
On the selection of precipitation products for the regionalisation of
hydrological model parameters
Oscar M. Baez-Villanueva1,2, Mauricio Zambrano-Bigiarini3,4, Pablo A. Mendoza5,6, Ian McNamara1,
Hylke E. Beck7, Joschka Thurner1, Alexandra Nauditt1, Lars Ribbe1, and Nguyen Xuan Thinh2

1Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), TH Köln, Cologne, Germany
2Faculty of Spatial Planning, TU Dortmund University, Dortmund, Germany
3Department of Civil Engineering, Universidad de la Frontera, Temuco, Chile
4Center for Climate and Resilience Research, Universidad de Chile, Santiago, Chile
5Department of Civil Engineering, Universidad de Chile, Santiago, Chile
6Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago, Chile
7GloH2O, Almere, the Netherlands

Correspondence: Mauricio Zambrano-Bigiarini (mauricio.zambrano@ufrontera.cl)

Abstract.

Over the past years, novel parameter regionalisation techniques have been developed to predict streamflow in data-scarce

regions. In this paper, we examined how the choice of gridded daily precipitation (P ) products affects individual catchment cal-

ibration and verification, as well as the relative performance of three well-known regionalisation techniques (spatial proximity,

feature similarity, and parameter regression) over 100 near-natural catchments with diverse hydrological regimes across Chile.5

We configured and calibrated a conceptual semi-distributed HBV-like hydrological model for each catchment, using four P

products (ERA5, MSWEPv2.8, RF-MEPv2, and CR2MET), and two objective functions. The three regionalisation techniques

were applied and evaluated for each combination of P product and objective function, using a leave-one-out cross-validation

procedure. Despite differences in the spatio-temporal distribution of P quantities, all P products provided good performance

during calibration (median KGE’s > 0.77), two independent verification periods (median KGE’s > 0.70 and 0.61, for near10

normal and dry conditions, respectively), and regionalisation results (with median KGE’s for the best method ranging from

0.56 to 0.63). Our results suggest that model calibration is able to compensate, to some extent, differences between forcing

datasets, and that the spatial resolution of P products does not substantially affect the regionalisation performance. Overall,

feature similarity provided the best results, followed closely by spatial proximity, while parameter regression performed the

worst, thus reinforcing the importance of transferring complete parameter sets to ungauged catchments. Our results suggest15

that: i) merging P products and ground-based measurements does not necessarily translate into an improved hydrological

modelling performance; ii) a P product that provides the best individual model performance during calibration and verifica-

tion does not necessarily provide the best performance in terms of parameter regionalisation; and iii) the hydrological regime

affects the performance of regionalisation methods, with rain-dominated catchments with a snow component performing the

best over Chile for spatial proximity and feature similarity.20
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1 Introduction

Daily streamflow (Q) data are crucial for a wide range of scientific and operational water resources applications, such as

climate change impact assessment (e.g., Kling et al., 2012; Rojas et al., 2013; Mendoza et al., 2016; Galleguillos et al., 2021),

Q and flood forecasting (e.g., Clark and Hay, 2004; Addor et al., 2011; Coughlan de Perez et al., 2016; Sharma et al., 2018),25

and catchment classification (e.g., Wagener et al., 2007; Sawicz et al., 2011; Kuentz et al., 2017; Jehn et al., 2020), among

others. Q is typically estimated through the implementation of hydrological models, which rely on parameters to represent

hypotheses about the dominant processes in a catchment (Beven, 2006). In most cases, these parameters cannot be measured

at the scales relevant for model applications (Beven, 1989; Uhlenbrook et al., 1999; Beven, 2000; Wagener et al., 2001), and

are therefore estimated through model calibration. To this end, optimisation techniques are used to provide reliable estimates30

of model parameters, requiring the comparison of observed Q against simulated Q data (Duan et al., 1992; Yapo et al., 1998;

Vrugt et al., 2003, 2009; Pokhrel et al., 2012; Shafii and Tolson, 2015; Pool et al., 2017). Because the vast majority of streams

worldwide are ungauged (Young, 2006; Beck et al., 2016), the scientific initiative Prediction in Ungauged Basins (PUB; see

review by Hrachowitz et al., 2013) has fostered the development of novel regionalisation techniques to predict Q in ungauged

basins, a task that is far from complete (Yang et al., 2019; Dallery et al., 2020). The spatial transfer of hydrological model35

parameters from monitored to ungauged catchments, a process known as regionalisation (Oudin et al., 2008), therefore remains

an active research topic (see review by Guo et al., 2021).

In the hydrological modelling literature, there are three main regionalisation approaches (Oudin et al., 2008; Parajka et al.,

2013): i) spatial proximity; ii) feature similarity; and iii) parameter regression. Spatial proximity assumes that climatic and

physiographic characteristics are relatively homogeneous within a region and, therefore, neighbouring catchments exhibit sim-40

ilar hydrological behaviour (Vandewiele and Elias, 1995; Oudin et al., 2008). Although this method requires a dense network

of gauging stations to perform well, it may lead to inadequate representations of rainfall-runoff behaviour over areas with het-

erogeneous climate and geomorphological characteristics (Beck et al., 2016). Feature similarity techniques transfer calibrated

model parameter sets from donor to ungauged catchments based on geomorphological and climatic similarities (McIntyre et al.,

2005; Beck et al., 2016; Carrillo et al., 2011). Finally, parameter regression methods develop statistical relationships between45

calibrated model parameters and catchment characteristics, which are subsequently used to estimate parameter values for un-

gauged catchments (Fernandez et al., 2000; Carrillo et al., 2011). Recently, Samaniego et al. (2010) and Beck et al. (2020a)

applied multiscale parameter regionalisation techniques that link model parameters to predictors related to geomorphological

and climatological characteristics by optimising coefficients in transfer equations which helps to account for problems related

with equifinality. The performances of these three regionalisation techniques vary due to many factors, including the selected50

sample of catchments, the presence of nested catchments, hydroclimatic conditions, physiographic catchment properties, model

configuration (including meteorological forcings, model structure and simulation setup), and evaluation criteria (Parajka et al.,

2013; Guo et al., 2021; Neri et al., 2020).
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Most regionalisation studies have been conducted over regions with a dense network of meteorological stations (see Table 1),

including Europe (e.g., McIntyre et al., 2005; Parajka et al., 2005; Oudin et al., 2008; Singh et al., 2012; Zelelew and Alfredsen,55

2014; Garambois et al., 2015; Rakovec et al., 2016; Neri et al., 2020), the conterminous United States (Athira et al., 2016; Saadi

et al., 2019), India (Swain and Patra, 2017), and China (Bao et al., 2012). However, in developing countries, P has traditionally

been estimated through interpolation within sparse rain gauge networks, which is subject to large uncertainties (Villarini and

Krajewski, 2008; Hofstra et al., 2010; Woldemeskel et al., 2013; Adhikary et al., 2015; Xavier et al., 2016), hindering an

accurate spatio-temporal representation of P patterns. Over the last decades, the emergence of near-global and high-resolution60

gridded P products has introduced new possibilities for hydrological modelling in data-scarce regions (Maggioni and Massari,

2018; Sun et al., 2018), despite these products still being affected by systematic, random, and detection errors (Ren and Li,

2007; Sevruk et al., 2009; Zambrano-Bigiarini et al., 2017; Baez-Villanueva et al., 2018), which are more pronounced over

mountainous regions (Maggioni and Massari, 2018; Beck et al., 2019). Although hydrological model calibration can partly

compensate for errors in the representation of P (Elsner et al., 2014; Maggioni and Massari, 2018), this may lead to unrealistic65

model behaviour (Nikolopoulos et al., 2013; Xue et al., 2013; Ciabatta et al., 2016), thus affecting the quality of parameter

regionalisation results.

To date, few regionalisation studies have used gridded P products at the daily time scale. Beck et al. (2016) used the Climate

Prediction Center unified gauge-based P product (CPC) to provide spatially distributed HBV parameters at the global scale.

They selected CPC because it yielded better performance than ERA-Interim during calibration. Rakovec et al. (2016) used the70

European daily high-resolution gridded dataset (E-OBSv8.0) to force a mesoscale hydrological model over 400 catchments in

Europe, providing regionalised model parameters through a multivariate parameter estimation technique. More recently, Beck

et al. (2020a) combined MSWEPv2.2 with a novel multiscale parameter regionalisation approach to provide global gridded

parameter estimates using daily Q observations from 4,229 catchments. Although these studies have successfully used gridded

P products for parameter regionalisation, they only selected one product, and thus the effects that the choice of a P dataset can75

have on regionalisation results remains unknown. This study aims to answer the following questions:

i) to what extent does the choice of gridded P forcing used in calibration affect the relative performance of regionalisation

techniques?

ii) how does this relative performance vary across catchments with different hydrological regimes?
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2 Study area and selection of catchments80

Our study domain is continental Chile (Figure 1), which is bounded to the west by the Pacific Ocean, to the north by Peru,

and to the east by Bolivia and Argentina. The territory spans 4300 km of latitudinal extension (17.5◦S–56.0◦S) and on average

180 km of longitudinal extension (76.0◦W–66.0◦W), with elevation (Jarvis et al., 2008) ranging from 0 to 6892 m a.s.l. in

the Andean Mountains. Figure 1 shows the elevation, land cover (Zhao et al., 2016), hydrological regime (classified through

visual screening of the mean monthly Q), and the Köppen-Geiger climate classification (Beck et al., 2018). A large variety85

of climates are present across the country, transitioning from the (hyper)arid and semi-arid climates in the north, through

temperate climates in central Chile, to more humid and polar climates in the south. P increases with altitude and latitude (in

the southern direction) ranging from almost zero in the Atacama Desert to ∼6000 mm yr−1 in the surroundings of Puerto

Cardenas (∼43.2◦S). Similar to the P patterns, the mean annualQ and rainfall-runoff ratio tend to increase from north to south

(Alvarez-Garreton et al., 2018; Vásquez et al., 2021).90

The El Niño-Southern Oscillation (ENSO) has a large impact on winter P , with negative anomalies during La Niña and

positive anomalies during El Niño events (Verbist et al., 2010; Robertson et al., 2014). Although neutral ENSO conditions have

prevailed since 2011 (except for a strong El Niño event during 2015), an uninterrupted sequence of dry years with increased

temperatures has been observed from 2010–2018, with annual P deficits of about 25–45% across Chile. This long-term deficit

in P volume, also known as the Chilean megadrought (Garreaud et al., 2017; Boisier et al., 2016), has reduced snow cover,95

river flows, reservoir storage, and groundwater levels across Chile (Garreaud et al., 2017, 2020).

Hydroclimatic indices and characteristics for 516 catchments in continental Chile were acquired from the Catchment At-

tributes and MEteorology for Large-sample Studies dataset in Chile (CAMELS-CL; Alvarez-Garreton et al., 2018). The dataset

includes location, topography, geology, soil types, land cover, hydrological signatures, human intervention degree, among oth-

ers. Q data were obtained from the Center for Climate and Resilience Research (CR2; http://www.cr2.cl/datos-de-caudales/)100

for 1930–2018 because Q data from CAMELS-CL ended in 2016 at the time of conducting this study. We selected the near-

natural catchments from the CAMELS-CL database that fulfilled the following criteria:

1. Less than 25% of missing values in the daily Q time series for 1990–2018 (may be non-consecutive).

2. Absence of large dams (big_dam = 0).

3. Less than 10% of the Q allocated to consumptive uses (interv_degree < 0.1).105

4. Not dominated by glaciers (lc_glacier < 5%).

5. Less than 5% of the area defined as urban (imp_frac < 5%).

6. Absence of substantial irrigation abstractions (crop_frac < 20%).

7. Less than 20% of the area covered by forest plantations (fp_frac < 20%).

8. No signs of artificial regulation in the hydrograph (10 excluded in total).110
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Figure 1. Study area: a) elevation (SRTMv4.1; Jarvis et al., 2008); b) land cover classification (Zhao et al., 2016); c) Köppen-Geiger climate

classification (Beck et al., 2018); and d) hydrological regimes of the selected catchments.

The drainage area of the selected catchments (100) ranges from 35 to 11,137 km2, with a median value of 645 km2. The

selected catchments contain 42 nested catchments (i.e., catchments that are contained in a larger catchment). Through visual

screening, these selected catchments were classified by hydrological regimes as i) snow-dominated, ii) nivo-pluvial, i.e., snow-

dominated with a lower rain component, iii) pluvio-nival, i.e, rain-dominated with a lower snow component, and iv) rain-

dominated, as shown in Figure 1d.115

3 Methods

3.1 Meteorological forcings

3.1.1 Precipitation products

Four P products were used to investigate how the choice of P forcing affects the performance of regionalisation techniques.

The P products are presented in Table 2, and were selected because previous studies have reported good agreement with in120

situ measurements over continental Chile (Zambrano-Bigiarini et al., 2017; Boisier et al., 2018; Baez-Villanueva et al., 2018,
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2020). We included the coarse-resolution ERA5 product because i) Chile is dominated by large-scale, frontal systems (Zhang

and Wang, 2021) and therefore, coarse-resolution products may perform well over small catchments; ii) reanalysis products

tend perform well at high latitudes (Beck et al., 2017a); iii) we consider that its inclusion represents a realistic situation that

may exist in many practical applications (i.e., where a catchment size is small relative to P product resolution).125

Table 2. Gridded P products used in this study.

P product Period Spatial and temporal resolution References

CR2MET 1979–2018 0.05◦; daily Boisier et al. (2018)

RF-MEP 1990–2018 0.05◦; daily Baez-Villanueva et al. (2020)

ERA5 1950–present ∼0.28◦; hourly Hersbach et al. (2020)

MSWEPv2.8 1979–present 0.10◦; 3-hourly Beck et al. (2017b, 2019)

The Center for Climate and Resilience Research Meteorological dataset version 2.0 (CR2MET; Boisier et al., 2018) provides

daily gridded P estimates over continental Chile at a 5 km spatial resolution for 1979–2019. These estimates are produced by

combining rain gauge observations with reanalysis data from ERA5 (Boisier et al., 2018).

The random forest merging technique (RF-MEP; Baez-Villanueva et al., 2020) combines gridded P products, ground-based

measurements, and other spatial covariates to generate P estimates. We applied this methodology to generate a spatially130

distributed, daily P product for continental Chile, using daily records from 331 rain gauges (obtained from CR2; http://www.

cr2.cl/datos-de-precipitacion/), gridded P data from the ERA5 reanalysis (Hersbach et al., 2020) aggregated to the Chilean

time, and elevation (SRTMv4.1; Jarvis et al., 2008) as covariates. This RF-MEP version 2 product (hereafter, RF-MEP) was

generated for 1990–2018 with a spatial resolution of 0.05◦ using the RFmerge R package (Zambrano-Bigiarini et al., 2020).

ERA5 (Hersbach et al., 2020) is a reanalysis product that provides hourly P estimates (as well as other variables) from 1950–135

present at a spatial resolution of around 30 km (∼0.28◦). There are important improvements in its P estimates compared to

its predecessor ERA-Interim, such as improved i) representation of mixed-phase clouds, ii) prognostics variables for rain and

snow, iii) parametrisation of microphysics, and iv) representation of tropical variability (Hersbach et al., 2020). Hourly ERA5

estimates were aggregated into daily P values taking into account the reporting times of the Chilean rain gauges (08:00–07:59

local time, which represents 11:00–10:59 UTC).140

The Multi-Source Weighted-Ensemble Precipitation (MSWEPv2.8; Beck et al., 2017b, 2019) is a 3-hourly P product with a

spatial resolution of 0.10◦, which takes advantage of the complementary strengths of satellite, reanalysis and ground-based data.

MSWEPv2.8 applies daily and monthly corrections to its estimates using data from around 77,000 rain gauge stations globally

and accounts for their local reporting times (Beck et al., 2019). The 3-hourly MSWEPv2.8 estimates were also aggregated into

daily P to account for the difference in the reporting times.145

Figure 2 shows the mean annual P patterns for all products over 1990–2018. All P products show relatively similar patterns

of spatial variation across continental Chile; however, there are some marked differences in the total P amounts. In general,

P increases from the (hyper-arid) northern Chile to the south, as well as from the west coast into the Andes Mountains.
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Over the arid region (17–30◦S), ERA5 presents a mean annual P of 420 mm, which is four times the value of the second-

highest product CR2MET (106 mm). Over this region, RF-MEP and MSWEPv2.8 present similar mean annual P values (61150

and 66 mm, respectively). For central Chile (30–40◦S), CR2MET has the highest mean annual P (889 mm), followed by

ERA5 and RF-MEP (646 and 599 mm, respectively), while MSWEPv2.8 has the lowest mean value (446 mm). Finally, for

latitudes lower than 40◦S, CR2MET has the highest mean annual P (1,397 mm), followed by ERA5 (1,313 mm), MSWEPv2.8

(1,034 mm) and RF-MEP (727 mm).

3.1.2 Air temperature and potential evaporation155

Maximum and minimum daily air temperature (T ) at a spatial resolution of 0.05◦ were taken from CR2MET. T is estimated

using multivariate regression from the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature

(LST) and ERA5 estimates as covariates (Alvarez-Garreton et al., 2018; Boisier et al., 2018). The Hargreaves-Samani equation

(Hargreaves and Samani, 1985) was used to obtain daily potential evaporation (PE) from CR2MET maximum and minimum

daily T at the same spatial resolution (0.05◦).160

3.2 Hydrological model

The TUWmodel (Viglione and Parajka, 2020) is a conceptual hydrological model that follows the structure of the Hydrologiska

Byråns Vattenbalansavdelning (HBV) model (Bergström, 1976; Bergström, 1995; Lindström, 1997). The model simulates the

catchment-scale water balance at daily time steps, including processes related to snow accumulation and melting, change of

moisture in the soil profile, and surface flow in the drainage network. The TUWmodel was validated over 320 catchments in165

Austria (Parajka et al., 2007) and has subsequently been used in numerous studies (e.g., Ceola et al., 2015; Parajka et al., 2016;

Sleziak et al., 2016; Zessner et al., 2017; Melsen et al., 2018; Nijzink et al., 2018; Sleziak et al., 2020; Széles et al., 2020).

We selected a HBV-like conceptual model because it has shown good results in i) many regionalisation studies (e.g., Parajka

et al., 2005; Jin et al., 2009; Singh et al., 2012; Wallner et al., 2013; Zelelew and Alfredsen, 2014; Beck et al., 2016; Neri et al.,

2020); and ii) catchments with diverse hydroclimatic and geomorphological characteristics (Merz and Blöschl, 2004; Driessen170

et al., 2010; Samuel et al., 2011; Vetter et al., 2015; Ding et al., 2016; Unduche et al., 2018; Huang et al., 2019).

The TUWmodel requires as inputs daily time series of P , T , and PE. The parameters used by the TUWmodel to represent

the hydrological processes are listed in Table 3, including the ranges selected for model calibration, that were adopted from

previous studies (Parajka et al., 2007; Ceola et al., 2015), which calibrated the TUWmodel over a large number of mountainous

catchments with snow influence. We ran the TUWmodel with a semi-distributed configuration for the period 1990–2018 based175

on meteorological and Q data availability. For each catchment, the number of EZ equal-area elevation bands was defined

as EZ = (Hmax−Hmin)/200, where H represents elevation. In cases where EZ > 10, EZ was set to 10 to reduce the

computational demand of the simulations. Furthermore, in catchments with Hmin below 900 m a.s.l., the upper bound (Hmax)

of the first EZ band was set to 900 m, under the assumption that there is no snow influence below this elevation for the

particular case of continental Chile.180
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Figure 2. Mean annual P for each product over 1990–2018, resampled to a 0.05◦ spatial resolution using the nearest neighbour method.

3.3 Individual catchment calibration and verification

The simulation period used for this study was 1990–2018, using the first ten years as a warm-up period. The calibration

period (2000–2014) includes near normal conditions and the beginning of the Chilean megadrought. The first evaluation period

9
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Table 3. Summary of the TUWmodel parameters considered for calibration, following the conceptualisation presented in Széles et al. (2020).

N◦ Parameter ID Description Units Process Range

1 SCF Snow correction factor – Snow 0.9 – 1.5

2 DDF Degree-day factor mm ◦C day−1 Snow 0.0 – 5.0

3 Twb Wet bulb temperature ◦C Snow -3.0 – 3.0

4 Tm Threshold temperature above which melt starts ◦C Snow -2.0 – 2.0

5 LPrat Parameter related to the limit for potential evaporation – Evaporation 0.0 – 1.0

6 FC Field capacity mm Infiltration 0.0 – 600

7 BETA Non-linear parameter for runoff production – Infiltration 0.0 – 20

8 cperc Constant percolation rate mm day−1 Infiltration 0.0 – 8.0

9 k0 Storage coefficient for very fast response day Runoff 0.0 – 2.0

10 k1 Storage coefficient for fast response day Runoff 2.0 – 30

11 k2 Storage coefficient for slow response day Runoff 30 – 250

12 lsuz Threshold storage state mm Runoff 1.0 – 100

13 bmax Maximum base at low flows day Runoff 0.0 – 30

14 croute Free scaling parameter day2 mm−1 Runoff 0.0 – 50

(hereafter, Verification 1, 1990–1999) represents near-normal/wet hydroclimatic conditions, while the second evaluation period

(hereafter, Verification 2, 2015–2018) spans the second half of the Chilean megadrought, and was used to test the ability of the185

hydrological simulations to represent dry conditions.

To examine how the goodness-of-fit function used for calibration affected the regionalisation results, we considered two

different objective functions to calibrate the TUWmodel. The first function was the modified Kling-Gupta efficiency (KGE’,

Eq. 1; Kling et al., 2012), which typically provides better hydrograph simulations than other squared-error indices (Gupta

et al., 2009; Kling et al., 2012; Mizukami et al., 2019) and has been used in numerous studies (e.g., Garcia et al., 2017; Beck190

et al., 2019; Baez-Villanueva et al., 2020; Neri et al., 2020; Széles et al., 2020). The KGE’ has three components: the Pearson

correlation coefficient (r; Eq. 2); the bias ratio (β; Eq. 3); and the variability ratio (γ; Eq. 4). µ is the mean Q, CV is the

coefficient of variation, σ represents the standard deviation of Q, and the subscripts s and o represent simulated and observed

Q, respectively. The KGE’ and its components have their optimum value at one, and its optimisation seeks to reproduce the

temporal dynamics (measured by r), while preserving the volume and variability of Q, measured by β and γ, respectively195

(Kling et al., 2012).

KGE’ = 1−
√

(r− 1)2 + (β− 1)2 + (γ− 1)2 (1)
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r =
∑n

i=1 (Oi− Ō)(Si− S̄)√∑n
i=1 (Oi− Ō)2

√∑n
i=1 (Si− S̄)2

(2)

β =
µs

µo
(3)

γ =
CVs

CVo
=
σs/µs

σo/µo
(4)200

Based on previous research (Shafii and Tolson, 2015; Vis et al., 2015; Beck et al., 2016), we also implemented a new

aggregated objective function (AOF) that combines Q signatures (AOFsig) and classical goodness-of-fit indices (AOFgof ):

AOF =
AOFgof + AOFsig

2
(5)

For the AOFgof (Eq. 6), we used the average of the KGE’ recommended by Garcia et al. (2017), which is computed for

both the Q and its inverse (KGE’(Q) and KGE’(1/Q), respectively). The use of this function should lead to improved estimates205

of mean annual runoff, seasonality, and low flow indices. To avoid problems with zero Q values while computing KGE’(1/Q)

(Santos et al., 2018), we added a small constant to all Q values, defined as one-hundredth of the mean daily Q (Pushpalatha

et al., 2012; Garcia et al., 2017).

AOFgof =
KGE’(Q) + KGE’(1/Q)

2
(6)

Similar to Yilmaz et al. (2008) and Beck et al. (2016), we selected four Q signatures to calculate AOFsig (Eq. 7): the differ-210

ence between the observed and simulated baseflow indices (eBFI), which may be thought of as the proportion of river runoff

deriving from stored sources; and the percent bias in the slope of the lower, medium, and higher segments of the flow dura-

tion curve (pbiasFDCLow, pbiasFDCMed, pbiasFDCHigh, respectively). Equations 8a–d present the four aforementioned

components of AOFsig , where BFI represents the base flow index; sim and obs represent the simulated and observed Q

values, respectively; and Q99, Q70, Q20, Q10, Q1 represent streamflows with 99, 70, 20, 10 and 1% probability of exceedance,215

respectively.

AOFsig = 1− (eBFI + pbiasFDCLow + pbiasFDCMed + pbiasFDCHigh) (7)

eBFI = |BFIsim−BFIobs| (8a)
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pbiasFDCLow = 100 ·
∣∣∣∣
log(Q70,s)− log(Q99,s)
log(Q70,o)− log(Q99,o)

− 1
∣∣∣∣ (8b)

pbiasFDCMed = 100 ·
∣∣∣∣
log(Q20,s)− log(Q70,s)
log(Q20,o)− log(Q70,o)

− 1
∣∣∣∣ (8c)220

pbiasFDCHigh = 100 ·
∣∣∣∣
Q1,s−Q10,s

Q1,o−Q10,o
− 1
∣∣∣∣ (8d)

To calibrate the model parameters, we used the hydroPSO global optimisation algorithm (Zambrano-Bigiarini and Rojas,

2013), which implements a state-of-the art version of the Particle Swarm Optimisation technique (PSO; Eberhart and Kennedy,

1995; Kennedy and Eberhart, 1995). Over the last decade, hydroPSO has been successfully used to calibrate numerous hydro-

logical and environmental models (e.g., Brauer et al., 2014a, b; Silal et al., 2015; Bisselink et al., 2016; Kundu et al., 2017;225

Kearney and Maino, 2018; Abdelaziz et al., 2019; Ollivier et al., 2020; Hann et al., 2021). The default hydroPSO settings were

used for all calibrations (Zambrano-Bigiarini and Rojas, 2013).

3.4 Regionalisation techniques

After obtaining catchment-specific model parameters through individual catchment calibration using the KGE’ and AOF sep-

arately, we compared three parameter regionalisation techniques: i) spatial proximity, ii) feature similarity, and iii) parameter230

regression. We assessed performance through a leave-one-out cross-validation exercise, which consists of leaving out each

one of the 100 catchments, transferring model parameters, conducting Q simulations and computing performance evaluation

metrics.

3.4.1 Spatial proximity

The spatial proximity method assumes that climatic and physical characteristics are relatively homogeneous over a region235

(Oudin et al., 2008). We quantified the spatial proximity between the target pseudo-ungauged and the remaining catchments

using the Euclidean distance between catchment centroids, computed with geographic coordinates (i.e., latitude and longitude):

EDij =

√√√√
n∑

k=1

(xk,i−xk,j)2 (9)

For each pseudo-ungauged catchment, the donor was chosen according to the minimum Euclidean distance, and the full

parameter set obtained during the individual calibration of the donor catchment was transferred to the pseudo-ungauged catch-240

ment.
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3.4.2 Feature similarity

In the feature similarity method, we transferred the calibrated parameter sets from 10 donor catchments to the pseudo-ungauged

catchment based on similarity between climatic and geomorphological features, quantified using the catchment characteristics

presented in Table 4. To exclude redundant information, we first performed correlation analyses between catchment descriptors245

using the Pearson and Spearman rank correlation coefficients (to account for linear and monotonic correlation, respectively),

and discarded three descriptors with high correlations (mean elevation, mean annual PE, and SDII; see Appendix A). Also,

we discarded snow cover because it was found to be unreliable, leaving nine catchment features for this method. To assign

equal weight to each catchment characteristic, they were normalised into the range [0, 1] using Eq. 10:

Zf =
xf −xmin

xmax−xmin
(10)250

where xf is the value of the characteristic for catchment f , while xmax and xmin are the maximum and minimum values of the

characteristic x over all catchments. After normalising all catchment characteristics, we calculated the dissimilarity as follows:

Si,j =
n∑

m=1

| Zi,m−Zj,m | (11)

where Si,j is the dissimilarity index between catchments i and j; Zi,m and Zj,m are the normalised values of the m catchment

characteristic for catchments i and j, respectively; and n is the total number of characteristics.255

For each pseudo-ungauged catchment i, the 10 catchments j with the lowest dissimilarity indices (Si,j) were selected as

donors (McIntyre et al., 2005; Oudin et al., 2008; Zhang and Chiew, 2009; Zhang et al., 2015; Beck et al., 2016). The full

parameter sets obtained during the individual calibrations of each donor catchment were used to run TUWmodel in the pseudo-

ungauged catchment, thus producing an ensemble of 10 Q simulations, as in previous studies (McIntyre et al., 2005; Zelelew

and Alfredsen, 2014; Beck et al., 2016). The 10 Q time series were then averaged to produce a single Q time series.260

Finally, to quantify the overall uncertainty in model simulations when different objective functions are used for regionali-

sation, we adapted the P- and R-factor concepts described in Abbaspour et al. (2007); Schuol et al. (2008); Abbaspour et al.

(2009) to be calculated using only 10 Q simulations. We defined the uncertainty band as the area between the maximum and

minimum Q values for all time steps, obtained from the ensemble of the 10 simulations. Two indices were used to quantify the

uncertainty of model simulations with respect to observations: i) Preg , which is defined as the percentage of Q observations265

bracketed by the uncertainty band; and ii) Rreg , which represents the average width of the uncertainty band divided by the

standard deviation of the observations. Ideally, we would capture all observations within the uncertainty band (i.e., Preg = 1),

with no uncertainty (i.e., Rreg = 0); however, a more realistic good result would be to achieve Preg ∼ 1 with the same spread

as the observations (i.e., Rreg ∼ 1).
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Table 4. Selected climatic and physiographic characteristics to quantify feature similarity between catchments. All variables related to P

were computed using the corresponding P product used as an input to the TUWmodel.

N◦ Variable Data source Importance

1 Mean elevation CAMELS-CL Composite indicator that influences a range of processes such as long-term

P and T , and hence soil moisture availability. In some environments, it is

also related to aridity and snow processes

2 Median elevation SRTMv4.1 Same as mean elevation but provides a more robust representation of eleva-

tion over mountainous catchments

3 Catchment area CAMELS-CL Related to the degree of aggregation of catchment processes related to scale

effects. Additionally, it is an indicator of total catchment storage capacity

4 Slope CAMELS-CL Related to the response of the catchment, routing, and infiltration processes

5 Forest cover CAMELS-CL Forested catchments are associated with a trade-off between high water con-

sumption rates and enhanced soil

6 Snow cover CAMELS-CL Related to the influence of snow processes within the catchment

7 Mean annual precipitation P product Related to the generation of runoff and P related to orographic gradients

(e.g., coastal areas)

8 Mean annual air temperature CR2MET Indicator of snow processes in cold environments. It is also related to aridity,

and consequently to the evaporative demand

9 Mean annual potential evap-

oration

Computed

from CR2MET
A measure of the atmospheric water demand (especially at the annual tem-

poral scale)

10 Aridity index
CR2MET and

P product
Represents the competition between energy and water availability

11 Daily temperature range CR2MET Monthly mean difference between daily maximum and minimum T . Re-

lated to variations in the diurnal cycle and evaporative demands

12 Simple precipitation inten-

sity index

P product Relation of annual P to the number of wet days (P > 1 mm). Serves as a

proxy for seasonality and intensity of P events

13 Maximum consecutive 5-day

precipitation

P product Related to extreme P events

3.4.3 Parameter regression270

The parameter regression technique aims to detect statistical relationships between parameter values and catchment character-

istics, and uses these relationships to estimate model parameters for ungauged catchments (Parajka et al., 2005; Oudin et al.,

2008; Swain and Patra, 2017). To account for non-linear relationships between model parameters and catchment characteris-

tics, we implemented the random forest machine learning algorithm (RF; Breiman, 2001; Prasad et al., 2006; Biau and Scornet,

2016) provided in the RandomForest R package (Liaw and Wiener, 2002). RF uses an ensemble of decision trees between pre-275
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dictand and predictor values (also known as covariates) for regression and supervised classification, and has the capability to

deal with high-dimensional feature spaces and small sample sizes (Biau and Scornet, 2016). Previous studies have shown that

RF can deal with several covariates as well as non-informative predictors, because it does not lead to overfitting or biased

estimates (Díaz-Uriarte and Alvarez de Andrés, 2006; Biau and Scornet, 2016; Hengl et al., 2018), which is why it has been

used for numerous hydrological applications (Saadi et al., 2019; Beck et al., 2020b; Baez-Villanueva et al., 2020; Zhang et al.,280

2021). For a more detailed description of RF, we refer the reader to Prasad et al. (2006), Biau and Scornet (2016), and Addor

et al. (2018).

For this study, we developed one RF model for each TUWmodel parameter, using the set of independent catchment charac-

teristics listed in Table 4 as covariates. Our experimental setup used an ensemble of 2,000 regression trees, a minimum of five

terminal nodes for each model, and p/3 variables randomly sampled as candidates at each split, where p represents the number285

of predictors. The trained RF models were then used to predict parameter values in pseudo-ungauged catchments, using its

climatic and physiographic descriptors as covariates.

We performed all analyses using the R Project of Statistical Computing (R Core Team, 2020). In addition to the R packages

described in the methodology, we used the hydroGOF (Zambrano-Bigiarini, 2020a), hydroTSM (Zambrano-Bigiarini, 2020b),

lfstat (Koffler et al., 2016), raster (Hijmans, 2020), rastervis (Perpiñán and Hijmans, 2020), rgdal (Bivand et al., 2020), and290

rgeos (Bivand and Rundel, 2020) packages.

3.5 Influence of nested catchments

To evaluate the influence of nested catchments on the performance of the three regionalisation methods, we repeated the three

regionalisation methods for each target catchment, with catchments considered to be nested (in relation to the pseudo-ungauged

catchment) excluded from the set of potential donor catchments. Following Neri et al. (2020), we used a cutoff point of 10%295

of drainage area, meaning that only catchments that cover more than 10% of the area of the parent catchment are considered

to be nested.

4 Results

4.1 Performance of P products

4.1.1 Calibration and verification300

Figure 3 shows the performance of the TUWmodel during calibration (2000–2014) and the two verification periods (1990–

1999 and 2015–2018), prior to any regionalisation procedure. These results were obtained using the KGE’ (Figure 3a) and the

AOF (Figure 3b) for the calibration process. When the KGE’ was used as the objective function, CR2MET provided the best

performance for all evaluated periods, with median KGE’s of 0.84, 0.76, and 0.66, for calibration, Verification 1 (1990–1999,

near-normal/wet) and Verification 2 (2015–2018, dry), respectively, followed closely by RF-MEP. However, when the AOF305

was used as the objective function to drive calibration, ERA5 (median KGE’ of 0.72) outperformed CR2MET (0.71) during
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Verification 1. Surprisingly, MSWEPv2.8 provided the poorest performance for calibration and Verification 1, while ERA5

and RF-MEP performed the worst during Verification 2, when using the KGE’ and AOF, respectively. For all P products, the

lowest performances were obtained during the (dry) Verification 2 period, emphasising the challenges of estimating Q over

dry environments, as discussed by Maggioni et al. (2013) and Beck et al. (2016). Despite variations between P products,310

TUWmodel performed well for all products in the calibration, Verification 1 and Verification 2 periods, with median KGE’

(AOF) values greater than 0.77, 0.71, and 0.62 (0.78, 0.70, and 0.61), respectively. The calibrated model parameters were

within the selected parameter ranges in the large majority of the cases (see Figures S4 and S5 of the supplement material).
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Figure 3. Performance of TUWmodel during the calibration (2000–2014), Verification 1 (1990–1999) and Verification 2 (2015–2018), prior

to any regionalisation, using a) the modified Kling-Gupta efficiency (KGE’), and b) the aggregate objective function (AOF).

4.1.2 Performance during regionalisation

Figure 4 summarises the leave-one-out cross-validation results for the three tested regionalisation methods (spatial proximity,315

feature similarity, parameter regression), obtained when TUWmodel was forced with each P product over the entire simulation

period (1990–2018). Overall, the median performance of all P products was the highest for feature similarity (KGE’ and AOF

∼ 0.60), followed by spatial proximity (KGE’ and AOF ∼ 0.55) and parameter regression (KGE’ ∼ 0.35, AOF ∼ 0.25).

In addition to exhibiting a considerably lower overall performance, parameter regression also resulted in a larger spread in

performance.320
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Focusing on only the two best-performing regionalisation methods and bearing in mind that KGE’ and AOF have differ-

ent theoretical grounds, the results presented on Figure 4 show that the overall performance obtained for feature similarity

and spatial proximity are quite close for different P products, and for both objective functions. For example, all P products

generate acceptable KGE’ results (median KGE’ > 0.56) for feature similarity, with the best model performance obtained by

CR2METv2 (KGE’ = 0.63), followed closely by RF-MEP (0.62). When using the AOF for feature similarity, the best model325

performance was again obtained by CR2METv2 (median AOF of 0.64), but this time followed closely by MSWEPv2.8 (0.62).

MSWEPv2.8 slightly outperformed ERA5 (median KGE’=0.61) in feature similarity, which is consistent with the results ob-

tained for spatial proximity. In the case of spatial proximity using the KGE’, CR2MET performed the best, with a median

KGE’ of 0.57, followed by RF-MEP (0.56), while MSWEPv2.8 showed a slightly better KGE’ performance than ERA5 (0.54

and 0.51, respectively). In the case of the AOF, MSWEPv2.8 showed a better AOF performance than RF-MEP (0.55 and 0.53,330

respectively).

●● ●

● ●●

●

0.0 0.2 0.4 0.6 0.8 1.0

MSWEPv2.8

ERA5

RF−MEP

CR2MET

Spatial proximity

a)

●●● ● ●●● ●

● ● ●● ●

● ●●●● ●

●● ●●

0.0 0.2 0.4 0.6 0.8 1.0

Feature similarity

●● ●● ●●●

●●● ● ●● ●

●●●● ●●● ●

0.0 0.2 0.4 0.6 0.8 1.0

Parameter regression

●

●

● ●●

0.0 0.2 0.4 0.6 0.8 1.0

MSWEPv2.8

ERA5

RF−MEP

CR2MET

b)

●● ●● ●

●● ● ● ●●●

●●

●

0.0 0.2 0.4 0.6 0.8 1.0

●● ●

●●● ● ●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4. Leave-out-out cross-validation results for the three regionalisation methods according to P product used to force TUWmodel

during 1990-2018, using a) the KGE’, and b) the AOF.
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For each regionalisation technique, Figure 5 summarises the spatial distribution of the performance of the four P products

and both objective functions used in regionalisation. The spatial patterns obtained for all regionalisation methods were similar,

independent of the P product or objective function, except for parameter regression using the AOF, which yielded worse results

over high-elevation catchments. These results suggest that the choice of objective function used to drive calibration does not335

greatly impact the spatial performance of regionalisation methods that transfer complete sets of model parameters (feature

similarity and spatial proximity).

All P products performed better in central (30-40◦S) and southern Chile (40-56.5◦S) than in the arid north (17-30◦S). The

low performance of regionalisation in the arid north is very likely due to the convective nature of storms occurring in the

highlands of the Chilean Altiplano (elevations above 4,000 m a.s.l.), and the low density of Q stations over this area. Despite340

this general low performance, RF-MEP was the best performing P product over northern Chile (17-30◦S) for both spatial

proximity (median KGE’ of 0.37) and feature similarity (median KGE’ of 0.51), for the 10 most northern catchments (see

Figure 1), suggesting that merging P products and ground-based observations helps improve, to some extent, the performance

of hydrological modelling across arid regions. Conversely, all products outperformed RF-MEP over the far south. Figure 5 also

highlights that spatial proximity provides the best performance over the far south, with median KGE’ (AOF) values over the345

10 most southern catchments of 0.47 (0.59), 0.45 (0.49), 0.25 (0.35), and 0.30 (0.35) for MSWEPv2.8, CR2MET, RF-MEP,

and ERA5, respectively. The systematic lower performance of feature similarity compared to spatial proximity over the south

could be attributed to lack of catchment characteristics that represent the hydrological behaviour of this complex area.

The panels located below each map in Figure 5 show the empirical cumulative distribution functions (ECDFs) of the per-

formance of each regionalisation technique. These ECDFs compare the relative performance of each regionalisation method350

against those obtained from the individual calibration and verification of each catchment (used as benchmarks). As expected,

all regionalisation methods presented a lower performance than the individual calibration and verification, with this reduction

more pronounced for parameter regression. For feature similarity, all P products yielded a performance similar to that obtained

for individual basin verification during the dry Verification 2 period.

4.2 Evaluation of regionalisation techniques355

4.2.1 Overall performance

For each P product, Figure 6 compares the performances of the three regionalisation techniques using the AOF with those

obtained in the individual calibration and verification periods. The individual calibration of each catchment represents the

highest model performance that can be obtained for a specific combination of hydrological model, objective function and

catchment (i.e., an absolute benchmark), whereas the two verification periods were used to evaluate the performance of the360

regionalisation techniques over independent time periods (i.e., as verification benchmarks). For all P products and evaluation

periods, feature similarity performed the best, followed by spatial proximity and parameter regression, which is consistent with

results from multiple studies (e.g., Parajka et al., 2005; Oudin et al., 2008; Bao et al., 2012; Garambois et al., 2015; Neri et al.,

2020). Median AOFs obtained for feature similarity were the highest, followed closely by spatial proximity, regardless of the
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Figure 5. Spatial performance of the leave-one-out cross-validation results for the three regionalisation methods according to P product

used to force TUWmodel (1990-2018) using a) the KGE’ and b) the AOF. The panels beneath each map plot the ECDFs of the corre-

sponding regionalisation technique and P product (black) against the performances during the calibration (blue), Verification 1 (purple), and

Verification 2 (red) periods.

selected P product, but with a larger spread. Parameter regression had both the lowest median AOFs as well as the largest365

spread. Comparing the two verification periods, results obtained during the (near-normal/wet) Verification 1 period were close

to those obtained during calibration, while those obtained during the (dry) Verification 2 were substantially lower, especially
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for spatial proximity and parameter regression. Results obtained for the evaluation of regionalisation methods using the KGE’

are presented in Figure S1 of the supplement material, and are similar to those for the AOF.
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Figure 6. Performance of the regionalisation methods using the AOF objective function for: a) calibration (2000–2014); b) Verification 1

(1990–1999), and c) Verification 2 (2015–2018).

4.2.2 Impact of hydrological regimes370

We also analysed the impact of the hydrological regime (see Figure 1d) on the performance of the three regionalisation methods.

Figures 7 and 8 show the performance of the regionalisation techniques according to hydrological regime for all P products

and the KGE’ and AOF objective functions, respectively.
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Figure 7 shows that when using the KGE’, feature similarity provided the best median performance for all hydrological

regimes and P products except snow-dominated catchments, where spatial proximity performed the best for CR2MET and375

ERA5. Similarly, Figure 8 shows that feature similarity performed better over all hydrological regimes, except for the case of

snow-dominated catchments with CR2MET as the P product. These results demonstrate that there was no single P product

that outperformed the others for all regionalisation techniques and hydrological regimes. In other words, the best performing P

product depends on the hydrological regime, chosen regionalisation method, and objective function used to drive the hydrolog-

ical model calibration. For feature similarity in snow-dominated catchments, RF-MEP performed the best using both the KGE’380

and AOF; while for nivo-pluvial catchments, CR2MET provided the best performance with the KGE’, and all of MSWEPv2.8,

ERA5 and CR2MET performed similarly well with the AOF. CR2MET performed the best in pluvio-nival catchments for the

case of feature similarity when using the KGE’, and CR2MET and RF-MEP with the AOF. Finally, across rainfall-dominated

catchments, MSWEPv2.8 performed best for spatial proximity and ERA5 for feature similarity using the KGE’; and CR2MET

for both regionalisation methods when the AOF was used.385

Results obtained with the AOF were similar to those obtained with the KGE’. Although the two objective functions used

are not directly comparable, results for the snow-dominated and the pluvio-nival catchments using the AOF for parameter

regression were markedly lower than those obtained using the KGE’, suggesting that the choice of the objective function has a

greater influence in the performance of parameter regression results.

4.3 Impact of nested catchments in regionalisation performance390

Finally, we evaluated the influence of the nested catchments in the regionalisation results. Figure 9 shows the performance of

the three regionalisation methods for the subset of 56 nested catchments that share a common area with at least one other catch-

ments (i.e., the 42 nested catchments as well as all corresponding parent catchments). Here, we compare the regionalisation

performance using all potential donors (dark colours) with the performance when excluding nested catchments as potential

donors (light colours). The order of performance of the regionalisation methods and P products did not vary when the nested395

catchments were excluded, as feature similarity and CR2MET remained the best performing method and product, respectively.

As expected, the regionalisation technique with the largest reduction in performance when excluding nested catchments was

spatial proximity, followed closely by feature similarity. All P products showed a slight performance reduction and increased

dispersion for spatial proximity, except for MSWEPv2.8, which showed a slight increase in the KGE’ median value. Feature

similarity showed a slight reduction in performance when the nested catchments were excluded; however, the median values400

remained almost the same. The performance of parameter regression did not change substantially when evaluated with and

without nested catchments.
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Figure 7. Performance of regionalisation methods using the KGE’ objective function according to the hydrological regimes: a) snow-

dominated, b) nivo-pluvial, c) pluvio-nival, and d) rain-dominated. N denotes the number of catchments per hydrological regime.
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Figure 8. Performance of regionalisation methods using the AOF objective function according to the hydrological regimes: a) snow-

dominated, b) nivo-pluvial, c) pluvio-nival, and d) rain-dominated. N denotes the number of catchments per hydrological regime.
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Figure 9. Comparison of regionalisation performance using all catchments as potential donors (dark colours) against the performance when

catchments that share a common area with the pseudo-ungauged catchment are excluded as potential donors (light colours). Results are for

a) the KGE’, and b) the AOF.
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5 Discussion

5.1 Performance of P products

During the individual catchment calibration (2000–2014) and two verification periods (1990–1999 and 2015–2018), good per-405

formances were obtained with all P products (see Figure 3). The results obtained with ERA5, which is a reanalysis-only prod-

uct, were as good or even better than those obtained with the gauge-corrected products CR2MET, RF-MEP, and MSWEPv2.8

(e.g., see AOF results for Verification 1 in Figure 3). This suggests that, for the particular case of Chile, merging P products

with ground-based measurements does not necessarily translate into improved hydrological model performance, which may

be attributed to the lack of P rain gauges in the Andes mountain range. Furthermore, the similar performances obtained with410

uncorrected (ERA5) and gauge-corrected (CR2MET, RF-MEP, and MSWEPv2.8) P products, both in wet and dry periods,

highlight that there was no single P dataset outperforming the others in all periods and for both objective functions. These

results demonstrate that the calibration of hydrological model parameters smooths out, to some extent, the spatial differences

among P products (see Figure 2), which is in agreement with previous studies that have demonstrated that model recalibration

with each P product improves the performance of Q simulations (e.g., Artan et al., 2007; Stisen and Sandholt, 2010; Bitew415

et al., 2012; Thiemig et al., 2013). The systematic higher performance of CR2MET and RF-MEP for calibration and Verifica-

tion 1 compared to MSWEPv2.8 (see Figure 3) can be attributed to the improved detection of P events of the merged products

(regarding RF-MEP, see Baez-Villanueva et al., 2020). However, MSWEPv2.8 performed similar to these merged products

under dry conditions (Verification 2).

Regarding the suitability of P products for parameter regionalisation, RF-MEP provided slightly better results in northern420

Chile (17-30◦S) using both spatial proximity and feature similarity, suggesting that P products that are merged with ground-

based information over arid climates can improve regionalisation performance. The low performance obtained with ERA5 in

the north compared to the other P products can be attributed to the absence of ground-based meteorological stations in its

development. The use of ground observations as they: i) help to compensate overestimations caused by the evaporation of

hydrometeors before they reach the ground (Maggioni and Massari, 2018); and ii) improve event-based detection skills (Baez-425

Villanueva et al., 2020; Zhang et al., 2021). Despite the low performance of all P products in the north (median KGE’ and

AOF values <0.5, see Figure 5), the TUWmodel appears to be flexible enough to compensate, to some extent, for differences

between P products. A similar conclusion was obtained by Elsner et al. (2014), who examined differences between four

meteorological forcing datasets and their implications in hydrological model calibration in western USA using the Variable

Infiltration Capacity model (VIC; Liang et al., 1994). Our results are also in agreement with Bisselink et al. (2016), who430

concluded that parameter sets obtained during calibration partially compensated the bias of seven P products used to force the

fully-distributed LISFLOOD model in four catchments in southern Africa.

An unexpected result from this study is that the spatial resolution of the P products did not play a major role in model

performance during calibration, verification and regionalisation; although CR2MET and RF-MEP have a higher spatial reso-

lution (0.05◦; ∼25 km2) than MSWEPv2.8 (∼0.10◦; ∼100 km2) and ERA5 (∼0.28◦; ∼625 km2), all four products performed435

well during the individual calibration of the hydrological model and the two verification periods. The performance of ERA5
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over the 25 smallest catchments during regionalisation (area < 353.1 km2) was similar to that obtained with products with a

higher spatial resolution (Figure S3 of the supplement material). This can be attributed to the fact that Chile is dominated by

large-scale frontal systems (Zhang and Wang, 2021) and therefore, coarse-resolution products may perform well over small

catchments. These results align with the findings of Maggioni et al. (2013), who concluded that the loss of spatial information440

associated with coarser resolution (e.g., ERA5) can be compensated through model calibration.

5.2 Evaluation of regionalisation techniques

Feature similarity provided the best performance when the TUWmodel was forced with all P products (Figure 6), reinforcing

the idea that this conceptual hydrological model has a flexible enough structure to correct inter-forcing differences without

losing predictive capability in space, as observed in the obtained Preg values (only applied to the best performing regionalisation445

technique, i.e., feature similarity). Spatial proximity provided similar performance to feature similarity over southern-central

Chile, where there is a high density of Q stations. These results are in agreement with Parajka et al. (2005), Oudin et al. (2008)

and Neri et al. (2020) who demonstrated that spatial proximity performs well over densely gauged regions.

The inclusion of donor catchments with low model performance introduces a diversity that has the potential to benefit Q

prediction in ungauged catchments, as discussed by Oudin et al. (2008). We decided to incorporate these catchments in the450

regionalisation process because of the diversity of climates and physiographic characteristics across continental Chile (see

Figure 1), with the potential downside that this may lead to errors in the transferred model parameters. Additionally, the

similarity between the performance of spatial proximity and feature similarity can be partially attributed to the fact that six

of the nine selected catchment characteristics are directly or indirectly related to climate, which in Chile is highly related

to catchment spatial proximity. Parameter regression was the regionalisation method that provided the worst results (Figures455

4 and 6); however, Figure 5 shows that this method generated good results over southern-central Chile (except for high-

elevation areas), where there are many potential donor catchments. The equifinality of model parameters may also impact the

relative performance of the regionalisation techniques by producing unrealisitic parameter sets, particularly for the case of

parameter regression. Unlike techniques that transfer the entire parameter sets, the regression process denatures the already

uncertain model parameters by applying independent regression procedures using climate and physiographic characteristics460

(Arsenault and Brissette, 2014). This challenge can be overcome by simultaneously optimising both the model parameters and

the regression equations (e.g., Samaniego et al., 2010; Rakovec et al., 2016; Beck et al., 2020a), but such an exercise is out of

the scope of this study.

Figures 7 and 8 show the performances of the three regionalisation techniques according to hydrological regimes (see

Figure 1). For both spatial proximity and feature similarity, the best and worst results were obtained for pluvio-nival catchments465

and rain-dominated catchments, respectively, regardless of the objective function. The relative performance of snow-dominated

catchments and nivo-pluvial catchments was related to the selection of the objective function. A better performance was

achieved over snow-dominated catchments when the KGE’ was used as the objective function, while the opposite was observed

for the AOF.
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We calculated Preg and Rreg to evaluate the ensemble spread in simulated Q resulting from the implementation of each470

of the 10 donor catchment parameter sets for feature similarity using both objective functions, as described in Section 3.4.2.

Figure 10 shows the catchments according to whether Preg was higher (indicating better performance) using the KGE’ (green)

or the AOF (orange), while catchments with Preg differences of less than 0.05 were excluded (plotted as empty circles). The use

of the AOF resulted in higher Preg values over northern Chile, implying that a larger fraction of daily Q observations lie within

the uncertainty bands, with median values for the P products ranging from 0.69 (MSWEPv2.8) to 0.74 (RF-MEP). On the475

other hand, the KGE’ resulted in higher Preg values over the humid south-central Chile, with median values ranging from 0.69

(MSWEPv2.8) to 0.76 (CR2MET and ERA5). These results are in agreement with (Beck et al., 2016), who reported that the

inclusion of hydrological signatures in the objective function reduced regionalisation performance over more humid (tropical)

catchments. The comparison of the two objective functions with the Rreg index (Figure S2 in the supplement material) shows

that the uncertainty band was narrower in the northern region when using KGE’, with median values ranging from 2.20 (ERA5)480

to 1.16 (RF-MEP). Conversely, the use of the AOF over south-central and southern Chile provided better results, with median

values ranging from 0.89 (ERA5) to 0.81 (RF-MEP), suggesting that there is a trade off between Preg and Rreg . Interestingly,

all P products, regardless of their differences, provided very similar spatial patterns of Preg and Rreg , with the exception of

Rreg for RF-MEP, where the use of the AOF consistently resulted in better Preg and Rreg values.

Figure 11 displays Q time series for two catchments where good performance was obtained with feature similarity as the485

regionalisation technique, over a snow-dominated (in the north, Figure 11a) and a rain-dominated (in the south, Figure 11b)

catchment, using CR2MET as the P forcing. In the snow-dominated catchment, the AOF resulted in a higher Preg , while in

the rain-dominated catchment, the KGE’ led to a higher Preg value. In the snow-dominated catchment, the AOF was better at

reproducing the recession curves of small events at the expense of returning a wider uncertainty band (i.e., higher Rreg). In

the rain-dominated catchment, both objective functions produced good representations of the recession curves, and again the490

KGE’ showed a slightly wider uncertainty band (i.e., higher Rreg) than AOF.

5.3 Impact of nested catchments

Nested catchments play an important role in the performance of regionalisation methods because nested catchments are more

likely to have a strong climatological and physiological similarity to each other. As observed in 9, the regionalisation method

that was most impacted by the exclusion of nested catchments was spatial proximity, followed by feature similarity. These495

results are in agreement with previous studies where the exclusion of nested catchments reduced the performance of regionali-

sation techniques (Merz and Blöschl, 2004; Oudin et al., 2008; Neri et al., 2020). Feature similarity presented a slight decrease

when the nested catchments were neglected, which can be attributed to the low degree of nestedness (i.e., the number of

catchments are nested in a larger one). As expected, parameter regression was affected the least by the exclusion of nested

catchments, as their removal had negligible impact on the non-linear relationships between the climatic and physiographic500

characteristics and the model parameters that were determined using all potential donor catchments. The reduction of regional-

isation performance when the nested catchments were removed was lower compared to the results reported in a case study over

Austria (Neri et al., 2020, ; their Figure 9a), which could be attributed to: i) the degree of nestedness of the selected catchments,
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Figure 10. Comparison of whether Preg is greater for KGE’ and AOF according to catchment. Catchments with similar results (difference

< 0.05) are plotted as empty circles.

as the unique geography of Chile limits, to some extent, the number of nested catchments within any larger catchment (only

10 of the 100 selected catchments contained more than 3 nested catchments); and ii) the percentage of total catchments that505

are nested (42% in this study, compared to 65% in the Austrian case study).
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Figure 11. Visualisation of three hydrological years (2000–2005) of two well performing catchments: a) Rio Claro en Rivadavia (snow-

dominated); and b) Rio Negro en Chahuilco (rain-dominated). The left panel shows the location of these catchments, the middle panel plots

its hydrographs, and the right panel shows the flow duration curves for the KGE’ and AOF calculated over 2000–2014, emphasising the low

flows.

29

https://doi.org/10.5194/hess-2021-156
Preprint. Discussion started: 23 April 2021
c© Author(s) 2021. CC BY 4.0 License.



6 Conclusion

Streamflow prediction in ungauged catchments is an essential task for water resources management, and uncertainties arising

from P products provide a challenge for the accurate prediction of daily Q. In this paper, we assessed the relative performance

of three common regionalisation techniques (spatial proximity, feature similarity, and parameter regression) over 100 near-510

natural catchments located in the topographically and climatologically diverse Chilean territory. Four P products (CR2MET,

RF-MEP, ERA5, and MSWEPv2.8) were used to force the semi-distributed TUWmodel model at the daily temporal scale, and

two objective functions (KGE’ and AOF) were used for calibration to assess: i) the impact of selecting different P forcings on

the relative performance of regionalisation techniques; and ii) possible connections between regionalisation performance and

hydrological regimes. Our key findings are as follows:515

1. For the selected P products, the one with the best (worst) performance during independent calibration and verification

did not necessarily provide the best (worst) results during regionalisation.

2. From the selected P products, the use of those that are corrected with daily gauge observations did not necessarily

translate into improved hydrological model performance. However, we expect that P products with lower performances

compared to the ones used in this study might benefit from such a correction.520

3. The spatial resolution of the P products did not noticeably affect model performance during both the calibration and

verification periods.

4. Feature similarity was the best performing regionalisation technique, regardless of the choice of gridded P product or

the calibration criteria we explored (KGE’ or AOF).

5. Spatial proximity was the second best performing regionalisation method. This can be explained by the fact that, in our525

study area, spatial proximity is a good proxy of climatic similarity for most neighbouring catchments.

6. Parameter regression provided the worst regionalisation performance, reinforcing the importance of transferring com-

plete parameter sets to ungauged catchments.

7. The performance of regionalisation techniques can depend on the hydrological regime. We obtained the best results

in pluvio-nival catchments with spatial proximity and feature similarity, while the same techniques provided the worst530

performance in rain-dominated catchments.

8. When using feature similarity, smaller uncertainty bands were obtained using the ensemble of parameter sets obtained

with AOF calibrations across the arid north, while the KGE’ provided a more reliable ensemble in more humid central-

southern Chile.

The results presented in this study are valid only for Chile and might not necessarily be valid for other regions. Despite this,535

they provide guidance for ongoing and future studies involving the application of gridded P products for regionalisation of
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hydrological model parameters in ungauged basins. The feature similarity procedure described here could be used to refine the

parameter transfer approach that has been preliminary adopted in national scale hydrological characterisations for Chile (e.g.,

Bambach et al., 2018; Lagos et al., 2019). Additionally, further analyses could cover i) the effects that objective functions

may have on the simulation of streamflow-derived hydrological signatures (e.g., Pool et al., 2017); ii) other states and fluxes540

derived from remote sensing data (e.g., Dembélé et al., 2020), iii) the influence of parameter equifinality (mainly for parameter

regression), which can be accounted for by simultaneously optimising the model parameters and the regression equations, as

described in Beck et al. (2020a); iv) the use of additional model structures, implemented through flexible modelling platforms

(e.g., Clark et al., 2008; Knoben et al., 2019); and v) assessments of the sensitivity of regionalisation results with respect to

modified climate scenarios.545
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Appendix A: Selection of catchment characteristics for feature similarity

To avoid including redundant information when quantifying catchment similarity, we examined the correlations between the

catchment characteristics described in Table 4. Figure A1 shows correlation matrices between catchment characteristics using

the Pearson correlation (a) and the Spearman rank (b) correlation coefficients. We only present correlations obtained with

CR2MET, since very similar results were obtained with the remaining P products. Because the mean and median elevation are550

highly correlated (values of 1.0 and 0.99 for the Pearson and Spearman correlation coefficients, respectively), we decided to

keep the median elevation under the assumption that it is more representative of topographic conditions, given the pronounced

elevation gradients in continental Chile. Similarly, mean annual PE was excluded because of high correlations between this

variable and mean annual T (0.87 and 0.86 for the Pearson and Spearman correlation coefficients, respectively): notwithstand-

ing that T was used to calculatePE. SDII was also excluded due to its high correlation to the rx5day (0.97 for both coefficients).555

Finally, we excluded the snow cover from CAMELS-CL, as we found it to be unreliable over the snow-dominated catchments

selected in our analysis.

Figure A1. Correlation matrices of the catchment characteristics described in Table 4 using CR2METv2 as the P product for a) the Pearson

correlation, to evaluate linear correlation, and b) the Spearman correlation to evaluate the monotonic correlation.
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