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Abstract. Increasing rates of biodiversity loss are adding momentum to efforts seeking to restore or rewild degraded 

landscapes. Here, we investigated the effects of natural forest regeneration on water flux partitioning, water ages and 

hydrological connectivity, using the tracer-aided ecohydrological model EcH2O-iso. The model was calibrated using ~3.5 15 

years of diverse ecohydrological and isotope datasets available for a catchment in the Scottish Highlands, an area where the 

impetus for regeneration of native pinewoods is growing. We then simulated two land cover change scenarios that incorporated 

forests at early (thicket) and late (old-open forest) stages of regeneration, respectively, and compared these to a present-day 

baseline simulation. Changes to forest structure (proportional vegetation cover, vegetation heights and leaf area index of pine 

trees) were modelled for each stage. Establishment of thicket forest had the greatest effect on water partitioning/ages and 20 

connectivity, with increased losses to interception evaporation driving reductions in below-canopy fluxes (soil evaporation, 

groundwater recharge and streamflow) and generally slower rates of water turnover. Effects on streamflow were most evident 

for low and moderate summer flows rather than winter high flows. Whilst full forest regeneration was limited to hillslopes, 

resultant changes to the spatial dynamics of flux partitioning could also cause drying out of the valley bottom. The more open 

nature of the older forest generally resulted in water fluxes, ages and connectivity characteristics returning towards baseline 25 

conditions. Our work implies that the ecohydrological consequences of natural forest regeneration on degraded land depend 

on the structural characteristics of the forest at different stages of development. Consequently, future land cover change 

investigations need to move beyond consideration of simple forest vs. non-forest scenarios to inform management that 

effectively balances landscape restoration with demand for ecosystem services. Tracer-aided ecohydrological models were 

also shown to be useful tools for land cover change simulations and further potential of such models was highlighted. 30 
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1 Introduction 

Increasing rates of biodiversity loss and ecosystem degradation have highlighted the urgent need for landscape conservation 

and restoration (Rands et al., 2010). Unlike approaches seeking to retain sets of predetermined characteristics, rewilding takes 

a relatively “hands-off” approach to restoration by seeking to restore dynamic natural processes that create self-sustaining, 

complex ecosystems (Navarro and Pereira, 2015; Perino et al., 2019). The Scottish Highlands represent a degraded landscape 35 

for which rewilding is increasingly promoted as a means of restoring native pinewoods that have been lost due to human land 

management practices (Deary and Warren, 2017; zu Ermgassen et al., 2018). Following the last glaciation, the dominant 

vegetation over much of the Highlands was open forests dominated by Scots Pine (Pinus sylvestris) and birch (Betula spp.) 

(Steven and Carlisle, 1959). However, industrial exploitation in the 17-19th centuries, and interruption of natural regeneration 

due to intensification of sheep grazing and management of Highland estates for deer and grouse shooting since the mid-19th 40 

century (Steven and Carlisle, 1959; Wilson, 2015), means that remaining native pinewoods now cover only ~1% of their 

Holocene maximum extent (Mason et al., 2004). The goal of rewilding in the Highlands would be to restore the process of 

natural forest regeneration through initial human interventions to reduce grazing pressures and establish new seed sources 

through targeted tree planting, ultimately leading to the proliferation and maintenance of self-sustaining native pinewoods 

(Thomas et al., 2015; zu Ermgassen et al., 2018).  45 

 

Vegetation plays a crucial role in partitioning land-surface water and energy fluxes, whilst soil moisture determines water 

availability for root uptake and plant growth (Rodriguez-Iturbe, 2000), and determines the water-limited edge of forest extents 

(Simeone et al., 2018). Therefore, elucidating the potential ecohydrological consequences of natural forest regeneration is 

crucial for sustainable land management and for understanding how land cover change may affect other ecosystem services. 50 

This is relevant beyond Scotland as reforestation is widely seen as a means of reducing flood and erosion risks, improving 

water quality, and mitigating climate change (Bonan, 2008; Chandler et al., 2018; Ellison et al., 2017; Iacob et al., 2017; Rudel 

et al., 2020). Of particular importance is how partitioning of water between “blue” (i.e. groundwater recharge and stream 

discharge) and “green” (i.e. evapotranspiration [ET]) fluxes is affected in space and time, as this has implications for water 

availability to terrestrial and aquatic ecosystems, and downstream water users (Falkenmark and Rockström, 2006; 2010). In 55 

addition, consideration of water ages and the spatio-temporal dynamics of hydrological connectivity can reveal how storage-

flux dynamics and hydrological source areas are affected by regeneration (Bergstrom et al., 2016; Kuppel et al., 2020; Tetzlaff 

et al., 2014; Sprenger et al., 2019). This has implications for ecosystem resilience to climatic extremes (Fennell et al., 2020; 

Kleine et al., 2020; Smith et al., 2020), generation of low/high flows (Birkel et al., 2015; Nippgen et al., 2015), and 

redistribution of water and solutes (Bergstrom et al., 2016; Turnbull and Wainwright, 2019).    60 

 

Previous work investigating the hydrological consequences of forest (re)generation has often employed the paired-catchment 

approach to assess how changes in forest cover affect aggregated metrics (e.g. water balance and water yield) that characterise 
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catchment functioning (Bosch and Hewlett, 1982; Brown et al., 2005; Filoso et al., 2017). However, findings from such studies 

may be biased as many only consider the early stages (~first 10 years) of forest development, often within the context of 65 

commercial (possibly non-native) plantation management (Coble et al., 2020; Ellison et al., 2017; Filoso et al., 2017). Where 

long-term sites have been established, data have indicated that age-related changes to forest structure and tree physiology can 

substantially influence water partitioning (Coble et al., 2020; Marc and Robinson, 2007; Perry and Jones, 2017; Scott and 

Prinsloo, 2008; Segura et al., 2020). However, the focus on commercial plantations, especially in the UK context (Marc and 

Robinson, 2007), may limit transferability of findings to scenarios of passively managed natural forest regeneration associated 70 

with rewilding. In particular, forest harvesting cycles (~40 years) are much shorter than the lifespan (>150 years) of trees in 

natural forests (Brown et al., 2005; Ellison et al., 2017; Summers et al., 2008), whilst plantation management practices (e.g. 

drainage, species selection, thinning, etc.) may confound effects of land cover change (Birkinshaw et al., 2014; Robinson, 

1998). Along with general drawbacks to the paired-catchment approach (e.g. limited ability to resolve spatio-temporal changes 

to internal catchment processes; Brown et al., 2005), these factors demonstrate the need to better understand the 75 

ecohydrological consequences of a naturally regenerating forest, using methods that can disaggregate the drivers of aggregated 

catchment responses in space and time.  

 

Spatially distributed ecohydrological models explicitly simulate the tight coupling of water, energy, and vegetation dynamics 

in time and space (Fatichi et al., 2016). Consequently, they are promising tools for investigating the ecohydrological impacts 80 

of land cover change (Ellison et al., 2017; Manoli et al., 2018; Peng et al., 2016). Models are also advantageous in providing 

a virtual, controlled environment within which different scenarios of land cover change can be simulated and compared against 

a baseline (Du et al., 2016). A critical prerequisite to using ecohydrological models is confidence in accurate representation of 

internal catchment functioning (Seibert and van Meerveld, 2016). Given that the integration of stable water isotope tracers 

(δ2H and δ18O) within models can have significant value in this regard (Birkel and Soulsby, 2015), the tracer-aided 85 

ecohydrological model EcH2O-iso has recently been developed (Kuppel et al., 2018a). EcH2O-iso has successfully been 

applied to a range of environments to elucidate links between land cover and water partitioning/ages (e.g. Douinot et al., 2018; 

Gillefalk et al., 2021; Knighton et al., 2020; Kuppel et al., 2020; Smith et al., 2019; 2020).   

 

Here, we applied EcH2O-iso to a small experimental catchment in the Scottish Highlands to investigate the ecohydrological 90 

consequences of natural pinewood regeneration on degraded land. Specifically, we compared a present-day baseline simulation 

with two land cover change scenarios that incorporated forests at early (thicket) and late (old-open forest) stages of 

regeneration, respectively. Changes to forest structure (proportional vegetation cover, vegetation heights and leaf area index 

of pine trees) were modelled for each stage. Soil properties were held constant as it is unclear how “effective” parameters 

describing their aggregated characteristics respond to land cover change (Seibert and van Meerveld, 2016). Furthermore, 95 

conifer forests can have inconsistent effects on soil properties, as soil acidification from needle decomposition may compete 

with improvements to soil structure caused by increases in organic matter and root density (Archer et al., 2013; Chappell et 
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al., 1996). The wet and windy climate of Scotland also makes it likely that changes in canopy structure and interception losses 

will predominantly determine variations in water partitioning (c.f. Farley et al., 2005; Marc and Robinson, 2007). Our specific 

objectives were to evaluate the effect of forest regeneration stage on: 100 

 

1. Dynamics of water flux partitioning in time and space,  

2. Ages of “blue” and “green” water fluxes, 

3. Hydrological connectivity under contrasting flow conditions. 

2 Study site 105 

The Bruntland Burn (BB) catchment (3.2 km2) is in the Cairngorms National Park in the Scottish Highlands (Fig. 1a). It is a 

tributary of the Girnock Burn catchment (31 km2) that drains into the River Dee. The Dee supports a globally important Atlantic 

Salmon population and provides drinking water to over 300,000 people (Langan et al., 1997; Soulsby et al., 2016). The glacial 

legacy of the BB has left steep hillslopes and a flat valley bottom. Bedrock is mostly granite with schists and other metamorphic 

rocks fringing the catchment. This is overlain by extensive drift deposits (70% of catchment area) that are 5-10 m deep on 110 

lower hillslopes and up to 40 m deep in the valley bottom (Soulsby et al., 2016). Peat (up to 4 m deep) and peaty gley soils 

overlay the deeper drift deposits with peaty podzols and poorly developed rankers characterising higher elevations along with 

some bedrock outcrops (Fig. 1a).  

 

Natural Scots pine regeneration is restricted due to grazing from high densities of red deer (Cervus elaphus; 11 to 14.9 deer 115 

km-2 [SNH, 2016]) and controlled burning of grouse moorlands. Consequently, tree cover is largely limited to native pinewoods 

on the relatively inaccessible steep northern hillslope and pine plantations at the catchment outlet (Fig. 1b-c). Vegetation 

otherwise reflects soil type; heather (Calluna vulgaris, Erica tetralix) dominates the peaty podzols and rankers of the hillslopes 

(Fig. 1d), whilst Molinia grassland on the peaty gleys (Fig. 1f) is increasingly outcompeted by Sphagnum spp. on the 

waterlogged peats of the valley bottom (Fig. 1e). Isolated pine trees are scattered throughout the catchment, with those in the 120 

wetter valley bottom exhibiting stunted growth (“Bog pine” – Fig. 1g).  

 

Mean annual precipitation and potential evapotranspiration are 1000 mm and 400 mm, respectively, with the former usually 

falling in low-intensity events (<10 mm d-1). Less than 5% of precipitation falls as snow, reflecting mean temperatures ranging 

between 1 ℃ and 13 ℃ in winter and summer, respectively. Seepage of fracture flow from bedrock outcrops and shallow sub-125 

surface flow through the rankers predominantly move vertically on reaching the podzols to recharge stores of groundwater 

(GW) in the underlying drift (Blumstock et al., 2016; Tetzlaff et al., 2014) which sustain baseflow conditions in the stream 

(Blumstock et al., 2015). The storm response of the BB is non-linear, depending on the dynamic expansion of the riparian 
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saturation area which generates overland flow and hydrological connectivity between the hillslopes and valley bottom (Birkel 

et al., 2015; Soulsby et al., 2015).  130 

 

 

Figure 1: Characteristics of the Bruntland Burn catchment: a) Map showing distribution of soil types and monitoring sites; b) Aerial 

view showing current distribution of vegetation types in the catchment - yellow and red boxes show areas of established natural 

forest and land manged for plantations, respectively, whilst direction of the photo is shown by the arrow in a); c-g) Present-day 135 
vegetation coverage in the catchment (as also used in the baseline scenario simulation); h) Map of regeneration potential. 

3 Methods 

3.1 The EcH2O-iso model 

EcH2O-iso is a development of the ecohydrological model EcH2O (Maneta and Silverman, 2013). It consists of three tightly 

coupled modules simulating the water balance, vertical energy balance and vegetation growth dynamics, and an additional 140 

fourth module that tracks the stable water isotope composition and ages of hydrological stores and fluxes (Kuppel et al., 2018a). 

The model domain is defined by a regularly grided digital elevation model (DEM) that sets local flow directions, and governing 

equations are solved for fixed timesteps using finite-differences. Proportional coverage of different vegetation types (based on 

physiology and structure) and bare soil are specified for each grid cell.  
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 145 

The energy balance is resolved sequentially for the canopy and soil surface. Canopy temperature is determined iteratively to 

balance latent (transpiration and evaporation of intercepted water) and sensible heat fluxes with net radiation reaching the 

canopy. Interception evaporation is limited by available intercepted water whilst a Jarvis-type stomatal conductance model 

limits transpiration. Transpiration demand is satisfied by root water uptake from three soil layers (L1, L2 and L3) in proportion 

to the water content and fraction of roots in each layer. An exponential function determines the latter (Kuppel et al., 2018b). 150 

At the soil surface, iteratively determined temperature partitions net radiation and heat advected by rainfall/throughfall into 

latent heat for snowmelt and soil evaporation from L1, sensible heat exchanges between the soil and atmosphere, and heat into 

the ground and snowpack. Soil evaporation is limited by the moisture content of L1. In addition to soil, two further hydrological 

stores are conceptualised: canopy interception storage and ponded water. Once interception storage is full, throughfall reaches 

the ponded water store where it may infiltrate into L1 based on the Green-Ampt model. Vertical redistribution of water occurs 155 

via gravitational drainage when volumetric water content (VWC) in any of the soil layers exceeds field capacity. Gravitational 

water in L3 can leak from the model domain or move laterally as GW simulated via a kinematic wave model. Water remaining 

in ponded storage is routed to the next downslope cell as overland flow that can potentially travel the length of the catchment 

to reach the stream within one timestep. GW also seeps to the stream, with channel routing simulated using a kinematic wave 

model. Stable water isotopes and water ages are tracked assuming complete mixing (Eq. 1 in Smith et al., 2020), with isotopic 160 

fractionation due to evaporation in L1 simulated via the Craig-Gordon model (Craig and Gordon, 1965; Kuppel et al., 2018a). 

Vegetation growth dynamics were not simulated in this application; consequently, vegetation characteristics were static within 

each considered scenario. Previous work provides further details of EcH2O and EcH2O-iso (Kuppel et al., 2018a; 2018b; 

Maneta and Silverman, 2013; Smith et al., 2020).      

 165 

3.2 Present-day baseline scenario  

Catchment soil distribution was based on major Hydrology of Soil Types (HOST) classifications (Fig. 1a; Tetzlaff et al., 2007). 

Soil types were assumed to be spatially uniform. Five vegetation types characterised the present-day baseline scenario: Pre-

existing Scots pine, heather (also used to represent other understory shrubs such as bilberry), Molinia grass, Sphagnum and 

bog pine (Table 1). LiDAR-based estimates of canopy cover were used to derive proportional tree coverages in each cell (c.f. 170 

Kuppel et al., 2018b); trees on the podzols/rankers and on the wetter peat/peaty gleys were designated as pre-existing pine 

(Fig. 1c) and bog pine (Fig. 1g), respectively, enabling stunted development of the latter due to waterlogging to be explicitly 

represented (McHaffie et al., 2002). The extents of remaining vegetation types (Table 1; Fig. 1d-f) were derived from the soil 

distribution, field mapping and aerial imagery (Kuppel et al., 2018b; Tetzlaff et al., 2007). To account for scree and exposed 

bedrock, some rankers on the western and northern hillslopes were set with bare earth coverages of 80% and up to 95% of the 175 

treeless surface, respectively (Fig. 1a). All vegetation heights in the baseline scenario were based on local knowledge (Table 

1). 
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Table 1: The vegetation types considered in the baseline and regeneration scenarios along with their distribution by soil type, 

proportional aerial coverage, height, and leaf area index (LAI) scaling. 180 

Scenario and 

vegetation type 

Soil distribution  Cover Height 

(m) 

LAI scale 

factor a 

Baseline      

Pre-existing pine Podzol & ranker  LiDAR-derived 10 1 

Heather Peaty gley 5% of treeless area 0.4 - 

 Podzol & ranker 95% of treeless area  

(5 to 40% of treeless area if scree or bedrock present) 

0.4 - 

Sphagnum   Peat 70% of treeless area except in NW (90% of treeless area) 0.1 - 

Molinia grass Peaty gley & peat  99% of tree-, shrub- and moss-less area  0.5 - 

Bog pine Peat & peaty gley LiDAR-derived  3.4 0.17 

Thicket woodland     

Pre-existing pine Podzol & ranker As baseline in areas of present-day native pinewood and plantation 10 1 

Heather Peaty gley 75% of available treeless bog woodland area b 0.4 - 

 Podzol & ranker 9% of available treeless pinewood regeneration area c 

As baseline in area of present-day native pinewood 

0.12 c 

0.4 

- 

- 

Sphagnum Peat As baseline 

Molinia grass Peat As baseline 

 Peaty gley 99% of available tree- and shrub-less bog woodland area b 0.5 - 

Bog pine Peaty gley 15% of available bog woodland area d, e 2.4 0.04 

 Peat As baseline 

Thicket pine Podzol & ranker 95% of available pinewood regeneration area f 12.7 g 1.37 

Old open woodland     

Pre-existing pine Podzol & ranker As baseline in areas of present-day native pinewood and plantation 10 1 

Heather Peaty gley 75% of available treeless bog woodland area b 0.4 - 
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3.3 Baseline calibration 

The baseline scenario was simulated from 21 February 2013 to 08 August 2016 on a 100×100 m grid with a daily timestep. 

Model forcing data are detailed in Table S1. Six years of looped data were used to spin-up the model for calibration whilst 30 

years were used for post-calibration runs to stabilise water ages (c.f. Kuppel et al., 2020). Calibration followed a Morris 

sensitivity analysis (Morris, 1991; Sohier et al., 2014) to identify sensitive parameters (Table S2).  For efficiency, it was 185 

assumed that pre-existing pine and bog pine vegetation types could take the same parameter values except for leaf area index 

(LAI); thus, only four sets of vegetation parameters required calibration. Overall, 90 parameters (10 × 4 for soil, 12 × 4 for 

vegetation and 2 for channel) were calibrated. The parameter space was sampled by conducting 100,000 Monte Carlo 

simulations. Parameter values were drawn from initial ranges informed by Kuppel et al. (2018b) and additional literature 

reviews (Table S2). The LAI of bog pine was related to the sampled LAI of pre-existing pine via a scale factor accounting for 190 

relative differences in canopy architecture. The scale factor (0.17) was the proportional difference between an empirical 

estimate of LAI for bog pine and a local measurement of LAI for Scots pine (Wang et al., 2018). The former was obtained by 

first estimating below-canopy irradiance as a function of tree height (3.4 m) and density (275 trees ha-1; Summers et al., 1997) 

via the equation of Parlane et al. (2006). This irradiance was then used in Beer’s Law with a light-extinction coefficient of 0.5 

(White et al., 2000) to determine LAI.  195 

 

Diverse ecohydrological and isotope datasets were available at the BB for model calibration (Table 2). Protocols used to collect 

and process these data are detailed in Kuppel et al. (2018a; 2018b). In most cases, model outputs were directly compared 

against relevant observed datasets. Simulated soil variables (VWC and bulk water isotopes) were exceptions; these are output 

for each soil layer and, therefore, do not directly correspond to depth-specific observations (c.f. Beven, 2006). To accommodate 200 

 Podzol & ranker 82% of available treeless pinewood regeneration area c 

As baseline in area of present-day native pinewood 

0.29 c 

0.4 

- 

- 

Sphagnum Peat As baseline 

Molinia grass Peat As baseline 

 Peaty gley 99% of available tree- and shrub-less bog woodland area b 0.5 - 

Bog pine Peaty gley 15% of available bog woodland area d, e 8.4 0.4 

 Peat As baseline 

Old open pine Podzol & ranker 54% of available pinewood regeneration area f 15.5 g 0.59 

Notes: a With respect to calibrated Pre-existing pine leaf area index (LAI); b Steven and Carlisle (1959); c Parlane et al. (2006); d McHaffie et al. 

(2002); e Summers (2018); f Summers et al. (1997); g Summers et al. (2008). 
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this, simulated VWC timeseries for L1 and L2 were compared to observations made at the depth closest to the mid-point of 

each layer. Meanwhile, simulated soil water isotopes in L1 and L2 were compared with the depth-averaged isotopic 

composition of the soil profile encompassed by each respective layer. Consequently, observations compared to simulated 

outputs from L1 and L2 could vary depending on soil depth parameterisation.    

 205 

Model skill in simulating dynamics of ecohydrological and isotopic observations was quantified using the performance metrics 

in Table 2. Mean absolute error (MAE) was used for discharge to avoid over-emphasising high flows (Legates and McCabe, 

1999), and for all isotope simulations given limited observational variability and daily timestep of the model (c.f. Gupta et al., 

2009; Schaefeli and Gupta, 2007). Root mean squared error (RMSE) was otherwise used as this is recommended if no 

information is available on error distributions (Chai and Draxler, 2004; Kuppel et al., 2018b). To determine behavioural 210 

parameter sets, model runs were first selected that simulated saturation areas <60% of total catchment area for at least 90% of 

the simulation period; this reflected mapping and modelling of the extent of saturation in the BB (Birkel et al., 2010). 

Performance metrics for each calibration dataset were then ranked across all runs that satisfied this constraint. Runs were 

finally ordered by their worst-performing metric with the “best” 30 runs being retained as behavioural.  

 215 

Table 2: Datasets used in calibration of EcH2O-iso. The performance metrics used to quantify model skill in simulating each dataset 

and the ranges in values achieved by behavioural model runs are also given.  

Dataset Temporal coverage  Metric a Behavioural range  

Streamflow Full MAE 0.026 to 0.033 m3 s-1 

Soil moisture content    

Forest A (10, 20 & 40 cm) Full RMSE  b 0.10 to 0.27 m3 m-3 

Forest B (10, 20 & 40 cm) 25 February 2015 onwards RMSE b 0.11 to 0.19 m3 m-3 

Gley (10, 30 & 50 cm) Full RMSE b 0.04 to 0.29 m3 m-3 

Heather A (10, 20 & 40 cm) Full RMSE b 0.06 to 0.27 m3 m-3 

Peat (10 cm) Full RMSE 0.02 to 0.10 m3 m-3 

Peaty podzol (10, 30 & 50 cm) Full RMSE b 0.03 to 0.11 m3 m-3 

Green fluxes    

Heather A: transpiration and 

evapotranspiration 

31 July 2015 to 30 October 2015 &  

21 April 2016 to 03 August 2016 

RMSE T: 0.50 to 0.69 mm d-1 

ET: 0.81 to 1.16 mm d-1 

Heather B: transpiration and 

evapotranspiration 

31 July 2015 to 30 October 2015 &  

31 March 2016 to 11 July 2016 

RMSE T: 0.43 to 0.60 mm d-1 

ET: 0.78 to 0.95 mm d-1 
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Forest A: transpiration 08 July 2015 to 27 September 2015 RMSE 0.33 to 0.70 mm d-1 

Forest B: transpiration 01 April 2016 onwards RMSE 0.22 to 0.39 mm d-1 

Net radiation    

Bog weather station 10 October 2014 to 03 August 2016 RMSE 29 to 36 W m-2 

Hilltop weather station 22 April 2015 onwards RMSE 40 to 58 W m-2 

Valley bottom weather station 10 October 2014 onwards RMSE 29 to 39 W m-2 

Streamflow: δ2H Full MAE 2.7 to 8.2‰ 

Soil δ2H (2.5, 7.5, 12.5 and 17.5 cm)    

Forest A: bulk soil water 29 September 2015 onwards (monthly) MAE b 3.4 to 20.6‰ 

Forest B: bulk soil water 29 September 2015 onwards (monthly) MAE b 3.8 to 7.5‰ 

Heather A: bulk soil water 29 September 2015 onwards (monthly) MAE b 2.6 to 21.5‰ 

Heather B: bulk soil water 29 September 2015 onwards (monthly) MAE b 4.2 to 8.2‰ 

Groundwater δ2H    

Deeper well 1 (Peat) 11 samples between 09 June 2015 and 22 July 2016 MAE 0.4 to 5.4‰ 

Deeper well 2 (Peat) 11 samples between 09 June 2015 and 22 July 2016 MAE 0.7 to 2.9‰ 

Deeper well 3 (Peaty gley) 11 samples between 09 June 2015 and 22 July 2016 MAE 0.7 to 6.7‰ 

Deeper well 4  (Peaty podzol) 11 samples between 09 June 2015 and 22 July 2016 MAE 0.7 to 3.4‰ 

Notes: a MAE = mean absolute error, RMSE = root mean squared error; b Range across first two soil layers of EcH2O-iso. 

3.4 Regeneration scenarios 

Extensive work characterising the structure of native pine stands at Abernethy Forest in the Cairngorms National Park (Parlane 

et al., 2006; Summers, 2018; Summers et al., 1997; 2008) was used to select two stages of forest regeneration for simulation. 220 

For context, Fig. S1 summarises the general sequence of natural pinewood regeneration. The thicket stage has the highest tree 

densities and near-complete canopy closure; consequently, this stage was selected because it likely has the most substantial 

impact on water partitioning and catchment hydrology. Trees are ~40 years old whilst understorey development is limited. The 

second chosen stage was old open forest as a possible realisation of old-growth forest. This stage may be somewhat semi-

natural and, thus, characterised by a more open canopy than might be expected (reflecting limited modification by grazing 225 

pressures and selective felling; Summers et al., 2008). However, it was assumed to represent the near-end point of a rewilding 

trajectory that balances human demands on the land with forest regeneration (c.f. Deary and Warren, 2017), and a possible 
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“lower impact” stage of forest development. Trees are tall, old (~150 years) and sparsely distributed with an understory of 

well-developed shrubs.  

 230 

The proportional coverage and characteristics of vegetation at each stage of forest regeneration are given in Table 1. Native 

pinewoods, consisting of thicket/old-open pine and a heather understory, were assumed to fully regenerate on podzols and 

rankers (Fig. 1h), reflecting the preference of pine for freely draining minerogenic soils (Mason et al., 2004). The available 

regeneration area was limited in ranker cells containing scree or exposed bedrock such that the bare earth fraction remained 

constant across scenarios, whilst regeneration did not occur on managed land at the catchment outlet or in pre-existing areas 235 

of native pinewood on the northern hillslope (Fig. 1h). Bog woodland consisting of stunted bog pine, heather and Molinia 

grass, was simulated to develop on the wetter peaty gleys (McHaffie et al., 2002; Summers et al., 2008), whilst no regeneration 

was possible on the waterlogged peat (Fig. 1h). Spatial changes in vegetation cover for each regeneration scenario relative to 

the baseline are shown in Fig. 2. Scale factors relating calibrated values of LAI for pre-existing pine to LAI of thicket, old-open 

and bog pine were calculated as described in Sect. 3.3. For thicket/old-open pine, measured below-canopy irradiance was 240 

available from Parlane et al. (2006) and, hence, did not require estimation. For bog pine, irradiance was again obtained via the 

equation of Parlane et al. (2006). The heights of bog pine in each scenario were estimated by first calculating a “stunted” 

growth rate (~0.06 m yr-1) by dividing the height of present-day bog pine by an assumed age of 60 years. This was multiplied 

by the age of pines in the thicket (40 years) and old open (150 years) forests to give bog pine heights of 2.4 m and 8.4 m for 

each scenario, respectively. These values are broadly consistent with height measurements made by Summers et al. (2008) on 245 

bog pine trees with an interquartile age range between 72 and 143 years.  

 

 

Figure 2: Changes in vegetation cover for the a) Thicket scenario and b) Old open forest scenario. Changes are reported as 

regeneration scenario minus baseline scenario.  250 
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Simulations were driven by the 30 behavioural parameter sets obtained from the baseline calibration and undertaken for the 

same time period (21 February 2013 to 08 August 2016) with 30 years of spin-up. As previously stated, soil properties remained 

unchanged in the regeneration scenarios. Additionally, the vertical root distribution parameter was consistent amongst pine 

vegetation types as after the sapling stage, the most significant changes to Scots pine rooting characteristics are expressed in 255 

the horizontal rather than vertical direction (Laitakari, 1927; Makkonen and Helmisaari, 2001). Potential effects of such 

changes on the vertical root distribution would likely already be captured by the sampling range of this parameter for pre-

existing pine (Table S2).  

 

3.5 Change analysis 260 

To contextualise changes to water flux partitioning, simulated maximum root zone (RZ) and interception storage capacities 

were quantified for each scenario. For each vegetation type in a given grid cell, RZ storage capacity was defined as the sum of 

maximum plant available VWC in each layer weighted by root fraction, multiplied by the coverage-weighted average rooting 

depth of all vegetation types in the cell. A coverage-weighted sum across all present vegetation types then yielded the total RZ 

storage capacity for the cell. The total interception storage capacity of each cell was similarly calculated, with the interception 265 

storage capacity of each vegetation type obtained by multiplying the parameters LAI and maximum canopy storage (Table S2). 

Average values of RZ and interception storage capacity for the catchment were then calculated.  

 

Catchment-scale flux partitioning was assessed by quantifying seasonally averaged totals of simulated discharge at the outlet, 

and catchment-averaged GW recharge, soil and interception evaporation, and transpiration fluxes. Seasons were defined as 270 

April to September and October to March, broadly corresponding to periods of biological growth and dormancy, respectively 

(Dawson et al., 2008). Seasonally averaged water ages were also calculated for selected stores and fluxes. Daily timeseries of 

discharge, stream isotopic composition and water age provided a spatially integrated insight into how regeneration affected 

modelled catchment hydrology at a higher temporal resolution. To better understand spatial drivers of changes to catchment-

scale flux partitioning, differences in seasonal daily average “blue” and “green” fluxes between each scenario and the baseline 275 

were spatially disaggregated.  

 

To assess how regeneration impacts hydrological source areas and runoff generation, the spatial extent of hydrological 

connectivity was quantified under contrasting flow conditions. A cell was considered hydrologically connected if overland 

flow (OLF) was simulated for the cell and all downslope cells along the flow path to the stream. Flow path lengths for 280 

connected cells were calculated by accumulating the straight line or diagonal lengths (dependent on local flow direction) of all 

cells along the flow path (c.f. Turnbull and Wainwright, 2019). A threshold of OLF was not implemented as water can 

reinfiltrate along a flow path in EcH2O-iso (Maneta and Silverman, 2013). Three dates were selected for connectivity analysis. 
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The first, 22 July 2013, was during a particularly dry early summer. The second, 10 August 2014, was during a moderately 

wet late summer period caused by a frontal storm. The third, 30 December 2015, was at the height of some of the worst 285 

flooding seen for 100 years in NE Scotland caused by Storm Frank (Marsh et al., 2016).   

4 Results 

4.1 Baseline calibration 

Figure 3 summarises model skill in simulating “blue” and “green” fluxes, isotope dynamics, and net radiation at selected 

monitoring locations (remaining simulations shown in Figs. S2-5). Calibrated parameter ranges and performance metrics are 290 

given in Tables S2 and 2, respectively. Stream discharge was generally well simulated, with only occasional under-prediction 

of baseflows (e.g. summer 2016) and the most extreme events (Fig. 3b). At most sites, modelled VWC in L1 and L2 was 

bracketed by the range observed across the soil profile (Figs. 3c and S2), although simulations were sometimes less dynamic 

than observations and RMSEs could be large (Table 2). However, this likely reflects the commensurability issues highlighted 

in Sect. 3.3 (also relevant for soil water isotopes), and the fact that Heather Site A and Forest Site A fell within the same model 295 

cell. The model was generally successful in reproducing dynamics of stream, soil water and groundwater isotopes (Table 2; 

Figs. 3d-f and S3), implying internal catchment functioning was reasonably well-captured. Stream isotopes were sometimes 

over-enriched, suggesting slightly high soil evaporation (Fig. 3d); however, the variability was generally well-captured. Larger 

deviations during events likely reflect structural limitations of the model (e.g. the ability of OLF to traverse the catchment 

within one timestep).  Excessive evaporation was not apparent from simulated soil water isotopes (Figs. 3e and S3), although 300 

averaging over L1 and L2 could obscure the effects of evaporative fractionation in the former. The model had skill in simulating 

ET and forest transpiration (Table 2; Figs. 3g-h and S4). However, underestimation of transpiration for the heather (Fig. S4) 

may indicate too much radiative energy being used for evaporation. Seasonality in net radiation was well simulated; however, 

the magnitude of shorter-term variability was under-estimated in summer (Table 2; Figs. 3i and S5).  

 305 

4.2 Impact of regeneration on water storage capacity 

Figure 4 summarises simulated RZ and interception storage capacities for each scenario. Median RZ storage capacity increased 

by 21 mm in the thicket forest scenario (Fig. 4a) reflecting replacement of heather by thicket pine (Fig. 2a) with deeper roots 

(Table S2) that increase access to water stored in L2 and L3. Small increases in RZ storage capacity were simulated for the 

old open forest scenario, albeit with greater overlap with the baseline (Fig. 4a), likely reflecting the more balanced composition 310 

between pine and heather (Fig. 2b). This, along with greater proportional coverage of bare earth (Fig. 2b), may also explain 

overlap of interception storage capacity between the old open forest and baseline scenarios (Fig. 4b). The greater coverage of 

thicket pine (Fig. 2a) with a dense canopy substantially increased interception storage capacity for the thicket forest scenario 

(Fig. 4b).  
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 315 
Figure 3: Time series of a) Precipitation; and of observed and simulated b) Discharge; c) Volumetric water content (VWC) at the 

peaty podzol site; d) Stream δ2H composition; e) Bulk soil water (SW) δ2H under Forest B; f) Groundwater δ2H at Deeper Well 2 

(DW2); g) Total evapotranspiration (ET) for Heather A; h) Transpiration (Tr) for Forest B; i) Net radiation (CNR) at the valley 

bottom weather station.  90% spread of simulations are from the 30 behavioural model runs.  
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 320 

 

Figure 4: Boxplots showing maximum a) Root zone storage capacity and b) Interception storage capacity, for the baseline and forest 

regeneration scenarios. The median is shown by the orange line whilst the box extends from the lower to upper quartiles. The 5th 

and 95th percentiles are given by the tails.  

 325 

4.3 Changes to catchment-scale water flux partitioning  

Figure 5 shows how impacts of modelled regeneration integrated to affect the simulated quantity and isotopic composition of 

streamflow. The greatest differences in discharge between the thicket and baseline scenarios were for moderate to low flow 

periods with the magnitudes of high flows being relatively consistent (Fig. 5b). For the old open forest scenario, discharge was 

similar to the baseline. For both regeneration scenarios, simulated stream isotope dynamics were comparable to the baseline 330 

(Fig. 5c); however, streamwater could sometimes be slightly more depleted in summer for the thicket scenario indicating 

reduced soil evaporation.  
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Figure 5: Timeseries of a) Observed precipitation; and simulated b) Discharge; c) Stream δ2H composition; d) Streamwater age. In 335 
b) to d), the area between the two black lines and the areas that are shaded represent the 90% spread of simulations from the 30 

behavioural model runs. 

 

Overall, behavioural models consistently simulated a decrease in seasonally averaged discharge for the thicket scenario (Table 

3a-b). This resulted from increased interception evaporation (Table 3e-f) and transpiration (Table 3i-j), and decreased GW 340 

recharge (Table 3c-d). Recharge was most reduced for Oct-Mar, concurrent with the greatest increase in interception 

evaporation. Soil evaporation was lower for the thicket scenario (Table 3g-h), likely reflecting limits imposed by lower soil 
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moisture due to greater interception evaporation and transpiration losses, and reduced penetration of radiation through the 

thicket canopy. Differences in seasonally averaged fluxes were much smaller between the old open forest and baseline (Table 

3b, d, f, h, j), resulting in the median and 5th/95th percentile seasonally averaged flux totals generally being similar for the two 345 

scenarios (Table 3a, c, e, g, i). However, there was a repartitioning of water between increased interception evaporation and 

reduced GW recharge for Oct-Mar that contributed to a ~30 mm decrease in simulated median total discharge (Table 3a).  

 

Table 3: Seasonally averaged water flux totals and differences in seasonally averaged totals between the regeneration and baseline 

scenarios. Totals and differences were calculated for each behavioural run individually and summarised by the median and 5th/95th 350 
percentile (in square brackets) values across all behavioural runs. Differences are reported as regeneration scenario minus baseline.  

 Median [5th/95th percentile] seasonally 

averaged flux totals  

(mm over summary period) 

Median [5th/95th percentile] differences in 

seasonally averaged flux totals 

(mm over summary period) 

 Apr to Sep Oct to Mar Apr to Sep Oct to Mar 

Outlet stream discharge a) b) 

Baseline 195.9 [158.8, 231.6] 449.2 [414.7, 480.5] - - 

Thicket  143.3 [97.2, 201.7] 316.0 [258.4, 434.6] -63.8 [-97.3, -7.8] -128.7 [-178.0, -26.4] 

Old open forest 189.5 [158.6, 229.6] 416.2 [369.1, 486.4] -12.0 [-31.1, 18.0] -28.7 [-59.3, 15.0] 

GW Recharge  c) d) 

Baseline 161.3 [140.0, 190.1] 352.7 [282.9, 402.0] - - 

Thicket  107.0 [68.1, 156.1] 277.0 [223.7, 348.7] -62.6 [-92.7, -5.5] -80.2 [-109.0, -15.4] 

Old open forest 153.0 [128.5, 185.2] 335.9 [269.4, 381.5] -9.3 [-26.7, 19.1] -17.6 [-36.5, 6.5] 

Interception evaporation e) f) 

Baseline 102.2 [80.8, 131.4] 76.9 [61.6, 90.2] - - 

Thicket  182.5 [103.8, 234.2] 196.3 [102.2, 253.0] 82.6 [-3.0, 123.6] 118.5 [26.7, 167.6] 

Old open forest 115.8 [73.8, 158.9] 105.6 [60.9, 150.0] 19.4 [-24.4, 42.6] 31.3 [-9.8, 64.3] 

Soil evaporation g) h) 

Baseline 74.2 [52.3, 93.5] 41.2 [35.0, 44.6] - - 
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4.4 Spatio-temporal dynamics of baseline flux partitioning 

Figure 6 summarises spatial dynamics of median seasonal daily average “blue” and “green” fluxes for the baseline scenario. 

Simulated OLF was more limited for Apr-Sept (Fig. 6a). The largest fluxes were simulated for the peats and peaty gleys, with 355 

some OLF also being generated by the ranker soils on the hillslopes. The latter is interpreted as representing the rapid near-

surface flows in the shallow rankers that are driven by emergence of bedrock fracture flow at slope breaks. OLF fluxes were 

greater and had similar spatial patterns for Oct-Mar with additional fluxes generated from the podzols on lower hillslopes in 

the north and south (Fig. 6a). Vertical movement of water (infiltration and GW recharge) was greatest in winter and mostly 

occurred on the podzols; the largest fluxes were simulated at the boundaries between the podzols and rankers (Fig. 6b and d) 360 

reflecting lateral flows from upslope moving vertically in deeper soils. Water was then simulated to move downslope as GW 

(Fig. 6e) to sustain saturation in the valley bottom, as evidenced by high exfiltration fluxes especially in Oct-Mar (Fig. 6c).  

 

Daily average fluxes of ET were simulated as greatest for Apr-Sept, particularly in the valley bottom (Fig. 6f). This was 

facilitated by the wet peat and peaty gleys maintaining transpiration (Fig. 6g) and soil evaporation (Fig. 6h), and further by 365 

evaporation of water intercepted by the Sphagnum “canopy” (Fig. 6i and Table S2). Dominance of vertical sub-surface fluxes 

(Fig. 6b and d) limited transpiration (Fig. 6g) and, particularly, soil evaporation (Fig. 6h) from the podzols, reducing total ET 

fluxes (Fig. 6f). For Oct-Mar, spatial patterns in total ET were less distinct (Fig. 6f) reflecting reduced soil and interception 

evaporation in the valley bottom (Fig. 6h-i) and the fact that daily transpiration fluxes were essentially 0 (Fig. 6g). A notable 

pattern was that total ET was greatest where there was substantial pre-existing pine (Figs. 1 and 6f) due to sustained interception 370 

evaporation (Fig. 6i).  

  

Thicket  44.0 [34.0, 57.1] 28.2 [22.1, 33.6] -32.3 [-47.3, -7.6] -12.4 [-16.9, -6.9] 

Old open forest 72.0 [55.5, 90.5] 37.5 [32.5, 40.8] -1.7 [-12.4, 13.0] -3.7 [-5.9, 0.1] 

Transpiration i) j) 

Baseline 66.4 [51.7, 79.9] 6.1 [4.3, 7.7] - - 

Thicket  89.4 [71.5, 120.7] 12.1 [8.6, 19.8] 27.1 [11.2, 47.4] 6.1 [2.8, 12.8] 

Old open forest 57.6 [45.4, 75.5] 6.1 [4.6, 8.4] -6.8 [-13.7, 2.9] 0.0 [-1.0, 1.7] 
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Figure 6: Maps showing median daily average fluxes in April to September and October to March for: a) Overland flow; b) 

Infiltration into L1 of the soil; c) Exfiltration to the surface; d) Groundwater (GW) recharge; e) Groundwater flow, f) Total 375 
evapotranspiration (ET); g) Transpiration; h) Soil evaporation; and i) Interception evaporation.   
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4.5 Spatio-temporal disaggregation of regeneration effects on flux partitioning  

Median differences in seasonal daily average “blue” fluxes were most dramatic for the thicket scenario (Fig. 7). For both Apr-

Sept and Oct-Mar, similar spatial patterns were simulated, although differences tended to be greater for the latter. More limited 380 

OLF generation by the rankers (Fig. 7a) led to similar-magnitude reductions in daily average infiltration and GW recharge on 

the podzols (Fig. 7b and d). Consequently, downslope movement of GW also decreased in both Apr-Sept and Oct-Mar (Fig. 

7e). This contributed to a drying out of the valley bottom (especially in Oct-Mar) even though local regeneration was limited 

(Fig. 2a). Daily average OLF fluxes were simulated to decrease around the fringes of the stream for both Apr-Sept and Oct-

Mar (Fig. 7a). The largest decreases occurred in the NW of the catchment as a direct consequence of reduced OLF from 385 

upslope. Elsewhere, OLF reductions strongly reflected the reductions in upslope GW subsidies as evidenced by consistently 

decreased exfiltration fluxes (Fig. 7c) and increased infiltration of incoming precipitation in the valley bottom for Oct-Mar 

(Fig. 7b) to replenish drier soil and GW stores (Fig. 7d).  

 

Similar spatial dynamics were simulated for the old open forest scenario, however median differences in seasonal daily average 390 

fluxes were much reduced (Fig. 7). It is also noteworthy that even in Oct-Mar, the valley bottom dried out less than in the 

thicket scenario; daily average GW flows through the podzols were only simulated to decrease by  <1.5 mm d-1 (Fig. 7e), 

whilst no increases in infiltration or GW recharge were simulated in the valley bottom (Fig. 7b and d).  

 

Differences in seasonal daily average “green” fluxes were also more apparent in the thicket scenario (Fig. 8). Daily average 395 

ET from the podzols and rankers was simulated to increase throughout the year (Fig. 8a). For Apr-Sept, this resulted from 

greater transpiration (Fig. 8b) and, predominantly, interception evaporation (Fig. 8d), reflecting the increased coverage of 

thicket pine (Fig. 2a). Reduced penetration of radiative energy through the thicket canopy, and limits imposed by greater water 

losses to transpiration and interception evaporation, decreased simulated daily average soil evaporation (Fig. 8c). For Oct-Mar, 

increased ET was more driven by greater interception evaporation (Fig. 8d). ET from the bog woodland was similar to the 400 

baseline (Fig. 8a). This was due to decreased transpiration from reduced cover of potentially deep-rooted (Aerts et al., 1992; 

Taylor et al., 2001) Molinia grass (Figs. 2a and 6b) being compensated by increases in soil (Fig. 8c) and, particularly, 

interception evaporation (Fig. 8d). Daily average ET for Apr-Sept decreased in some areas of peat in the NW of the catchment, 

despite no regeneration having taken place (Fig. 8a). This would be consistent with drying of the valley bottom limiting summer 

transpiration (Fig. 8b). Given small transpiration demands in Oct-Nov (Fig. 6g) no reduction in ET was simulated.  405 
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Figure 7: Maps showing the median difference in daily average fluxes for April to September and October to March: a) Overland 

flow; b) Infiltration into L1 of the soil; c) Exfiltration to the surface; d) Groundwater (GW) recharge; e) Groundwater flow. 

Differences are reported as regeneration scenario minus baseline scenario.   410 
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Figure 8: Maps showing the median difference in daily average fluxes for April to September and October to March: a) Total 

evapotranspiration (ET); b) Transpiration; c) Soil evaporation; and d) Interception evaporation. Differences are reported as 

regeneration scenario minus baseline scenario.   415 
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Differences in simulated ET were much more subdued for the old open forest scenario (Fig. 8a). For Apr-Sept, soil evaporation 

on the podzols and rankers remained similar to the baseline (Fig. 8c) whilst transpiration decreased (Fig. 8b), likely reflecting 

greater bare earth coverage (Fig. 2b). This offset greater losses to interception evaporation (Fig. 8d) so that only very small 

increases in total ET were simulated. Small ET decreases mostly reflected replacement of larger clusters of pre-existing pine 420 

with old open forest (Fig. 2b) reducing transpiration (Fig. 8b). A larger increase in interception evaporation from the old open 

forest (Fig. 8d) drove the increases in ET from the podzols and rankers for Oct-Mar (Fig. 8a).  

 

4.6 Effects of regeneration on ages of “blue” and “green” water fluxes 

Streamflow, lateral GW outflows and soil water/evaporation were near-consistently simulated to have older average ages in 425 

the thicket scenario relative to the baseline (Table 4); however, change magnitudes were often less than the width of simulation 

uncertainty bounds leading to overlap in flux ages. Simulated daily dynamics revealed that streamwater ages for the thicket 

scenario could be much older for low to moderate flows, although uncertainty bounds were again wide (Fig. 5d). Relatively 

young streamwater ages persisted in larger events. Transpiration fluxes were the only ones to indicate a possible slight 

preference for younger water through a reduction in 95th percentile average ages (Table 4i-j). For old open forest, age 430 

characteristics were generally restored to those simulated for the baseline (Table 4).  

 

Table 4: Seasonally averaged water flux ages and differences in seasonally averaged ages. Averages and differences were calculated 

for each behavioural run individually and summarised by the median and 5th/95th percentile (in square brackets) values across all 

behavioural runs. Differences are reported as regeneration scenario minus baseline. 435 

 

 Median [5th/95th percentile] seasonally 

averaged water age (days) 

Median [5th/95th percentile] difference in 

seasonally averaged water age (days) 

 Apr to Sep Oct to Mar Apr to Sep Oct to Mar 

Outlet stream discharge a) b) 

Baseline 647 [355, 989] 484 [292, 758] - - 

Thicket  763 [439, 1527] 610 [373, 1136] 164 [19, 613] 128 [22, 440] 

Old open forest 643 [367, 1103] 497 [298, 854] 30 [-29, 141] 24 [-17, 108] 

GW Outflow c) d) 

Baseline 521 [375, 774] 441 [305, 672] - - 
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Thicket  690 [469, 1202] 590 [410, 999] 196 [18, 476] 163 [20, 405] 

Old open forest 545 [397, 824] 465 [337, 736] 28 [-30, 99] 26 [-22, 89] 

Soil L1  e) f) 

Baseline 266 [166, 556] 293 [173, 565] - - 

Thicket  301 [192, 696] 288 [183, 636] 35 [-8, 193] 8 [-11, 114] 

Old open forest 271 [174, 565] 291 [179, 581] 6 [-9, 43] 5 [-6, 32] 

Soil evaporation g) h) 

Baseline 276 [168, 673] 281 [181, 586] - - 

Thicket  395 [253, 1039] 329 [218, 823] 124 [12, 502] 62 [-4, 349] 

Old open forest 291 [189, 683] 299 [193, 614] 12 [-42, 96] 12 [-9, 71] 

Transpiration i) j) 

Baseline 353 [206, 737] 365 [227, 780] - - 

Thicket  361 [204, 642] 309 [208, 450] 11 [-106, 71] -54 [-336, 10] 

Old open forest 409 [219, 780] 414 [237, 727] 41 [-14, 89] 26 [-103, 83] 

 

4.7 Changes to hydrological connectivity   

Figure 9 summarises hydrological connectivity dynamics for the three investigated dates. Histograms show the number of cells 

with given flow path lengths that were connected to the stream for each scenario, whilst maps show the proportion of 440 

behavioural model runs for which a cell was simulated as connected. On 22 July 2013, baseline connectivity was generally 

only established for a limited (~5% of potential) number of cells close to the stream (Fig. 9a-b), reflecting the dry summer 

conditions. In the thicket scenario, the spatial extent of connectivity became even more limited, though saturation in the valley 

bottom was maintained (Fig. 9a-b). Regeneration of old open forest did not have a substantial effect on connectivity dynamics.   
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Figure 9: For the end of a prolonged summer dry period (22 July 2013), a) A histogram showing the number of cells with different 

flow path lengths that were connected to the stream via overland flow, and b) A map showing the proportion of behavioural runs 

for which each cell was connected to the stream via overland flow. c-d) Are the same for the height of a late summer wet period (10 

August 2014) whilst e-f) are for a 100-year return period flood (30 December 2015). Dashed lines in the histograms indicate the total 

number of cells in the catchment with a given flow path length to the stream.  450 

 

The catchment had a much wetter baseline state on 10 August 2014 with, on average, 26% of cells connected to the stream. 

Connectivity was concentrated in the west of the catchment and along isolated segments of the north and south hillslopes (Fig. 

9d). Connected cells generally had flow path lengths of up to 600 m, although more distant cells could also be connected (Fig. 

9c). In the thicket scenario, the proportional decrease in the median connectivity of cells with flow paths lengths between 400 455 

and 600 m was less than for cells closer to or further from the stream (Fig. 9c). This reflected persistence of longer connected 

flow paths predominantly in the west of the catchment but also on the northern hillslope where there is an ephemeral GW 

seepage track (Fig. 9d; Scheliga et al., 2019). However, the likelihood of cells in the west and also south of the catchment 

being connected in a behavioural model run did decline (Fig. 9d). In the old open forest scenario, the distribution of connected 

cells was again very similar to the baseline. 460 

 

Even greater baseline connectivity was simulated for 30 December 2015 with, on average, 46% of cells connected to the stream 

(Fig. 9e). The more consistent establishment of connectivity on the northern hillslope and in the SW headwater, increased the 

number of connected cells with moderate to long (>400 m) flow path lengths (Fig. 9e-f). The podzols in the south remained 

least connected, though the connected area did extend further upslope (Fig. 9f). In the thicket scenario, spatial patterns of 465 

connectivity were similar overall and cells with longer flow paths could still be connected (Fig. 9e-f). However, the median 

number of connected cells decreased for all flow path lengths (Fig. 9e), with reductions in connectivity most notable in the 

SW (Fig. 9f). There were also areas where reduced OLF generation from riparian cells substantially limited the connectivity 

potential of upslope cells (e.g. around the headwater confluences; Figs. 7a and 9f). Connectivity in the old open forest scenario 

was again comparable to the baseline. 470 

5 Discussion 

5.1 The effect of natural forest regeneration on “blue” and “green” water partitioning 

Previous studies investigating the hydrological consequences of changes in forest cover have often sought to understand how 

conversion and management of land for commercial forestry affects aggregated metrics of catchment hydrological functioning 

(Ellison et al., 2017; Filoso et al., 2017), especially in the UK context (Marc and Robinson, 2007). Consequently, findings may 475 

not be transferable to the case of passively managed natural forest regeneration that is the goal of rewilding efforts in degraded 

landscapes such as the Scottish Highlands (zu Ermgassen et al., 2018). Therefore, using the EcH2O-iso model, we investigated 

the ecohydrological consequences of natural pinewood regeneration for the BB catchment in Scotland by comparing simulated 
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present-day baseline conditions with two land cover change scenarios representing different stages of forest regeneration 

(thicket and old open forest). The overall skill of the model in simulating diverse ecohydrological and isotope datasets (Table 480 

2; Fig. 3), its past independent validation in the BB using isotope data (Kuppel et al., 2018a), and consistency of simulated 

“blue” fluxes with conceptual models of the BB derived from past empirical (Tetzlaff et al., 2014) and independent modelling 

(Ala-aho et al., 2017) studies, gave confidence in using EcH2O-iso for simulating the effects of forest regeneration.  

 

Our major finding was that dynamics of water partitioning deviated most strongly from the baseline during early stages of 485 

regeneration with likely recovery as the forest matured and opened out. During the thicket stage, simulated increases in 

interception evaporation principally drove changes to water partitioning (Table 3). This was facilitated by the greater simulated 

interception storage capacity of the thicket forest (Fig. 4b) and is consistent with findings in relation to commercial plantations 

(e.g. Birkinshaw et al., 2014; Farley et al., 2005; Johnson, 1990). Interestingly, the greatest increase in interception evaporation 

occurred during the dormant season, resulting in a proportionally larger increased in “green” fluxes at this time rather than 490 

during the more biologically active period. This has been observed in other studies where the canopy is wet for prolonged 

periods over winter (e.g. Birkinshaw et al., 2014; Peng et al., 2016), and seems to reinforce the importance of enhanced 

turbulent airflows over forests and sensible heat exchanges between the canopy and atmosphere, in facilitating high 

interception evaporation when available net radiation is reduced (c.f. Stewart, 1977; Gash and Stewart, 1977). To a lesser 

degree, simulated increases in summer transpiration also contributed to greater apportionment of water to “green” fluxes (Table 495 

3). The reduced importance of increased transpiration relative to interception evaporation has been observed elsewhere for 

coniferous forests (Farley et al., 2005; Marc and Robinson, 2007).    

 

Increased losses to interception evaporation and transpiration were slightly compensated by a reduction in simulated soil 

evaporation (Table 3) that was also reflected in more isotopically depleted summer stream flows (Fig. 5c). Overall, however, 500 

availability of water for GW recharge and streamflow was reduced, notably resulting in lower simulated summer baseflows 

(Fig. 5b; c.f. Iacob et al., 2017). This likely reflected increased transpiration demand (Fig. 8b) amplifying the effect of reduced 

GW subsidies from regenerating areas on the podzols and rankers to the valley bottom (Fig. 7e; Brown et al., 2005; Calder, 

1993). In the BB, these subsidies are crucial for recharging GW stores in drift deposits that sustain baseflow conditions, 

particularly in winter when GW recharge is usually highest (Table 3; Blumstock et al., 2016; Kuppel et al., 2020). This finding 505 

is significant as it reinforces the need to consider the wider hydrological consequences of regeneration occurring in specific 

areas such that the “right tree [is planted] in the right place” (Forestry Commission Scotland, 2010). Greater consistency in 

simulated high flows suggests that increases in storage capacities (Fig. 4) and “green” water fluxes (Table 3) for the thicket 

scenario were insufficient to moderate the combined influences of antecedent conditions and precipitation inputs that led to 

the largest events modelled here (Fig. 5b). This is consistent with previous work showing forest regeneration may have a 510 

limited impact on the magnitudes of the largest flood events (Calder et al., 2007; Iacob et al., 2017; Soulsby et al., 2017).  
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Greater alignment between simulated water partitioning dynamics in the baseline and old open forest scenarios (Table 3; Figs. 

7 and 8) was consistent with previous work in plantations that has suggested the hydrological impacts of forests will lessen as 

they mature (e.g. Delzon and Loustau, 2005; Du et al., 2016; Marc and Robinson, 2007). However, the simulated drying out 515 

of the valley bottom in the thicket scenario (Fig. 7) raises the question as to whether pinewoods could progressively encroach 

downslope to replace the bog woodland on the peaty gleys and, eventually, the Sphagnum on the peat. This would entail the 

creation of a positive feedback loop whereby establishment of forest reduces downslope waterlogging to permit further forest 

expansion and, ultimately, the shift of the catchment into a different state of dynamic equilibrium (c.f. Rodriguez-Iturbe, 2000; 

Peterson and Western, 2014; Peterson et al., 2009). In turn, this could prolong the changes to water partitioning simulated for 520 

the thicket scenario.  

 

5.2 Storage-flux dynamics of regenerating forests as revealed by water ages 

Given uncertainty in simulated water ages, it is difficult to definitively conclude how forest regeneration would affect source 

waters of “blue” and “green” fluxes. In general, increased losses of zero-aged precipitation to interception evaporation in the 525 

thicket scenario created a tendency for slower turnover of below-canopy water that was particularly expressed in the older 

average ages of soil evaporation, lateral GW flows and streamwater (Table 4). The greater increase in soil evaporation age 

relative to L1 age likely reflected reduced evaporation of younger water from the freely draining soils on the hillslopes 

increasing the dominant influence of evaporation of well-mixed, older water from the valley bottom (Figs. 6 and 8c; Sprenger 

et al., 2017; Tetzlaff et al., 2014). It may also indicate that periods of greatest atmospheric evaporative demand were satisfied 530 

by soil waters from the valley bottom on which the aging effects of older upslope GW subsidies were most imprinted. Average 

streamflow ages reflected the potential for low/moderate flows to consist of older water (Fig. 5d) which, in turn, indicated 

increased relative contributions of GW that was itself older. Streamwater ages remaining relatively young during higher flows 

supports the previous assertion that regeneration did not prevent activation of rapid OLF paths in larger events. Average ages 

of these fluxes were generally restored in the old open forest scenario (Table 4).  535 

 

The similarity in average transpiration ages amongst simulated scenarios contrasts with other studies in drier catchments that 

have suggested forests and other vegetation covers, such as grassland, transpire water with differing age characteristics 

(Douinot et al., 2019; Smith et al., 2020). This suggests that the wet, low energy climate of the BB and generally well-mixed 

nature of hydrological stores allows the catchment to accommodate increased “use” of water by forests more readily than drier 540 

environments with less retentive soils in which forest water uptake must be satisfied by younger, more recent inputs of water 

that increases their susceptibility to drought-induced water stress (Kleine et al., 2020; Smith et al., 2020). Reduced 95th 

percentile average ages in the thicket scenario (especially for Oct-Mar) may have partially reflected greater young water 

contributions to forest transpiration owing to increased percolation of younger soil water from L1 to L2 as a consequence of 

enhanced root water uptake from the latter (c.f. Table S2; Fig. 4a). However, that transpiration ages remained on the order of 545 
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months to years implies that moisture carried over from previous seasons was sufficient to satisfy transpiration demand (c.f. 

Allen et al., 2019; Brinkmann et al., 2018; Kuppel et al., 2020). Slightly older median transpiration ages in the old open forest 

scenario likely reflected increased uptake from the lower soil layers (Fig. 4a) combined with transpiration fluxes that had a 

more limited effect on water turnover rates relative to the thicket scenario (Table 3i).  

 550 

5.3 Implications of regeneration for hydrological source areas and connectivity 

The effect of forest regeneration on hydrological source areas and connectivity can be informative regarding its use as a nature-

based solution to management of water quantity and quality. Consistent with inferences from the discharge timeseries (Fig. 

5b), establishment of thicket forest most strongly affected spatial patterns of connectivity for the examined low and moderate 

summer flow events (Fig. 9a-d), whilst only relatively minor changes were simulated for a large winter event (Fig. 9e-f). 555 

Interestingly, whilst daily average OLF was simulated to reduce across much of the catchment (Fig. 7a), examination of event-

based connectivity revealed that only specific flow paths or areas of the catchment (e.g. SW headwaters) were likely to fully 

disconnect from the stream. This highlights that certain areas may be more sensitive to forest establishment and could be useful 

for managing regeneration to minimise/maximise its impact on certain flow types (Collentine and Futter, 2018; Iacob et al., 

2017). The inability of regeneration to fully interrupt connectivity between the hillslopes and riparian zone, a major driver of 560 

non-linear storm flow responses (Birkel et al., 2015; Soulsby et al., 2015; Stockinger et al., 2014), under increasingly wet 

catchment states additionally offers an explanation as to why high flow magnitudes tended to be maintained across the 

simulated scenarios. This may also limit the effectiveness of forest regeneration in regulating certain water quality parameters 

by reducing redistribution of contaminants from the hillslope to the riparian zone (e.g. faecal indicator organisms – Neill et al., 

2019).  565 

 

Whilst these findings imply that forest regeneration may “slow the flow” (Fig. 7a) but not fully disconnect surface flow paths 

from the stream under increasingly wet conditions (Fig. 9), it is likely that simulated changes to connectivity are conservative. 

This is because increases in surface roughness and detention storage caused by vegetation change cannot presently be simulated 

in EcH2O-iso; however, these factors may also affect connectivity alongside changes to water flux partitioning (Collentine and 570 

Futter, 2018; Turnbull and Wainwright, 2019). 

6 Conclusions and wider implications 

In this work, we demonstrate that the ecohydrological consequences of natural forest regeneration on degraded land depend 

on the structural characteristics of the forest at different stages of development. We also show how hydrological functioning 

of the wider catchment can be affected by spatial changes in water flux partitioning caused by regeneration in specific areas 575 

(e.g. hillslopes). Consequently, land cover change studies need to move beyond simply considering forested vs. non-forested 
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scenarios to provide a robust evidence base for management decisions seeking to balance regeneration/rewilding with other 

ecosystem services. Early stages of regeneration are suggested to have the most significant effects on catchment hydrology. 

The drier catchment state and reduced low/moderate flows may have negative implications for fire risk (Turetsky et al., 2015), 

aquatic ecosystems (e.g. those supporting Atlantic Salmon populations – Moir et al., 1998) and downstream services like 580 

drinking water provision. However, recovery of flux partitioning and water ages during later stages of regeneration implies 

that such issues may be transient, with landscapes covered by older forest able to support pre-existing ecosystem services 

whilst improving biodiversity. Potential effectiveness of regeneration as a nature-based solution to water quantity and quality 

issues appeared greatest during the thicket stage for dry to moderately wet catchment states. Whilst the impact on high flow 

magnitudes was limited for events simulated here, it is possible that the frequency of such events could be reduced; however, 585 

assessment would require a longer run of data to derive flow duration curves (Alila et al., 2009).    

 

Our work also highlights the value of tracer-aided ecohydrological models as tools for land cover change investigations. In 

particular, processes such as enhanced forest interception evaporation could be explicitly simulated (c.f. Calder, 1976), whilst 

successful reproduction of diverse ecohydrological and isotope observations increased confidence in simulated catchment 590 

internal functioning. Such models also have further potential. In the first instance, incorporating temporal variability in soil 

characteristics could provide a more complete understanding of the ecohydrological consequences of land cover change; 

however, there remains a need to better characterise how soil properties change in response to land cover (Archer et al., 2013; 

Chandler et al., 2018) and to understand how this translates into changes in “effective” model parameters (Seibert and van 

Meerveld, 2016). Second, whilst static snapshots were used to simulate stages of land cover change, ecohydrological models 595 

could potentially explore the development of dynamic feedbacks that could alter trajectories of change (e.g. forest 

encroachment into the valley bottom; c.f. Perino et al., 2019; Scott and Prinsloo, 2008). For scenarios of vegetation change, 

this would be contingent on processes such as seed dispersal and species competition being conceptualised in models such as 

EcH2O-iso (c.f. Fatichi et al., 2016).   
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