 88 

watersheds. T by addressing the following questions will be addressed: (1) How does flood frequency in small urban 89 
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watersheds vary with diverse space-time rainfall structure and rainfall magnitude? (2) Among the space-time feature of 90 

rainfall, wWhat are the dominant space-time feature of rainfall features that control flood peak distribution in small urban 91 

watersheds? By answering the above questions, the study can improve the understanding of interactions between rainfall 92 

and flood process in small urbanized area. In addition, some idealized assumption used in the convetional rainfall-flood 93 

frequencny analysis will be questioned. 94 

 95 

Using a framework that combines high-resolution realistic SST- and radar-based rainfall scenarios with model-based flood 96 

frequency analysis, we characterize the spatial and temporal features of rainfall events under different return periods and 97 

examine their roles in determining flood frequency in small urban watersheds. The paper is organized as follows: in Section 98 

2, we introduce the study region and describe the SST-based methodology, GSSHA model, and the metrics used to 99 

characterize rainfall and flood response. In Section 3, we present model validation and analyses of flood frequency 100 

distributions and rainfall-flood relationships. A summary and conclusions are presented in Section 4. 101 

2. Data and method 102 

2.1 Study region and data 103 

The study focuses on the highly-urbanized 14.3 km2 Dead Run (DR) watershed located west of Baltimore, Maryland, USA 104 

(Fig. 1). DR is a tributary to the Gwynns Falls watershed, which is the principal study catchment of the Baltimore 105 

Ecosystem Study (BES;)  Pickett and Cadenasso (2006). The basin has an impervious fraction of approximately 52.3% 106 

(Table 1). The watershed has a dense network of six stream gauges with drainage areas ranging from 1.2 to 14.3 km2 (Fig. 107 

1; Table 1). The subwatersheds are developed after the implementation of the Maryland Stormwater Management Act of 108 

1982 (Maryland, 1982) with many detention infrastructures such as small local ponds. The wealth of data for Dead Run 109 

provides exceptional resources to examine rainfall and hydrologic response (Beighley and Moglen, 2002; Nelson et al., 110 

2006; Meierdiercks et al., 2010; Smith et al., 2015). For example, Meierdiercks et al. (2010) analyzed the impact of storm 111 

drains and detention basins on a single storm event in DR, while Ogden et al. (2011) used the Gridded Surface Subsurface 112 

Hydrologic Analysis (GSSHA) model to analyze the effects of storm drains, impervious area, and drainage density on 113 

hydrologic response. Smith et al. (2015) created a DR model using GSSHA to examine the effects of storage and runoff 114 

generation processes through analyses of a large number of storm events. 115 
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 116 

Figure 1. Overview of Dead Run study region including (a) location of DR, elevation, and transposition domain of 117 

SST; (b) land use land cover and stream gages. The red outline and grey outline in (a) indicates the boundary of DR 118 

watershed and Baltimore City, respectively. 119 

 120 

 121 

High resolution (15-min temporal resolution, 1-km2 spatial resolution) 34radar rainfall fields for the 2000-2015 period 122 

were derived from volume scan reflectivity fields from the Sterling, Virginia WSR-88D (Weather Surveillance Radar-1988 123 

Doppler) radar. The two-dimentional radar rainfall fields are then developed from the reflectivity fields using theThe 124 

Hydro-NEXRAD algorithms (Krajewski et al., 2011) which have been used in rainfall and hydrological studies (Smith et 125 

al., 2007; Lin et al., 2010; Smith et al., 2013; Wright et al., 2014b; Zhou et al., 2017) are used to estimate rainfall from 126 

reflectivity fields. The Hydro-NEXRAD algorithms includes quality control algorithms, Z-R conversion of reflectivity to 127 

rainfall rate, time integration, and spatial mapping algorithms (Seo et al., 2011). To improve the rainfall estimates, a 128 

multiplicative mean‐field bias correction (Smith and Krajewski, 1991; Wright et al., 2012) is applied on a daily basis using 129 

a network of 54 rain gauges in and around the Baltimore County. The bias computation takes the form B𝑖  =  
∑ 𝐺𝑖𝑗𝑆𝑖

∑ 𝑅𝑖𝑗𝑆𝑖

 . Where 130 

Gij is the rainfall accumulation for gage j on day i, Rij is the daily rainfall accumulation for the co-located radar pixel 131 

accumulation on day i, and Si is the index of the rain gage stations for which both the rain gage and the radar report positive 132 

rainfall accumulations for day i. Each 15-min radar rainfall field from day i is then multiplied by Bi.  A network of 54 rain 133 

gauges in and around Baltimore City is used for mean field bias correction of the radar rainfall. The reader is directed to 134 
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Zhou et al. (2019) and references therein for further details on the rainfall data and bias correction methods. 135 

Instantaneous discharge data with a resolution of five minutes from the U.S. Geological Survey (USGS) were used for DR-136 

1, DR-2, DR-5, and Franklintownfor each of the six gaged watersheds. For DR-3 and DR-4, the discharge data is converted 137 

through stage discharge curves from (Lindner and Miller, 2012). Streamflow observations for the outlet station at 138 

Franklintown extend back to 1960. T, while the DR1 – DR5 subwatersheds stations have records beginning in 2008.  139 

Table 1: Characteristics of Dead Run watershed (Smith et al., 2015). 140 

 

USGS ID 
Area 

(km2) 

Developed Landa 

(%) 

Imperviousness 

(%) 

Dentention 

controlled 

areab (%) 

DR1 01589317 1.32 99% 73.6 41.9 

DR2 01589316 1.92 98% 55.5 18.5 

DR3 01589320 4.95 98% 62.2 24.4 

DR4 01589315 6.29 98% 51.5 12.2 

DR5 01589312 2.05 96% 47.9 3.2 

Franklintown 01589330 14.3 96% 52.3 25.1 

Note:  

a. Developed lands include “Developed, open space” (>20% impervious surface), “Developed, low intensity” (20%-49% impervious 

surface), “Developed, medium intensity” (50%-79% impervious surface), and “Developed, high intensity” (80% or more impervious 

surface). Data source: USGS 2012 National Land Cover Dataset (NLCD). 

b. Dentention controlled areab refers to the area controlled by detention infrastructure. 

 141 

2.2 GSSHA Hydrological Model 142 

The distributed physics-based GSSHA model is used to simulate multi-scale flood response. GSSHA is a two-dimensional, 143 

distributed-parameter raster-based (i.e. square computational cell-based) hydrologic modeling system. It uses explicit finite 144 

difference and finite volume methods in two dimensions on a structured grid to simulate overland flow and in one dimension 145 

to simulate channel flow (Downer and Ogden, 2004; 2006). Previous studies of the GSSHA model show that the model 146 

with fine grid resolution can produce adequate simulations of flood response, especially when driven by high-resolution 147 

radar rainfall fields (Sharif et al., 2010; Sharif et al., 2013; Wright et al., 2014a; Cristiano et al., 2019). 148 

In this study, we use the Dead Run model created by Smith et al. (2015). A brief description of the model is provided here; 149 

see Smith et al. (2015) for more details. The delineation of the watershed and channel network was based on a 30-m USGS 150 

digital elevation model (Gesch et al., 2002). Channel flow overland flow was set with different Manning’s roughness 151 

coefficients. Additional stream channels were added based on the Baltimore County hydrography Geographic Information 152 



7 
 

Systems  (GIS) map. Stream cross sections were extracted from a 1-m resolution topography data set for Dead Run 153 

developed from lidar. Storm sewers in DR-2 and DR-5 were added using the Baltimore County Stormwater Management 154 

GIS map and digitized storm sewer maps. The semicircle’s diameter was set to the pipe diameter. Detention basins were 155 

represented within the channel with cross sections extracted from the 1-m lidar topographic data.3 156 

Several aspects of the model were modified from those used in Smith et al. (2015), primarily to improve computational 157 

speed. Infiltration is calculated using Richards’ equation (RE) in Smith et al. (2015), while this study uses the three-layer 158 

Green-Ampt (GA) scheme. A uniform Manning’s roughness coefficient of 0.01 is set for all the stream channels for model 159 

simplification. Initial soil moisture is approximated to be one third of field capacity for each storm event. 160 

2.3 SST procedure 161 

The rainfall scenarios in this study are developed using RainyDay, an open-source SST software package (Wright et al., 162 

2017). The steps used are briefly summarized here; the reader is directed to Zhou et al. (2019) and references therein for 163 

further details. 164 

The first step is to identify a geospatial “transposition domain” that contains the watershed of interest. In this study, we use 165 

a square 7,000 km2 transposition domain centered on the DR watershed. (Zhou et al., 2019) presented a detailed 166 

examination of heterogeneity in extreme rainfall over the transposition domain using a variety of metrics, including storm 167 

counts, mean storm depths and intensities, convective activity indicated by lightning observations, and analysis of spatial 168 

and temporal rainfall structure. 169 

The second step is to identify the largest m storms within the domain at the t-hr time scale. This collection of storms is 170 

referred to as a storm catalog. The storms are selected with respect to the size, shape and orientation of the DR watershed. 171 

We henceforth refer to these as “DR-shaped storms.” The m DR-shaped storms are selected from an n-year rainfall record, 172 

such that an average of λ=m/n storms per record year are included in the storm catalog. In this study, we chose m = 200 173 

storms over the 16-year radar record. 174 

The third step is to randomly sample a subset of k storms from the storm catalog, where k refers to a stochastic number of 175 

storms per year. The k is assumed to follow a Poisson-distributed number of storm occurrences with rate parameter λ=m/n 176 

storms per year. All rainfall fields associated with a storm are transposed by an east-west distance ∆x and a north-south 177 

distance ∆y, where ∆x and ∆y are drawn from distributions DX(x) and DY(y) which are bounded by the limits of the 178 

transposition domain. Based on the spatial heterogeneity analysis of extreme rainfall in the domain, distributions DX(x) and 179 

DY(y) can be set as uniform or non-uniform. In Zhou et al. (2019) and this study, since the assumption of regional 180 

homogeneity cannot be relaxed, we used the non-uniform distribution. A two-dimensional probability density function 181 
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(PDF) of spatial storm occurrence (Wright et al., 2017) and an intensity factor that rescales the rainfall magnitude (Zhou 182 

et al., 2019) are is used as the basis for non-uniform spatial transposition (Fig. A1 in Appendix A). This step can be 183 

understood as generating a “synthetic year” of extreme rainfall events over the domain based on resampling and transposing 184 

observations. For each of the k transposed storms, compute the t-hr basin-average rainfall depth over the watershed. Among 185 

the k rainfall depths, the maximum depth is retained as a synthetic t-hr annual rainfall maximum for the watershed, while 186 

the transposed rainfall fields are saved for use as inputs to a GSSHA model simulation. 187 

The fourth step simply repeats Step 3 many S times to recreate multiple years of synthetic t-hour “annual” rainfall maxima 188 

and associated transposed rainfall fields for the watershed. In this study, these steps are repeated S =31,000 times and the 189 

ordered “annual” maxima are used to generate rainfall return period estimates up to 2500 years. 31,000 such realizations 190 

of 2500-yr series are generated, and the median value of 1,0300 realizations are used to generate estimates for return periods 191 

up to 2500 years. 192 

2.4 Characteristics of rainfall and hydrologic response 193 

2.4.1 Spatio-temporal characteristics of rainfall 194 

Rainfall statistics were computed for each event, based on radar rainfall data at 15-min, 1-km2 resolution, to characterize 195 

the spatial and temporal variability of rainfall (following Smith et al. (2002); Smith et al. (2005b); see also Zoccatelli et al. 196 

(2011) and Emmanuel et al. (2015)). For basin scale of A, Bthe basin-average rainfall rate (mm/h) at time t during the storm 197 

is given by: 198 

M(t) =  ∫ 𝑅(𝑡, 𝑥)𝑑𝑥
𝑇

0𝐴
                  (1) 199 

where 𝑅(𝑡, 𝑥) is the rain rate at radar grid x at time t, and T is the time period of rainfall event. Peak basin-average rainfall 200 

rate (mm/h) is denoted: 201 

M𝑚𝑎𝑥 = max{M(t); 𝑡 ∈ [0, 𝑇]}                 (2) 202 

and storm total rainfall depth (mm) is: 203 

R𝑠𝑢𝑚 = ∑ 𝑀(𝑡)𝑇
0                    (3) 204 

To characterize the spatial properties of rainfall, several dimensionless quantities are computed. Fractional coverage of 205 

storm core at t is given by: 206 

Z(t) =
1

𝐴
∫ 𝐼(𝑅(𝑡,𝑥))𝑑𝑥

𝐴
                  (4) 207 
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where 𝐼(𝑅(𝑡,𝑥))is the indicator function and equals 1 when 𝑅(𝑡, 𝑥) > 25 𝑚𝑚/ℎ or 0 otherwise. 208 

Rainfall location is given by: 209 

L(t) = ∫ 𝜔(𝑡, 𝑥)𝑑(𝑥)𝑑𝑥
𝐴

                  (5) 210 

where 𝜔(𝑡, 𝑥) =
𝑅(𝑡,𝑥)

∫ 𝑅(𝑡,𝑥)𝑑𝑥𝐴

, d(x) is the linear distance from point x to the outlet.  The rainfall-weighted flow distance is: 211 

RWD(t) = ∫ 𝜔(𝑡, 𝑥)𝑑𝑓(𝑥)𝑑𝑥
𝐴

                 (6) 212 

where distance function 𝑑𝑓(𝑥) is the flow distance between point x and the outlet. It is calculated as the sum of the 213 

overland flow distance from x to the nearest channel and the distance along the channel to the basin outlet. The flow distance 214 

𝑑𝑓(𝑥) is normalized by the maximum flow distance, ranging from 0 to 1. RWD with values close to 0 indicates that rainfall 215 

is distributed near the basin outlet; with values close to 1 indicates rainfall concentrated at the far periphery of the basin. 216 

For a uniformly distributed rainfall, the mean RWD is: 217 

RWD̅̅ ̅̅ ̅̅ ̅ = ∫ 𝑑𝑓(𝑥)𝑑𝑥
𝐴

                  (7) 218 

The dispersion of RWD: 219 

S(t) =
1

�̅�
∫ 𝜔(𝑡, 𝑥)[𝑑𝑓(𝑥) − 𝑑̅]2𝑑𝑥

𝐴
                (8) 220 

where s̅ = ∫ [𝑑𝑓(𝑥) − �̅�]2𝑑𝑥
𝐴

, S is a spatial indicator with values < 1 indicates that rainfall is a unimodal distribution,that 221 

is, spatially one peak over the watershed; S with values >1 indicates that rainfall is a multimodal distribution. 222 

The Eqs.1-3 are typical rainfall characteristics used in conventional rainfall-flood analysis since they reflect the general 223 

information of rainfall. Since the basin-averaged index will ignore the potential spatial heterogeneity over the watershed, 224 

Eqs. 4-8 describe the spatial distribution of rainfall within the area.  225 

2.4.2 Spatiotemporal characteristics of hydrologic response 226 

Flood peak (Qpeak, mm3/s), total runoff (Qsum, mm), and lag time (Tlag, min) are defined as: 227 

Q𝑝𝑒𝑎𝑘 = max{ 𝑄(𝑡); 𝑡 ∈ 𝑇𝑑}                 (9) 228 

Q𝑠𝑢𝑚 = ∑ 𝑄(𝑡)
𝑇𝑑
0                    (10) 229 

𝑇𝑙𝑎𝑔 = 𝑇𝐹𝑝𝑒𝑎𝑘 − 𝑇𝑅𝑝𝑒𝑎𝑘                  (11) 230 

Respectively, where 𝑄(𝑡) is the flow discharge at time t; 𝑇𝑑 is the duration of hydrological response, which is from the 231 
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start of rainfall event to the time when f(t)<0.05*Qpeak. 232 

3. Results and Discussion 233 

3.1 Model validation 234 

We validated the Dead Run GSSHA model through analyses of the 21 largest warm season (April-September) flood events 235 

with peak discharges ranging from 70.3 to 253 m3/s in the 2008-2012 period. The simulated discharge was compared to 236 

USGS streamflow observations for all six gaging stations. We assessed peak discharge, peak time and Nash-Sutcliffe 237 

Efficiency (NSE) (Nash and Sutcliffe, 1970) to examine the performance of the model. The GSSHA modeled and USGS 238 

gage measured hydrographs for three storm events are compared in Fig. A2-A4 in Appendix A.  239 

 240 

Peak discharge difference is calculated as the difference between the modeled peak and measured peak as a percentage of 241 

the measured peak (Fig. 2a). The peak discharge is underestimated at DR2, DR4, DR5 and Franklintown. The median peak 242 

discharge difference at the downstream Franklintown gage was -14%. For the subwatersheds, the modeled peak at DR2 243 

matches observation best with a median difference of -7.8%. This represents relatively good performance in reproducing 244 

peak discharges for such a large collection of flood events with various peak discharges ranging from 70 m3/s to 253 m3/s. 245 

The peaks at DR1 are overestimated substantially by 57% on averageMedian peak discharge differences across all 21 246 

events range from -35% to 57% (Fig. 2a). The largest difference is in sub-basin DR-1. The reason of less fit between 247 

observations and modelThe issue at DR-1 was shown before in is likely that it has a large area of land which was not 248 

represented fully on county storm sewer maps (Smith et al., 2015) who speculate that the watershed contains a large land 249 

area which is not represented fully on county storm sewer maps. The median peak discharge difference at the watershed 250 

outlet was -14%. 251 

 The peak time difference is calculated as the time difference between the simulated peak time and measured peak time 252 

(Fig. 2b). The median difference ranges from -15 min to +10 minutes, which is within the temporal resolution of the data 253 

(15 min utes for rainfall; 5 minutes for streamflow). It should be noted that there are several large peak time differences 254 

occurred within the 21 storm events. These are due to the storms that produce multiple discharge peaks. The measured 255 

discharge may have the first peak as the largest while the modeled discharge has the next peak as the largest which is 256 

hundreds of minutes later. Nontheless, the figure shows that the timing of the peak fow is well captured by the model. 257 

The median Nash-Sutcliffe Efficiency (NSE) for the 21 events at Franklintwon is 0.77 (Fig. 2c). The best NSE at 258 

Franklintown is 0.97 indicating that the match between model and measured data was nearly exact. For the subwatersheds 259 

sub-basins, the best median NSE is at DR-4 with a value of 0.74, while the least median NSE is at DR-1 with a value of 260 



11 
 

0.21. The reason of less fit between observations and model at DR-1 is likely that it has a large area of land which was not 261 

represented fully on county storm sewer maps (Smith et al., 2015). The results show that the main tendency of flood 262 

response is captured by the model. 263 

 264 

Figure 2. Comparison of (a) flood peak discharges, (b) response times and (c) NSE for 21 historical rainfall events. 265 

The hydrograph of the 14 August 2011 storm event is shown as a representative of flood simulation. The peak discharge 266 

difference is -12% at Franklintown with a NSE of 0.93. Modeled hydrographs matches the measured data well at the outlet 267 

of watershed. For the subwatersheds, the peak discharge difference ranges from -38% at DR4 to 12% at DR-1. The shape 268 

and timing of the modeled response is similar to the measured hydrograph. But the peak discharge is underestimated by 269 

more than 30% at DR-4.  270 
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 271 

Figure 3. Hydrographs and rainfall for the the 14 August 2011 storm event. Time refers to minutes from the start 272 

of the model simulation. 273 

It should be noted that the error in simulated response may be attributable to measurement errors tied to stage-discharge 274 

curves and to conversions of radar reflectivity to rainfall rate, as well as to the features that were simplified within the 275 

model, such as initial soil moisture and some aspects of the storm drain network (Smith et al., 2015). For example, it has 276 

been documented that the average error of discharge between USGS direct measurements and stage-discharge curves for 277 

Franklintown is 17.4% between 2008 and 2010 (Lindner and Miller, 2012) ; this error likely grows for high flow conditions. 278 

Furthermore, for the rainfall data set used in this study, the median difference of the storm total rainfall between a rain gage 279 

and the bias-corrected radar rainfall data for all the pixel of gages over the 21 storms is 22.6% (Smith et al., 2015). It may 280 

also increase the error in the measurements and modeling results.{Potter, 1981 #688}{Potter, 1985 #689}{Lindner, 2012 281 

#690}{Smith, 2015 #126} 282 

 283 

Overall, the validation shows that the hydrological physically-based, minimally-calibrated model can capture the main 284 

shape and timing of the measured response in Dead Run. We therefore conclude that the model is suitable for the subsequent 285 

flood frequency analysis. It should be noted that the errors in simulated response may be attributable to measurement errors 286 

tied to stage discharge curves and to conversions of radar reflectivity to rainfall rate, as well as to the features that were 287 
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simplified within the model, such as initial soil moisture and some aspects of the storm drain network (Smith et al., 2015). 288 

3.2 Flood frequency distribution 289 

Under the SST framework, 3-h rainfall scenarios for 10-yr, 50-yr, 100-yr and 200-yr return periods were generated (Fig. 290 

A5 A2 in Appendix A). For each rainfall return period, 300 realizations of rainfall events are used as input to drive the 291 

hydrological model. Henceforce, for each rainfall return period, 300 flood responses can be simulated We then simulated 292 

hydrographs using the GSSHA model and rainfall scenarios ffor Franklintown and the five DR subwatershedss. 293 

3.2.1 Flow discharge estimates 294 

The distribution of maximum discharge at the Franklintown gage for rainfall return periods ranging from 10 to 200 years 295 

is illustrated in Fig. 3a4a. To compare the distributions of rainfall and flood peaks, the values are normalized to range from 296 

0 to 1. The normalization is the ratio of values minus the minimum to the maximum minus minimum.. The most striking 297 

feature is that the distributions of total rainfall and flood peaks are highly variable across the four return periods. The kernel 298 

density distribution of rainfall shows a peak at the position of 50th quantile for four return periods. The distribution of flood 299 

peak is more complex. For the 100-yr rainfall return period, the kernel density distribution of flood peaks shows a 300 

multimodal trend with two small peaks around the 25th and 75th quantiles, which contrasts with the unimodal distribution 301 

of rainfall. The following results will show that flood peak is highly related to spatial rainfall features, implying that the 302 

multimodal distribution of flood peaks is associated with the spatial distribution of rainfall. For the 200-yr rainfall return 303 

period, the interquartile range (IQR) is larger than other return periods. The relative standard deviation, known as the 304 

coefficient of variation (CV), is used to present the dispersion of peak distribution. CV is defined as the ratio of the standard 305 

deviation to the mean. Unlike the IQR results, CV decreases with increasing return period. According to (Zhou et al., 2019), 306 

the variability of basin-average total rainfall increases with return period. The pronounced difference in the distributions 307 

of total rainfall and flood peaks highlights a complex relationship between rainfall properties and flood response in this 308 

relatively small urbanized watershed. 309 

The flood response time is calculated as the difference between the time of maximum rainfall rate and maximum discharge 310 

(Fig. 3b4b). Median values of response time are similar under all return periods, ranging from 70 to 83 minutes, which, 311 

given the temporal resolution of rainfall is 15 minutes, can be similar for all four return periods. It can be concluded that 312 

although the flood peak magnitude increases with rainfall return period, the response time is consistent for various rainfall 313 

scenarios. This implies in this small highly urbanized watershed the response time is more linked to the drainage system 314 

rather than to rainfall characteristics. 315 
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 316 

Figure 34. Violin plots of (a) normalized flood peak and normalized total rainfall; and (b) response time based on 317 

the 3-h design storms from 10-y to 200-y rainfall return periods. (The red dot indicates mean value. Dashed line in 318 

the middle indicates the median value. Upper and lower dashed lines indicate the 75th and 25th quantiles, 319 

respectively.) The rainfall return periods are calculated with respect to average rainfall rate over the entire DR 320 

watershed. 321 

 322 

Figure 4 5 demonstrates the simulated hydrographs for the four return periods. The upper and lower spread (75 th and 25th 323 

quantiles) of the hydrograph indicates the range of variability of simulated hydrographs. For the 10-yr return period, the 324 

hydrograph is relatively smooth with smaller spread. With increasing return period, the hydrograph is peakier with shorter 325 

duration of high magnitude discharge. The hydrograph for the 50-yr return period shows a transitional shape between small 326 

(10-yr) and large (100-yr and 200-yr) rainfall return periods. For the 100-yr return period, the upper spread shows a 327 

tendency toward dual peaks, which cannot be revealed from conventional design flood practices. Since in the conventional 328 

rainfall flood frequency approach, the design storm is temporally idealized as a unimodal peak process. By using theses 329 

design storm, the flood response is generally simulated as a unimodal peak process. The above results imply the uncertainty 330 

and insufficiency of flood frequency analysis in the conventional method. For the 200-yr return period, the hydrograph is 331 

peakiest with a large upper spread. 332 
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 333 

Figure 45. Time series of simulated hydrographs for Franklintown based on the 3-h design storms from 10-yr to 334 

200-yr return periods with spatially uniform (blue) and spatially distributed (red) rainfall. The grey bar indicates 335 

the median value of basin-averaged rainfall rate. 336 

 337 

3.2.2 Spatial distribution of flood magnitude 338 

The distribution of flood peaks over the five subwatersheds exhibits contrasting variation with rainfall return periods 339 

ranging from 10 to 200 years (Fig. 56). Generally, basin scale plays an important role in determining the distribution of 340 

flood magnitudes. Under the 10-yr rainfall return period, DR1 and DR2, with similar basin scales of 1.32 and 2.01.92 341 

km2 ,respectively, have higher flood peaks and interquartile ranges than other subwatersheds. DR5 (2.1 05 km2) has 342 

comparable flood magnitude with DR4 (6.3 km2) and Franklintown (14.3 km2), while has a a larger interquartile range than 343 

the latter two. DR3 with a basin scale of 4.95 km2, has comparable flood magnitudes with DR1 and DR2. Under the 200-344 

yr rainfall return period, DR2 and DR3 has a slightly larger flood magnitude than DR1. DR5 has the largest interquartile 345 

range than others, though its flood peaks are smaller than other small watersheds. 346 
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 347 

Figure 56. Boxplots of normalized flood peaks for Franklintown and five subwatersheds. 348 

 349 

Results show that sub-basin flood distributions vary significantly with rainfall return periods. DR1 with 33% llarger 350 

impervious area and more than double of dentention controlled area than DR2 (Table 1),, h has 26% larger median flood 351 

peaks under small small rainfall return period. F. For large return periods, DR2 has a slightly larger median peak and a 352 

DR2 has larger peak and interquartile range than DR1. The contrasting peaks in DR1 and DR2, implying imply that flood 353 

peaks are less impacted by impervious area for extreme storms whil for small rainfall events, detention infrastreture may 354 

play a less role in the detention of flood peaks. s. DR5, with the smallest dentention controlled area by detention 355 

infrastructure, has the smallest flood peaks under small rainfall return period. Under large return period, however, it has 356 

the largest changes in peak discharges with comparable flood peaks with subwatersheds larger than 6 km2. DR3 and DR4, 357 

with basin scale of 4.95 and 6.29 km2, have contrasting flood magnitude under small and large return periods. DR3 with 358 

larger impervious area and dentention controlled area has larger flood peaks than DR4. The difference is more significant 359 

for small rainfall events with the median value of flood peak for DR3 more than double that of DR4. From these results, it 360 

can be concludedimplies that impervious area and dentention controlled area play a significant role in determining the peak 361 

discharges, but the impact reduces with increasing rainfall return period. The less dentention controlled sub-basin has larger 362 

flood variability under large return period. The detention infrastructure impacts flood peak and its variability. It should be 363 

noted that difficulties remain in attributing specific changes in urban flood peak distributions to specific urbanization 364 

characteristics (Zhou et al., 2017). The role of specific urban features in flood responses is beyond the scope of this paper. 365 

 366 

We further examine the spatial distribution of flood magnitude over the Dead Run watershed under the 100-yr return period 367 
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of flood at Franklintown (Fig. 67). The dimensionless flood index is used to compare flood peak magnitudes over the 368 

watershed (Lu et al., 2017). The flood index is computed as the maximum flow discharge divided by the computed 10-yr 369 

flood (Q10-y) at the same location, which is set as the median value of 10-yr peak discharge at the watershed outlet for each 370 

100-yr design storm simulation. At Franklintown, the flood index and its interquartile range are largest across the 371 

watersheds, with the median value greater than 2.5. The flood index in the five sub-watersheds is relatively lower, within 372 

a median value between 1.5 and 2. DR2, as a sub-watershed of DR3, has a larger median value than DR1 and DR3. The 373 

flood indices at DR1 and DR3 have similar median values and interquartile ranges. Values in DR4 are higher than its sub-374 

watershed, DR5, with a median value of 2. The variability of flood magnitudes, indicated by the CV, is stable among the 375 

watersheds, ranging from 0.30 to 0.39. The spatial distribution of flood magnitude points to the significant heterogeneity 376 

of flood distributions over the 14.3-km2 watershed. For storm events that produce the same peak discharge return period at 377 

the watershed outlet, the subsequent upstream flood response can vary substantially in the Dead Run watershed. 378 

 379 

Figure 6.7. Boxplot of flood index across the DR subwatersheds for the 100-yr design storms. 380 

 381 

3.3 Rainfall-Flood Relationships 382 

3.3.1 Rainfall structure and flood response 383 

We investigate the relationship between the spatial and temporal characteristics of rainfall and flood response for small and 384 

large rainfall return periods based on Spearman’s rank correlation (Fig. A36 in Appendix A). The peak rainfall rate (Mmax), 385 
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total rainfall (Rsum), fractional coverage (Z), rainfall location (L), rainfall-weighted flow distance (RWD) and the dispersion 386 

of RWD (S) are used to characterize rainfall spacetime structure. For the 10-yr return period, the flood peak is somewhat 387 

slightly correlated with total rainfall, peak rainfall rate and storm core coverage with correlation coefficient of 0.16. For 388 

the 200-yr return period, in contrast, there is no significant correlation between these features with correlation coefficients 389 

of -0.09, 0.07 and -0.02, respectively, implying a complex and nonlinear relationship between extreme storms and floods 390 

in the watershed. 391 

We used random forest regression models to examine the importance of rainfall characteristics to the flood response. 392 

Random forests (RF) is an ensemble learning method (Breiman, 2001) that aggregates results from multiple models to 393 

achieve better accuracy. RF is one of the most widely-used method for regression and classification. Moreover, it is 394 

relatively easy to train and tests. In this study, Rrainfall spacetime structure characteristics are used as RF model features. 395 

{Breiman, 2001 #465}The flood peak is set as the model target. The relationship between rainfall structure and flood peak 396 

is then explored under the RF-based regression method. The main parameters of RF model are tuned by a grid search 397 

approach (Probst et al., 2019). The prediction performance is assessed using Mean Absolute Error (MAE), Root Mean 398 

Square Error (RMSE), and explained variance regression score (E score) (Achen, 2017). Smaller values of MAE and RMSE 399 

indicate better model performance. E score ranges from 0 to 1 and a larger value indicates a better model (The training 400 

process of RF model is shown in Fig. A47 in Appendix A).  401 

The difference in feature importance is compared between the 10-yr and 200-yr return periods (Fig. 87). For the 10-yr 402 

return period, peak rainfall rate (Mmax) and total rainfall (Rsum) are the most two important features with feature importance 403 

of 0.17. For the 200-yr return period, however, the dispersion of RWD (S) and fractional coverage of storm core (Z) are 404 

more important than Mmax peak rainfall rate and Rsumtotal rainfall. The rainfall location (L) has the smallest importance for 405 

both return periods. The results demonstrate the different relationships between rainfall structure and flood response under 406 

small and extreme rainfall events. For extreme storms, the maximum discharge is more closely linked to the spatial structure 407 

of rainfall, which is consistent with the results in {Peleg, 2017 #313}; (Peleg et al., 2017; Zhu et al., 2018){Zhu, 2018 408 

#584}. Though it appears that the difference is moderate, but for a such small watershed, the tendency of the change of 409 

spatiotemperol rainfall feature importance is noteworthy. 410 
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  411 

Figure 87. Feature importance analysis of RF model for space-time rainfall structure and 10-yr (red) and 200-yr 412 

(blue) flood peaks. 413 

 414 

The temporal shapes of hydrographs and hyetographs are compared by using the coefficient of skewness (Fig. 8). The 415 

skewness is used to assess the shape of rainfall process and discharge process. A negative value of skew indicates a left tail 416 

of the distribution, and positive indicates a right tail. For the 10-yr return period, the rainfall skewness ranges from -0.1 to 417 

3.5, demonstrating the mixed shapes of temporal distribution. Similar features are found for discharge shapes. For the 200-418 

yr return periods, the skewness of discharge is mostly positive while the skewness of rainfall events still varies from -1 to 419 

2.5. The general conclusion of these analyses is that regardless of the temporal distribution of rainfall, the flood response 420 

is relatively rapid, highlighting the role of the urban drainage system for the hydrographic response. The relationship 421 

between the variability of discharge and rainfall is not significant for the four return periods, which implies that in a highly-422 

urbanized watershed, the drainage system smooths rainfall variability somewhat.423 

 424 

Figure 8. Scatter plots of skewness of rainfall and peak discharge—left: 10-yr return period; right: 200-yr return 425 
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period. 426 

 427 

3.3.2 Rainfall return period vs. flood return period 428 

In conventional design storm/flood practices, the return period of rainfall and peak discharge is often assume to be 429 

equivalent (Rahman et al., 2002). Under the SST framework, we can examine this assumption (Wright et al., 2014a). At 430 

the 14.3-km2 basin scale, Ffor each SST realization containing 100 rainfall scenarios with return period from 5 years up to 431 

100 years, the peak discharge can be simulated and ordered. Flood frequency for return periods from 5 years up to 100 432 

years are then estimated from the ordered peaks. We run 30 SST realizations in total. The Spearman’s rank correlation of 433 

the two return periods is 0.5 (Fig. 99). The results quantitatively confirm that the assumption of a 1:1 return period 434 

equivalency between design storm and design flood cannot hold, even in a small highly-urbanized watershed where 435 

drainage network and rainfall structure play an important role in flood response. Similar results can be found between 436 

subbasins flood and DR-scale rainfall return periods (results not shown for the sake of brevity). 437 

 438 

Figure 9. Scatterplot comparison return periods for rainfall and peak discharge for individual SST-based 439 

simulations. 440 

 441 

3.3.3 Impact of rainfall spatial heterogeneity on flood responses 442 

We also compared the simulated flood response resulting when rainfall is uniform over the watershed, rather than spatially 443 
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distributed as in previous analyses (Fig. 4 and Table 2). Generally, the flood peaks generated from uniform rainfall have 444 

lower peaks than for non-uniform rainfall. The difference increases with return period. Under the 10-yr return period, the 445 

shapes of the two hydrographs have similar upper and lower bounds (75% and 25% quantiles). The median flood peak 446 

using non-uniform scenarios is 22% higher than the uniform scenarios. Under the 200-yr return period, the hydrograph 447 

resulting from non-uniform rainfall is much peakier than the uniform SST scenarios with higher upper and lower bounds. 448 

The lower bound of hydrograph by non-uniform SST scenarios is close to the median hydrograph of uniform SST scenarios. 449 

The impact of rainfall spatial heterogeneity among the five subwatersheds is different. DR1, with a basin scale of 1.32 km2 450 

and located in the north-west boundary of the watershed, was the least-impacted by rainfall spatial distribution for all return 451 

periods. In DR2, on the other hand, which is similar in drainage area to DR1, the flood peak increased by 46% for the 200-452 

yr return period. For DR3 and DR4, the spatial heterogeneity of rainfall contributes more to the flood peaks in DR4 than 453 

in DR3. The most striking difference in flood peaks is in DR5 for the 50-yr return period. The difference in flood magnitude 454 

is 75%. As mentioned above, DR5 is the sub-basin with the least dentention controlled area. This finding is likely tied to 455 

the complex relationship between space-time rainfall structure and the drainage network. We can thus conclude that the 456 

spatial heterogeneity of rainfall can increase flood peaks dramatically under both small and large return periods. The impact 457 

increases with return period. This result shows that the assumption of spatially uniform rainfall will underestimate flood 458 

frequency. 459 

Table 2. The median flood peak reductions using spatially uniform and spatially distributed rainfall. 460 
 T=10 yr T=50 yr T=100 yr T=200 yr 

DR1 14% 20% 13% 26% 

DR2 19% 40% 28% 42% 

DR3 24% 33% 27% 31% 

DR4 32% 51% 38% 35% 

DR5 15% 75% 37% 30% 

Franklin 22% 36% 31% 42% 

 461 

4. Summary and conclusions 462 

This paper addresses the problem of the impacts of short-duration rainfall variability on hydrologic response in small 463 

urbanized watershed. By coupling a high-resolution radar rainfall dataset and stochastic storm transposition (SST) with the 464 

GSSHA distributed physics-based model (see also (Wright et al., 2014a; Zhu et al., 2018)), the relationships between 465 

rainfall spatiotemporal structure and urban flood response is examined. The main findings are as follows: 466 
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1. The flood frequency distributions for subwatersheds within the highly-urbanized 14.3 3-km2 Dead Run watershed 467 

demonstrates the complexitiesy of flood response for both short and long rainfall return periods. Especially fFor 3-h 468 

extreme storms, the distribution of flood peaks shows large variability. The large variability of flood magnitude shows a 469 

pronounced role of rainfall space-time structure in flood production. This calls into question the commonly-made design 470 

storm assumption of spatially uniform rainfall. The response time is less affected by rainfall structure and appears to be 471 

more closely associated with the basin scale and drainage network features. 472 

2. The spatial heterogeneity of flood frequency over the 14.3-km2 watershed is striking for the 100-yr return period. The 473 

intercomparison between subwatersheds show that the impact of impervious area decreases with increasing return periods. 474 

The subbasin with the least detention infrastructure shows the largest flood variability for long return periods. For the 100-475 

yr return period, the flood index of five subwatersheds are different from that of their downstream outlet. It shows that 476 

storm events that produce the same peak discharge return period at the basin outlet can be the result of very different 477 

upstream flood responses even in a small-scale watershed. 478 

3. The relationship between the spacetime structure of rainfall and flood response is complex. The random forest-based 479 

feature importance analysis shows very different relationships between rainfall structure and flood response for frequent 480 

vs. extreme rainfall events. For smaller and more frequent rainfall events, flood peaks are more closely linked to the 481 

temporal features of rainfall (total rainfall and peak rainfall rate). For extreme storms, the maximum discharge is closely 482 

linked to the spatial structure of rainfall (storm core coverage). This finding is broadly consistent with Peleg et al. (2017) 483 

and Zhu et al. (2018), despite the very different drainage scales considered in those studies. There is no significant 484 

correlation between rainfall peak, total rainfall and flood peaks, implying an important role of surface properties in 485 

urbanized watersheds. Similar to Wright et al. (2014a), this comparison calls into question the conventional design storm 486 

assumption of a 1:1 equivalency between rainfall and flood peak return periods. 487 

4. The spatial heterogeneity of rainfall is a key driver of flood response across scales. Relative to spatially uniform rainfall, 488 

spatially distributed rainfall can increase flood peaks by 50% on average at the watershed outlet and its subwatersheds for 489 

both small and large return periods. This finding is broadly consistent with prior results at much larger scales in an 490 

agricultural setting (Zhu et al. (2018)) and suggests both spatial and temporal rainfall distributions need to be considered 491 

in flood frequency analyses, even in relatively small urban watersheds. This study also implies that the drainage network 492 

substantially alters the impact of rainfall characteristics on the runoff. 493 

Coupling the GSSHA model and SST-based rainfall frequency analysis, this study provides an effective approach for 494 

regional flood frequency analysis for urban watersheds. Some idealized assumptions used in the conventional methods are 495 

questioned. It The approach can be used to explore the dominant control on the upper tail of urban flood peaks, without 496 
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many of the limiting assumptions associated with design storm methods. The study area could be extended in future work 497 

with larger basin scales and by manipulating the spatial heterogeneity of basin characteristics within GSSHA or other 498 

similar modeling systems. 499 
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 713 

 714 

Figure 1. Overview of Dead Run study region including (a) location of DR, elevation, and transposition 715 

domain of SST; (b) land use land cover and stream gages. Land use land cover was obtained from the National 716 

Land Cover Data set (NLCD, http://www.mrlc. gov) 717 

 718 

Figure 2. Comparison of (a) flood peak discharges, (b) response times and (c) NSE for 21 historical rainfall events. 719 

 720 
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 721 

Figure 3. Violin plots of (a) normalized flood peak and normalized total rainfall; and (b) response time based on the 722 

3-h design storms from 10-y to 200-y return periods. (The red dot indicates mean value. Dashed line in the middle 723 

indicates the median value. Upper and lower dashed lines indicate the 75th and 25th quantiles, respectively.) 724 

 725 

Figure 4. Time series of simulated hydrographs for Franklintown based on the 3-h design storms from 10-yr to 200-726 

yr return periods with spatially uniform (blue) and spatially distributed (red) rainfall. The grey bar indicates the 727 

median value of basin-averaged rainfall rate. 728 
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 729 

Figure 5. Boxplots of normalized flood peaks for Franklintown and five subwatersheds. 730 

 731 
Figure 6. Boxplot of flood index across the DR subwatersheds for the 100-yr design storms. 732 
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  733 
Figure 7. Feature importance analysis of RF model for space-time rainfall structure and 10-yr (red) and 200-yr (blue) 734 

flood peaks. 735 

 736 

Figure 8. Scatter plots of skewness of rainfall and peak discharge—left: 10-yr return period; right: 200-yr return 737 

period. 738 
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 739 

Figure 9. Scatterplot comparison return periods for rainfall and peak discharge for individual SST-based 740 

simulations. 741 

 742 

Table 1: Characteristics of Dead Run watershed. 743 

 

USGS ID 
Area 

(km2) 
Developed Land (%) 

Imperviousness 

(%) 

Controlled 

area (%) 

DR1 01589317 1.32 99% 73.6 41.9 

DR2 01589316 1.92 98% 55.5 18.5 

DR3 01589320 4.95 98% 62.2 24.4 

DR4 01589315 6.29 98% 51.5 12.2 

DR5 01589312 2.05 96% 47.9 3.2 

Franklintown 01589330 14.3 96% 52.3 25.1 

Table 2. The median flood peak reductions using spatially uniform and spatially distributed rainfall. 744 
 T=10 yr T=50 yr T=100 yr T=200 yr 

DR1 14% 20% 13% 26% 

DR2 19% 40% 28% 42% 

DR3 24% 33% 27% 31% 

DR4 32% 51% 38% 35% 

DR5 15% 75% 37% 30% 

Franklin 22% 36% 31% 42% 

 745 

  746 



33 
 

Appendix A 747 

 748 

Figure A1: Maps of mean storm total rainfall (a) and probability of storm occurrence (b) for the 200 storms in the 3-h 749 

storm catalog (The black dot indicates the location of rainfall centroid). 750 

 751 

Figure A2: Composite map of rainfall distribution for the 10-y, 50-y, 100-y and 200-y return periods. 752 
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 753 

Figure A3: Correlation between space-time rainfall structure and flood responses at Franklintown under 10-yr and 200-yr 754 

return periods. 755 

 756 
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 757 

Figure A4: The parameter tuning process of RF model (use RMSE for example) 758 

 759 


