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Abstract. Nitrate (NO3
−) excess in rivers harms aquatic ecosystems and can induce detrimental algae growths in coastal areas. 

Riverine NO3
− uptake is a crucial element of the catchment scale nitrogen balance and can be measured at small spatiotemporal 10 

scales while at the scale of entire river networks, uptake measurements are rarely available. Concurrent, low frequency NO3
− 

concentration and stream flow (Q) observations at a basin outlet, however, are commonly monitored and can be analyzed in 

terms of concentration discharge (C-Q) relationships. Previous studies suggest that steeper positive log(C)-log(Q) slopes under 

low flow conditions (than under high flows) are linked to biological NO3
− uptake, creating a bent rather than linear log(C)-

log(Q) relationship. Here we explore if network scale NO3
− uptake creates bent log(C)-log(Q) relationships and when in turn 15 

uptake can be quantified from observed low frequency C-Q data. To this end we apply a parsimonious mass balance based 

river network uptake model in 13 mesoscale German catchments (21-1450 km²) and explore the linkages between log(C)-

log(Q) bending and different model-parameter combinations. The modelling results show that uptake and transport in the river 

network can create bent log(C)-log(Q) relationships at the basin outlet from log-log linear C-Q relationships describing the 

NO3
−  land to stream transfer. We find that within the chosen parameter range the bending is mainly shaped by 20 

geomorphological parameters that control the channel reactive surface area rather than by the biological uptake velocity itself. 

Further we show that in this exploratory modelling environment, bending is positively correlated to percentage NO3
− load 

removed in the network (𝐿𝑟.𝑝𝑒𝑟𝑐) but that network wide flow velocities should be taken into account when interpreting log(C)-

log(Q) bending. Classification trees, finally, can successfully predict classes of low (~4 %), intermediate (~32 %) and high 

(~68 %) 𝐿𝑟.𝑝𝑒𝑟𝑐 using information on water velocity and log(C)-log(Q) bending. These results can help to identify stream 25 

networks that efficiently attenuate NO3
−  loads based on low frequency NO3

−  and Q observations and generally show the 

importance of the channel geomorphology on the emerging log(C)-log(Q) bending at network scales. 

1 Introduction 

Transport and transformation of nitrate (NO3
−) in river networks are major controls of downstream exports to receiving lakes, 

reservoirs and coastal systems (Alexander et al., 2000; Billen et al., 1991; Peterson et al., 2001; Seitzinger et al., 2002; Seybold 30 
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and McGlynn, 2018). Increased NO3
− concentrations in surface waters can induce detrimental algae growths (Beusen et al., 

2016; Canfield et al., 2010; Galloway et al., 1995), compromise river ecosystem health and jeopardize drinking water supplies.  

Since the beginning of the 20th century, human activities such as agricultural expansion and fossil fuel burning have mobilized 

additional reactive nitrogen (N), initiating and later exacerbating this problem (Seitzinger et al., 2002). In arable landscapes, 

which include large parts of Europe, the efficient management of aquatic NO3
−  at network scales is complicated by the 35 

spatiotemporal variability of loading patterns and hydrologic regimes as well as the lack of understanding of nutrient pathways, 

connected transit times and removal processes from input to export. Nevertheless, nitrate concentration and load variability 

can be predicted at catchment scales when relying on detailed process understanding regarding transport and biogeochemical 

processing (Alexander et al., 2009; Schlesinger et al., 2006; Wollheim et al., 2008). Moving beyond small scale variability and 

characterizing nitrate processing at the catchment scale however remains a challenge (McDonnell et al., 2007; Li et al., 2020).  40 

 

Within river reaches and streams, reactive solutes like NO3
− are affected by complex interactions of physical, biological and 

chemical processes. Physical transport is driven by local discharge and channel geomorphology and dictates the NO3
− residence 

time in a reach, thus influencing the timescales at which biogeochemical processing can take place (Kirchner et al., 2000; 

Runkel and Bencala, 1995; Zarnetske et al., 2011). NO3
− is removed and transformed by denitrifying bacteria in the anoxic 45 

river sediment (Birgand et al., 2007; Peterson et al., 2001), ammonified or retained through assimilation processes in the oxic 

or anoxic river compartments by bacteria, fungi and primary producers such as algae and macrophytes, potentially entering 

higher trophic levels. In the latter case, N in the form of DON (dissolved organic nitrogen) and more commonly DIN (dissolved 

inorganic nitrogen), together with phosphorus (P) may be released to the water column later on (Durand et al., 2011; Vanni, 

2002; Vanni and McIntyre, 2016). The nutrient spiraling model (Newbold et al., 1981; Stream Solute Workshop, 1990) that 50 

formally describes these processes has been used to quantify and compare NO3
− transport and uptake (the net result of all 

removal and release processes) in river reaches (Peterson et al., 2001; Mulholland et al., 2008; Hall et al., 2009) and stream 

networks (Ensign et al., 2006;  Doyle, 2005; Marce and Armengol, 2009). Quantifying in situ NO3
− uptake is labor intensive 

and may involve local nutrient additions, potentially altering the ambient uptake rate (Hensley et al., 2014; Mulholland and 

Tank, 2002). Other methods require high frequency measurements (Jarvie et al., 2018; Kunz et al., 2017) that are mostly 55 

limited to small spatial scales (i.e. reach scale) and can vary considerably between measuring points (Boyer et al., 2006). At 

the scale of entire river networks contrarily, uptake measurements are rarely available (but see Wollheim et al., 2017; Hansen 

et al 2018) and models are applied instead to predict spatiotemporal uptake patterns (Boyer et al., 2006; Yang et al., 2018). 

These models account for the spatial configuration of the stream network, an important aspect for stream biogeochemistry that 

is often ignored in small scale experimental approaches (Fisher et al., 2004). Spatially distributed models however, require 60 

calibration of uncertain spatiotemporal parameters and may not reflect the essential features of the system despite fitting 

observed data well (Klemes, 1986).  
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River networks link terrestrial source zones to coastal areas and integrate biogeochemical and hydrological catchment 

functions across scales (Bouwman et al., 2012; Helton et al., 2018). Small streams (usually headwaters) are known to influence 65 

the export signal disproportionally because of their overall (high) contribution to total stream length and effective NO3
− removal 

capacity (Alexander et al., 2000; Horton, 1945), explained by high sediment surface to water volume ratios. Generally, high 

removal efficiencies have been reported for river network areas with lower specific discharges (Hall et al., 2009; Hensley et 

al., 2014), under favorable circumstances such as high light availability, heavy in-stream vegetation (Hensley et al., 2014; 

Rode et al., 2016) and for streams with a high capacity for lateral and hyporheic exchange (Gomez-Velez et al., 2015; Kiel 70 

and Cardenas, 2014). The scaling of in-stream uptake processes beyond the river reach has been approached by combined 

experimental-modelling studies with defined explicit scaling relationships (e.g. Basu et al., 2011; Aguilera et al., 2013; 

Bertuzzo et al., 2017; Lindgren and Destouni, 2004) and theoretical frameworks explaining how the river network capacity 

regulates solute export (e.g. Wollheim et al., 2018). Abbott et al. (2018) shows how spatially heterogeneous patterns of water 

chemistry stabilize while the temporal variability of nutrient concentrations persists when moving downstream, facilitating the 75 

temporal scaling of headwater measurements. Nevertheless, insights into linking the interplay of nitrate removal processes at 

the network scale to downstream export patterns in space and time are largely missing. 

 

Concentrations (C) for in-stream solutes such as carbon, major ions, particulates and nutrients are commonly monitored 

concurrently with discharge (Q) at the basin outlet. C-Q relationships integrate the effect of biogeochemical and hydrological 80 

processes within the catchment and have mainly been discussed in terms of land-stream transfer and source configuration in 

catchments as well as subsurface retention processes (Godsey et al., 2009; Musolff et al., 2017, Bieroza et al., 2018). The shape 

of long term (multiple years) C-Q relationships in the log-log space is typically described by the slope of a linear regression 

model (Godsey et al., 2009). Here, three archetypes have been distinguished; (i) a positive log(C)-log(Q) slope, indicating 

enrichment, occurs when an increasing discharge additionally mobilizes solutes, (ii) a negative C-Q slope or dilution pattern 85 

is commonly linked with source limitations and (iii) a neutral or chemostatic slope implies low variability in in-stream 

concentrations across a high range of discharges, a pattern observed for example for solutes derived from weathering bedrock 

(Ameli et al., 2017; Godsey et al., 2009). The potential information loss associated with linear and monotonic NO3
− log(C)-

log(Q) analysis was addressed by Moatar et al. (2017) and Minaudo et al. (2019) for more than 200 French catchments and by 

Diamond and Cohen (2018) for 44 rivers in Florida, USA. These studies identified distinct linear low-flow and high-flow NO3
− 90 

log(C)-log(Q) regression slopes for a majority of the cases, using low frequency monitoring data. Moatar et al. (2017) found 

that stronger positive slopes under low flow conditions correlate positively with chlorophyll-a concentrations (associated with 

biological processes) and attributed this condition to biological NO3
− concentration mediation in the stream. This is consistent 

with the findings of Hall et al. (2009) and Hensley et al. (2014) among others that in-stream uptake is more efficient under 

low-flow than under high-flow. Furthermore, Wollheim et al. (2017) illustrates non-linear NO3
− C-Q relationships conceptually 95 

for storm flow dynamics in a river network, showing high retention capacities in the headwater catchments that decrease under 

increasing flows, changing the slope of C-Q relationships from dilution to enrichment. Based on these studies we hypothesize 
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that the magnitude (or efficiency) of in-stream NO3
− uptake is encoded within observed C-Q relationships, and their analysis 

therefore can improve our understanding of in-stream uptake processes through providing an alternative to elaborate field and 

modelling work aimed at quantifying NO3
− removal in stream networks. Low frequency NO3

− observations are widely available 100 

(e.g. biweekly to monthly grab sampling, Ebeling et al., 2020 rev; Minaudo et al., 2019; Moatar et al., 2017) but if and how 

this data can be utilized to characterize catchment scale in-stream processing has yet to be investigated.  

 

In this paper, it is postulated that network-scale uptake effects can be inferred from the degree of non-linearity or the amount 

of  bending of low-frequency, multi-annual concentration (C) and discharge (Q) observations. To test this hypothesis, we apply 105 

a parsimonious river network model (similar to Bertuzzo et al., 2017; Helton et al., 2018; Helton et al., 2010; Mulholland et 

al., 2008) in 13 German catchments to explore the catchment scale transport and uptake processes that influence downstream 

log(C)-log(Q) patterns. The specific objectives are to (i) introduce the maximum curvature (Curvmax) as a robust metric to 

quantify bending of low frequency C-Q time series in the log-log space; (ii) explore the sensitivity of Curvmax to hydrological 

and in-stream biogeochemical parameters (e.g. channel shape, water velocity and biological NO3
− uptake velocity); (iii) explore 110 

how C-Q bending is linked to network scale in-stream uptake; (iv) provide guidelines if and under what circumstances the C-

Q bending can offer conclusive information on effective in-stream uptake. In this proof of concept exploratory study, we 

demonstrate how (existing) low-frequency monitoring data can be effectively utilized to quantify nitrate uptake in river 

networks and show how small scale uptake processes shape emerging patterns at catchment scales. 

2 Methods 115 

2.1 Maximum curvature - Curvmax  

The shape of log(C)-log(Q) relationships are often described as linear (Bieroza et al., 2018; Godsey et al., 2009; Musolff et 

al., 2017) or segmented linear (Meybeck and Moatar, 2012; Moatar et al., 2017; Marinos et al., 2020), implying a limit on the 

possible log(C)-log(Q) shapes (Tunqui Neira et al., 2020) and setting assumptions such as ‘fixed breaking points’. Here, we 

introduce the concept of maximum curvature (Curvmax) to quantify rather than describe the shape of "broken-stick" log(C)-120 

log(Q) relationships, without the assumption of a fixed form. In a strict geometrical sense the curvature (-∞; +∞) is the 

instantaneous rate of change of direction of a point that moves on a curve. A straight line for example has a curvature of zero 

and a large circle has a lower absolute curvature than a small circle (Pressley, 2001). Here, Curvmax identifies the magnitude 

and direction of the log(C)-log(Q) section with the largest instantaneous change. To calculate Curvmax for an observed (noisy) 

log(C)-log(Q) relationship, a smoothed spline, 𝑓, is iteratively fitted with increasing degrees of freedom (df) to capture the 125 

general log(C)-log(Q) shape accurately but avoid overfitting (Fig. B1). Initially, df = 3 and the log(Q) region of the largest 

instantaneous change is identified as 𝑄𝑚±0.05 with 𝑄𝑚 = 𝑎𝑟𝑔max
log 𝑄

|𝑓"| . Then, df is increased until, at df=i, the log(Q) 

corresponding to the largest instantaneous change is not within the initial 𝑄𝑚  region anymore. Consequently, Curvmax is 
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calculated for a smoothed spline fit, 𝑓, with df = i-1 as {
max
log 𝑄

𝑓"  𝑖𝑓 |max
log 𝑄

𝑓"| ≥ |min
log𝑄

𝑓"|

 min
log 𝑄

𝑓" 𝑖𝑓 |max
log 𝑄

𝑓"| < |min
log 𝑄

𝑓"|
. The Curvmax metric, computed for a 

log(C)-log(Q) relationship could be considered as a complementary metric to the slope of the linear regression model (Godsey 130 

et al., 2009) and could serve as an alternative for segmented linear regression fits (Meybeck and Moatar, 2012; Moatar et al., 

2017; Marinos et al., 2020) (Fig. S1 in the Supporting Information) as it quantifies the degree of non-linearity as the amount 

of bending.  

 

We assume here that a multi-annual (6 to 15 years) low frequency (biweekly to monthly) C-Q relationship without temporal 135 

(significant) trends in a given station has one Curvmax. To verify this assumption in a realistic setting, Curvmax was computed 

for observed nitrate (C) and Q data (1995-2010) of French water quality stations with biweekly to monthly sampling 

frequencies (Dupas et al., 2019). Following the removal of C outliers (falling outside of µ±3.5σ in the log space, with µ and σ 

representing the sample mean and standard deviation, respectively) 444 stations were selected that satisfy the following four 

criteria: (i) the station should have at least 70 coupled C and Q observations (the maximum number of samples within one 140 

station was 402 ); (ii) a minimum of 6 years of data are represented; (iii) there is no bias in the intra annual distribution of the 

data (i.e. never less than 10 % of the C-Q observations in one season; Fig. S2); and (iv) the station C observations had no 

significant temporal trends (Mann Kendall test, p-value > 0.05) (Ebeling et al., 2021). We then assessed the robustness of 

Curvmax to the low frequency C-Q observations in a time series by selecting different subsamples of C-Q data from the entire 

available time series for a given station. More specifically, 100 random time series subsamples (each with a minimum length 145 

of 70) without replacement but with overlap were taken for each station, with the subsamples passing the four criteria above, 

and Curvmax was calculated for each subsampled time series. On average, the subsamples represented nearly 80% of the 

complete time series for a station. 

 

2.2 Network Model 150 

In this work an explorative grid based (100 m x 100 m) mass balance network model (comparable to Bertuzzo et al., 2017; 

Helton et al., 2018; Helton et al., 2010; Mulholland et al., 2008 and conceptually shown in Fig. B2) was used to simulate in-

stream nitrate transport and biological removal on a daily basis. The model was developed in R (R Core Team, 2013).  

2.2.1 Stream network and hydrological properties 

Following Bertuzzo et al. (2017) and Helton et al. (2018), each river network node (i.e. grid cell) 𝑖 (1 ≤ 𝑖 ≤ 𝑁) has a drainage 155 

area 𝐴𝑖 [m²] that is calculated as the sum of the total upstream drainage area ∑ 𝑊𝑗𝑖𝐴𝑗𝑗  [m²] and the direct drainage area 𝑎𝑖 [m²] 

(e.g. laterally contributing drainage area) to grid cell 𝑖 (Eq. (1)): 
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𝐴𝑖 = ∑ 𝑊𝑗𝑖𝐴𝑗𝑗⏟    
𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝐷𝑟𝑎𝑖𝑛𝑎𝑔𝑒 𝐴𝑟𝑒𝑎𝑠

+ 𝑎𝑖⏟
𝐷𝑖𝑟𝑒𝑐𝑡 𝐷𝑟𝑎𝑖𝑛𝑎𝑔𝑒 𝐴𝑟𝑒𝑎

        (1) 

where 𝑊𝑗𝑖 [-] is an element in the connectivity matrix 𝑊 (N x N) such that 𝑊𝑗𝑖 = 1 if 𝑗 is directly neighboring and flowing 

into 𝑖 and 𝑊𝑗𝑖 = 0 otherwise. 𝐴𝑗 [m²] is the total drainage area to node 𝑗.  160 

 

It is the spatially varying contribution of the total upstream and direct drainage area to each river network node that creates the 

spatial variability in the river network. The temporal variability in the river network is driven by the time varying but spatially 

homogeneous specific discharge 𝑄𝑡.𝑠𝑝 [m
3s−1], calculated as the ratio of the daily discharge at the catchment outlet and the 

total number of catchment grid cells. The total local discharge 𝑄𝑖  [m³ s-1] at a given grid cell 𝑖 is thus proportional to the total 165 

drainage area at that grid cell, 𝐴𝑖,   (following Bergstrom et al., 2016 and Bertuzzo et al., 2017) (Eq. (2)). It is 𝑄𝑖  which in turn 

dictates the downstream and at-a-station hydraulic geometry relationships of river geomorphic parameters channel width, 𝑤𝑖  

[m], and average channel depth, 𝑑𝑖 [m] (Leopold and Maddock, 1953) (Eq. (2.1) and Eq. (2.2)). The local velocity in a grid 

cell 𝑣𝑖 [m s-1] is calculated according to Eq. (2.3) and the corresponding travel time, 𝑇𝑖  [days] is computed in Eq. (2.4): 

𝑄𝑖 = 𝑄𝑡.𝑠𝑝 ∗ 𝐴𝑖             (2) 170 

𝑤𝑖 = 𝐾𝑤 ∗ 𝑄𝑖
𝑎𝑤              (2.1) 

𝑑𝑖 = 𝐾𝑑 ∗ 𝑄𝑖
𝑎𝑑              (2.2) 

𝑣𝑖 =
𝑄𝑖

𝑤𝑖∗𝑑𝑖
               (2.3) 

𝑇𝑖 =
𝑙𝑖

𝑣𝑖
                (2.4) 

where the flow length through a grid cell 𝑖, 𝑙𝑖 [m], equals 100 or 100√2 m for horizontal/vertical or diagonal flow directions, 175 

respectively. Parameters 𝑎𝑤 [-] and 𝐾𝑤 [-] are the respective exponent and coefficient parameters in the river width-discharge 

relationship (Eq. (2.1)); while 𝑎𝑑  [-] and 𝐾𝑑  [-] compose the exponent and coefficient parameters of the depth-discharge 

relationship (Eq. (2.2)), respectively. The ratio of 𝑎𝑑 to 𝑎𝑤 corresponds to a parameter 𝑟 [-]∈ ℝ+which prescribes the cross 

section geometry relation such that a triangular channel cross section is represented by 𝑟 = 1, a parabolic channel cross section 

by 𝑟 = 2 and channel cross sections with progressively flatter bottoms and steeper banks by increasing values of 𝑟 (Dingman, 180 

2007). The width-discharge relation in Eq. (2.1) is conceptually illustrated in Fig. B3 for two sets of 𝑎𝑤 and 𝐾𝑤, where a low 

𝑎𝑤 corresponds to the width of a channel that does not change much with varying discharge, while a high 𝑎𝑤 can result in 

highly varying channel widths. 

2.2.2 Nitrate uptake 

Similar to Eq. (1) the incoming load, 𝐿𝑖𝑛,𝑖 [mg s-1], to a river network grid cell 𝑖 is composed as the sum of upstream load 185 

contributions 𝐿𝑖𝑛.𝑢𝑝,𝑖 [mg s-1] and direct land to stream loading 𝐿𝑖𝑛.𝑙𝑠,𝑖 [mg s-1], given that L = CQ (Eq. (3)). The contribution 

of direct land to stream loading concentration can be expressed as a power law (Musolff et al. 2017) with the exponent 𝑏 [-], 
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the slope in the log(C)-log(Q) relationship that is an indicator of the C-Q archetype (Godsey et al., 2009) and coefficient 𝑐 [-]. 

Here, 𝑏 is assumed to be constant over the seasons, which considers that NO3
− loading is transport limited rather than source 

limited as explicitly shown for agricultural catchments (Basu et al., 2011; Winter et al., 2021). Following Jawitz and Mitchell 190 

(2011), the coefficient 𝑐 is calculated to yield the long-term mean in-stream input concentration 𝐶𝑚𝑒𝑎𝑛  [mg L-1] (Eq. (A1)). 

Additional NO3
− sources such as the load resulting from NO3

− release within the stream network and point sources are not 

considered here (similar to Bertuzzo et al., 2017; Wollheim et al., 2006). This assumption is supported by large scale 

assessments in France (Moatar et al., 2017) and Germany (Ebeling et al., 2021), where it was found that with the exception of 

pure urban catchments diffuse sources rather than point sources control the C-Q shape in typical European mixed land use 195 

settings. Also, we do not consider other loading processes that may create bending at the catchment outlet (e.g., shifts in 

transport pathways and solute sources, Marinos et al. 2020). 

𝐿𝑖𝑛,𝑖 = 𝐿𝑖𝑛.𝑢𝑝,𝑖⏟  
𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝐿𝑜𝑎𝑑𝑠

+ 𝐿𝑖𝑛.𝑙𝑠,𝑖⏟  
𝐷𝑖𝑟𝑒𝑐𝑡 𝐿𝑎𝑛𝑑 𝑡𝑜 𝑠𝑡𝑟𝑒𝑎𝑚 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 

= ∑ 𝑊𝑗𝑖𝐿𝑗𝑗 + 𝑐 ∗ (𝑄𝑡.𝑠𝑝 ∗ 𝑎𝑖)
𝑏+1

            (3)               

The modelled in-stream NO3
− uptake follows first order removal kinetics (Alexander et al., 2000; Boyer et al., 2006; Ensign 

and Doyle, 2006), such that the outgoing load from grid cell 𝑖, 𝐿𝑖 [mg s-1] is a fraction of the incoming load 𝐿𝑖𝑛,𝑖 (Eq. (4)) and 200 

the absolute removed load 𝐿𝑟,𝑖 [mg s-1] can be described as (Eq. (5)). Here, 𝐿𝑟,𝑖 is influenced by separate hydrological (
𝑃𝑖∗𝑙𝑖 

𝑄𝑖
) 

and biological (𝑣𝑓) components (similar to Bertuzzo et al., 2017). 

𝐿𝑖 = 𝐿𝑖𝑛,𝑖 ∗ 𝑒
− 
𝑣𝑓∗𝑃𝑖∗𝑙𝑖

𝑄𝑖                      (4) 

𝐿𝑟,𝑖 = 𝐿𝑖𝑛,𝑖 − 𝐿𝑖 = 𝐿𝑖𝑛,𝑖 ∗ (1 − 𝑒
− 
𝑣𝑓∗𝑃𝑖∗𝑙𝑖

𝑄𝑖 )                  (5) 

where 𝑃𝑖  is the cross section wetted perimeter calculated from the Manning equation (using the bed slope 𝑆𝑖 and assuming a 205 

fixed roughness coefficient = 0.03 [m m-1]) in open channels (Eq. (A2)). The uptake velocity parameter 𝑣𝑓 [m day-1] refers to 

the vertical movement of NO3
− molecules from the water column towards the biofilm at the pelagic-benthic interfaces and the 

sediments where the in-stream processing chiefly occurs with 𝑣𝑓 = 𝑘𝑖𝑑𝑖 and 𝑘𝑖 the first order removal constant (Ensign and 

Doyle, 2006; Wollheim et al., 2006; Marcé et al., 2018). The parameter 𝑣𝑓 accounts for the processes altering the rate and form 

of downstream NO3
−  delivery (Doyle, 2005) (therefore it is not limited to denitrification only). We assume that 𝑣𝑓  is 210 

independent of the in-stream NO3
− concentration 𝐶𝑚𝑒𝑎𝑛  (Pennino et al., 2014; O’Brien et al., 2007) such that the areal uptake 

rate 𝑈 = 𝑣𝑓 ∗ 𝐶𝑚𝑒𝑎𝑛 [mg m-2 day-1] is tightly linked with 𝐶𝑚𝑒𝑎𝑛  in a first order relationship. Others (e.g., Hensley et al., 2014; 

Mulholland et al., 2008; O’Brien et al., 2007) contrarily found explicit scaling relationships where 𝑣𝑓 decreases non-linearly 

for increasing 𝐶𝑚𝑒𝑎𝑛 (10-4 – 101 mg L-1) when considering distinct catchments. However, in Germany, the NO3
− concentration 

range across a range of catchments is small (10-1 – 101 mg L-1 according to Ebeling et al., 2021) and rivers generally have minor 215 

longitudinal concentration variability (Hensley et al., 2014; Ensign and Doyle, 2006) which suggest independent definitions 

of 𝑣𝑓 and 𝐶𝑚𝑒𝑎𝑛 .  
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The Damköhler number 𝐷𝑎 [-] is calculated as the ratio between transport (𝜏𝑇) and reaction (𝜏𝑅) timescales and is often used 

to characterize the relative importance of hydrological and biogeochemical processes in hydrological connected systems 220 

(Oldham et al., 2013; Kumar et al., 2020): 

𝐷𝑎 =
𝜏𝑇 

𝜏𝑅 
=

𝑇𝑇

𝑘−1
                                         (6) 

where, 𝜏𝑇  represents as the effective travel time, 𝑇𝑇  [days] or the exposure time scale under advective conditions. We 

estimated the catchment wide 𝑇𝑇 as the spatiotemporal median of the sum of all downstream 𝑇𝑖  (Eq. (2.4)) for a grid cell in 

the network (∑ 𝑇𝑖
0𝑢𝑡
𝑖 ) (similar to Bergstrom et al., 2016). Whereas 𝜏𝑅 represents the reactive time scale of biological processes. 225 

It is approximated as 𝑘−1 [days-1] with the effective catchment wide 𝑘 estimated as the spatiotemporal median of the grid-

scale first order reaction constant 𝑘𝑖 = 𝑑𝑖/𝑣𝑓. 

2.3 Exploring Curvmax with Monte Carlo Simulations 

Monte Carlo simulations are performed to explore how Curvmax evolves from a range of model input parameter combinations 

in a variety of catchments (Sect 2.3.1 below). These simulations utilize the same ensemble of 11107 unique parameter 230 

combinations in each of the individual study catchments with distinct observed discharge time series to account for the 

differences one parameter combination may have in each of the catchments. The unique parameter combinations are generated 

by Latin Hypercube sampling from uniform parameter ranges that are set according to literature values (Table 1). Some 

physical constraints were also imposed such that the channel geometry parameters 𝑎𝑤 and 𝑎𝑑 must obey continuity principles 

(𝑎𝑤 + 𝑎𝑑 < 1 and 𝑎𝑤 > 𝑎𝑑, following Leopold and Maddock, 1953). Similar to Bertuzzo et al. (2017) the chosen parameter 235 

combination is kept constant in time and uniform in space for simplicity during one model run. The simulated variables are i) 

Curvmax [-], deduced from simulated log(C)-log(Q) relationships when minimum 80 % of the C data is above the ‘detection 

limit’ of 0.002 mg L-1  NO3
−; ii) the network wide percentage load removed 𝐿𝑟.𝑝𝑒𝑟𝑐 [%] which is calculated as the median of 

the ratio between the daily absolute removed load and the daily absolute incoming load in the river network; iii) the median 

network travel time, TT [days]; (iv) the Damköhler number 𝐷𝑎 [-]; (v) the slope of the linear regression fit of the log(C)-240 

log(Q) relationship at the catchment outlet, 𝑏𝑜𝑢𝑡 [-]; (vi) the median concentration at the catchment outlet, 𝐶𝑜𝑢𝑡 [mg L-1] and 

the median water velocity, 𝑣 [m s-1]. While all outputs can be spatially and temporally explicit on a daily time step, Curvmax is 

examined at the catchment outlet, integrating both spatial and temporal aspects. The Monte Carlo results are subsequently 

subjected to a global sensitivity analysis with the PAWN method (Pianosi and Wagener; 2015) to elucidate influential model 

parameters. Furthermore a correlation analysis is conducted to explore how these influential parameters impact simulated 245 

Curvmax. Finally, a Classification and Regression Tree algorithm (CART, Breiman et al., 1984) allowed us to visualize 

parameter interactions as detailed in Sect. 2.3.2 below. 

  

Table 1: Network model parameter ranges for the Monte Carlo simulations. 
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Parameter Unit Description Range References 

𝑣𝑓 [m day-1] Uptake velocity 10-4; 0.25 Marce et al, 2018a 

𝑏 [-] Slope b lin. regress. log(C)-log(Q) -1.5; 1.5 Musolff et al., 2017, Ebeling, 2020b 

𝐶𝑚𝑒𝑎𝑛  [mg L-1] Land to stream concentration 10-4; 20 Ebeling, 2020b  

𝐾𝑤 [𝐿1−3∗𝑎𝑤 . T−𝑎𝑤] Coefficient width-Q function 2.6; 20.2 Andreadis et al., 2013 

𝑎𝑤 [-] Exponent width-Q function 0.01; 0.54 Andreadis et al., 2013; Dingman, 2007 

𝐾𝑑 [𝐿1−3∗𝑎𝑑 . T−𝑎𝑑] Coefficient depth-Q function 0.12; 0.63 Andreadis et al., 2013 

𝑎𝑑 [-] Exponent depth-Q functiom 0.28; 0.667 Andreadis et al., 2013; Dingman, 2007 
aFor 𝑣𝑓, the selected range is an order of magnitude smaller than the one proposed by Marce et al., 2018 as we focus the 250 

analysis on the lower 𝑣𝑓 where most of the bending happens (Sect. 3.3). 

2.3.1 Catchment selection 

The river networks of 13 mesoscale catchments across Germany (areas between 21 and 1450 km², Ebeling, 2020a; Table 2) 

are extracted together with the corresponding daily discharge data at the outlet (uninterrupted for ~10 years between 1995 and 

2010 (Musolff, 2020)) as inputs for the exploratory river network model. The selected catchments include three nested sub-255 

catchments for the Selke as well as the Holtemme river system, both part of the Bode, a well-studied river system near the 

Harz Mountains in central Germany (Fig. 1; Ehrhardt et al., 2019; Rode et al., 2016; Winter et al., 2020; Mueller et al., 2018). 

All catchments have distinct geophysical settings as stream order, median discharge and catchment shape (quantified with the 

Horton form factor; Horton, 1945; Table 2) which is needed to obtain a realistic range of simulated Curvmax using the 

explorative network model in the Monte Carlo mode. The selected catchments were delineated in ArcMap (ESRI, 2011) from 260 

a 100 m x 100 m DEM (EEA, 2013; Ebeling et al., 2021). A flow direction, flow accumulation and valley slope grid in the 

same resolution were established. The channel threshold drainage area for the network delineation was set to 150 grid cells 

(1.5 km²), which agreed well with the observed river network, resulting in a tree shaped river network with N grid cells or 

nodes.  

 265 

Table 2: Catchment properties summary: Catchment Area, median Elevation, Slope and Topographical Wetness Index (TWI), 

maximum Strahler Stream Order, Horton form factor, Drainage Density, median discharge at the basin mouth over time (Q) with 

the corresponding runoff (area specific discharge) between brackets and the coefficient of variation of the discharge in time (CV Q). 

The latter variable CV Q integrates the frequency of runoff events and the differences in recession constant (so the catchments 

“flashiness” in response to rainfall) (Botter et al., 2013). 270 

ID River Area 
Med. 

elevation 

Med. 

slope 

Med. 

TWI 

Stream 

order 

Network 

length 

Horton 

form factor 

Drainage 

density 
Med. Q  

CV 

Q 

    
[km²] [m] [°] [-] [-] [km] [-] [km km-2] 

[m³ s-1] (mm 

day-1) 
[-] 

1 Dahme 20.9 105 1.50 10.08 2 11 0.67 0.52 0.02 (0.07) 1.13 

2 Kraichbach 422.5 164 2.84 9.45 4 228 0.23 0.54 0.85 (0.17) 0.47 

3 Wertach 658.1 833 4.30 9.17 4 391 0.14 0.59 10.60 (1.39) 0.96 

4 Ammer 713.7 858 8.34 8.80 4 416 0.29 0.58 14.98 (1.81) 0.84 
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5 Modau 88.6 272 5.61 8.47 3 47 0.42 0.53 0.52 (0.51) 0.80 

6 Leine 993.2 276 4.40 8.95 4 525 0.45 0.53 6.22 (0.54) 0.85 

7 Speyerbach 142.0 187 3.58 9.84 3 104 0.17 0.73 0.66 (0.40) 0.64 

8 Stör 1452.2 25 0.90 10.63 5 905 0.46 0.62 14.10 (0.84) 0.76 

9 Holtemme 272.5 258 3.58 9.49 4 145 0.17 0.53 1.04 (0.33) 1.01 

10 Selke Silberhütte 94.5 456 4.02 8.72 3 49 0.27 0.51 0.56 (0.51) 1.34 

11 Selke Meisdorf 282.1 342 3.94 9.03 3 160 0.35 0.57 0.70 (0.21) 1.34 

12 Selke Hausneindorf 460.1 263 2.90 9.60 4 256 0.37 0.56 0.65 (0.12) 1.50 

13 Schleuse 263.2 597 9.12 7.92 4 139 0.79 0.53 2.88 (0.95) 1.07 

 

 

Figure 1: Germany DEM with the location and outline (shape) of selected catchments, along with their drainage networks (in blue) 

and outlet location (red triangle). See Table 2 for catchment ID’s and properties. 

2.3.2 Model evaluation 275 

To verify the network model’s ability to reproduce realistic concentration time series and Curvmax, the observed monthly nitrate 

concentrations and the simulated time series were compared in one of the 13 selected catchments, the Selke catchment (at 

Meisdorf gauging station; 282 km², Table 2; Winter et al., 2020) where extensive field campaigns and modelling studies have 
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been conducted related to in-stream processes (Rode et al., 2016; Dupas et al., 2017; Yang et al., 2019; Yang et al., 2018). 

Note that such a model validation was performed only in the Selke Meisdorf catchment as the model aim is to explore how 280 

certain input parameter combinations may result in log(C)-log(Q) bending at the catchment outlet, rather than to reproduce 

catchment specific concentrations by performing parameter calibration. This explorative approach is comparable to Bertuzzo 

et al., (2017) and Helton et al., (2018) who applied a similar model in synthetic river networks but did not validate the model 

structure in a realistic setting. The Meisdorf catchment is a relatively homogeneous upstream part of the Selke, consisting of 

forest and cropland and is characterized by constant export regimes (Winter et al., 2020). For an input parameter combination 285 

set to reasonable values for this catchment (Table C1; Rode et al., 2016), the land to stream NO3
− inputs averaged 1.2 kg N 

day-1 km-2 which is similar to the 1.9 kg N day-1 km-2 reported by Winter et al. (2020) for the Selke River (Meisdorf ); and it 

is well within the general 0.001 to 100 kg N day-1 km-2 range established by Mulholland et al. (2008). The simulated flow 

velocity had a spatiotemporal median value of 0.47 m s-1, which is also comparable with measured flow velocities (Risse-Buhl 

et al., 2017). Additionally, the Selke catchment was used to gain an insight into how the interplay of transport and uptake 290 

processes at every network grid cell can result in a curved C-Q pattern at the catchment outlet for one parameter combination, 

while in the other catchments the network model outputs were only considered at the catchment outlet for the entire range of 

input parameter combinations in the Monte Carlo approach. Finally, the simulated range of Curvmax, obtained from applying 

the network model in the 13 different catchments with >10000 input parameters, was compared to a range of observed Curvmax 

computed from the C-Q relationships of 444 French catchments (Dupas et al., 2019; Sect. 2.1). Other Monte Carlo simulation 295 

outputs, such as ranges of 𝐿𝑟.𝑝𝑒𝑟𝑐 and 𝐷𝑎 were compared to literature values for validation purposes. 

 

2.3.3 PAWN sensitivity analysis and correlation analysis 

We performed a global sensitivity analysis (GSA) using the moment independent PAWN method (Pianosi and Wagener 

(2015). The method allowed for estimating the effect of the parameter inputs on the entire model output distribution and can 300 

be applied to rank the inputs and identify the uninfluential ones. The resulting PAWN sensitivity indices were estimated from 

generic input-output samples created with the numerical approximation strategy proposed by Pianosi and Wagener (2018). 

With this strategy, the range of variation of each input 𝑥𝑖 is partitioned into a number 𝑛𝑖 of equally probable ‘conditioning’ 

intervals (𝐼𝑖,𝑘, 𝑘 = 1,… , 𝑛𝑖), i.e. each interval contains the same number of data points. Given a scalar model output 𝑦 (here 

Curvmax), the PAWN method compares the output conditional Cumulative Distribution Function (CDF) (𝐹𝑦(𝑦)), computed by 305 

concurrently varying all the inputs, and the 𝑛𝑖 conditional CDFs for that input (𝐹𝑦|𝑥𝑖(𝑦|𝑥𝑖 ∈ 𝐼𝑖,𝑘)). Each conditional CDF is 

obtained by varying all inputs within their entire range except for 𝑥𝑖 , whose values are contained within one of the 𝑛𝑖 

conditioning intervals. The Kolmogorov-Smirnov statistic (KS) is then calculated as the maximum vertical distance between 

the conditional and unconditional CDFs, while the PAWN sensitivity index (𝑆𝑖) for input 𝑥𝑖 aggregates the results over all 

conditional CDFs through a summary statistic as presented in Eq. (7): 310 

𝑆𝑖 = stat
𝑘=1…𝑛𝑖

𝐾𝑆(𝐼𝑖,𝑘)                    (7) 
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where 𝐾𝑆(𝐼𝑖,𝑘) = max
𝑦
|𝐹𝑦(𝑦) −  𝐹𝑦|𝑥𝑖(𝑦|𝑥𝑖  ∈ 𝐼𝑘,𝑖)| 

In this study, we applied Eq. (7) using 𝑛𝑖 = 10 conditioning intervals for each input parameter and used the maximum KS 

value, 𝐾𝑆𝑚𝑎𝑥 (ranging from 0 to 1), as a summary statistic, which is appropriate for screening non-influential input parameters. 

For a given parameter, the highest value of 𝐾𝑆𝑚𝑎𝑥  of 1 would indicate a direct dependence of the model output (in this case 315 

Curvmax) on that parameter, while a value of 𝐾𝑆𝑚𝑎𝑥  of 0 would mean that the parameter is completely non-influential. We 

estimated confidence intervals of the sensitivity indices using 15000 bootstrap resamples and checked the robustness of the 

results. The PAWN analysis was carried out using the Python version of the SAFE toolbox for global sensitivity analysis 

(Pianosi et al., 2015). 

 320 

To explore the direction of change in the C-Q bending at the catchment outlet resulting from variations in the model parameters 

and the catchment in-stream uptake, a Spearman rank correlation analysis was performed including all the simulated catchment 

responses and parameter combinations. These correlations were visualized in a correlation matrix using the ‘corrplot’ package 

in R (Wei and Simko, 2020).  

 325 

2.3.4 Identify parameter and model output interactions with classification tree 

Finally, we aim to determine if, within this modelling framework, C-Q bending at the catchment outlet (specifically Curvmax) 

informs about the network wide in-stream uptake. Thereto, a recursive modelling approach is proposed, using the Classification 

and Regression Trees algorithm (CART, Breiman et al., 1984) which allows for the identification of non-linear synergistic 

interactions among model parameters and output variables. This non-parametric method segregates classes for a response 330 

variable by progressively splitting selected predictor variables in a binary way. The resulting decision tree is intuitive to 

interpret and can facilitate the fast characterization of river networks. The response variables include the effective catchment 

wide removal efficiency 𝐿𝑟 , the Damköhler number 𝐷𝑎 and the uptake velocity 𝑣𝑓 , while the predictors are Curvmax, the 

median network velocity 𝑣 and all of the model input parameters except for 𝑣𝑓 (Table 1). For each response variable, three 

classes are defined representing low, intermediate and high ranges found in the literature (Table 3) that each contain 5 % of 335 

the simulation outputs (obtained by distributing the non-missing model simulations over 20 percentiles). The overall CART 

accuracy for each response variable is assessed by attributing 80 % of the simulation outputs in the low, intermediate and high 

classes to a training sample and assigning the remaining 20 % to a test sample. The training sample is then used to construct 

the classification tree while the test sample is needed to assess the prediction accuracy and calculating the performance statistics 

for each class. The CART analysis was performed using the ‘caret’ package in R with the Gini impurity measure as splitting 340 

criterion (Kuhn, 2020). 

 

Table 3: Classes containing low, medium and high values for response variables 𝒗𝒇  (uptake velocity), 𝑳𝒓.𝒑𝒆𝒓𝒄  (percentage load 

removed) and 𝑫𝒂 (Damköhler number) are used for the CART training and testing samples. Similar classes are obtained for model 
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output Curvmax. These classes stem from distributing the non-missing simulation data over 20 percentiles and selecting the percentiles 345 

corresponding to low, medium and high literature values with the respective percentile number (1-20) indicated in brackets. This 

was done to ensure that for one variable, each class contains the same amount of simulation data points. The training sample for 

constructing the CART model was then allocated 80% of this data and the test sample 20 %. 

Variable Units Low Medium High References 

𝑣𝑓 [m day-1] 10-4-0.01 (1) 0.10-0.11 (10) 0.23-0.24 (20)  Birgand et al., 2007, Marce and Armengol, 2009 

𝐿𝑟.𝑝𝑒𝑟𝑐 [%] 3.8-5.2 (7) 28.7-35.1 (15) 63.0-75.3 (19)  Birgand et al., 2007 

𝐷𝑎 [-] 0.17-0.25 (3) 0.88-1.02 (10) 3.25-4.19 (18)  Oldham et al., 2013 

Curvmax [-] -0.70;-0.51 (3) -0.25;-0.22 (9) -0.03;-0.01 (18) Dupas et al., 2019 

 

3 Results and Discussion 350 

3.1 Empirical Curvmax  

The estimated Curvmax for the French observed NO3
− log(C)-log(Q) data (Dupas et al., 2019) ranges between -5.25 and 3.88 

(median is -0.23, Fig. B4) and 77 % of the stations are characterized by Curvmax ≤ 0 or a linear or concave shape (similar to 

Moatar et al. 2017). The time series subsamples for each station generally had a small Curvmax variability (Interquartile Range, 

IQR for a given station below 1) for 93 % of the stations with some exceptions demonstrating a larger IQR up to 8. This 355 

indicates Curvmax quantification for most low frequency C-Q time series is robust. The Spearman rank correlation (𝜌 = 0.53, 

p-value < 2.2e-16) between the absolute observed Curvmax and IQR for each station is significant and positive, implying that 

C-Q relationships with a higher absolute Curvmax have a higher uncertainty when quantifying the C-Q bending. However, 

Curvmax variability (IQR) in the subsamples for each station has no significant correlation with the number of data points 

available for one station. This implies that Curvmax tends to be temporally robust when the C-Q data obeys the four criteria in 360 

Sect. 2.1 so that the length of the low frequency time series length does not impact the estimated Curvmax. Overall, the proposed 

Curvmax metric is suitable to quantify bending in multiannual, temporally stable log(C)-log(Q) relationships. 

 

3.2 Model evaluation in the Selke River (Meisdorf) 

To evaluate the network model performance in a realistic setting, we implemented the model with a fixed parameter 365 

combination (Table C1) in the Selke catchment and aimed to capture C-Q dynamics at the basin outlet. The simulated NO3
− 

concentration time series (simulated C with uptake) for the Meisdorf station in Fig. 2a shows a seasonal pattern that follows 

the observation concentration data reasonably well (Nash-Sutcliffe Efficiency; NSE = 0.50, percent bias; pbias = -0.4 %). This 

seasonality is also reflected in simulated daily percentage of load removed (the ratio between the daily total removed load and 

the daily total incoming load in the river network); and ranges from almost 0 % to 3.4 % in this case, with the median 𝐿𝑟.𝑝𝑒𝑟𝑐 370 

value equal to 0.41 %. The highest removal efficiencies are simulated in fall and summer and coincide with low simulated 

NO3
− concentrations at the catchment outlet. The conservative NO3

− concentration (simulated C no uptake) is stable around 3 

mg L-1. The observed nitrate concentrations generally show an enrichment export pattern in the log(C)-log(Q) space (𝑏𝑜𝑢𝑡 = 
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0.40, R² = 0.56) and a Curvmax of -0.35 which agrees well with the simulated Curvmax of -0.28 (Fig. 2b) and deviates 

significantly from the conservative scenario of simulated C without uptake (b=0.014; Table C1). The observed low nitrate 375 

concentrations coincide with low discharges in fall and summer, while high concentrations occur mainly in winter when 

discharges are higher.  

 

Figure 2: (a) Simulated and observed 𝐍𝐎𝟑
− concentrations at the Selke Meisdorf gauging station for a 10 year simulation period 

(2000-2010; NSE=0.50). One data point (C~5 mg L-1) is not shown here. The simulated median percentage of load removed in the 380 

stream network (blue line) is given during the same time period as well as the simulated C with no uptake (𝒗𝒇=0). (b) The observed 

𝐍𝐎𝟑
− concentrations and Q are log transformed and plotted together with the simulated C-Q data for 2000-2010. A smoothed spline 

is fitted to the observed and simulated C-Q data (described as observed smooth fit and simulated C respectively in the legend); and 

Curvmax of -0.35 and -0.28 are calculated at the respective discharges of 1.72 m³ s-1 and 0.92 m³ s-1, indicating the smoothed spline 

inflection points. 385 
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Within the Selke Meisdorf river network the simulated Curvmax is largely contained within -1.12 to -0.29 (10th and 90th quantiles 

respectively) for the given parameter combination (Table C1, Fig. 3). Low Curvmax (< -1.12) is found exclusively at grid cells 

with a low total drainage area (𝐴𝑖 < 9 km²) and Curvmax stabilizes at higher values with increasing drainage areas (inset Fig. 3, 

Fig. S3 in Supporting Information). The incoming (𝐿𝑖𝑛.𝑙𝑠 and 𝐿𝑖𝑛.𝑢𝑝; Eq. (3)), removed (𝐿𝑟; Eq. (5)) and outgoing absolute load 390 

(𝐿𝑖; Eq. (4) with L = CQ) as function of Q in the log-log space are shown in Fig. 3 for three selected grid cells on the main 

river stem with low (C), intermediate (B) and high (A) drainage areas. The corresponding log(C)-log(Q) relationship for the 

outgoing load (𝐿𝑖) at the outlet (A) is presented in Fig. 2b for simulated and observed values. Note that Curvmax is calculated 

from log(C)-log(Q) relationships rather than log(L)-log(Q). The loads in grid cell A, B and C generally increase with discharge 

while the load removal efficiency decreases with discharge. The highest removal efficiencies are found in the headwater grid 395 

cell C (39 % for low discharge), followed by mid-stream grid cell B (3 % for low discharge) and the outlet A (0.5 % for low 

discharge). The total absolute load removed (𝐿𝑟, sum per year per grid cell) is largest for first order grid cells (average 24.1 kg 

N year-1) that represent 55 % of the river network, followed by second and third order grid cells (averaging both around 20 kg 

N year-1) that represent 20 and 25 % of the network (inset Fig. 3). Finally, the total yearly incoming load (𝐿𝑖𝑛.𝑙𝑠 + 𝐿𝑖𝑛.𝑢𝑝, sum 

per year per grid cell) increases with stream order from 1329 kg N year-1 on average in a first order grid cell to 5128 and 42124 400 

kg N year-1 in second order and third order river cells.  

 



16 

 

Figure 3: Spatial distribution of simulated Curvmax in the Selke river network (Meisdorf) for a selected parameter set (see Table C1). 

Three representative grid cells covering low (A), intermediate (B) and high (C) total drainage areas show the incoming land to 

stream load as 𝐋𝐢𝐧.𝐥𝐬 (Eq. (3)), the incoming load from upstream as 𝐋𝐢𝐧.𝐮𝐩 (Eq. (3)), the absolute removed load as 𝐋𝐫 (Eq. (5)) and the 405 

outgoing load as 𝐋𝐢 (Eq. (4)) in the log(L)-log(Q) space. The load removed as a percentage of the incoming load is presented on the 

secondary axis. Note that the corresponding Curvmax for these grid cells are calculated from the log(C)-log(Q) relationships rather 

than log(L)-log(Q). The insets show the distribution of Curvmax and 𝐋𝐫 for each of grid cells within a certain stream order. In Fig. 2a 

the observed and simulated concentrations are compared at point A. 

 410 

With uniform, constant parameters the network model does not account for a spatiotemporal parameter variability. 

Nevertheless, it successfully (see NSE and pbias) reproduces the seasonality of the observed concentrations over the 2000-

2010 period for the Selke Meisdorf catchment (Fig. 2a). For comparison, Yang et al. (2018) found a similar performance (NSE 

= 0.47, pbias = -3.35 %) when applying a fully distributed model with 16 calibrated parameters in this catchment between 

1997 and 2009. The uptake velocity 𝑣𝑓 for our simulation was set to 0.098 m day-1 to closely match the observed (assimilatory) 415 

uptake range of 0.009 to 0.103 m day-1 for the Selke Meisdorf river network (Rode et al., 2016), the median annual percentage 

load removed equals 4.7 % which is within a comparable range reported in prior studies (Rode et al., (2016) and Yang et al., 

(2018) found annual means of 4.8 and 7.6 % respectively). Note that the annual percentage load removed accounts for load 

taken up throughout the entire river network, which may be higher in the headwaters (15 tons) than in downstream locations 

(7 and 5 tons for second and third order stream sections; inset Fig. 3). Yang et al. (2018) reported very high uptake efficiencies 420 

(up to 75 %) for summer seasons that were caused by low NO3
− concentrations (0.21 mg N L-1) and load (L = CQ), which are 

not represented in our model simulation (the lowest simulated NO3
− concentration equaled 0.4 mg N L-1). Additionally, due to 

the parsimonious structure of the proposed model, we did not account for the temporally changing effects of environmental 

factors like temperature and light availability that might (seasonally) influence uptake efficiencies in the river network (Kadlec 

and Reddy, 2001). Nevertheless, these reported high low flow uptake efficiencies in summer are not a main contributor to the 425 

annual percentage load removed that is dominated by high flows, generally recorded during winter. Thus for the Monte Carlo 

simulations (Sect. 3.2 below) we calculated 𝐿𝑟.𝑝𝑒𝑟𝑐 as the median of the daily percentage load removed rather than the total 

removal efficiency for the entire simulated time period to better represent an effective long term network wide removal 

capacity. 

 430 

The interplay of incoming, removed and outgoing load at each network grid cell shapes the log(L) and log(C)-log(Q) 

relationships and consequently Curvmax at the catchment outlet (Fig. 3). Land to stream loading (𝐿𝑖𝑛.𝑙𝑠) that varies linearly with 

direct incoming discharge at a given grid cell in the log space (Eq. (3) with L = CQ; Curvmax = 0) can lead to a bent outgoing 

log(C)-log(Q) relationship where concentration or load (Li) varies non-linearly with discharge (Curvmax ≠ 0). The onset of a 

bent log(C)-log(Q) pattern (Curvmax = -0.37) is illustrated in the headwater grid cell C in Fig. 3 where 𝐿𝑖𝑛.𝑙𝑠 is the only incoming 435 

load (upstream incoming load, 𝐿𝑖𝑛.𝑢𝑝 equals 0 in this case). The absolute removed load in a grid cell is higher under increasing 
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Q while the percentage load removed is lower, which explains observed C-Q patterns with higher log(C)-log(Q) slopes for 

low flows than for high flows (Moatar et al., 2017; Wollheim et al., 2008; Doyle, 2005; Wollheim et al., 2017; Basu et al., 

2011). This decreased NO3
− load removal efficiency in the downstream direction (spatial scale) or during events (temporal 

scale) can arise because stream morphology characteristics such as depth and water velocity, that correlate with varying 440 

discharge, constitute higher surface-to-volume ratios at low flows (generally in the headwaters) than at higher flows (at the 

outlet) (Peterson et al 2001; Hensley et al 2014). The uptake and land to stream loading at the downstream grid cells (B and A 

in Fig. 3) have a decreasing local impact on the outgoing load due to the large upstream load contributions that increase in the 

downstream direction (see explicit scaling relationship for input flux in Bertuzzo et al., 2017). This is also explained by 

Wollheim et al. (2018) who suggests that the river network saturates as supply exceeds biological ‘demand’, causing the 445 

log(C)-log(Q) relationship to approach the slope of the loading function (presented as the simulated C without uptake in Fig. 

2b). Dupas et al. (2017) on the other hand shows how NO3
−  uptake effects are decreasingly visible in C-Q observations 

downstream and concentrations largely matched those estimated by a conservative mixing model. The saturation effect with 

the accumulation of large load is reflected in the Curvmax converging to a constant value when moving from upstream to 

downstream or from a lower order to a higher order river reach (Fig. 3; Fig. S3). This also corroborates the recent findings of 450 

Abbott et al. (2018) who found that the temporal variability (here reflected in the C-Q relationship) of nutrients is preserved 

moving downstream in a river network. Overall the Selke example shows that the network model can realistically reproduce 

the bending of observed NO3
− C-Q relationships that evolve from the decreasing removal efficiency at higher discharges. 

 

3.2 Monte Carlo simulation results 455 

The overview of the model outputs for each of the 13 study catchments in Table 4 shows that catchments 1, 5 and 11 display 

the lowest 10th quantile Curvmax values of -1.61, -1.40 and -1.24 (more bending) while the catchments 4 and 6 registered higher 

(less bending) and less variable Curvmax (10th quantiles at -0.31 and -0.35) (Fig. B5). Catchments 3, 4 and 8 are characterized 

by high runoff and Q (Table 2) at the catchment outlet and demonstrate low percentages of load removed, 𝐿𝑟.𝑝𝑒𝑟𝑐 (90th quantile 

at 29.8, 32.1 and 19.3 % respectively). The highest 𝐿𝑟.𝑝𝑒𝑟𝑐 are found in catchments 1 and 10 (98.4 and 95.1 % for the respective 460 

90th quantiles). The regression slope of the log(C)-log(Q) relationship at the basin outlet, 𝑏𝑜𝑢𝑡, is positively skewed for all the 

catchments (most positive slopes found in catchment 5) while the slope 𝑏 of the land-to stream loading function had no positive 

or negative preference (Table 1, Eq. (3)). The distribution of the concentrations at the catchment outlet, 𝐶𝑜𝑢𝑡, are generally 

similar across all catchments (10th and 90th percentiles within 0 to 6.2 mg L-1) and are significantly less variable than the land-

to-stream incoming concentration (parameter 𝐶𝑚𝑒𝑎𝑛) that varied from 10-4 to 20 mg L-1 across all the simulations (Table 1). 465 

The highest 𝐶𝑜𝑢𝑡 are found in the largest catchment 8. The median water velocity 𝑣 (Eq. (2.3)) is between 0.01 and 0.5 m s-1 

for the 10th and 90th quantiles of all the study catchments and the largest 𝑣 is simulated for catchments 3 and 4 that also have 

the highest discharge. The median river network travel time, 𝑇𝑇, for all simulations and catchments ranges from 0.1 to 4 days 

between their respective 10th and 90th quantiles and remarkably have no clear relationship with catchment properties as the 
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total river network length (Table 2). Finally, the Damköhler number, 𝐷𝑎 (Eq. (6)), is variable around 1 with the highest values, 470 

indicating reaction driven conditions, found for catchments 2 and 12 (respective ranges from 0.6 to 10.3 and 0.7 to 10.8 for 

the 10th and 90th quantiles). The lowest 𝐷𝑎 values are found for catchments 4 and 10 (90th quantile < 2) implying more transport 

driven conditions. 

 

 Table 4: The 10th, 50th and 90th quantiles of model outputs Curvmax, percentage load removed, 𝑳𝒓.𝒑𝒆𝒓𝒄, Damköhler number 𝑫𝒂, 475 

regression slope of the log(C)-log(Q) relationship at the basin outlet, 𝒃𝒐𝒖𝒕, the median concentration at the basin outlet, 𝑪𝒐𝒖𝒕, the 

median water velocity, 𝒗 and median river network travel times, TT, for each of the 13 German catchments. 

 

The Monte Carlo output in Table 4 shows reasonable values for the different variables, taking into account that the goal of this 

modelling exercise was not to reproduce catchment specific conditions but rather explore how NO3
− uptake influences C-Q 480 

bending for a range of parameter combinations that represent a spectrum of possible catchment conditions. The simulated 

Curvmax for all 13 German study catchments and parameter combinations (80 % of the values between -0.70 and -0.012, Table 

4 and Fig. B5) are comparable with the range of Curvmax from NO3
− log(C)-log(Q) relationships in the French catchments (80% 

of the values between -0.41 and -0.067; Fig. B4) (Dupas et al., 2019). Simulated Curvmax is always smaller than or equal to 

zero as explained in Sect. 2.2.2. For the model output 𝐿𝑟.𝑝𝑒𝑟𝑐 , a wide range of uptake efficiencies were captured from almost 485 

0 to near to 100 % for some simulations and a median value of 14.4 % across simulations. This simulated range exceeds the 

proposed range by Birgand et al. (2007) of 10 to 70% of N removal for agricultural drainage networks at annual time scales. 

High removal percentages (median over the simulated time period of daily percentage load removed in the network exceeding 

95 %) are registered for 3.4 % of all simulations while very limited load removal (𝐿𝑟.𝑝𝑒𝑟𝑐 < 5 %) occurred for 32.1 % of all the 

Catch. Curvmax [-] 𝐿𝑟.𝑝𝑒𝑟𝑐 [%] 𝐷𝑎 [-] 𝑏𝑜𝑢𝑡 [-] 𝐶𝑜𝑢𝑡 [mg L-1] 𝑣 [m s-1] 𝑇𝑇 [days] 

ID 10th 50th 90th 10th 50th 90th 10th 50th 90th 10th 50th 90th 10th 50th 90th 10th 50th 90th 10th 50th 90th   

1 -1.61 -0.32 -0.01 2.6 61.0 98.4 0.3 1.8 6.4 -0.65 0.81 2.22 <10-4 0.06 4.68 0.01 0.06 0.25 0.1 0.5 1.8 

2 -1.04 -0.21 -0.01 0.9 19.4 78.5 0.6 3.5 10.3 -0.42 0.95 2.31 <10-4 0.08 2.36 0.02 0.08 0.29 0.6 1.7 3.9 

3 -0.43 -0.21 -0.02 0.2 3.5 29.8 0.2 0.9 2.8 -0.54 0.72 1.96 0.01 0.42 5.27 0.07 0.17 0.48 0.5 1.4 3.3 

4 -0.33 -0.18 -0.01 0.2 4.2 32.1 0.1 0.5 1.5 -0.60 0.63 1.85 0.03 0.52 5.56 0.07 0.17 0.50 0.3 0.8 1.9 

5 -1.40 -0.20 -0.01 1.3 25.6 85.1 0.1 0.7 2.0 -0.49 0.93 2.43 0.01 0.22 3.76 0.04 0.12 0.38 0.2 0.6 1.5 

6 -0.35 -0.12 -0.02 0.5 9.7 54.6 0.3 1.5 4.3 -0.58 0.61 1.84 0.02 0.27 3.75 0.04 0.11 0.36 0.4 1.2 2.7 

7 -0.44 -0.17 -0.01 0.8 14.3 72.6 0.2 1.3 3.6 -0.52 0.79 2.09 0.01 0.29 4.4 0.04 0.12 0.38 0.4 1.2 2.8 

8 -0.63 -0.26 -0.01 0.1 2.9 19.3 0.2 1.4 4.1 -0.71 0.48 1.70 0.07 0.65 6.24 0.05 0.13 0.39 0.5 1.3 3.0 

9 -0.68 -0.24 -0.01 0.8 15.0 70.4 0.3 1.9 5.3 -0.53 0.73 1.99 0.01 0.22 3.43 0.04 0.11 0.35 0.5 1.4 3.1 

10 -0.79 -0.25 -0.01 1.9 36.8 95.1 0.1 0.7 1.9 -0.45 0.91 2.33 0.01 0.16 3.88 0.04 0.11 0.36 0.2 0.5 1.2 

11 -1.21 -0.19 -0.01 1.6 26.1 85.6 0.5 2.6 7.4 -0.48 0.91 2.35 <10-4 0.13 2.41 0.03 0.09 0.32 0.5 1.5 3.5 

12 -0.97 -0.22 -0.01 1.5 29.0 83.2 0.7 3.7 10.8 -0.49 0.79 2.07 <10-4 0.08 2.43 0.02 0.08 0.29 0.5 1.6 4.1 

13 -0.46 -0.16 -0.01 1.3 18.3 72.9 0.1 0.5 1.5 -0.72 0.48 1.69 0.05 0.47 4.35 0.05 0.14 0.42 0.2 0.6 1.4 
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simulations. Other simulation outputs such as the effective velocity 𝑣 surprisingly rendered similar distributions across the 490 

catchments (Table 4) given that the median Q varied for almost three orders of magnitude at the basin outlet (Table 2). Their 

specific discharges (Sect. 2.2.1) however are similar and by taking the spatiotemporal median 𝑣 as an effective catchment 

value for each simulation the (more numerous) headwater grid cells were better represented than the grid cells close to the 

basin outlet. A similar effect is found for the range of the effective travel time 𝑇𝑇 . Generally these similar 𝑣  and 𝑇𝑇 

distributions from model simulations between catchments align with the notion of Langbein and Leopold (1964) that drainage 495 

networks evolve naturally to transport water (and sediment) most efficiently such that an equilibrium between channel form 

and water and sediment load is imposed (Leopold and Maddock, 1953). Also Damköhler numbers 𝐷𝑎 exhibited realistic 

ranges, mostly distributed around 1 (Fig. S3 in Supporting Information; Oldham et al., 2013; Ocampo et al., 2006), with 36.5 

% of the simulations < 0.8 and 50.8 % > 1.2 indicating that more simulations are reaction driven than transport driven. Finally, 

other variables such as the range of the modelled river widths are found to be reasonable to a large degree (Fig. S4 in Supporting 500 

Information). 

 

As for the simulations, the same >10000 parameter input sets are applied in each catchment, differences between the 

catchments result from the different network structures and hydrological regimes that control transport and uptake processes 

for each parameter input set in each catchment. From Table 4 and Table 2 it is clear that differences in model outputs (i.e. 505 

Curvmax, 𝐿𝑟.𝑝𝑒𝑟𝑐 and 𝐷𝑎) between the catchments cannot be attributed to a single catchment property such as total network 

length or basin area. For example Curvmax has the highest variability between simulations in the smallest catchment 1, compared 

to the other catchments, which could be attributed to the variability in local loading and uptake patterns in the network (driven 

by Q) that are still visible at the catchment outlet. Following the simulated Selke Meisdorf example in Sect. 3.1 (Fig. 3; Fig. 

S3), we show that Curvmax tends to converge to a constant value with increasing drainage areas (similar to Abbott et al., 2018 510 

for nutrient concentrations, Dupas et al., 2017 for nutrient uptake and Bertuzzo et al., 2017 for DOC removal). Drainage area 

is however not the only catchment property influencing Curvmax at the outlet. For example, catchment 6 is the second largest 

catchment (Table 2) and has the least bent (and least variable) log(C)-log(Q) relationships. The network structure could 

possibly play a role here as the largest catchment 8 has some large tributaries near the basin outlet (Fig. 1), which could bypass 

removal and transport high load during events, introducing a more variable Curvmax (Mineau et al., 2015; Helton et al., 2018). 515 

The percentage load removed, 𝐿𝑟.𝑝𝑒𝑟𝑐,  is notably lower catchments with high runoff or Q – like 3, 4 and 8 (Table 4) which 

corresponds with findings in Sect. 3.1 that uptake efficiency decreases with increasing Q because of increasing loads to the 

system (Wollheim et al., 2018; Mulholland et al., 2008) and that increasing Q results in less efficient uptake within the reactive 

surface area (Peterson et al., 2001; Hensley et al., 2014). The high 𝐿𝑟.𝑝𝑒𝑟𝑐 in small catchments 1 and 10 could then be attributed 

to their low Q, however why the small catchment 5 does not have similar uptake performance is not evident. Generally the 520 

model output variability between the catchments (as a result of different network and discharge properties) is minor compared 

to the output variability within the catchments (due to the effect of the chosen input parameter set). 
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3.3 Curvmax sensitivity analysis and model parameter correlation 

The PAWN sensitivity index 𝐾𝑆𝑚𝑎𝑥 in Fig. 4 and Table C2 shows that across all catchments Curvmax is most sensitive to the 525 

exponents in the width-Q relation 𝑎𝑤 (𝐾𝑆𝑚𝑎𝑥  = 0.62) and depth-Q relation 𝑎𝑑 (𝐾𝑆𝑚𝑎𝑥  = 0.51). Here, there is little variability 

between the catchments (𝐾𝑆𝑚𝑎𝑥  has a low Coefficient of Variation, CV, of 0.06 and 0.22 respectively). Overall, the slope of 

the linear loading function, 𝑏, is least important in shaping Curvmax (𝐾𝑆𝑚𝑎𝑥  = 0.14). Nevertheless, a high variability of 𝐾𝑆𝑚𝑎𝑥 

is observed (CV = 0.76) that is caused by larger sensitivities for catchments 1 and 12 (𝐾𝑆𝑚𝑎𝑥 near 0.45). Curvmax is equally 

sensitive to 𝑣𝑓 and 𝐶𝑚𝑒𝑎𝑛  (𝐾𝑆𝑚𝑎𝑥 0.18 and 0.19) but 𝑣𝑓 exhibits higher variability in 𝐾𝑆𝑚𝑎𝑥  than 𝐶𝑚𝑒𝑎𝑛  (CV 0.59 and 0.47). 530 

Furthermore, over all the catchments Curvmax is sensitive to the median velocity 𝑣 and the Damköhler number 𝐷𝑎 (𝐾𝑆𝑚𝑎𝑥 

equals 0.64 and 0.31 respectively, CV 0.26 and 0.38). When considering the catchments individually, basin 1 with smallest 

discharge has the highest median 𝐾𝑆𝑚𝑎𝑥 (0.59) across all input parameters, while catchment 4 that has the highest discharge 

exhibits the lowest median 𝐾𝑆𝑚𝑎𝑥  (0.13). Additionally, Curvmax is very sensitive to the velocity 𝑣 in catchment 1 (𝐾𝑆𝑚𝑎𝑥  = 

0.95), while it is least sensitive to 𝑣 in catchment 4. Nevertheless, the other catchments show no clear order in Curvmax 535 

sensitivity according to catchment properties such as Q. For example in nested catchments 10, 11 and 12 (Fig. 1), the largest 

catchment 12 has the highest 𝐾𝑆𝑚𝑎𝑥  (0.50) and lowest CV (0.26) over all the input parameters, indicating that here Curvmax is 

more sensitive to the input parameters here than in the smaller sub-catchments 10 and 11. 
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Figure 4: The 𝑲𝑺𝒎𝒂𝒙 sensitivity index for each of the model input parameters and each of the 13 simulated catchments. The input 540 

parameters related to the channel geometry (𝒂𝒅, 𝒂𝒘, 𝑲𝒅 and 𝑲𝒘), land-to-stream loading (𝒃 and 𝑪𝒎𝒆𝒂𝒏) and biogeochemistry (𝒗𝒇) 

are shown together with two variables derived from some of the input parameters: the median velocity 𝒗 and the Damköhler number 

𝑫𝒂. Each boxplot displays 15000 bootstrapped estimates of 𝑲𝑺𝒎𝒂𝒙 for each of the 13 simulated catchments. 

 

In a next step the estimated Curvmax across all simulations is correlated to the model input parameters as well as to output 545 

variables like the percentage load removed, 𝐿𝑟.𝑝𝑒𝑟𝑐 , the log(C)-log(Q) slope at the catchment outlet, 𝑏𝑜𝑢𝑡 , the median 

concentration at the basin outlet 𝐶𝑜𝑢𝑡 and the uptake constant 𝑘, to identify the strength and direction of their relationship. The 

resulting Spearman correlation matrix (Fig. 5) reflects the PAWN sensitivity findings, with the highest Curvmax correlation 

found with parameters 𝑎𝑤 (𝜌 = 0.68) and 𝑎𝑑 (𝜌 = 0.56) and input variable 𝑣 (𝜌 = 0.57). Curvmax is independent of 𝑣𝑓 (𝜌 = -

0.04) but shows a negative correlation with 𝐿𝑟.𝑝𝑒𝑟𝑐 (𝜌 = -0.36), suggesting that lower Curvmax (more bending) can be  related 550 

to a higher 𝐿𝑟.𝑝𝑒𝑟𝑐. Furthermore, Curvmax is negatively correlated to the log(C)-log(Q) regression slope at the catchment outlet 

𝑏𝑜𝑢𝑡 (𝜌 = -0.28) such that higher bending coincides with more positive 𝑏𝑜𝑢𝑡. The variable 𝑣 is additionally strongly negatively 

correlated with 𝐿𝑟.𝑝𝑒𝑟𝑐 (𝜌 = -0.87) so high percentage load removed occurs at low velocities. 𝐷𝑎 on the other hand is positively 
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correlated to 𝐿𝑟.𝑝𝑒𝑟𝑐 (𝜌 = 0.58) which indicates that higher 𝐷𝑎 are occurring together with higher load removed. 𝐷𝑎, thereby 

seems to be controlled more tightly by variation in 𝑘−1 (𝜌 = -0.71) than by 𝑇𝑇 (𝜌 = 0.48). Finally 𝐶𝑜𝑢𝑡 is negatively correlated 555 

with 𝐿𝑟.𝑝𝑒𝑟𝑐 (𝜌 = -0.82) and 𝐷𝑎 (𝜌 = -0.61). 

 

Figure 5: Correlation matrix for the model parameter inputs: channel depth and width exponents 𝒂𝒅, 𝒂𝒘 and coefficients 𝑲𝒅, 𝑲𝒘, 

slope of the land-to-stream loading, 𝒃, concentration of the land-to-stream load 𝑪𝒎𝒆𝒂𝒏, uptake velocity 𝒗𝒇 and outputs: The bending 

of the log(C)-log(Q) relationship at the catchment outlet, Curvmax, effective stream velocity 𝒗, first order uptake constant 𝒌, travel 560 

time 𝑻𝑻, Damköhler number 𝑫𝒂, daily percentage load removed 𝑳𝒓.𝒑𝒆𝒓𝒄 and slope of the log(C)-log(Q) relationship and median 

concentration at the outlet 𝒃𝒐𝒖𝒕 and 𝑪𝒐𝒖𝒕. The Spearman rank correlation coefficients (𝝆) are given for each combination. 

 

The PAWN and correlation analysis results suggest the input parameters dictating the channel morphology 𝑎𝑤 and 𝑎𝑑 (Sect. 

2.3), are controlling factors for the magnitude of the bending in log(C)-log(Q) relationships at the catchment outlet. More 565 

specifically parameters 𝑎𝑤 and 𝑎𝑑 influence the response of the wetted perimeter (𝑃𝑖 , Eq. (A2)) in a given reach in the network 

and drive the reactive surface area (𝑃𝑖 ∗ 𝑙𝑖) with changes in discharge (Eq. (2.1) and (2.2); Fig. 5; Fig. B3). The absolute load 

removed 𝐿𝑟,𝑖  (Eq. (5)) can be written with the width and depth exponents 𝑎𝑤  and 𝑎𝑑  explicitly (Eq. (A3)) so that 
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𝐿𝑟,𝑖~
1

𝑄1−𝑎𝑤−𝑎𝑑
. When the denominator is large (small 𝑎𝑤 and 𝑎𝑑) the effect of low and high Q’s on the local absolute removed 

load increases and can lead to a lower Curvmax (more bending, Sect. 3.1; Fig. B6). Network based modelling studies often set 570 

the width exponent 𝑎𝑤 to a value of 0.5 that was found to be representative for rivers globally (Bertuzzo et al., 2017; Rode et 

al., 2016; Wollheim et al., 2018). This a-priori fixed 𝑎𝑤 may, however, strongly affect the simulated C-Q dynamics at the basin 

outlet as is demonstrated here. Curvmax finally shows the lowest sensitivity to the loading parameters 𝑏  and 𝐶𝑚𝑒𝑎𝑛  that 

influence the incoming load to a grid cell (Eq. (3)) and thus impact the local absolute load removed 𝐿𝑟,𝑖 (Eq. (5)) rather than 

the percentage removed load 𝐿𝑟.𝑝𝑒𝑟𝑐. This indicates that the contribution of local incoming load in the downstream direction 575 

has a limited impact on the log(C)-log(Q) bending at the catchment outlet. For example in the Selke Meisdorf catchment, the 

locally contributing Q’s are generally smaller (or equal for the headwaters) than the total Q in a given reach so that the influence 

of the loading parameters 𝑏 and 𝐶𝑚𝑒𝑎𝑛  on the total load decreases in downstream reaches (Sect. 3.1; Fig. 3).  

 

Although Curvmax only has an intermediate sensitivity to the uptake velocity 𝑣𝑓 and they don’t correlate well, 𝑣𝑓 is an important 580 

‘boundary condition’ for log(C)-log(Q) bending at the catchment outlet. No biological demand (low 𝑣𝑓) would mean that none 

of the incoming load would be removed from the river network. The outlet signal would in this case be solely driven by the 

discharge controlled transport processes and no bending would be observed (Curvmax = 0). Although increasing 𝑣𝑓  does 

correlate with decreasing concentrations (𝜌 = -0.34) and increasing load removed (𝜌 = 0.34), it does not always lead to more 

bending as illustrated in Fig. B6 for the Selke example. Because 𝑣𝑓 is defined as a constant within one simulation that is 585 

independent of the local nutrient concentration (Sect. 2.2.2), the percentage of load removed in the network is mainly controlled 

by the varying hydrological conditions here represented by the effective network wide velocity 𝑣 (𝐿𝑟.𝑝𝑒𝑟𝑐 and 𝑣, 𝜌 = -0.82). 

This confirms that discharge and channel morphology are among the most important predictors of removal (Alexander et al., 

2000; Seitzinger et al., 2002; Wollheim et al., 2006). The role of 𝑣  was further examined the context of restored and 

channelized streams (Kunz et al., 2017) and agree with our findings that decreased 𝑣 influences N cycling (Peterson et al., 590 

2001).  

 

The PAWN and correlation analysis results show that Curvmax is sensitive to the Damköhler number 𝐷𝑎 (𝐾𝑆𝑚𝑎𝑥  = 0.31 Fig. 

4, Table C2) that has a high positive correlation with the percentage load removed 𝐿𝑟.𝑝𝑒𝑟𝑐 (𝜌 = 0.58; Fig. 5). This indicates 

that high 𝐷𝑎 occur concurrently with more efficient removal and is in line with others (Ocampo et al., 2006) who found 595 

sometimes almost 100 % NO3
− removal in the riparian zones of an agricultural catchment with 𝐷𝑎 exceeding 2. The transport 

timescale 𝑇𝑇 that makes up 𝐷𝑎 (𝜌 = 0.48; Fig. 5) together with the inverse of the first order uptake constant 𝑘−1 (𝜌 = -0.71; 

Eq. (6)) are examined for classes of low, median and high 𝐷𝑎 (defined in Table 3) in Fig. 6a to disentangle which values of 

𝑘−1 and 𝑇𝑇 occur together and can constitute a certain 𝐷𝑎 range (each class contains 5 % of all simulations). It is shown here 

that low 𝐷𝑎 are driven by both low 𝑇𝑇 and high, variable 𝑘−1 implying a transport driven system with limited NO3
− removal 600 
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(median 𝐿𝑟.𝑝𝑒𝑟𝑐 equals 2.4 % in Fig. 6a for low 𝐷𝑎). High 𝐷𝑎, contrarily, have high 𝑇𝑇 and low 𝑘−1, fostering intermediate 

uptake percentages (median 𝐿𝑟.𝑝𝑒𝑟𝑐 = 27.1 %). Although also 𝑣𝑓 clearly differentiates for classes of low, medium and high 𝐷𝑎 

in Fig. 6a, the corresponding Curvmax values are similar in their range and mean. Nevertheless, this does not mean that 𝐷𝑎 is 

not influencing Curvmax at the basin outlet as there could be interactions with other inputs that are not captured here (which is 

supported by the PAWN findings, where 𝐷𝑎 appears to be influential).  605 

 

From the Curvmax perspective (Fig. 6b) we identify model output ranges of 𝐿𝑟.𝑝𝑒𝑟𝑐, 𝐷𝑎 and input variable 𝑣𝑓 that constitute 

low, median and high Curvmax classes (Table 3). High Curvmax (less bending, ~ -0.02) is thereby linked to low 𝐿𝑟.𝑝𝑒𝑟𝑐 (median 

4.8 %), while low Curvmax (more bending, ~ -0.60) is connected to higher and more variable 𝐿𝑟.𝑝𝑒𝑟𝑐 (median 33.6 %), generally 

indicating that more bent systems are more efficient in terms of removal and vice-versa. To explore some cases when this latter 610 

statement might not be true, we examine the input parameter ranges where more bent simulations (Curvmax < -0.51, 13.1 % of 

all simulations) occur concurrently with low percentage removal (𝐿𝑟.𝑝𝑒𝑟𝑐 < 5.2 %, 0.9 % of all simulations) on the one hand 

and high percentage removal (𝐿𝑟.𝑝𝑒𝑟𝑐 > 63.0 %, 4.9 % of all simulations) on the other hand in Fig. B7a. Here, it is seen that 

high bending, low uptake cases mainly occur for simulations with a high effective velocity 𝑣 (driven by lower values for the 

channel shape parameters 𝐾𝑤, 𝐾𝑑, 𝑎𝑤 and 𝑎𝑑). Low 𝑎𝑤 and 𝑎𝑑 are correlated with more bending (low Curvmax) and Curvmax is 615 

most sensitive to these parameters. However, low 𝑎𝑤 and 𝑎𝑑 do not lead to a more efficient NO3
− uptake if the other channel 

shape parameters 𝐾𝑤 and 𝐾𝑑 cause relatively high velocities (median 𝑣 > 0.1 m s-1) throughout the network. The latter case is 

shown to be true for a minor percentage of all simulations (0.9 %) and explains why low Curvmax (more bending) can be 

connected to a wider range of 𝐿𝑟.𝑝𝑒𝑟𝑐. Figure B7b shows that concurrent less bending (Curvmax > -0.03) and high removal 

simulations (𝐿𝑟.𝑝𝑒𝑟𝑐 > 63.0 %) are even rarer (0.1 % of all simulations) compared to concurrent less bending (Curvmax > -0.03) 620 

and low removal (𝐿𝑟.𝑝𝑒𝑟𝑐 > 5.2 %; 7.4 % of all simulations). Deviations from the expected high Curvmax - low 𝐿𝑟.𝑝𝑒𝑟𝑐 pattern 

are also here driven by (very low) 𝑣. In the latter case however, 𝑎𝑤 and 𝑎𝑑 are generally high (leading to high Curvmax) and 

the different 𝑣 stem from coefficients 𝐾𝑤 and 𝐾𝑑 that are higher in high removal simulations. Finally, Fig. 6d illustrates that 

low medium and high uptake velocities 𝑣𝑓 lead to distinct 𝐷𝑎 and 𝐿𝑟.𝑝𝑒𝑟𝑐 but do not show up in the bent signal at the catchment 

outlet. 625 
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Figure 6: The corresponding simulated ranges for high, median and low values (Table 3) of the main simulation outputs: (a) 

Damköhler number 𝑫𝒂, (b) Curvmax, (c) Percentage load removed 𝑳𝒓.𝒑𝒆𝒓𝒄 and (d) uptake velocity 𝒗𝒇 are shown for the same variables 

(in the columns). The median travel time, 𝑻𝑻,  and the inverse of the first order uptake constant, 𝒌−𝟏 are given additionally for low 

medium and high 𝑫𝒂. 630 

 

3.4 Predicting in-stream processing with Curvmax 

To determine if observed C-Q bending at the catchment outlet (here Curvmax) can be utilized to quantify in-stream uptake in 

the upstream river network and to visualize model parameter interactions, a classification tree was established for low, medium 

and high values (Table 3; Fig. 6) of the response variables 𝐿𝑟.𝑝𝑒𝑟𝑐, 𝐷𝑎 and 𝑣𝑓 (Fig. 7). The prediction accuracy metrics in Table 635 

C3 and the probability histograms in Fig. 7 show that 𝐿𝑟.𝑝𝑒𝑟𝑐  can be predicted relatively well (overall accuracy of 0.66) 

compared to the other response variables 𝐷𝑎 (accuracy 0.51) and 𝑣𝑓 (accuracy 0.40). The fitted CART models all perform 

significantly better than a random allocation of simulation results to each class for each response variable (Accuracy > No 

Information Rate, p-value < 2.2e-16). While the classes for 𝐿𝑟.𝑝𝑒𝑟𝑐 and 𝑣𝑓 are partitioned using only the network effective 

velocity 𝑣 and Curvmax, predicting 𝐷𝑎 in our case requires information on the channel geomorphology parameters the width 640 

coefficient 𝐾𝑤 and the depth exponent 𝑎𝑑. The histograms for each of the response variables in Fig. 7 indicate the probability 
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of a test sample to be of a certain class when following the partition rules in the respective decision tree. For example, for 

𝐿𝑟.𝑝𝑒𝑟𝑐 the probability that the daily percentage load removed is small (around 8%) exceeds 0.95 when the effective velocity 

𝑣 in the catchment is larger than 0.22 m s-1; while the probability that 𝐿𝑟.𝑝𝑒𝑟𝑐 is high (around 70%) in this case is close to 0 

(Fig. 7a). For 𝑣𝑓 the lowermost (1) and highest (20) classes are predicted most accurately (0.58 and 0.56 respectively, Table 645 

C3) and indicate that when the velocity is not very small and Curvmax is smaller than -0.51 (more bent), 𝑣𝑓 is most likely high 

(probability 0.59). For 𝐷𝑎, the lower and higher classes can be predicted most accurately (0.69 and 0.68 respectively), for 

example, 𝐷𝑎 is small with a probability of 0.58 when 𝐾𝑤 is relatively low (< 6.8). When on the other hand 𝐾𝑤 exceeds 6.8 and 

𝑎𝑑 is larger than 0.4 or when 𝑎𝑑 is smaller than 0.4 but Curvmax is smaller than -0.45 and 𝑣 is very small (< 0.04 m s-1) it is 

most likely that 𝐷𝑎 is large. 650 

 

 

Figure 7: CART decision trees for the response variables 𝑳𝒓.𝒑𝒆𝒓𝒄 (accuracy = 0.66), 𝑫𝒂 (accuracy = 0.51) and 𝒗𝒇 (accuracy = 0.40). 

The trees are read from top to bottom, where the binary splits are followed to arrive at a histogram, illustrating the probability of a 

test sample to have low, medium or high values (Table 3) for a certain response variable.. The variables at the binary splits differ 655 

per response variable and consist of the median stream velocity, v [m day-1] and Curvmax for response variables 𝑳𝒓.𝒑𝒆𝒓𝒄 and 𝒗𝒇, while 
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width coefficient 𝑲𝒘 and depth exponent 𝒂𝒅 are identified additionally for 𝑫𝒂. The prediction metrics for each of these classes and 

response variables are stated in Table C3.  

 

These findings demonstrate that log(C)-log(Q) bending at the catchment outlet, together with the median velocity and the 660 

response of the width and the depth of a channel to discharge (parameters 𝐾𝑤, 𝐾𝑑, 𝑎𝑤 and 𝑎𝑑) can help to classify the in-stream 

daily percentage load removed 𝐿𝑟.𝑝𝑒𝑟𝑐 , the Damköhler number 𝐷𝑎  and to a certain extent the uptake velocity 𝑣𝑓 . This 

conclusion depends of course on the initial assumptions of our model setup (e.g. linear land-to-stream loading vs Q with a 

constant slope 𝑏 and no dominant influence of waste water sources, no seasonality in uptake velocity 𝑣𝑓). The velocity may 

be computed from the channel shape, discharge (Eq. (2.3)) and the topography with the channel shape parameters that are 665 

sometimes available from rating curve information or detectable from high resolution satellite pictures. The CART models 

could help obtain an initial probability of NO3
− removal efficiency in a river network, especially in a context where network 

wide uptake measurements are scarce (Wollheim et al., 2017; Hensley et al., 2014) and physical, fully distributed models are 

not always feasible to apply (Boyer et al., 2006; Klemes, 1986). Although the CART models are developed using ‘only’ the 

13 German catchments included in the Monte Carlo analysis, in Sect. 3.2 and Table 4 we have shown that the output variability 670 

between the catchments (as a result of different catchment properties) is minor compared to the output variability within the 

catchments (due to the effect of the input parameter set) thus justifying the CART model use. Nevertheless, the prediction 

performance of these CART models might be influenced in unknown ways when applied to catchments with dissimilar 

catchment sizes, network structures or hydrological regimes. 

 675 

4 Conclusions 

In this study, we explore how low frequency NO3
− log(C)-log(Q) relationships, observed at a basin outlet, can display bending 

as a result of network scale in-stream uptake processes. We established a parsimonious grid based river network model for 13 

distinct German catchments and investigated the influence of in-stream loading, transport and uptake parameters on the 

bending of log(C)-log(Q) relationships. Based on our exploratory analysis we conclude that: 680 

 Noisy, multi-annual and low frequency NO3
− log(C)-log(Q) relationships at a basin outlet can be described as bent 

and the amount of bending can be robustly quantified with the new Curvmax metric. Curvmax is temporally stable on 

multi-annual time scales and can be computed alongside existing log(C)-log(Q) descriptors, such as the slope of the 

linear regression model.   

 A bent log(C)-log(Q) relationship (Curvmax < 0) at the basin outlet can arise from log-log linear land to stream C-Q 685 

relationships if uptake is present within the river network (𝑣𝑓 ≠ 0). This supports the hypothesis that more positive 

slopes under low flow (bended log(C)-log(Q) curves) are linked to biological NO3
− concentration mediation in the 

stream (Moatar et al., 2017); and connects Curvmax (as a quantitative measure) to observations of increased removal 
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efficiency under low flows (Wollheim et al., 2017). Our findings also stress the need to monitor the entire discharge 

range and capture low flows as well as high flows in a catchment.  690 

 The bending at the catchment outlet is primarily shaped by the channel geomorphological parameters, 𝑎𝑤 and 𝑎𝑑 

(exponents in the respective stream width and depth to discharge relationships; with Curvmax sensitivity indices 𝐾𝑆𝑚𝑎𝑥  

equal to 0.62 and 0.51; and Spearman correlation coefficient, 𝜌, equaling 0.68 and 0.56 respectively) and less by the 

uptake velocity 𝑣𝑓 (𝐾𝑆𝑚𝑎𝑥  = 0.18, 𝜌 = -0.04), given that 𝑣𝑓 differs from zero. In the latter case Curvmax would equal 

zero and the log(C)-log(Q) relationship would be solely shaped by the accumulation of upstream load. Thus, the 695 

change of reactive channel bed area with discharge (mediated by 𝑎𝑤 and 𝑎𝑑) has a greater influence on the bending 

at the outlet than the biological removal capacity (here 𝑣𝑓). Additionally we demonstrate that an a-priori fixed 𝑎𝑤 

might strongly affect the simulated C-Q dynamics at the basin outlet. This calls for a better representation of channel 

geomorphological parameters at stream networks to allow for better modeling assessments. 

 Curvmax at the basin outlet can be linked to the network-wide removal efficiency 𝐿𝑟.𝑝𝑒𝑟𝑐 (𝜌 = -0.36) under certain 700 

conditions, generally showing that systems with more bending in their log(C)-logQ)-relationship are more efficient 

in terms of removal and vice-versa. It is, however, clear that also cases with high bending (Curvmax < -0.51) and low 

removal (𝐿𝑟.𝑝𝑒𝑟𝑐 < 5.2 %, 0.9 % of all simulations) or low bending (Curvmax > -0.03) with high removal (𝐿𝑟.𝑝𝑒𝑟𝑐 > 

63.0 %, 0.1 % of all simulations) exist that are imposed by respective higher and lower network wide median 

velocities. This shows how the velocity, 𝑣, (calculated from the channel shape parameters 𝑎𝑤, 𝑎𝑑, 𝐾𝑤 and 𝐾𝑑) may 705 

mediate the connection between 𝐿𝑟.𝑝𝑒𝑟𝑐  and Curvmax and indicates that 𝑣 should be considered when interpreting 

log(C)-log(Q) bending. Consequently, anthropogenic impacts in terms of channelization of river networks might lead 

to lower removal efficiencies. 

 Classification trees - like CART - can be useful for predicting low, median and high classes of response variables 

𝐿𝑟.𝑝𝑒𝑟𝑐 , the Damköhler number 𝐷𝑎 and 𝑣𝑓 . They provide useful insights on how catchments with low frequency 710 

concentration and discharge time series (that are generally available) can reveal information on the upstream river 

network uptake performance.  

To evaluate the generality of the results presented here, Curvmax should be calculated for NO3
− concentration observations of a 

larger range of catchments and linked to the respective catchment properties. Properties such as light and stream ecological 

state can serve as proxies for uptake performance and for example topographic gradient can be a proxy for network transport 715 

velocity. Finally, including conservative tracers in the analysis can be used to estimate loading scenarios. Such a data-driven 

exploration would further elucidate the linkages between nutrient uptake efficiency and low-frequency C and Q observations. 
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Appendix A 720 

c calculation (Jawitz and Mitchell, 2011) 

𝑐 = 𝑒𝜇𝑐−𝑏∗𝜇𝑞                        (Eq. A1) 

With 

𝜇𝑞 =  𝑚𝑒𝑎𝑛(log𝑄𝑡.𝑠𝑝 ∗ 𝑎𝑖) 

𝜇𝑐 = log𝑚𝑒𝑎𝑛𝐶 −
𝜎𝑐
2

2
 725 

𝜎𝑐 = √𝑏
2 ∗ 𝜎𝑞

2 

𝜎𝑞 = √𝑣𝑎𝑟(log𝑄𝑡.𝑠𝑝 ∗ 𝑎𝑖) 

 

Stream channel wetted perimeter Pi [L], where A is the cross-sectional area [L²], RH [L] is the hydraulic radius and wi [L], di 

[L] and vi [L/T] are the local stream width, average depth and velocity respectively. Si [L/L] is the stream bed slope and n [-] 730 

is the Manning roughness coefficient that is equal to 0.03 for all simulations.   

𝑃𝑖 =
𝐴

𝑅𝐻
=

𝑤𝑖∗𝑑𝑖∗𝑆
3
4𝑖

(𝑣𝑖∗𝑛)
3
2

                        (Eq. A2) 

 

The load removed in a grid cell (Eq. (5)) with the width and depth exponents, 𝑎𝑤 and 𝑎𝑑, stated explicitly. 

𝐿𝑟,𝑖 = 𝐿𝑖𝑛,𝑖 ∗ (1 − 𝑒
−
𝑣𝑓∗(𝐾𝑤∗𝐾𝑑)

5
2∗𝑆

3
4∗𝑛

3
2

𝑄𝑖
1−𝑎𝑤−𝑎𝑑 )                       (Eq. A3) 735 

 

The velocity in a grid cell (Eq. (2.3)) with the width and depth exponents, 𝑎𝑤 and 𝑎𝑑, stated explicitly. 

𝑣𝑖 =
𝑄1−𝑎𝑤−𝑎𝑑

𝐾𝑤∗𝐾𝑑
                         (Eq. A4) 

 

  740 
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Appendix B 

 

Figure B1: Conceptual figure explaining Curvmax. The upper panel shows the log(C)-log(Q) relationship for Selke Meisdorf with the 

smoothed spline fits to this data for different degrees of freedom (df). The corresponding colors in the lower plot show then the local 

curvature values for these fitted smoothed spline. Also the log(Q) is indicated for which the largest local curvature was found for 745 

each of the smoothed splines. Curvmax is then calculated as the largest local curvature value for a degree of freedom of 5 in this 

specific case as it is the largest degree of freedom that has the largest local curvature within 𝑸𝒎±0.05, with 𝑸𝒎 equal to the log(Q) 

of the largest local curvature for df=3. Note that when Curvmax < 0 the curve is concave while for Curvmax > 0 the curve is convex. 
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 750 

Figure B2: Network model, illustrated for one grid cell. Here, the flow length through a grid cell 𝒊 is 𝒍𝒊 [L], 𝒘𝒊 [L] and 𝒅𝒊 [L] are the 

respective width and average depth of the reach and 𝑷𝒊 [L] is the corresponding stream channel wetted perimeter. The uptake 

velocity is denoted as 𝒗𝒇. The local discharge 𝑸𝒊 [L³ T-1] consists of upstream incoming discharge 𝑸𝒊−𝟏 [L³ T-1] and land to stream 

runoff 𝑸𝒍𝒔 [L³ T-1]. Similarly, the local load L [M T-1] consists of upstream incoming load 𝑳𝒊𝒏.𝒖𝒑 [M T-1] and the land to stream load 

𝑳𝒊𝒏.𝒍𝒔 [M T-1], where 𝑳𝒊𝒏. = 𝑳𝒊𝒏.𝒖𝒑 +𝑳𝒊𝒏.𝒍𝒔. Finally, the local load removed is denoted as 𝑳𝒓,𝒊 [M T-1]. 755 
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Figure B3: (a) The effect of parameters 𝒂𝒘 and 𝑲𝒘  on the channel width illustrated for the Q timeseries at the Selke Meisdorf 

station. (b) In the ‘At-a-station’ panel the changes in velocity, depth and width with Q for grid cell B (Fig. 3) in the middle of the 

Selke network are evaluated. The ‘Downstream’ panel - that considers all the network grid cells - shows the channel characteristics 760 

width, depth and velocity for a time t, with a Q of 0.70 m³ s-1 at the outlet. The values for the parameters 𝒂𝒘, 𝑲𝒘, 𝒂𝒅 and 𝑲𝒅 are the 

same for both scenarios (Table C1). 
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Figure B4: Curvmax of nitrate log(C)-log(Q) data for 444 French monitoring stations arranged from left to right with increasing 

Curvmax (green crosses). For a given station, the grey boxplot represents the temporal robustness of this metric by subsampling 100 765 

times from the original time series. The green boxplot indicates the range and distribution of all observed station Curvmax values. 
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Figure B5: Curvmax distributions resulting from running the same 11107 input parameter combinations in each of the 13 catchments 

(a) shows the elemental cumulative distribution and (b) boxplots. None of the catchments have a normally distributed Curvmax set 770 

according to the Kruskal-willis (p<0.05) test. 
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Figure B6: Log(C)-log(Q) relationships and Curvmax for increasing uptake velocities (𝒗𝒇) resulting from network model simulations 

of the Selke Meisdorf catchment. As an example, two different 𝒂𝒘 are displayed and 𝒗𝒇 is varied from almost 0 to 2.5 m day-1 with 

the other parameter values as stated in Table C1. 775 
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 785 

Figure B7: Two specific cases of Fig. 6, (a) when Curvmax is low (high bending) and 𝑳𝒓.𝒑𝒆𝒓𝒄 is low opposed to high and (b) when 

Curvmax is high (low bending) and 𝑳𝒓.𝒑𝒆𝒓𝒄 is high opposed to low.  
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Appendix C 790 

Table C1: Estimated parameter values for the Selke catchment 

Parameter Validation Value Selke 

𝑣𝑓 0.098 

𝑏 0.014 

𝐶𝑚𝑒𝑎𝑛  3.014 

𝐾𝑤 2.75 

𝑎𝑤 0.09 

𝐾𝑑 0.17 

𝑎𝑑 0.49 

 

Table C2: PAWN sensitivity indices 𝐊𝐒𝐦𝐚𝐱 for all the parameters and all the catchments, together with median and coefficients of 

variation (CV). 

 795 

Table C3: Performance statistics for each of the classes for the variables 𝑳𝒓.𝒑𝒆𝒓𝒄, 𝑫𝒂 and 𝒗𝒇 predicted by CART. 

  𝑳𝒓.𝒑𝒆𝒓𝒄 𝒗𝒇 𝑫𝒂 

  class 7  class 12 class 18  class 1 class 10 class 20 class 3 class 10 class 18 

Sensitivity 0.63 0.38 0.94 0.43 0.00 0.77 0.63 0.07 0.82 

Specificity 0.91 0.89 0.69 0.74 1.00 0.36 0.75 0.97 0.54 

Pos Pred Value 0.77 0.62 0.61 0.45 NA 0.38 0.56 0.54 0.47 

Neg Pred Value 0.83 0.75 0.96 0.72 0.67 0.76 0.80 0.68 0.86 

Prevalence 0.34 0.32 0.34 0.34 0.33 0.33 0.34 0.33 0.33 

Detection Rate 0.21 0.12 0.32 0.14 0.00 0.26 0.21 0.02 0.27 

Parameter Catchment ID Median CV 

  1 2 3 4 5 6 7 8 9 10 11 12 13     

𝑣𝑓 0.44 0.28 0.14 0.06 0.24 0.11 0.10 0.09 0.18 0.33 0.30 0.41 0.12 0.18 0.59 

𝑏 0.47 0.15 0.12 0.05 0.14 0.05 0.08 0.17 0.08 0.24 0.25 0.42 0.05 0.14 0.76 

𝐶𝑚𝑒𝑎𝑛  0.46 0.21 0.25 0.13 0.16 0.18 0.18 0.07 0.23 0.25 0.25 0.34 0.10 0.19 0.47 

𝐾𝑤 0.59 0.41 0.19 0.11 0.32 0.16 0.16 0.13 0.23 0.39 0.41 0.50 0.17 0.23 0.51 

𝑎𝑤 0.75 0.58 0.59 0.58 0.63 0.61 0.63 0.66 0.63 0.65 0.58 0.60 0.65 0.62 0.06 

𝐾𝑑 0.45 0.32 0.20 0.08 0.29 0.15 0.14 0.09 0.17 0.46 0.43 0.53 0.16 0.20 0.55 

𝑎𝑑 0.80 0.39 0.52 0.52 0.48 0.29 0.56 0.53 0.55 0.51 0.42 0.48 0.53 0.51 0.22 

Median 0.59 0.39 0.25 0.13 0.33 0.18 0.18 0.17 0.24 0.43 0.42 0.50 0.18     

CV 0.31 0.46 0.53 0.81 0.53 0.65 0.67 0.76 0.58 0.45 0.41 0.26 0.74     

Variable                               

𝐷𝑎 0.53 0.34 0.30 0.28 0.39 0.24 0.22 0.30 0.21 0.44 0.37 0.64 0.21 0.31 0.38 

𝑣 0.95 0.67 0.39 0.32 0.69 0.39 0.55 0.54 0.64 0.74 0.70 0.69 0.62 0.64 0.26 
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Detection Prevalence 0.28 0.12 0.32 0.32 0.00 0.68 0.38 0.04 0.58 

Balanced Accuracy 0.77 0.63 0.82 0.58 0.50 0.56 0.69 0.52 0.68 
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