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Abstract.

Over the past years
:::::::
decades, novel parameter regionalisation techniques have been developed to predict streamflow in data-

scarce regions. In this paper, we examined how the choice of gridded daily precipitation (P ) products affects individual

catchment calibration and verification, as well as the relative performance of three well-known
::::::::
parameter

:
regionalisation

techniques (spatial proximity, feature similarity, and parameter regression) over 100 near-natural catchments with diverse5

hydrological regimes across Chile. We configured
::
set

::
up

:
and calibrated a conceptual semi-distributed HBV-like hydrologi-

cal model
:::::::::::
(TUWmodel) for each catchment, using four P products (ERA5,

::::::::
CR2MET,

::::::::
RF-MEP,

::::::
ERA5,

::::
and

:
MSWEPv2.8,

RF-MEPv2, and CR2MET), and two objective functions. The three regionalisation techniques were applied and evaluated for

each combination of P product and objective function, using
:::
.8).

:::
We

:::::::
assessed

:::
the

::::::
ability

::
of

:::::
these

:::::::::::::
regionalisation

:::::::::
techniques

::
to

::::::
transfer

::::
the

:::::::::
parameters

:::
of a

:::::::::::
rainfall-runoff

:::::::
model,

:::::::::::
implementing

::
a
:
leave-one-out cross-validation procedure

::
for

::::
each

:::
P10

::::::
product. Despite differences in the spatio-temporal distribution of Pquantities, all P ,

:::
all

:
products provided good perfor-

mance during calibration (median KGE’s > 0.77), two independent verification periods (median KGE’s > 0.70 and 0.61, for

near normal and dry conditions, respectively), and regionalisation results (with (median KGE’s for the best method ranging

from 0.56 to 0.63). Our results suggest that
:::
We

:::::
show

::::
how

:
model calibration is able to compensate, to some extent, differ-

ences between forcing datasets, and that the spatial resolution of P products does not substantially affect the regionalisation15

performance
:::::::
forcings

::
by

::::::::
adjusting

::::::
model

::::::::::
parameters,

:::
and

::::
thus

:::
the

:::::
water

:::::::
balance

::::::::::
components. Overall, feature similarity pro-

vided the best results, followed closely by spatial proximity, while parameter regression performed the worst , thus
:::::::
resulted

::
in

:::
the

:::::
worst

:::::::::::
performance, reinforcing the importance of transferring complete

:::::
model

:
parameter sets to ungauged catchments.

Our results suggest that: i) merging P products and ground-based measurements does not necessarily translate into an im-

proved hydrological modelling
:::::::::
hydrologic

::::::
model performance; ii)

:::
the

:::::
spatial

:::::::::
resolution

::
of

::
P

::::::::
products

::::
does

:::
not

:::::::::::
substantially20

:::::
affect

::
the

:::::::::::::
regionalisation

:::::::::::
performance;

:::
iii)

:
a P product that provides the best individual model performance during calibration

and verification does not necessarily provide
::::
yield

:
the best performance in terms of parameter regionalisation; and iii) the
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hydrological regime affects
::
iv)

:::
the

::::::
model

:::::::::
parameters

::::
and the performance of regionalisation methods , with rain-dominated

catchments with a snow component performing the best over Chile
:::
are

::::::
affected

:::
by

:::
the

::::::::::
hydrological

:::::::
regime,

::::
with

::
the

::::
best

::::::
results

for spatial proximity and feature similarity .
::::::
obtained

:::
for

:::::::::::::
rain-dominated

:::::::::
catchments

:::::
with

:
a
:::::
minor

::::::::
snowmelt

::::::::::
component.

:
25
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1 Introduction

Daily streamflow (Q) data are crucial for a wide range of scientific and operational water resources applications, such as climate

change impact assessment (e.g., Kling et al., 2012; Rojas et al., 2013; Mendoza et al., 2016; Galleguillos et al., 2021), Q and

flood forecasting (e.g., Clark and Hay, 2004; Addor et al., 2011; Coughlan de Perez et al., 2016; Sharma et al., 2018), and catch-30

ment classification (e.g., Wagener et al., 2007; Sawicz et al., 2011; Kuentz et al., 2017; Jehn et al., 2020), among others. Q is

typically estimated through the implementation of hydrological models, which rely on parameters to represent hypotheses about

the dominant processes in a catchment (Beven, 2006). In most cases, these parameters cannot be measured at the scales relevant

for model applications (Beven, 1989; Uhlenbrook et al., 1999; Beven, 2000; Wagener et al., 2001), and are therefore estimated

through model calibration. To this end, optimisation techniques are used to provide reliable estimates of model parameters, re-35

quiring the comparison of observedQ against simulatedQ data (Duan et al., 1992; Yapo et al., 1998; Vrugt et al., 2003, 2009; Pokhrel et al., 2012; Shafii and Tolson, 2015; Pool et al., 2017)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Yapo et al., 1998; Vrugt et al., 2003, 2009; Pokhrel et al., 2012; Shafii and Tolson, 2015; Pool et al., 2017). Because the vast

majority of streams worldwide are
:::::
remain

:
ungauged (Young, 2006; Beck et al., 2016), the scientific initiative Prediction in Un-

gauged Basins (PUB; see review by Hrachowitz et al., 2013) has fostered the development of novel regionalisation techniques

to predict Q in ungauged basins, a task that is far from complete (Yang et al., 2019; Dallery et al., 2020). The spatial transfer40

of hydrological model parameters from monitored to ungauged catchments, a process known as regionalisation (Oudin et al.,

2008), therefore remains an active research topic (see review by Guo et al., 2021).

In the hydrological modelling literature, there are three main regionalisation approaches (Oudin et al., 2008; Parajka et al.,

2013): i) spatial proximity; ii) feature similarity; and iii) parameter regression. Spatial proximity assumes that climatic and

physiographic characteristics are relatively homogeneous within a region and, therefore, neighbouring catchments exhibit sim-45

ilar hydrological behaviour (Vandewiele and Elias, 1995; Oudin et al., 2008). Although this method requires a dense network

of gauging stations to perform well, it may lead to inadequate representations of rainfall-runoff behaviour over areas with het-

erogeneous climate and geomorphological characteristics (Beck et al., 2016). Feature similarity techniques transfer calibrated

model parameter sets from donor to ungauged catchments based on geomorphological and climatic similarities (McIntyre et al.,

2005; Beck et al., 2016; Carrillo et al., 2011). Finally, parameter regression methods develop statistical relationships between50

calibrated model parameters and catchment characteristics, which are subsequently used to estimate parameter values for un-

gauged catchments (Fernandez et al., 2000; Carrillo et al., 2011). Recently, Samaniego et al. (2010) and Beck et al. (2020a)

applied multiscale parameter regionalisation techniques that link model parameters to predictors related to geomorphological
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and climatological characteristics by optimising coefficients in transfer equations which helps to account for problems re-

lated with
:
to

:
equifinality. The performances of these three regionalisation techniques vary due to many factors, including the55

selected sample of catchments, the presence of nested catchments, hydroclimatic conditions, physiographic catchment prop-

erties, model configuration (including meteorological forcings, model structure,
:
and simulation setup), and evaluation criteria

(Parajka et al., 2013; Guo et al., 2021; Neri et al., 2020)
::::::::::::::::::::::::::::::::::::::::::::
(Parajka et al., 2013; Neri et al., 2020; Guo et al., 2021).

Most regionalisation studies have been conducted over regions with a dense network of meteorological stations (see Table

1), including Europe (e.g., McIntyre et al., 2005; Parajka et al., 2005; Oudin et al., 2008; Singh et al., 2012; Zelelew and60

Alfredsen, 2014; Garambois et al., 2015; Rakovec et al., 2016; Neri et al., 2020), the conterminous United States (Athira et al.,

2016; Saadi et al., 2019), India (Swain and Patra, 2017), and China (Bao et al., 2012). However, in developing countries, P

has traditionally been estimated through interpolation within sparse rain gauge networks, which is subject to large uncertainties

(Villarini and Krajewski, 2008; Hofstra et al., 2010; Woldemeskel et al., 2013; Adhikary et al., 2015; Xavier et al., 2016)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hofstra et al., 2010; Woldemeskel et al., 2013; Adhikary et al., 2015; Xavier et al., 2016)

, hindering an accurate spatio-temporal representation of P patterns. Over the last decades, the emergence of near-global and65

high-resolution gridded P products has introduced new possibilities for hydrological modelling in data-scarce regions (Mag-

gioni and Massari, 2018; Sun et al., 2018), despite these products still being affected by systematic, random, and detection

errors (Ren and Li, 2007; Sevruk et al., 2009; Zambrano-Bigiarini et al., 2017; Baez-Villanueva et al., 2018), which are more

pronounced over mountainous regions (Maggioni and Massari, 2018; Beck et al., 2019). Although hydrological model calibra-

tion can partly compensate for errors in the representation of P (Elsner et al., 2014; Maggioni and Massari, 2018), this may70

lead to unrealistic model behaviour (Nikolopoulos et al., 2013; Xue et al., 2013; Ciabatta et al., 2016), thus affecting the quality

of parameter regionalisation results.

To date, few regionalisation studies have used gridded P products at the daily time scale. Beck et al. (2016) used the Climate

Prediction Center unified gauge-based P product (CPC) to provide spatially distributed HBV parameters at the global scale.

They selected CPC because it yielded better performance than ERA-Interim during calibration. Rakovec et al. (2016) used the75

European daily high-resolution gridded dataset (E-OBSv8.0) to force a mesoscale hydrological model over 400 catchments in

Europe, providing regionalised model parameters through a multivariate parameter estimation technique. More recently, Beck

et al. (2020a) combined MSWEPv2.2 with a novel multiscale parameter regionalisation approach to provide global gridded

parameter estimates using daily Q observations from 4,229 catchments. Although these studies have successfully used gridded

P products for parameter regionalisation, they only selected one product, and thus the effects that the choice of a P dataset can80

have on regionalisation results remains unknown. This study aims to answer the following questions:

i) to what extent does the choice of gridded P forcing used in calibration affect the relative performance of regionalisation

techniques?

ii) how does this relative performance vary across catchments with different hydrological regimes?
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2 Study area and selection of catchments85

Our study domain is continental Chile (Figure 1), which is bounded to the west by the Pacific Ocean, to the north by Peru, and to

the east by Bolivia and Argentina. The territory spans 4300 km of latitudinal extension (17.5◦S–56.0◦S) and on average 180 km

of longitudinal extension (76.0◦W–66.0◦W), with elevation (Jarvis et al., 2008) ranging from 0 to 6892 m a.s.l. in the Andean

:::::
Andes

:
Mountains. Figure 1 shows the elevation, land cover (Zhao et al., 2016), hydrological regime (classified through visual

screening of the mean monthly Q), and the Köppen-Geiger climate classification (Beck et al., 2018),
:::
and

:::::::::::
hydrological

:::::::
regimes90

::
for

:::
the

::::
five

:::::
major

::::::::::::
macroclimatic

:::::
zones

:::::::::
presented

::
in

:::::::::::::::::::::::::::
Zambrano-Bigiarini et al. (2017). A large variety of climates are present

across the country,
::::
with

:::
the

:::::::::::
macroclimatic

:::::
zones

:
transitioning from the (hyper)arid and semi-arid climates in the north

:::
Far

:::::
North

:::::::::::::
(17.50–26.00◦S)

::::
and

::::
Near

:::::
North

::::::::::::::
(26.00–32.18◦S), through temperate climates in central Chile

::::::
Central

::::
Chile

::::::::::::::
(32.18–36.40◦S),

to more humid and polar climates in the south
:::::
South

::::::::::::::
(36.40–43.70◦S)

:::
and

:::
Far

:::::
South

::::::::::::::
(43.70–56.00◦S). P increases with altitude

and latitude (in the southern direction) ranging from almost zero in the Atacama Desert to∼6000 mm yr−1 in the surroundings95

of Puerto Cardenas (∼43.2◦S). Similar to the P patterns,
::::
both

:
the mean annual Q and rainfall-runoff ratio tend to increase

from north to south (Alvarez-Garreton et al., 2018; Vásquez et al., 2021).

The El Niño-Southern Oscillation (ENSO) has a large impact on winter P , with negative anomalies during La Niña and posi-

tive anomalies during El Niño events (Verbist et al., 2010; Robertson et al., 2014). Although neutral ENSO conditions have pre-

vailed since 2011 (except for a strong El Niño event during 2015), an uninterrupted sequence of dry years with increased tem-100

peratures has been observed from 2010–2018, with annual P deficits of about 25–45% across Chile. This long-term deficit in P

volume, also known as the Chilean megadrought (Garreaud et al., 2017; Boisier et al., 2016)
::::::::::::::::::::::::::::::::::
(Boisier et al., 2016; Garreaud et al., 2017)

, has reduced snow cover, river flows, reservoir storage, and groundwater levels across Chile (Garreaud et al., 2017, 2020).

Hydroclimatic indices and characteristics for 516 catchments in continental Chile were acquired from the Catchment At-

tributes and MEteorology for Large-sample Studies dataset in Chile (CAMELS-CL; Alvarez-Garreton et al., 2018). The dataset105

includes location, topography, geology, soil types, land cover, hydrological signatures,
:::
and

:
human intervention degree, among

others.Q data were obtained from the Center for Climate and Resilience Research (CR2; http://www.cr2.cl/datos-de-caudales/
:
,

:::
last

:::::::
accessed

:::::::
October

:::::
2020) for 1930–2018 because Q data from CAMELS-CL ended in 2016 at the time of conducting this

study. We selected the near-natural catchments from the CAMELS-CL database that fulfilled the following criteria:

1. Less than 25% of missing values in the daily Q time series for 1990–2018 (may be non-consecutive).110

2. Absence of large dams (big_dam = 0).

3. Less than 10% of the Q allocated to consumptive uses (interv_degree < 0.1).

4. Not dominated by glaciers (lc_glacier < 5%).

5. Less than 5% of the area defined as urban (imp_frac < 5%).

6. Absence of substantial irrigation abstractions (crop_frac < 20%).115
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Figure 1. Study area: a) elevation (SRTMv4.1; Jarvis et al., 2008); b) land cover classification (Zhao et al., 2016); c) Köppen-Geiger climate

classification (Beck et al., 2018); and d) hydrological regimes of the selected catchments
::::
over

::
the

:::
five

:::::
major

:::::::::::
macroclimatic

::::
zones

::::::::
according

:
to
::::::::::::::::::::::::
Zambrano-Bigiarini et al. (2017).

7. Less than 20% of the area covered by forest plantations (fp_frac < 20%).

8. No signs of artificial regulation in the hydrograph (10 excluded in total).

The drainage area of the selected catchments (100) ranges from 35 to 11,137 km2, with a median value of 645 km2.

The selected catchments contain 42 nested catchments (i.e., catchments that are contained in a larger catchment). Through

visual screening, these selected catchments were classified by hydrological regimes as
:::
We

:::::::
adjusted

:::
the

:::::::::::
classification

::
of

:::::
these120

:::::::::
catchments

::::::::
according

::
to

:::::::::::
hydrological

::::::
regime,

:::::::
building

:::
on

::
the

::::::::::::
classifications

::::::::
presented

::
in

::::::
several

:::::::
national

:::
and

:::::::
regional

::::::::
technical

::::::
reports

:::::::::::::::::::::::::::::::::::::::::::::::
(e.g., DGA, 1998, 1999, 2004a, b, c, 2006, 2016a, b, 2018)

:
,
:::
by

::::::
visually

:::::::::
analysing

:::
the

::::::::::
contribution

::
of

:::::
solid

:::
and

::::::
liquid

::
P

::
to

:::
the

::::
mean

::::::::
monthly

::
Q

::::::
values.

:::::
These

:::::::
regimes

::::
were

::::::::
classified

:::
as: i) snow-dominated, ii) nivo-pluvial, i.e., snow-dominated

with a lower rain component, iii) pluvio-nival, i.e, rain-dominated with a lower snow component, and iv) rain-dominated, as

shown in Figure 1d.
::::::
Figure

:::
A1

:::::
shows

:::::::::
conceptual

:::::::::::
hydrographs

:::
for

::::
each

::
of

::::
these

:::::::
regimes

::::
and

::
is

::::::::
presented

::
in

::::::::
Appendix

:::
A.125
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3 Methods

3.1 Meteorological forcings

3.1.1 Precipitation products

Four P products were used to investigate how the choice of P forcing affects the performance of regionalisation techniques.

The P products are presented in Table 2, and were selected because previous studies have reported good agreement with
:::::
when130

::::::::
evaluated

::::::
against

:
in situ measurements over continental Chile (Zambrano-Bigiarini et al., 2017; Boisier et al., 2018; Baez-

Villanueva et al., 2018, 2020). We included the coarse-resolution ERA5 product because i) Chile is dominated by large-scale,

frontal systems (Zhang and Wang, 2021) and therefore, coarse-resolution products may perform well over small catchments;

ii) reanalysis products tend perform well at high latitudes (Beck et al., 2017a); iii) we consider that its inclusion represents

a realistic situation that may exist in many practical applications (i.e., where a catchment size is small relative to P product135

resolution).

Table 2. Gridded P products used in this study.

P product Period Spatial and temporal resolution References

CR2MET 1979–2018 0.05◦; daily Boisier et al. (2018)

RF-MEP 1990–2018
::::::::
1983–2018 0.05◦; daily Baez-Villanueva et al. (2020)

ERA5 1950–present ∼0.28◦; hourly Hersbach et al. (2020)

MSWEPv2.8 1979–present 0.10◦; 3-hourly Beck et al. (2017b, 2019)

The Center for Climate and Resilience Research Meteorological dataset version 2.0 (CR2MET; Boisier et al., 2018) provides

daily gridded P estimates over continental Chile at a 5 km spatial resolution for 1979–2019
:::::::::
1979–2018. These estimates are

produced by combining rain gauge observations with reanalysis data from ERA5(Boisier et al., 2018). ,
:::::
while

::::::::
CR2MET

:::::::
version

:::
1.0

::
of

:::
this

:::::::
product

::::
was

::::::::
produced

:::::
using

:::::::::::
ERA-Interim

::::
data

:::::::::::::::::
(Boisier et al., 2018).

:::
As

:::::::::
CR2MET

:::
was

:::::::::
developed

::::::::::
specifically

:::
for140

::::
Chile

::::
and

:::
uses

:::
all

:::
the

::::::
Chilean

::::
rain

::::::
gauges

::::
(874

:::::
across

::::::
Chile;

:::
see

:::::
Figure

:::
S1

::
in

:::
the

::::::::::
supplement),

::
it

::
is

:::::::::
considered

::
as

:::
the

:::::::::
‘reference’

::
P

::::::
product

::
of

::::::
Chile.

The random forest merging technique
::::::::
procedure (RF-MEP; Baez-Villanueva et al., 2020) combines gridded P products,

ground-based measurements, and other spatial covariates to generate P estimates. We applied this methodology to generate

a spatially distributed, daily P product for continental Chile, using daily records from 331
:::
334

:
rain gauges (obtained from145

CR2; http://www.cr2.cl/datos-de-precipitacion/), gridded P data from the ERA5 reanalysis (Hersbach et al., 2020) aggregated

to the Chilean time, and elevation (SRTMv4.1; Jarvis et al., 2008) as covariates. This RF-MEP version 2 product (hereafter,

RF-MEP) was generated for 1990–2018 with a spatial resolution of 0.05◦ using the RFmerge R package (Zambrano-Bigiarini

et al., 2020).
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ERA5 (Hersbach et al., 2020) is a reanalysis product that provides hourly P estimates (as well as other variables) from150

1950–present at a spatial resolution of around 30 km (∼0.28◦). There are important improvements in its P estimates compared

to its predecessor ERA-Interim, such as improved i) representation of mixed-phase clouds,
:
;
:
ii) prognostics variables for

rain and snow,
:
;
:
iii) parametrisation of microphysics,

:
; and iv) representation of tropical variability (Hersbach et al., 2020).

::::::::
Although

:::::
ERA5

::::
also

::::::::::
assimilates

:::::
NCEP

:::::
Stage

:::
IV

::
P
:::::::::

estimates
::::
over

:::
the

:::::::::::
conterminous

::::::
USA,

:::::
which

::::::::
combine

:::::::::
NEXRAD

::::
data

::::
with

:::::
in-situ

:::::::::::::
measurements,

::
it

::::
does

:::
not

::::::::::
incorporate

::::::::::
information

::::
from

::::
any

:::::::::::
ground-based

:::
P

::::::
stations

::::
over

::::::
Chile. Hourly ERA5155

estimates were aggregated into daily P values taking into account the reporting times of the Chilean rain gauges (08:00–07:59

local time, which represents 11:00–10:59 UTC).
::::::::
Although

:::
this

:::::::
product

:::
has

::
a

::::::::
relatively

:::
low

::::::
spatial

::::::::
resolution

:::::::::
compared

::
to

:::
the

::::::::
remaining

::::::::
products,

:::
we

:::::::
included

::
it

:::::::
because

::
i)

::::
Chile

::
is
:::::::::
dominated

:::
by

:::::::::
large-scale,

::::::
frontal

:::::::
systems

:::::::::::::::::::::
(Zhang and Wang, 2021)

:::
and

::::::::
therefore,

::::::::::::::
coarse-resolution

::::::::
products

::::
may

:::::::
perform

::::
well

::::
even

::::
over

:::::
small

::::::::::
catchments;

:::
ii)

:::::::::
reanalysis

:::::::
products

::::
tend

:::
to

:::::::
perform

:::
well

::
at
:::::
high

:::::::
latitudes

::::::::::::::::
(Beck et al., 2017a)

:
;
:::
and

:::
iii)

:::
we

::::::::
consider

:::
that

:::
its

::::::::
inclusion

::::::::
represents

::
a

::::::
realistic

::::::::
situation

:::
that

::::
may

:::::
exist160

::
in

::::
many

::::::::
practical

::::::::::
applications

::::
(i.e.,

::::::
where

:
a
:::::::::
catchment

:::
size

::
is

:::::
small

::::::
relative

::
to
::
P
:::::::
product

::::::::::
resolution).

The Multi-Source Weighted-Ensemble Precipitation (MSWEPv2.8; Beck et al., 2017b, 2019) is a 3-hourly P product with

a spatial resolution of 0.10◦, which takes advantage of the complementary strengths of satellite, reanalysis and ground-based

data. MSWEPv2.8 applies daily and monthly corrections to its estimates using data from around 77,000 rain gauge stations

globally and accounts
::::
(628

::
of

::::
these

:::
are

::::
over

::::::
Chile,

:::
see

:::::
Figure

::::
S1)

:::::::::
accounting for their local reporting times(Beck et al., 2019)165

. The 3-hourly MSWEPv2.8 estimates were also aggregated into daily P to account for the difference in the reporting times.

Figure ?? shows the
::
2a

::::::
shows

:::
the

::::::
spatial

::::::::::
distribution

::
of

:
mean annual P patterns for all products over 1990–2018

:
,
:::::
while

:::::
Figure

:::
2b

::::::
shows

:::::::
boxplots

:::
of

:::
the

:::::
mean

:::::::
monthly

:::
P

::::::::
averaged

::::
over

:::::::::
catchments

:::::::
located

::::::
within

::::
each

::::::::::::
macroclimatic

:::::
zone. All

P products show relatively similar patterns of spatial variation
::::::::
variability across continental Chile; however, there are some

marked differences in the
:::::::::
substantial

:::::::::
differences

::
in

::::
their

:
total P amounts. In general, P increases from the (hyper-arid) northern170

Chile to the south, as well as
:::
Far

:::::
North

:::
to

:::
the

::::::
South,

:::
and

::::::::
decreases

:::::
again

:::
in

:::
the

:::
Far

::::::
South.

::
P

::::
also

::::::::
increases from the west

coast into
::::::
towards

:
the Andes Mountains. Over the arid region (17–30◦S), ERA5

::::::
provides

::::::
higher

:::
P

:::::::
amounts

::::
over

:::
all

::::
five

:::::::::::
macroclimatic

::::::
zones,

:::::
while

::::::::
RF-MEP

:::::::::
generally

:::::
yields

:::
the

::::::
lowest

::::::
annual

:::
P

::::::
values.

:::::
Over

:::
the

:::
Far

::::::
North,

:::
all

::::::::
products

:::::
show

:
a
:::::::
marked

::::
rainy

:::::::
season

::::::
during

:::::::::::::::
December–March

:::
due

:::
to

:::::::
summer

:::::::::
convective

:::
P ,

::::::
which

:::::
differs

:::::
from

:::
the

:::::::
marked

::::::::::
seasonality

::::::
evident

::::
over

:::
the

::::
Near

::::::
North,

::::::
Central

::::::
Chile,

:::
and

:::::
South

:::::::
regions.

:::::
Over

:::
the

:::
Far

::::::
North,

:::::
ERA5

:
presents a

:::
the

::::::
highest

:
mean annual175

P of 420 mm
::::
(157

::::
mm), which is four times the value of

:::::
almost

:::::
twice

:::
the

:::::::
amount

:::::::
provided

:::
by

:
the second-highest product

:::::::::::
MSWEPv2.8

:::
(83

:::::
mm),

:::::::
followed

:::
by CR2MET (106

::
63 mm)

:
,
:::::
while

:::::::
RF-MEP

::::
has

::
the

::::::
lowest

:::::
mean

::::::
annual

::
P

:::
(40

:::::
mm).

::::::::
Although

:::::
ERA5

:::::::
presents

:::
the

:::::::
highest

::::
mean

::::::
annual

::
P
::::::

values
::::
over

:::
the

:::::
Near

:::::
North,

:::::::
Central

:::::
Chile,

::::
and

:::::
South

:::::::
regions

::::
(208

::::
mm,

::::
902

::::
mm,

:::
and

:::::
2172

::::
mm,

:::::::::::
respectively),

:::::
when

::::::::::
considering

::::
only

::::
our

::::
case

:::::
study

:::::::::
catchments

:::::::
(Figure

:::
2b),

:::::::::
CR2MET

:::
has

:::
the

:::::::
highest

:::::
mean

:::::::
monthly

:::::
values

:::::
over

:::
the

::::::
Central

::::::
Chile

:::
and

::::::
South

::::::
regions

::::::
during

::::::::::
April–June. Over this region, RF-MEP and MSWEPv2.8180

present
::::
have

:
similar mean annual P values (61 and 66 mm

:::
over

:::::::
Central

:::::
Chile

::::
(670

::::
mm

:::
for

::::
both

:::::::::
products)

:::
and

:::
the

::::::
South

:::::
(1670

:::
mm

::::
and

::::
1735

:::
mm, respectively) . For central Chile (30–40◦S), CR2MET has the

:::::::
regions,

:::::::
although

::::::::
RF-MEP

::::::::::
consistently

:::::
shows

:::
the

::::::
largest

:::::::
monthly

::
P

:::::::
amounts

::
of

:::
the

:::
two

::::::::
products

:::
over

:::
the

::::::::::::
corresponding

::::::::::
catchments.

::::::
ERA5

:::::::
provides

:::
the highest mean

annual P (889
:::::
values

::::
over

:::
the

:::
Far

:::::
South

::::::
(3,018 mm), followed by ERA5

::::::::
CR2MET

:::::
(1888

:::::
mm),

:::::::::::
MSWEPv2.8

::::::
(1714

::::
mm),

:
and
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RF-MEP (646 and 599 mm
:::
815

:::::
mm).

:::::::
Finally,

::::
each

:::::::
product

::::::
shows

:::
low

::::::::::
seasonality

::::
over

:::
the

:::
Far

::::::
South.

:::::
Here,

::::::
ERA5

:::::::
presents185

:::::
higher

:::::::
monthly

::
P

::::::
values

:::::::::
throughout

:::
the

:::::
year,

::::
with

:::
the

:::::
largest

:::::::::
difference

::::
from

:::
the

:::::
other

:::::::
products

:::::::
between

:::::::::::::
January–March

::::
and

::::::::::::::::::
September–December.

:

::
To

::::
gain

::
a
::::::
deeper

::::::::::::
understanding

::
of

:::
the

::::::::::
differences

:::::::
between

:::
the

:::::
four

::
P

::::::::
products,

:::
we

::::::::
examined

::::
the

:::::
spatial

::::::::::
distribution

:::
of

::::::
median

::::::
annual

:::::
values

:::
of

:::
four

::::::::
Climdex

::::::
Indices

:::::::::::::::
(Karl et al., 1999)

:::
for

:::::::::
1990–2018

:::::::
(Figure

::
3).

:::::
First,

::
to

:::::::
account

:::
for

::::
days

:::::::
without

:::
rain

:::
(P

::
<

:
1
:::::
mm),

:::
we

::::
used

:::
the

::::::::::
consecutive

:::
dry

::::
days

:::::
index

::::::
(CDD;

::::::
Figure

::::
3a),

:::::
which

:::::::
retrieves

:::
the

:::::::::
maximum

:::
dry

::::
spell

::::::
length.

::
It190

:
is
:::::::
evident

:::
that

::::::::
CR2MET

::::::
yields

:::::
longer

:::
dry

::::::
spells,

::::::
mainly

:::::
across

:::
the

:::
Far

::::::
North

:::
and

::::
Near

:::::
North

:::::::
regions,

:::::
while

::::::
ERA5

:::
has

::::::
shorter

:::
dry

:::::
spells

::::
over

::::
these

:::::::
regions,

::::::::
especially

::::
over

:::
the

::::::
Andes

:::::::::
Mountains.

:::::::::
CR2MET, respectively), while

:::::::
RF-MEP,

::::
and MSWEPv2.8

has the lowest mean value (446 mm). Finally, for latitudes lower than 40◦S,
::::
have

::::::
similar

::::::
spatial

:::::::
patterns

::::
over

:::
the

::::::
Central

:::::
Chile

:::
and

:::::
South

:::::::
regions,

:::::
while

::::::
ERA5

:::
has

::::
less

::::::::::
consecutive

:::
dry

::::
days

::::
over

::::
the

:::::
Andes

::::::::::
Mountains.

::::::::
Similarly,

::::::
ERA5

::::::::
provides

::::::
shorter

:::
dry

:::::
spells

::::
over

:::
the

:::
Far

::::::
South,

:::::
while

:
CR2MET has the highest mean annual P (1,397 mm) , followed by ERA5 (1,313 mm)195

,
:::
and

::::::::
RF-MEP

::::::
present

::::::
similar

::::::::
patterns.

:::::
These

::::::
results

:::
are

:::::::::
consistent

::::
with

:::
the

::::::::::
consecutive

:::
wet

:::::
days

:::::
index

::::::
(CWD;

::::::
Figure

::::
3b),

:::::
which

:::::::
assesses

:::
the

:::::::::
frequency

:::
and

::::::::::::
intermittency

::
of

:::
P .

::::::
ERA5

:::::::
provides

:::
the

:::::::
highest

:::::
CWD

::::::
values

::::
over

:::
the

:::::
driest

:::::::
regions

::::
(Far

:::::
North

:::
and

:::::
Near

::::::
North),

::::
with

::::::::
medians

::::::
ranging

:::::
from

:
0
:::

to
::
25

:::::
days,

::::::::
followed

::
by

:
MSWEPv2.8 (1, 034 mm) and

:
0
:::

to
::
15

::::::
days).

:::::
ERA5

::::
also

:::::
shows

::::::
higher

:::::
CWD

::::::
values

::::
over

::::::::::::
high-elevation

:::::
areas

::
in

::::::
Central

::::::
Chile,

:::::
while

:::
the

::::::::
remaining

::::::::
products

:::::
show

::::::
similar

:::::
spatial

:::::::
patterns

::
to

::::
each

:::::
other.

::::
The

::::
four

:::::::
products

:::::
show

:::::::::
agreement

::
in

:::
the

:::::
CWD

::::
over

:::
the

:::::
South

::::::
region,

::::
with

::::::
values

::::::
ranging

:::::
from200

:
5
::
to

:::
25

::::
days.

:::::::
Finally,

:
RF-MEP (727 mm)

:::::
shows

:::
the

:::::
lowest

::::::::::
consecutive

:::::
days

::::
with

::
P

::
in

:::
the

:::
Far

::::::
South,

::::::::
followed

::
by

:::::::::
CR2MET

:::
and

::::::::::::
MSWEPv2.8,

::::
while

::::::
ERA5

:::::
shows

:::::::::::
substantially

::::::
higher

:::::
CWD

:::::
values

::
at
::::::::
latitudes

::::::
greater

::::
than

::::
47◦S.

::
To

::::::::::
characterise

::::
high

::
P
::::::::::
intensities,

::
we

:::::
used

:::
the

::::::
Rx5day

:::::::
(Figure

:::
3c)

:::
and

:::::::::
R95pTOT

::::::
(Figure

::::
3d)

::::::
indices,

::::::
which

::::::::
represent

:::
the

::::::::
maximum

::
P

:::::::::::
accumulated

::::
over

::::
five

::::::::::
consecutive

::::
days,

::::
and

:::
the

::::
total

::
P

::::::
above

:::
the

::::
95th

::::::::
percentile

:::
of

:::
the

::::
daily

::
P
:::

for
::::

wet
:::::
days,

::::::::::
respectively.

::::::
Figure

::
3c

::::::
shows

:::
that

::::::
ERA5

:::
and

:::::::::
CR2MET

::::::::
generally

::::
yield

:::
the

:::::::
highest

::::::
Rx5day

::::::
values,

::::::::
followed

:::
by

:::::::::::
MSWEPv2.8205

:::
and

::::::::
RF-MEP.

::
A

::::::
similar

:::::
spatial

:::::::::
variability

::
is

:::::::
obtained

::::
with

:::::::::
R95pTOT

::::::
(Figure

::::
3d),

::::::::
indicating

::::
that

::::
there

::
is

:
a
:::::::
greater

::::::::::
contribution

::
of

::
P

::::
from

:::::::
extreme

:::::
events

::
in

::::::
ERA5

::::
over

::::::::::::
high-elevation

:::::
areas.

:::::
These

::::::
spatial

::::::
patterns

:::
are

:::::::::
replicated

::
to

::::
some

::::::
extent

::
by

:::::::::
CR2MET,

:::::
which

:::::::
provides

:::::::::
R95pTOT

:::::
values

:::
up

::
to

::::
1200

::::
mm

::::
over

:::
the

::::::
Andes

:::::::::
Mountains

::
in

::::::
Central

:::::
Chile.

:

3.1.2 Air temperature and potential evaporation

Maximum and minimum daily air temperature (T ) at a spatial resolution of 0.05◦ were taken from CR2MET. T is estimated210

using multivariate regression from the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature

(LST) and ERA5 estimates as covariates (Alvarez-Garreton et al., 2018; Boisier et al., 2018). The Hargreaves-Samani equation

(Hargreaves and Samani, 1985) was used to obtain daily potential evaporation (PE) from CR2MET maximum and minimum

daily T at the same spatial resolution (0.05◦).

3.2 Hydrological model215

The TUWmodel (Viglione and Parajka, 2020) is a conceptual hydrological model that follows the structure of the Hydrologiska

Byråns Vattenbalansavdelning (HBV) model (Bergström, 1976; Bergström, 1995; Lindström, 1997). The model simulates the
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Figure 2. Mean
:::::::::
Comparison

::
of

::
P
:::::::
products

::::
over

::::::::
1990–2018

::::
(full

::::
time

::::::
period):

:::
a)

::::
mean

:
annual P for each product over 1990–2018, re-

sampled to a 0.05◦ spatial resolution using the nearest neighbour method.
:::
The

::::
dark

:::
red

::::::::
horizontal

::::
lines

:::::::
represent

::
the

:::::
limits

::
of

::::
each

:::::
major

::::::::::
macroclimatic

:::::
zone;

:::
and

::
b)

::::
mean

::::::
monthly

::
P
:::::::
averaged

::::
over

::::
each

:::::::
catchment

::::::
located

:::::
within

::::
each

:::::::::::
macroclimatic

:::
zone

::::
(see

:::::
Figure

:::
1d).

catchment-scale water balance at daily time steps, including processes related to snow accumulation and melting, change of

moisture in the soil profile, and surface flow in the drainage network. The TUWmodel was validated over 320 catchments in

Austria (Parajka et al., 2007) and has subsequently been used in numerous studies (e.g., Ceola et al., 2015; Parajka et al., 2016; Sleziak et al., 2016; Zessner et al., 2017; Melsen et al., 2018; Nijzink et al., 2018; Sleziak et al., 2020; Széles et al., 2020)220

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Parajka et al., 2016; Zessner et al., 2017; Melsen et al., 2018; Sleziak et al., 2020). We selected a HBV-like conceptual

model because it has shown good results in i) many regionalisation studies (e.g., Parajka et al., 2005; Jin et al., 2009; Singh et al., 2012; Wallner et al., 2013; Zelelew and Alfredsen, 2014; Beck et al., 2016; Neri et al., 2020)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Parajka et al., 2005; Singh et al., 2012; Beck et al., 2016; Neri et al., 2020); and ii) catchments with diverse hydroclimatic

and geomorphological characteristics (Merz and Blöschl, 2004; Driessen et al., 2010; Samuel et al., 2011; Vetter et al., 2015; Ding et al., 2016; Unduche et al., 2018; Huang et al., 2019)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Vetter et al., 2015; Ding et al., 2016; Unduche et al., 2018; Huang et al., 2019).225

The TUWmodel requires as inputs daily time series of P , T , and PE. The parameters used by the TUWmodel to represent

the hydrological processes are listed in Table 3, including the ranges selected for model calibration, that
:::::
which

:
were adopted

from previous studies (Parajka et al., 2007; Ceola et al., 2015) , which
:::
that calibrated the TUWmodel over a large number

of mountainous catchments with snow influence. We ran the TUWmodel with a semi-distributed configuration for the period

1990–2018 based on meteorological and Q data availability. For each catchment, the number of EZ equal-area elevation230

bands was defined as EZ = (Hmax−Hmin)/200, where H represents elevation. In cases where EZ > 10, EZ was set to 10

to reduce the computational demand of the simulations. Furthermore, in catchments with Hmin below 900 m a.s.l., the upper

bound (Hmax) of the firstEZ band was set to 900 m , under the assumption that there is no snow influence below this elevation

for the particular case of continental Chile.

10



Figure 3.
::::::
Median

:::::
annual

:::::
values

::
of

:::
four

:::::::
Climdex

:::::
indices

::::
over

::::::::
1990–2018

::::::::::
(full-period):

::
a)

::::::
number

::
of

:::::::::
consecutive

::
dry

::::
days

::::::
(CDD);

::
b)

::::::
number

:
of
:::::::::

consecutive
:::
wet

::::
days

:::::::
(CWD);

::
c)

:::::::
maximum

::
P
::::
over

:::
five

:::::::::
consecutive

::::
days

::::::::
(RX5day);

:::
and

::
d)

:::::
annual

::
P
:::
that

::
is
:::::
above

:::
the

:::
95th

::::::::
percentile

::
of

:
P
::::::::::

accumulated
:::
for

:::::
events

:::
that

::
are

:::::
above

:::
the

:::
95th

::::::::
percentile

::
of

:::
the

::::
daily

::
P

::
for

:::
wet

::::
days

:::::::::
(R95pTOT).

::::
The

:::
dark

:::
red

::::::::
horizontal

::::
lines

:::::::
represent

::
the

:::::
limits

::
of

:::
each

:::::::::::
macroclimatic

::::
zone.

3.3 Individual
:::::::::::
Independent catchment calibration and verification235

The simulation period used for this study was 1990–2018, using
:
.
:::
For

:::::::::
calibration

:::::::::
purposes,

:::
we

::::
used

:
the first ten years as

a
::::::::::
conservative warm-up period

::
to

:::::::
initialise

:::
the

::::::
model

::::::
stores,

::
as

::
in
::::::::::::::::

Beck et al. (2020a). The calibration period (2000–2014)
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Table 3. Summary of the TUWmodel parameters considered for calibration, following the conceptualisation presented in Széles et al. (2020).

N◦ Parameter ID Description Units Process Range

1 SCF Snow correction factor – Snow 0.9 – 1.5

2 DDF Degree-day factor mm ◦C day−1 Snow 0.0 – 5.0

3 Twb Wet bulb temperature ◦C Snow -3.0 – 3.0

4 Tm Threshold temperature above which melt starts ◦C Snow -2.0 – 2.0

5 LPrat Parameter related to the limit for potential evaporation – Evaporation 0.0 – 1.0

6 FC Field capacity mm Infiltration 0.0 – 600

7 BETA
:::
Beta

:
Non-linear parameter for runoff production – Infiltration 0.0 – 20

8 cperc Constant percolation rate mm day−1 Infiltration 0.0 – 8.0

9 k0 Storage coefficient for very fast response day Runoff 0.0 – 2.0

10 k1 Storage coefficient for fast response day Runoff 2.0 – 30

11 k2 Storage coefficient for slow response day Runoff 30 – 250

12 lsuz Threshold storage state mm Runoff 1.0 – 100

13 bmax Maximum base at low flows day Runoff 0.0 – 30

14 croute Free scaling parameter day2 mm−1 Runoff 0.0 – 50

includes near normal conditions and the beginning of the Chilean megadrought. The first evaluation period (hereafter, Ver-

ification 1, 1990–1999) represents near-normal/wet hydroclimatic conditions, while the second evaluation period (hereafter,

Verification 2, 2015–2018) spans the second half of the Chilean megadrought, and was used to test the ability of the hydrolog-240

ical simulations to represent dry conditions.

To examine how the goodness-of-fit function used for calibration affected the regionalisation results, we considered two

different objective functions to calibrate the TUWmodel. The first function was
::
To

:::::::
initialise

::::::
model

:::::
stores

:::
for the

:::::::::
Verification

::
1

::::::
period,

::
we

:::::
used

::
an

::::::
8-year

:::::
warm

::
up

::::::
period

:::
due

::
to

::
P
:::::::
product

::::::::::
availability.

:::
We

::::::::
replicated

:::::::
Figures

:
2
::::
and

:
3
:::
for

:::::
these

::::
three

:::::::
periods

::
to

::::::
analyse

:::
the

:::::::::
differences

:::::::
between

:::
the

:::::::
selected

::
P
::::::::
products

::::
(see

::
the

:::::::::::
supplement,

::::::
Figures

:::::::
S2-S7).245

:::
We

::::
used

:::
the modified Kling-Gupta efficiency (KGE’, Eq. 1; Kling et al., 2012)

::
to

:::::::
calibrate

:::
the

::::::::::
TUWmodel, which typically

provides better hydrograph simulations than other squared-error indices (Gupta et al., 2009; Kling et al., 2012; Mizukami et al.,

2019) and has been used in numerous studies (e.g., Garcia et al., 2017; Beck et al., 2019; Baez-Villanueva et al., 2020; Neri

et al., 2020; Széles et al., 2020). The KGE’ has three components: the Pearson correlation coefficient (r; Eq. 2); the bias ratio

(β; Eq. 3); and the variability ratio (γ; Eq. 4). µ is the mean Q, CV is the coefficient of variation, σ represents the standard250

deviation ofQ, and the subscripts s and o represent simulated and observedQ, respectively. The KGE’ and its components have
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their optimum value at one, and its optimisation seeks to reproduce the temporal dynamics (measured by r), while preserving

the volume and variability of Q, measured by β and γ, respectively (Kling et al., 2012).

KGE’ = 1−
√

(r− 1)2 + (β− 1)2 + (γ− 1)2 (1)

r =

∑n
i=1 (Oi− Ō)(Si− S̄)√∑n

i=1 (Oi− Ō)2
√∑n

i=1 (Si− S̄)2
(2)255

β =
µs

µo
(3)

γ =
CVs
CVo

=
σs/µs

σo/µo
(4)

Based on previous research (Shafii and Tolson, 2015; Vis et al., 2015; Beck et al., 2016), we also implemented a new aggregated

objective function (AOF) that combines Q signatures (AOFsig) and classical goodness-of-fit indices (AOFgof ):

AOF =
AOFgof + AOFsig

2
260

For the AOFgof (Eq. ??)
::
To

::::::::
calibrate

::
the

::::::
model

:::::::::
parameters, we used the average of the KGE’ recommended by Garcia et al. (2017)

, which is computed for both the Q and its inverse (KGE’(Q) and KGE’(1/Q), respectively). The use of this function should

lead to improved estimates of mean annual runoff, seasonality, and low flow indices. To avoid problems with zero Q values

while computing KGE’(1/Q) (Santos et al., 2018), we added a small constant to all Q values, defined as one-hundredth of the

mean daily Q (Pushpalatha et al., 2012; Garcia et al., 2017).265

AOFgof =
KGE’(Q) + KGE’(1/Q)

2

Similar to Yilmaz et al. (2008) and Beck et al. (2016), we selected four Q signatures to calculate AOFsig (Eq. ??): the

difference between the observed and simulated baseflow indices (eBFI), which may be thought of as the proportion of

river runoff deriving from stored sources; and the percent bias in the slope of the lower, medium, and higher segments of

the flow duration curve (pbiasFDCLow, pbiasFDCMed, pbiasFDCHigh, respectively). Equations ??a–d present the four270

aforementioned components of AOFsig , where BFI represents the base flow index; sim
::::::::
hydroPSO

::::::
global

:::::::::::
optimisation

::::::::
algorithm

:::::::::::::::::::::::::::::::
(Zambrano-Bigiarini and Rojas, 2013),

::::::
which

:::::::::
implements

::
a

:::::::::
state-of-the

:::
art

::::::
version

::
of

:::
the

::::::
Particle

::::::
Swarm

:::::::::::
Optimisation

::::::::
technique

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(PSO; Eberhart and Kennedy, 1995; Kennedy and Eberhart, 1995)

:
.
:::
We

::::
used

:::
the

:::::::
standard

::::
PSO

::::
2011

::::::::
algorithm

::::::::::::::
(Clerc, 2011a, b)

13



:
,
::::::
defined

::
as

::::::::
spso2011

::
in

:::
the

:::::::::
hydroPSO

:
R
:::::::
package

::::::::::::::::::::::::::::::::
(Zambrano-Bigiarini and Rojas, 2013).

:::
We

:::
set

:::
the

::::::
number

:::
of

:::::::
particles

::
in

:::
the

:::::
swarm

::::::
(npart

:
=
::::
80),

:::
the

::::::::
maximum

:::::::
number

::
of

::::::::
iterations

::::::
(maxit

:
=
:::::
100), and obs represent the simulated and observed Q values ,275

respectively; and Q99:::
the

::::::
relative

:::::::::::
convergence

:::::::
tolerance

::::::
(reltol

:
=
::::::::
1E− 10), Q70, Q20, Q10, Q1 represent streamflows with 99,

70, 20, 10 and 1% probability of exceedance, respectively.

AOFsig = 1− (eBFI + pbiasFDCLow + pbiasFDCMed + pbiasFDCHigh)

eBFI = |BFIsim−BFIobs|

pbiasFDCLow = 100 ·
∣∣∣∣ log(Q70,s)− log(Q99,s)

log(Q70,o)− log(Q99,o)
− 1

∣∣∣∣280

pbiasFDCMed = 100 ·
∣∣∣∣ log(Q20,s)− log(Q70,s)

log(Q20,o)− log(Q70,o)
− 1

∣∣∣∣

pbiasFDCHigh = 100 ·
∣∣∣∣Q1,s−Q10,s

Q1,o−Q10,o
− 1

∣∣∣∣
To calibrate the model parameters, we used the hydroPSO global optimisation algorithm (Zambrano-Bigiarini and Rojas, 2013)

, which implements a state-of-the art version of the Particle Swarm Optimisation technique (PSO; Eberhart and Kennedy, 1995; Kennedy and Eberhart, 1995)

::::
while

:::
the

::::::
default

::::::
values

::::
were

:::::
used

::
for

:::
all

::::
other

::::::::::
parameters. Over the last decade, hydroPSO has been successfully used to cal-285

ibrate numerous hydrological and environmental models (e.g., Brauer et al., 2014a, b; Silal et al., 2015; Bisselink et al., 2016;

Kundu et al., 2017; Kearney and Maino, 2018; Abdelaziz et al., 2019; Ollivier et al., 2020; Hann et al., 2021). The default

hydroPSO settings were used for all calibrations (Zambrano-Bigiarini and Rojas, 2013)
:::
For

:::::
more

::::::
details

::
on

::::
the

:::
use

::
of
::::

the

::::::::
hydroPSO

:::::::
package

::
to
::::::::
calibrate

:::
the

::::::::::
TUWmodel,

:::::::
readers

:::
are

::::::
referred

::
to
::::::::::::::::::::::::::::::::::::::::
Zambrano-Bigiarini and Baez-Villanueva (2020).

3.4 Regionalisation techniques290

After obtaining catchment-specific model parameters through individual catchment calibration using the KGE’ and AOF

separately
::::::::::
independent

:::::::::
catchment

:::::::::
calibration

:::::::
(Section

:::
3.3), we compared three parameter regionalisation techniques: i) spatial

proximity,
:
; ii) feature similarity,

:
; and iii) parameter regression. We assessed performance through a leave-one-out cross-

validation exercise, which consists of leaving out each one of the 100 catchments, transferring model parameters, conducting

Q simulations and computing performance evaluation metrics.295
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3.4.1 Spatial proximity

The spatial proximity method assumes that climatic and physical characteristics are relatively homogeneous over a region

(Oudin et al., 2008). We quantified the spatial proximity between the target pseudo-ungauged and the remaining catchments

using the Euclidean distance between catchment centroids, computed with geographic coordinates (i.e., latitude and longitude):

EDij =

√√√√ n∑
k=1

(xk,i−xk,j)2 (5)300

For each pseudo-ungauged catchment, the donor was chosen according to the minimum Euclidean distance, and the full

parameter set obtained during the individual
::::::::::
independent calibration of the donor catchment was transferred to the pseudo-

ungauged catchment.

3.4.2 Feature similarity

In the feature similarity method, we transferred the calibrated parameter sets from 10 donor catchments to the pseudo-ungauged305

catchment based on similarity between climatic and geomorphological features, quantified using the catchment characteristics

presented in Table 4. To exclude redundant information, we first performed correlation analyses between catchment descriptors

using the Pearson and Spearman rank correlation coefficients (to account for linear and monotonic correlation, respectively),

and discarded three descriptors with high correlations (mean elevation, mean annual PE, and SDII; see Appendix B). Also, we

discarded snow cover because it was found to be unreliable, leaving nine catchment features for this method. To assign equal310

weight to each catchment characteristic, they were normalised into the range [0, 1] using Eq. 6:

Zf =
xf −xmin

xmax−xmin
(6)

where xf is the value of the characteristic for catchment f , while xmax and xmin are the maximum and minimum values of the

characteristic x over all catchments. After normalising all catchment characteristics, we calculated the dissimilarity as follows:

Si,j =

n∑
m=1

| Zi,m−Zj,m | (7)315

where Si,j is the dissimilarity index between catchments i and j; Zi,m and Zj,m are the normalised values of the m catchment

characteristic for catchments i and j, respectively; and n is the total number of characteristics.

For each pseudo-ungauged catchment i, the 10 catchments j with the lowest dissimilarity indices (Si,j) were selected as

donors (McIntyre et al., 2005; Oudin et al., 2008; Zhang and Chiew, 2009; Zhang et al., 2015; Beck et al., 2016)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Oudin et al., 2008; Zhang and Chiew, 2009; Zhang et al., 2015; Beck et al., 2016)

. The full parameter sets obtained during the individual
::::::::::
independent calibrations of each donor catchment were used to run320

TUWmodel in the pseudo-ungauged catchment, thus producing an ensemble of 10Q simulations, as in previous studies (McIn-
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Table 4. Selected climatic and physiographic characteristics to quantify feature similarity between catchments. All variables related to P

were computed using the corresponding P product used as an input to the TUWmodel
::
for

::::::::
1990–2018.

N◦ Variable Data source Importance

1 Mean elevation CAMELS-CL Composite indicator that influences a range of processes such as long-term

P and T , and hence soil moisture availability. In some environments, it is

also related to aridity and snow processes.
:

2 Median elevation SRTMv4.1 Same as mean elevation but provides a more robust representation of eleva-

tion over mountainous catchments.
:

3 Catchment area CAMELS-CL Related to the degree of aggregation of catchment processes related to scale

effects. Additionally, it is an indicator of total catchment storage capacity.
:

4 Slope CAMELS-CL Related to the response of the catchment, routing, and infiltration processes.

5 Forest cover CAMELS-CL Forested catchments are associated with a trade-off between high water con-

sumption rates and enhanced soil.
:

6 Snow cover CAMELS-CL Related to the influence of snow processes within the catchment
:
.

7 Mean annual precipitation P product Related to the generation of runoff and P related to orographic gradients

(e.g., coastal areas).
:

8 Mean annual air temperature CR2MET Indicator of snow processes in cold environments. It is also related to aridity,

and consequently to the evaporative demand.
:

9 Mean annual potential evap-

oration

Computed

from CR2MET
A measure of the atmospheric water demand (especially at the annual tem-

poral scale)
:
.

10 Aridity index
CR2MET and

P product
Represents the competition between energy and water availability

:
.

11 Daily temperature range CR2MET Monthly mean difference between daily maximum and minimum T . Re-

lated to variations in the diurnal cycle and evaporative demands.
:

12 Simple precipitation inten-

sity index

P product Relation of annual P to the number of wet days (P > 1 mm). Serves as a

proxy for seasonality and intensity of P events.
:

13 Maximum consecutive 5-day

precipitation

P product Related to extreme P events
:
.

tyre et al., 2005; Zelelew and Alfredsen, 2014; Beck et al., 2016). The 10 Q time series were then averaged to produce a single

Q time series.

Finally, to quantify the overall uncertainty in model simulations when different objective functions are used for regionalisation,

we adapted the P- and R-factor concepts described in Abbaspour et al. (2007); Schuol et al. (2008); Abbaspour et al. (2009) to325

be calculated using only 10Q simulations. We defined the uncertainty band as the area between the maximum and minimumQ
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values for all time steps, obtained from the ensemble of the 10 simulations. Two indices were used to quantify the uncertainty

of model simulations with respect to observations: i) Preg , which is defined as the percentage of Q observations bracketed

by the uncertainty band; and ii) Rreg, which represents the average width of the uncertainty band divided by the standard

deviation of the observations. Ideally, we would capture all observations within the uncertainty band (i.e., Preg = 1), with no330

uncertainty (i.e., Rreg = 0); however, a more realistic good result would be to achieve Preg ∼ 1 with the same spread as the

observations (i.e., Rreg ∼ 1).

3.4.3 Parameter regression

The parameter regression technique aims to detect statistical relationships between parameter values and catchment character-

istics, and uses these relationships to estimate model parameters for ungauged catchments (Parajka et al., 2005; Oudin et al.,335

2008; Swain and Patra, 2017). To account for non-linear relationships between model parameters and catchment characteris-

tics, we implemented the random forest machine learning algorithm (RF; Breiman, 2001; Prasad et al., 2006; Biau and Scornet,

2016) provided in the RandomForest R package (Liaw and Wiener, 2002). RF uses an ensemble of decision trees between pre-

dictand and predictor values (also known as covariates) for regression and supervised classification, and has the capability to

deal with high-dimensional feature spaces and small sample sizes (Biau and Scornet, 2016). Previous studies have shown that340

RF can deal with several covariates as well as non-informative predictors, because it does not lead to overfitting or biased esti-

mates (Díaz-Uriarte and Alvarez de Andrés, 2006; Biau and Scornet, 2016; Hengl et al., 2018), which is why it has been used for

numerous hydrological applications (Saadi et al., 2019; Beck et al., 2020b; Baez-Villanueva et al., 2020; Zhang et al., 2021)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Saadi et al., 2019; Baez-Villanueva et al., 2020; Beck et al., 2020b; Zhang et al., 2021)

. For a more detailed description of RF, we refer the reader to Prasad et al. (2006), Biau and Scornet (2016), and Addor et al.

(2018).345

For this study, we developed one RF model for each TUWmodel parameter, using the set of
::
all

:::::::
thirteen

:
independent catch-

ment characteristics listed in Table 4 as covariates. Our experimental setup used an ensemble of 2,000
::::
2000

:
regression trees,

a minimum of five terminal nodes for each model, and p/3 variables randomly sampled as candidates at each split, where p

represents the number of predictors. The trained RF models were then used to predict parameter values in
::
the

:
pseudo-ungauged

catchments, using its climatic and physiographic descriptors as covariates.350

We performed all analyses using the R Project of Statistical Computing (R Core Team, 2020). In addition to the R packages

described in the methodology, we used the hydroGOF (Zambrano-Bigiarini, 2020a), hydroTSM (Zambrano-Bigiarini, 2020b)

, lfstat (Koffler et al., 2016), raster (Hijmans, 2020), rastervis (Perpiñán and Hijmans, 2020), rgdal (Bivand et al., 2020), and

rgeos (Bivand and Rundel, 2020) packages.

3.5 Influence of nested catchments355

To evaluate the influence of nested catchments on the performance of the three regionalisation methods, we repeated the three

regionalisation methods for each target catchment, with catchments considered to be nested (in relation to the pseudo-ungauged

catchment) excluded from the set of potential donor catchments. Following Neri et al. (2020), we used a cutoff point of 10% of
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drainage area, meaning that only catchments that cover more than 10% of the area of the parent catchment are
::::
were considered

to be nested.360

3.6
:::::::

Influence
:::
of

:::::
donor

::::::::::
catchments

:::
for

:::::::
feature

:::::::::
similarity

::
To

:::::::
evaluate

:::
the

::::::::
influence

::
of

:::
the

:::::::
number

::
of

::::::
donors

::::
used

::
in

::::::
feature

:::::::::
similarity,

::
we

::::::::
repeated

:::
the

::::::
process

::::::::
followed

::
in

::::::
Section

:::::
3.4.2

::
to

:::::
assess

:::
the

::::::::::
performance

::
of
::::
this

::::::::::::
regionalisation

:::::::
method

::::
when

::
1,
::
2,

::
4,

::
6,

::
8,

:::
and

:::
10

:::::
donor

::::::::::
catchments

::
are

::::::::
selected.

::::
This

:::::::
analysis

:::::::
evaluates

:::
the

:::::::
impact

::
of

::::::::
averaging

:::::::
varying

::::::::
numbers

::
of

::::::::::
simulations

:::::::::
compared

::
to

:::
the

::::::
results

::::
that

:::
are

:::::
based

:::
on

::::
only

:::
the

:::::
most

::::::
similar

:::::::::
catchment.365

:::
We

::::::::
performed

:::
all

:::::::
analyses

:::::
using

:::
the

::
R

::::::
Project

::
of

::::::::
Statistical

::::::::::
Computing

:::::::::::::::::
(R Core Team, 2020)

:
.
::
In

:::::::
addition

::
to

:::
the

::
R

::::::::
packages

::::::::
described

::
in

:::
the

:::::::::::
methodology,

:::
we

::::
used

:::
the

:::::::::
hydroGOF

::::::::::::::::::::::::
(Zambrano-Bigiarini, 2020a)

:
,
:::::::::
hydroTSM

::::::::::::::::::::::::
(Zambrano-Bigiarini, 2020b)

:
,
::::
lfstat

:::::::::::::::::
(Koffler et al., 2016)

:
,
:::::
raster

:::::::::::::
(Hijmans, 2020)

:
,
::::::::
rasterVis

::::::::::::::::::::::::
(Perpiñán and Hijmans, 2020)

:
,
:::::
rgdal

:::::::::::::::::
(Bivand et al., 2020),

::::
and

::::
rgeos

:::::::::::::::::::::::
(Bivand and Rundel, 2020)

::::::::
packages.

4 Results370

4.1 Performance of P products

4.1.1 Calibration and verification

Figure 4 shows the performance of the TUWmodel during calibration (2000–2014) and the two verification periods (1990–

1999 and 2015–2018), prior to any regionalisation procedure. These results were obtained using the KGE’ (Figure 4a) and the

AOF (Figure 4b) for the calibration process. When the KGE’ was used as the objective function, CR2MET provided the best375

performance for all evaluated periods, with median KGE’s of 0.84, 0.76, and 0.66, for calibration, Verification 1 (1990–1999,

near-normal/wet) and Verification 2 (2015–2018, dry), respectively, followed closely by RF-MEP. However, when the AOF

was used as the objective function to drive calibration, ERA5 (median KGE’ of 0.72) outperformed CR2MET (0.71) during

Verification 1. Surprisingly, MSWEPv2.8 provided the poorest performance for calibration and Verification 1, while ERA5 and

RF-MEP performed the worst during Verification 2, when using the KGE’ and AOF, respectively.
::
1. For all P products, the380

lowest performances were obtained during the (dry) Verification 2 period, emphasising the challenges of estimating Q over dry

environments
:
in
:::
dry

:::::::::
conditions, as discussed by Maggioni et al. (2013) and Beck et al. (2016). Despite

::
the

:::::::::
substantial

:
variations

between P products
:::
(see

:::::::
Section

:::::
3.1.1), TUWmodel performed well for all

:
P

:
products in the calibration, Verification 1 and

Verification 2 periods, with median KGE’ (AOF) values greater than 0.77, 0.71, and 0.62(0.78, 0.70, and 0.61), ,
:
respectively.

The calibrated model parameters were
::
lay

:::::
well within the selected parameter ranges in the large majority of the cases (see385

Figures S4 and S5
:::::
Figure

:::
S8 of the supplementmaterial).

:
).

::
In

:::::
other

:::::
words,

:::
the

:::::::
selected

:::::::::
parameter

:::::
ranges

:::::
were

::::
wide

::::::
enough

:::
so

:::
that

::::::::
calibrated

:::::::::
parameter

:::::
values

:::::
were

:::
not

:::::::::::
concentrated

::
at

::::
their

:::::
lower

::
or

:::::
upper

:::::
limits.

:

:::::
Figure

::
5
::::::
shows

:::
the

::::::::::
performance

:::
of

:::
the

::::::::::
TUWmodel

::::::
during

::::::::::
calibration,

::::::::::
Verification

:
1
::::

and
::::::::::
Verification

::
2

:::
per

:::::::::::
hydrological

::::::
regime

:::
(see

::::::
Figure

::::
1d).

:::
The

:::::::::::
TUWmodel

::::::::
performed

::::::
better

::::
over

:::
the

::::::::::
pluvio-nival

::::::::::
catchments,

::::
with

::::::
median

::::::
KGE’

:::::
values

::::::
above
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Figure 4. Performance of TUWmodel during the calibration (2000–2014), Verification

:
1 (1990–1999) and Verification

:
2 (2015–2018), prior

to any regionalisation, using a) the modified Kling-Gupta efficiency (KGE’).
::::

The
::::
solid

:::
line

::::::::
represents

:::
the

::::::
median

::::
value,

::
the

:::::
edges

::
of

:::
the

::::
boxes

:::::::
represent

:::
the

:::
first

:
and b)

::::
third

:::::::
quartiles,

:::
and

:
the aggregate objective function (AOF)

:::::::
whiskers

:::::
extend

::
to

:::
the

::::
most

::::::
extreme

:::
data

:::::
point

::::
which

::
is
::
no

::::
more

::::
than

:::
1.5

::::
times

:::
the

:::::::::
interquartile

::::
range

::::
from

:::
the

:::
box.

:::
The

:::
blue

::::
line

::::::
indicates

:::
the

::::::
optimal

::::
value

:::
for

::
the

::::::
KGE’.

::::
0.77,

:::::
0.76,

:::
and

::::
0.69

:::
for

:::::::::
calibration,

::::::::::
Verification

::
1
:::
and

::::::::::
Verification

::
2,

:::::::::::
respectively.

::::::
During

:::
the

:::::::::
calibration

::::::
period,

:::::
there

:::
was

:::
no390

::::
clear

::::::
second

::::
best

::::::
regime.

::::
For

:::::::
instance,

::::
the

:::::::::::::
snow-dominated

::::::::::
catchments

::::::::
presented

:::::::
slightly

::::::
higher

::::::
median

:::::
KGE’

::::::
values

:::
but

::
a

::::
more

::::::::::
pronounced

::::::::::
dispersion,

:::::
while

:::
the

::::::::::
pluvio-nival

::::
and

:::::::::::::
rain-dominated

:::::::::
catchments

:::::::::
presented

:::::
lower

:::::::::
dispersion

:::
but

:::::::
reduced

::::::
median

::::::
values.

::::
The

::::::::::::::
snow-dominated

::::::::::
catchments

::::::::
presented

:
a
:::::

more
::::::::::
pronounced

::::::::
decrease

:::::
from

:::::::::
calibration

:::::::
(median

:::::
KGE’

:::
>

::::
0.85)

::
to

::::
both

::::::::::
verification

::::::
periods

:::
(>

::::
0.55

:::
and

::::
0.23

:::
for

::::::::::
Verification

:
1
::::
and

::::::::::
Verification

::
2,

:::::::::::
respectively).

::::::
During

::::
both

::::::::::
verification

::::::
periods,

::::
the

::::::::::::
rain-dominated

::::::::::
catchments

::::::::
presented

::::
the

::::::
highest

:::::::::
dispersion

::::::::
increases

::
in

:::::
both

:::::::::
verification

:::::::
periods

::::::::
compared

:::
to395

:::::::::
calibration.

:

::::
Over

:::
the

::::::::::::::
snow-dominated

::::::::::
catchments,

::::::
ERA5

:::::::::
performed

:::
the

::::::
worst

::
as

::
it

::::::::
presented

:::
the

:::::::
highest

:::::::::
dispersion

::::
and

:::
the

::::::
lowest

::::::
median

:::::
KGE’

::::::
values

::::::
during

::::::::::
Verification

:
1
::::::

(0.55)
:::
and

::::::::::
Verification

::
2
::::::
(0.25),

::::::
despite

::::::
having

:::
the

:::::::
highest

::::::
median

::::::
KGE’

::::::
during

:::::::::
calibration

:::::
(0.87).

::::::::
RF-MEP

:::::::::
performed

:::
the

::::
best

:::::
during

::::::::::
Verification

::
1

:::::
(0.68),

:::::
while

::::::::::::
MSWEPv2.8

::::::::
performed

:::
the

::::
best

::::::
during

:::
the

:::
dry

::::::::::
Verification

:
2
::::::
period

:::::::
(median

:::::
KGE’

::
of

:::::
0.60).

:::::::::
CR2MET

:::::::::
performed

:::
the

:::
best

:::::
over

::
the

:::::::::::
nivo-pluvial

:::::::::
catchments

::::
with

:::::::
median400

:::::
KGE’

:::::
values

::::::
above

::::
0.64,

:::::
while

::::::::
RF-MEP

:::::::::
performed

::::::::
relatively

::::::
worse

:::
for

::::
both

:::::::::
verification

:::::::
periods

::::
with

:::::::
median

:::::
KGE’

::::::
values

:::::
above

::::
0.48

::::
and

:
a
:::::
larger

:::::::::
dispersion

:::::
than

:::
the

:::::
other

::::::::
products,

::::::
despite

::::::
having

::
a
::::::
similar

:::::::
median

:::::
KGE’

::::::
(0.62)

::
in

::::::::::
Verification

::
1

::
to

:::::
ERA5

::::
and

:::::::::::
MSWEPv2.8

:::::
(0.61,

::::
and

::::
0.60,

::::::::::::
respectively).

::::
Over

:::
the

::::::::::
pluvio-nival

::::::::::
catchments,

:::
all

::::::::
products

::::::
showed

::
a

::::::::
relatively

::::
good

:::::::::::
performance,

::::
with

:::::::::
CR2MET

::::
being

:::
the

::::
best

::
P

:::::::
product

::
in

:::::::::
calibration

:::
and

::::::::::
Verification

::
1

:::::::
(median

::::::
KGE’s

::
of

::::
0.87

:::
and

:::::
0.84,

:::::::::::
respectively),

:::::
while

:::::
ERA5

:::::::::
performed

:::
the

::::
best

:::::
during

::::::::::
Verification

::
2

:::::::
(median

:::::
KGE’

::
of

:::::
0.78).

::::::::
RF-MEP

:::::::::
performed

:::
the

::::
best

::::
over405

::
the

:::::::::::::
rain-dominated

::::::::::
catchments

::
in

:::::::::
calibration

:::
and

::::::::::
Verification

:
1
::::
with

:::::::
median

:::::
KGE’

:::::
values

:::
of

::::
0.84

:::
and

::::
0.77,

:::::::::::
respectively,

:::::
while

:::::
ERA5

:::::::::
performed

:::
the

:::::
worst

:::::::
(median

::::::
KGE’

:::::
values

:::
of

::::
0.69

:::
and

::::::
0.70).

::::::
Finally,

:::::::::
CR2MET

:::::::::
performed

:::
the

::::
best

::
in

::::::::::
Verification

::
2

:::::::
(median

:::::
KGE’

::
of

:::::
0.72),

::::::::
followed

::
by

:::::::::::
MSWEPv2.8

:::::::
(median

::::::
KGE’

::
of

:::::
0.69).
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Figure 5.
:::::::::
Performance

::
of

:::::::::
TUWmodel

:::::
during

:::::::::
calibration

::::::::::
(2000–2014),

:::::::::
Verification

::
1

::::::::::
(1990–1999)

:::
and

:::::::::
Verification

:
2
:::::::::::
(2015–2018),

::::
prior

:
to
::::

any
:::::::::::
regionalisation

::::
over

:::::::::
catchments

::::
with

:::::::
different

::::::::::
hydrological

:::::::
regimes:

::
a)

::::::::::::::
snow-dominated;

::
b)

::::::::::
nivo-pluvial;

::
c)

::::::::::
pluvio-nival;

::::
and

::
d)

::::::::::::
rain-dominated.

4.1.2 Performance during regionalisation

Figure 6 summarises the leave-one-out cross-validation results for the three tested regionalisation methods(spatial proximity,410

feature similarity, parameter regression), obtained when TUWmodel was forced with
:::::::
obtained

::::
from

:::
the

::::::::::
application

::
of

:::::
three

::::::::::::
regionalisation

::::::::
methods,

:::
for each P productover the entire simulation period (1990–2018)

:
.
::::
The

:::::
results

:::
are

:::::::::
displayed

:::
for

:::
the

:::::::::
calibration

::::::::::
(2000–2014;

:::::
panel

:::
a),

::::::::::
Verification

:
1
:::::::::::
(1990–1999;

:::::
panel

::
b),

::::
and

::::::::::
Verification

:
2
:::::::::::
(2015–2018;

:::::
panel

::
c)

::::::
periods. Over-

all, the median performance of all P products was the highest
:::
best for feature similarity(KGE’ and AOF ∼ 0.60),

::::
with

:::::::
median

:::::
KGE’

:::::
values

::::::::
between

::::::::
0.44–0.62

:::
for

::
all

:::::::
periods, followed by spatial proximity (KGE’ and AOF ∼ 0.55

::::::::
0.39–0.55) and param-415

eter regression (KGE’ ∼ 0.35, AOF ∼ 0.25
::::::::
-0.12–0.51). In addition to exhibiting a considerably lower overall performance,

parameter regression also resulted in
::::::
returned

:
a larger spread in performance.

::::::
KGE’s

:::
for

::
all

:::::::
periods.

:
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Focusing on only the two best-performing regionalisation methods and bearing in mind that KGE’and AOF have different

theoretical grounds, the results presented on Figure 6 show that the overall performance
::::
The

::::::
overall

:::::::::::
performances

:
obtained

for feature similarity and spatial proximity are quite
:::::::
relatively

:
close for different P products , and for both objective functions.420

For example
::::
over

::::
each

::::::
period

:::::::
(Figure

:::
6).

:::
For

::::::
feature

:::::::::
similarity, all P products generate acceptable KGE’ results (median

KGE’ > 0.56) for feature similarity, with the
::::
0.54)

::::::
during

:::
the

:::::::::
calibration

:::
and

::::::::::
Verification

::
1
:::::::
periods,

:::::
while

:::
the

::::::
median

::::::
KGE’

:::::
values

::::::
during

:::
the

:::
dry

::::::::::
Verification

::
2
::::::
period

:::::::
lowered

::
to

:
a
:::::::

median
:::::
KGE’

:::
of

::
>

:::::
0.44.

:::
The

:
best model performance obtained by

CR2METv2 (KGE’ = 0.63),
:::
for

::::::
feature

::::::::
similarity

:::
was

::::::::
obtained

::
by

:::::::::
CR2MET,

::::
with

::::::
median

:::::
KGE’

::::::
values

::
of

::::
0.62

:::
for

:::::::::
calibration

:::
and

::::::::::
Verification

::
1,

:::
and

::::
0.53

:::
for

::::::::::
Verification

::
2, followed closely by RF-MEP (0.62). When using the AOF for feature similarity,425

the best model performance was again obtained by CR2METv2 (median AOF of 0.64), but this time followed closely by

::
for

::::::::::
calibration

::::::
(0.59),

:::::
ERA5

:::
for

:::::::::::
Verification

:
1
::::::
(0.59),

::::
and

:
MSWEPv2.8 (0.62). MSWEPv2.8 slightly outperformed ERA5

(median KGE’=0.61) in feature similarity, which is consistent with the results obtained for spatial proximity.
::
for

::::::::::
Verification

::
2

:::::
(0.52).

:
In the case of spatial proximityusing the KGE’, CR2MET performed the best , with a median KGE’ of 0.57, followed

:::::::::::
MSWEPv2.8

::::::
yielded

:::
the

::::
best

:::::::::::
performance

::
in

:::
the

::::::::::
calibration

::::::
period

::::::
(0.55),

:::::::
followed

:::::::
closely by RF-MEP (0.56

:
,
:::
but

::::
with

::
a430

:::::
higher

::::::::::
dispersion),

:::
and

::::::::
CR2MET

::::::
(0.53).

:::
For

::::::::::
Verification

::
1,

::::::::
RF-MEP

:::::::
provided

:::
the

::::
best

::::::::::
performance

:::::
(0.54), while MSWEPv2.8

showed a slightly better KGE’ performance than ERA5
:::::::
produced

:::
the

::::
best

::::::
results

::::
over

::::::::::
Verification

:
2
:

(0.54
:::::
0.48).

:::
For

::::::
spatial

::::::::
proximity,

::::::
ERA5

::::::::
performed

:::
the

:::::
worst

::::
over

:::
the

::::
three

::::::::
evaluated

:::::::
periods.

:::::::
Finally,

::::::::
parameter

:::::::::
regression

::::::
yielded

:::
the

::::::
lowest

::::::
results,

::::
with

::::::::
CR2MET and 0.51, respectively). In the case of the AOF, MSWEPv2.8 showed a better AOF performance than RF-MEP

(0.55 and 0.53, respectively
:::::
ERA5

::::::::
showing

::
the

:::::::
highest

::::::
median

::::::
KGE’

:::::
values

:::
(>

::::
0.42

:::
for

:::::::::
calibration

:::
and

::::::::::
Verification

::
1,

::::
and

::
>435

::::
0.22

::
for

::::::::::
Verification

::
2).

For each regionalisation technique, Figure 7 summarises the spatial distribution of the performance of the four
:::
each

:
P

products and both objective functions used in regionalisation
::::::
product

:::
for

:::
the

::::::::::
calibration,

::::::::::
Verification

::
1,

::::
and

::::::::::
Verification

::
2

::::::
periods. The spatial patterns obtained for all regionalisation methods were similar, independent of the P product or objective

function
::
the

::::::::
evaluated

::::::
period, except for parameter regressionusing the AOF, which yielded worse

:::
poor

:
results over high-440

elevation catchments
:::
and

:::::
under

:::
dry

:::::::::
conditions

::::::::::
(Verification

:::
2). These results suggest that the choice of objective function used

to drive calibration does not greatly impact the spatial performance of regionalisation methods that transfer complete sets of

model parameters (feature similarity and spatial proximity)
::::::
indicate

::::
that

::::::
spatial

::::::::
proximity

::::
and

::::::
feature

::::::::
similarity

:::::::
present

::::
very

::::::
similar

:::::
spatial

:::::::::::
performance

:::::::
patterns,

::::
with

::::::
feature

::::::::
similarity

::::::::
yielding

:::::
higher

:::::
KGE’

::::::
values

::::
over

:::
the

::::
three

::::::::
evaluated

:::::::
periods.

All P products performed better in central (30-40◦S) and southern Chile (40-56.5◦S)
::
the

:::::::
Central

:::::
Chile

:::
and

:::::
South

:::::::
regions445

than in the arid north (17-30◦S)
::
Far

::::::
North,

:::::
Near

:::::
North

:::
and

::::
Far

:::::
South

::::::
regions. The low performance of regionalisation in the

arid north is very likely due to the convective nature of storms occurring in the highlands of the Chilean Altiplano (elevations

above 4,000 m
::::
4000

::
m a.s.l.), and the low density of Q stations over this area. Despite this general low performance, RF-MEP

was the best performing P product over northern Chile (17-30◦S)
::
the

::::
Far

:::::
North

::::::
region for both spatial proximity (median

KGE’ of 0.37
:::
0.28) and feature similarity (median KGE’ of 0.51) , for the 10 most northern catchments (see Figure 1)

:::::
0.46)

::
in450

::
the

::::::::::
calibration

:::::
period, suggesting that merging P products and ground-based observations helps

:
to

:
improve, to some extent,

the performance of hydrological modelling across arid regions. Conversely, all products outperformed RF-MEP over the far
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Figure 6. Leave-out-out
:::::::::::
Leave-one-out cross-validation results for the three regionalisation methods according to

:::::
applied

::::
with

:::::::
different P

product used to force TUWmodel
:::::::
products during 1990-2018, using

:::
the: a) the KGE’, and

::::::::
calibration

::::::::::
(2000–2014); b) the AOF

::::::::
Verification

::
1

::::::::::
(1990–1999);

:::
and

::
c)

:::::::::
Verification

:
2
::::::::::
(2015–2018)

::::::
periods.

south
:::
Far

:::::
South. Figure 7 also highlights that spatial proximity provides the best performance over the far south

:::
Far

:::::
South, with

median KGE’ (AOF) values over the 10 most southern catchments of 0.47 (0.59), 0.45 (0.49), 0.25 (
:::::
values

::::::
higher

::::
than

:::::
0.46,

::::
0.27,

:::::
0.30,

:::
and

:
0.35 ), and 0.30 (0.35) for MSWEPv2.8,

::
for

:
CR2MET, RF-MEP, and ERA5,

::
and

::::::::::::
MSWEPv2.8,

:
respectively.455

The systematic lower performance of feature similarity compared to spatial proximity over the south
::
Far

::::::
South

::::::
(except

:::
for

:::
the

:::
case

:::
of

::::::
ERA5) could be attributed to

:
:
::
i)

:::
the lack of catchment characteristics that represent the hydrological behaviour of this

complex area .

The panels located below each map in Figure 7 show the empirical cumulative distribution functions (ECDFs) of the

performance of each regionalisation technique. These ECDFs compare the relative performance of each regionalisation method460

against those obtained from the individual calibration and verification of each catchment (used as benchmarks). As expected,

all regionalisation methods presented a lower performance than the individual calibration and verification, with this reduction

more pronounced for parameter regression. For feature similarity, all P products yielded a performance similar to that obtained

for individual basin verification during
::::::::
dominated

:::
by

::::
polar

::::
and

::::::::
temperate

::::::::
climates;

::::
and

::
ii)

:
the dry Verification 2 period.

:::
low

::::::
amount

::
of

::::::::
potential

:::::
donor

:::::::::
catchments

:::::::
(eleven

::
for

::::::::
latitudes

::
>

::::::
49◦S),

::::::::
combined

::::
with

::::
their

::::::
varied

::::::::::
hydrological

::::::::
regimes.

:::
For

:::
the465

::::
most

:::::::
southern

::::::::::
catchments,

:::
the

::::::
highest

::
P

::::::::
intensities

:::::
occur

::::::
during

:::::::::::
March–May,

::::
while

:::
the

::::::
lowest

::
P

:::::
occurs

:::::::
between

::::::::::::
June–August,

:::::
which

::::::
differs

::
to

:::::::::
catchments

::::::::::
throughout

:::
the

:::
rest

::
of

:::
the

:::::::
country

:::::::::::::::::::::::::::::::::::::
(Alvarez-Garreton et al., 2018, their Figure 9)

:
.
::::
This

::::
may

:::::
affect
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::
the

:::::::::::
hydrological

::::::::::
simulations

:::::
when

::::::
model

:::::::::
parameters

:::::
from

:::::::::
catchments

:::::::
located

::
<

:::::
49◦S

:::
are

:::::::::
transferred

:::
to

::::
these

:::
far

::::::::
southern

:::::::::
catchments.

:

4.2 Evaluation of regionalisation techniques470

4.2.1 Overall performance

For each P product, Figure 8 compares the performances of the three regionalisation techniques using the AOF with those

obtained in the individual
::::::::::
independent calibration and verification periods. The individual

::::::::::
independent calibration of each

catchment represents the highest model performance that can be obtained for a specific combination of hydrological model,

objective function and catchment (i.e., an absolute benchmark), whereas the two verification periods were used to evaluate the475

performance of the regionalisation techniques over independent time periods (i.e., as verification benchmarks). For
:::::
There

:::
are

::::::
marked

:::::::::
differences

::
in
:::::::::::
performance

::::::::
according

:::
to

::
the

:::
P

::::::
product

::::
used

::
to
:::::
force

:::
the

:::::::::::
TUWmodel,

::::::::
regardless

::
of

:::
the

:::::::::::::
regionalisation

::::::
method

::::
and

:::
the

::::::::
evaluated

::::::
period.

::::
For

:::::::
example,

::::::
ERA5

:::
has

:::::
more

:::::::::
dispersion

::
in
:::

the
::::::

KGE’
::::::
values

::::::::
compared

::
to
:::::

other
::::::::
products

::
for

::::
the

:::::
cases

::
of

::::::
feature

:::::::::
similarity

:::
and

::::::
spatial

::::::::::
proximity;

:::::
while

:::
for

:::::::::
parameter

:::::::::
regression,

::
it
:::::
tends

::
to

::::::::
perform

:::
the

::::
best.

::::
For

all P products and evaluation periods, feature similarity performed the best, followed by spatial proximity and parameter480

regression, which is consistent with results from multiple studies (e.g., Parajka et al., 2005; Oudin et al., 2008; Bao et al.,

2012; Garambois et al., 2015; Neri et al., 2020). Median AOFs obtained for feature similarity were the highest, followed

closely by spatial proximity, regardless of the selected P product, but with a larger spread. Parameter regression had both the

lowest median AOFs
::::::
KGE’s as well as the largest spread. Comparing the two verification periods, results obtained during the

(near-normal/wet) Verification 1 period were close to those obtained during calibration, while those obtained during the (dry)485

Verification 2 were substantially lower, especially for spatial proximity and parameter regression. Results obtained for the

evaluation of regionalisation methods using the KGE’ are presented in Figure S1 of the supplement material, and are similar

to those for the AOF

:::::
These

::::::
results

:::
are

::
in
::::::::::

agreement
::::
with

:::
the

::::::
lower

::::::
panels

::::::
located

::::::
below

::::
each

:::::
map

::
in

::::::
Figure

::
7,
::::::

which
:::::
show

:::
the

:::::::::
empirical

:::::::::
cumulative

:::::::::
distribution

::::::::
functions

::::::::
(ECDFs)

::
of

:::
the

:::::::::::
performance

::
of

::::
each

::::::::::::
regionalisation

:::::::::
technique

:::::
during

:::
the

::::::::
complete

::::::
period

::
of490

::::::
analysis

::::::::::::
(1990–2018).

:::::
These

:::::::
ECDFs

:::::::
compare

:::
the

::::::
relative

:::::::::::
performance

::
of

::::
each

:::::::::::::
regionalisation

::::::
method

:::::::
against

::::
those

::::::::
obtained

::::
from

:::
the

::::::::::
independent

::::::::::
calibration

:::
and

::::::::::
verification

::
of

:::::
each

:::::::::
catchment

:::::
(used

::
as

:::::::::::
benchmarks).

:::
As

:::::::::
expected,

::
all

:::::::::::::
regionalisation

:::::::
methods

::::::::
presented

:
a
:::::
lower

:::::::::::
performance

::::
than

::
the

:::::::::::
independent

:::::::::
calibration

:::
and

::::::::::
verification,

::::
with

:::
this

::::::::
reduction

:::::
more

::::::::::
pronounced

::
for

:::::::::
parameter

:::::::::
regression.

4.2.2 Impact of hydrological regimes495

We also analysed the impact of the hydrological regime (see Figure 1d) on the performance of the three regionalisation methods.

Figures 9 and ?? show
:::::
Figure

:
9
::::::
shows the performance of the regionalisation techniques according to hydrological regime for

all P products and the KGE’ and AOF objective functions, respectively.
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Figure 9 shows that when using the KGE’, feature
:::::
during

:::
the

:::::::::
calibration

::::::
period

::::
(and

::::::
Figures

:::
S9

:::
and

::::
S10

::
of

:::
the

::::::::::
supplement

::::
show

:::
the

:::::
same

:::
for

:::
the

:::
two

::::::::::
verification

:::::::
periods).

:::::::
Feature

:
similarity provided the best median performance for all hydrological500

regimes and P products except
:::
for snow-dominated catchments, where spatial proximity performed the best for CR2MET and

ERA5. Similarly, Figure ?? shows that feature similarity performed better over all hydrological regimes, except for the case

of snow-dominated catchments with CR2MET as the P product.
:::::::::::
MSWEPv2.8

:::
for

:::::::::
calibration

:::
and

::::::::::
Verification

::
2. These results

demonstrate that there was no single P product that outperformed the others for all regionalisation techniques and hydrological

regimes. In other words, the best performing P product depends on the hydrological regime ,
:::
and

:
chosen regionalisation505

method , and objective function used to drive the hydrological model calibration
::
for

::::
our

::::
case

:::::
study. For feature similarity

in snow-dominated catchments, RF-MEP performed the best using both the KGE’ and AOF; while for
::
for

:::::::::
calibration

::::
and

:::::::::
Verification

::
1,
:::::
while

:::::::::
CR2MET

:::::::::
performed

:::
the

:::
best

::::::
during

::::::::::
Verification

::
2.

:::
For

:
nivo-pluvial catchments, CR2MET provided the

best performance with the KGE’, and all of
:::::
during

:::::::::
calibration

::::
and

::::::::::
Verification

::
1,

:::::
while MSWEPv2.8 , ERA5 and CR2MET

performed similarly well with the AOF.
::::::::
performed

:::
the

::::
best

:::::
during

::::::::::
Verification

::
2.
:
CR2MET

:::
and

::::::
ERA5 performed the best in510

pluvio-nival catchments for the case of feature similaritywhen using the KGE’, and CR2MET and RF-MEP with the AOF.

Finally, across rainfall-dominated catchments, MSWEPv2.8 performed best ,
:::::
while

:::
all

:::::::
products

:::::::::
performed

:::::::
similarly

:
for spatial

proximityand
:
.
::::::
Finally,

:
ERA5 for feature similarity using the KGE’; and CR2MET for both regionalisation methods when the

AOF was used.

Results obtained with the AOF were similar to those obtained with the KGE’. Although the two objective functions used515

are not directly comparable, results for the snow-dominated and the pluvio-nival catchments using the AOF for parameter

regression were markedly lower than those obtained using the KGE’, suggesting that the choice of the objective function has

a greater influence in the performance of parameter regression results
::::::::
performed

:::
the

::::
best

:::
for

::::::
feature

::::::::
similarity

:::
in

::
all

:::::::
periods

:::::
across

:::
the

:::::::::::::
rain-dominated

:::::::::
catchments.

Performance of regionalisation methods using the AOF objective function according to the hydrological regimes: a) snow-dominated,520

b) nivo-pluvial, c) pluvio-nival, and d) rain-dominated. N denotes the number of catchments per hydrological regime.

4.3 Impact of nested catchmentsin regionalisation performance

Finally, we
:::
We

:
evaluated the influence of the nested catchments in

::
on

:
the regionalisation results. Figure 10 shows the perfor-

mance of the three regionalisation methods for the subset of 56 nested catchments that share a common area with at least one

other catchments
::::::::
catchment

:
(i.e., the 42 nested catchments as well as all corresponding parent catchments). Here, we compare525

the regionalisation performance using all potential donors (dark colours) with the performance when excluding nested catch-

ments as potential donors (light colours). The order of performance of the regionalisation methods and P products did not vary

when the nested catchments were excluded, as feature similarity and CR2MET remained the best performing method and prod-

uct, respectively. As expected, the regionalisation technique with the largest reduction in performance when excluding nested

catchments was spatial proximity, followed closely by feature similarity. All P products showed a slight performance reduction530

and increased dispersion for spatial proximity, except for MSWEPv2.8, which showed a slight increase in the KGE’ median

value. Feature similarity showed a slight reduction in performance when the nested catchments were excluded; however, the
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median values remained almost the same. The
:::::
change

::
in
:

performance of parameter regression did not change substantially

when evaluated with and without nested catchments
:::
was

:::::::::
negligible

::::
after

:::
the

::::::::
exclusion

:::
of

:::::
nested

::::::::::
catchments

:::::::
because,

:::
in

:::
the

::::::::
particular

::::
case

::
of

:::::
Chile,

::::::::
excluding

::::
only

::
a

:::
few

:::::::::
catchments

::::
had

:
a
:::::::::
negligible

::::
effect

:::
on

:::
the

::::::::
non-linear

:::::::::::
relationships

:::::::
between

::::::
model535

:::::::::
parameters

:::
and

:::
the

:::::::
selected

:::::::
climatic

:::
and

::::::::::::
physiographic

::::::::::::
characteristics

::::
(see

:::::
Table

::
4).

4.4
::::::
Impact

::
of

:::
the

:::::::
number

::
of

:::::::
donors

::
in

:::::::
feature

::::::::
similarity

:::::
Figure

:::
11

:::::
shows

:::
the

:::::::::::
performance

:::
of

::::::
feature

::::::::
similarity

::::::
during

:::
the

:::::::::
calibration

::::
and

::::
both

:::::::::
verification

:::::::
periods

:::::
when

:::::::
varying

:::
the

::::::
number

::
of

::::::
donors

::::
used

::
to
:::::::
transfer

::::::
model

:::::::::
parameters

::
to

::::::::
ungauged

::::::::::
catchments

:::
(see

:::::::
Section

::::
3.6).

::
In

:::::::
general,

:::
the

::::::
highest

:::::::
median

::::::::::
performance

::
is

::::::::
obtained

:::::
when

::::
using

::
4
::
or

:::::
more

:::::
donor

::::::::::
catchments.

:::::::::
However,

:::
the

:::::::::
application

:::
of

:
a
:::::
t-test

:::::::::::
demonstrated

::::
that

:::
the540

:::::::::::
improvement

::
in

:::
the

::::::
KGE’

::::::
values

:::::::
obtained

:::::
when

:::::::::
increasing

:::
to

:::::
more

::::
than

::::
one

:::::
donor

::::
was

:::
not

::::::::::
statistically

::::::::::
significant.

::::
The

:::::
results

:::::
show

:::
that

:::
the

:::::::::::
performance

:::::
varies

::::::::
according

::
to
:::
the

::
P
:::::::
product

:::
and

:::::::
selected

::::::
period

::
of

:::::::
analysis.

::::
For

:::
the

:::::::::
calibration

::::::
period,

::::::
feature

::::::::
similarity

::::::::
produced

::::::
similar

::::::
median

:::::
values

::
to
:::::
those

:::::::
obtained

::::
with

::::::
spatial

:::::::::
proximity

::::
when

::::
one

:::::
donor

:::
was

:::::
used,

:::::
while

:::
the

::::::::::
performance

::::::::
improved

:::
as

::::
more

::::::
donors

:::::
were

::::::::
included.

:::
For

::::
both

::::::::::
verification

:::::::
periods,

::::::
feature

:::::::::
similarity

:::::::
(median

:::::
KGE’

::::::
values

::::
from

::::
0.44

::
to

:::::
0.64)

:::::::::::
outperformed

::::::
spatial

:::::::::
proximity

:::::::
(median

:::::
KGE’

::::::
values

:::::::
ranging

::::
0.39

::
to

:::::
0.54).

:::
For

:::
all

:::::
three

:::::::
periods,

::::::
feature545

::::::::
similarity

:::::::
provided

:::::
better

:::::::::::
performance

::::::::::
considering

:::
the

:::::::::
distribution

:::
of

::
the

::::::
KGE’

::::::
values.
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Figure 7. Spatial performance of the leave-one-out cross-validation results for the three regionalisation methods according to P product used

to force TUWmodel.
::::::
Results

:::
are

:::::::
presented

:::
for

:::
the:

::
a)

::::::::
calibration

:
(1990-2018

::::::::
2000–2014)using a);

:::::::::::
b)Verification the KGE’ 1

:::::::::::
(1990–1999);

and b)
:
c) the AOF

::::::::
Verification

:
2
::::::::::
(2015–2018)

::::::
periods. The panels beneath each

:::
the map plot

:::
plots

::::
refer

::
to the ECDFs of the corresponding re-

gionalisation technique
::
for

:::
the

::::
entire

:::::
period

::
of

::::::
analysis

::::::::::
(1990–2018)

:
and P product (black) against the performances during the

:::::::::
independent

calibration (blue
::::
green), Verification 1 (purple

:::
blue), and Verification 2 (red) periods.
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Figure 8. Performance of the regionalisation methods using
:::::
during theAOF objective function for: a) calibration (2000–2014); b) Verifica-

tion 1 (1990–1999), ;
:
and c) Verification 2 (2015–2018)

:::::
periods.
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Figure 9. Performance of regionalisation methods using the KGE’ objective function
::
for

:::::::::
calibration

:::::::::
(2000–2014)

:
according to the hydrolog-

ical regimes
:::::
regime: a) snow-dominated, ;

:
b) nivo-pluvial, ;

:
c) pluvio-nival,

:
; and d) rain-dominated. N denotes the number of catchments

per hydrological regime.
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are for a) the KGE’, and b) the AOF.
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Figure 11.
::::::
Influence

::
of
:::

the
::::::

number
:::

of
:::::
donors

::::
used

:::
for

:::::
feature

::::::::
similarity

:::
for

::::::::
calibration

:::::::::::
(2000—2014);

:::::::::
Verification

::
1
::::::::::
(1990–1999);

::::
and

::::::::
Verification

::
2
::::::::::
(2015–2018).

::::
The

:::::
results

::::
from

:::::
spatial

::::::::
proximity

::
are

:::::::
included

:::
on

::
the

::::
right

::
of
::::
each

:::::
panel

::
for

:::::::::
comparison

::::::::
purposes.

:::
The

::::
dark

:::::
yellow

:::
box

::::::
denotes

:::
the

::::
upper

:::
and

:::::
lower

::::::
bounds

::
of

::
the

::::::
median

::::::::::
performance

::
(of

:::
the

::::
four

:
P
::::::::

products)
::::::
obtained

::::
with

:::::
spatial

::::::::
proximity,

:::::
while

::
the

:::::
lighter

::::::
yellow

:::
box

::::::::
represents

::
the

:::::
upper

::
an

::::
lower

::::::
bounds

::
of

:::
the

:::::::::
interquartile

::::
range

:::
for

:::::
spatial

::::::::
proximity.

29



5 Discussion

5.1 Performance of P products

During the individual
::::::::::
independent

:
catchment calibration (2000–2014) and two verification periods (1990–1999 and 2015–

2018), good performances were obtained with all P products (see Figure 4).
:::::
When

:::::::::::
decomposing

::::
the

::::::
results

::
of

:::
the

::::::
KGE’550

:::::::
objective

:::::::
function

::::
into

::
its

:::::
three

::::::::::
components

::::
(see

::::::::
Appendix

:::
C),

::
r

:::::::
exhibited

:::
the

::::::
lowest

:::::::::::
performance,

:::::
while

::
β

:::
and

::
γ

:::::
values

:::::
were

:::::::
generally

::::::
closer

::
to

::::
their

:::::::
optimal

::::::
values,

:::::::::
particularly

:::
for

:::::::::
calibration

::::
and

::::::::::
Verification

::
1. The results obtained with ERA5, which

is a reanalysis-only
::::::::
reanalysis product, were as good or even better than those obtained with the gauge-corrected products

CR2MET, RF-MEP, and MSWEPv2.8 (e.g., see AOF results for Verification 1
:::::
results

:::
for

:::
the

::::::::::
pluvio-nival

::::::::::
catchments in Fig-

ure 4
:
5). This

:
is

::
in

:::::::::
agreement

::::
with

:::::::::::::::
Tarek et al. (2020)

:
,
::::
who

::::::::
concluded

::::
that

:::::
ERA5

::::::
should

::
be

::::::::::
considered

:
a
::::::::::::
high-potential

::::::
dataset555

::
for

:::::::::::
hydrological

:::::::::
modelling

::
in

::::::::::
data-scarce

:::::::
regions.

::::
The

::::
good

:::::::::::
performance

::
of

::::::
ERA5

:
suggests that, for the particular case of

Chile, merging P products with ground-based measurements does not necessarily translate into improved hydrological model

performance, which may be attributed to the:
::
i)
:
lack of P rain gauges in the Andes mountain range.

:::::::::
Mountains;

::
ii)

::::::
ability

::
of

:::
the

:::::::::::
rainfall-runoff

::::::
model

::
to

::::::::::
compensate

:::
for

:::
the

::
P

::::::
forcing

:::::::
(visible

::
in

:::
the

:::::::::::
performances

:::
of

:::
the

:
β
::::
and

:
γ
:::::::::::
components;

:::::::::
Appendix

:::
C);

:::
and

:::
iii)

::::
fact

:::
that

::
P

::::::::
products

:::
still

::::
have

::::::
errors

::
in

:::
the

::::::::
detection

::
of

::
P

:::::
events

::::
that

:::::
could

::::::
impact

:::
the

::::::::::::
representation

::
of

:::
the

::::::::
modelled560

::
Q

::::::::
dynamics

:::
(as

::::::::
suggested

::
by

:::
the

:::::::
relative

:::::
lower

::::::::::
performance

:::
of

:::
the

:
r
:::::::::
component

:::
of

:::
the

::::::
KGE’).

Furthermore, the similar performances obtained with uncorrected (ERA5) and gauge-corrected (CR2MET, RF-MEP, and

MSWEPv2.8) P products, both in wet and dry periods, highlight that there was no single P dataset outperforming the oth-

ers in all periodsand for both objective functions. These results demonstrate that the calibration of hydrological model pa-

rameters smooths out, to some extent, the spatial differences among
:::::::::::::
spatio-temporal

:::::::::
differences

::::::::
between

:
P products (see565

Figure ??
::::::
Figures

::
2,

::
3,

:
6
::::

and
::
9), which is in agreement with previous studies that have demonstrated that model recalibration

:::::::::
calibration with each P product improves the performance ofQ simulations (e.g., Artan et al., 2007; Stisen and Sandholt, 2010;

Bitew et al., 2012; Thiemig et al., 2013). The systematic higher performance of CR2MET and RF-MEP for
::::::::::::
decomposition

::
of

::
the

::::::
KGE’

:::
into

:::
its

::::::::::
components

::::
also

:::::::::::
demonstrated

:::
the

:::::
ability

:::
of

:::
the

::::::::::
TUWmodel

::
to

::::::::::
compensate

::
for

:::
the

::::
total

:::::::
volume

::
of

:::
P ,

::
as

:::
the

:
β
::::::::::
component

:::
was

:::::
close

::
to
:::

the
::::::::

optimum
::::::
value,

::::::::::
particularly

:::
for calibration and Verification 1 compared to MSWEPv2.8 (see570

Figure 4)
::::
(see

::::::::
Appendix

:::
C),

::::::
which can be attributed to the improved detection of P events of the merged products (regarding

RF-MEP, see Baez-Villanueva et al., 2020). However,
::::
This

:::
can

::::
also

::
be

::::::::
observed

:::
for

:
MSWEPv2.8performed similar to these

merged products ,
::
as
::
it
::::::::
produced

:::
the

::::
best

::::::::::
performance

::::
over

::::::::::::::
snow-dominated

::::::::::
catchments under dry conditions (Verification 2).

Regarding the suitability of P products for parameter regionalisation, RF-MEP provided slightly better results in northern

Chile (17-30◦S)
::
the

:::
Far

::::::
North

:::
for

:::
the

:::::::::
calibration

::::::
period using both spatial proximity and feature similarity, suggesting that575

P products that are merged with ground-based information over arid climates can improve regionalisation performance. The

low performance obtained
::::
lower

:::::::::::
performance

:::::::
obtained

::
in
:::::::::::::

regionalisation
:
with ERA5 in the north

:::
Far

:::::
North

:
compared to the

other P products
:::::::
(median

:::::
values

::
<

::::
0.18

:::
for

::::::
feature

::::::::
similarity

::
in

:::
all

:::::::
periods) can be attributed to the absence

::
its

::::
high

::
P

::::::
values,

:::::
which

:::
are

:::::
likely

:::
due

::
to

:::
the

::::
lack of ground-based meteorological stations in its development . The use of ground observations as

they
::
P

:::::::
stations

::::
over

:::::
Chile

::
in

:::
the

:::::::::::
development

::
of

:::
the

:::::::
product.

::::
The

:::::::::::
incorporation

::
of

::::::::::::
ground-based

::::::
stations

:::
has

:::
the

::::::::
potential

::
to:580
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i) help to compensate
:::::::::
compensate

:::
for overestimations caused by the evaporation of hydrometeors before they reach the ground

(Maggioni and Massari, 2018); and ii) improve event-based detection skills (Baez-Villanueva et al., 2020; Zhang et al., 2021).

:::
The

:::::
latter

::
is

::::::
evident

::
in

::::::::
CR2MET

::::
and

:::::::::::
MSWEPv2.8,

::::::
which

:::
are

::::
both

:::::
based

::
on

::::::
ERA5

:::
but

:::::::
included

::::::
several

::::
rain

::::::
gauges

::
in

:::
the

:::
Far

:::::
North,

::::
and

::::
have

:
a
::::::
higher

::::::::::
performance

::::
than

::::::
ERA5

::::
(see

::::::
Figures

::
2,

::
3,

:::
and

::::
S1).

:

Despite the low performance of all P products in the north
:::
Far

:::::
North

::::
and

::::
Near

::::::
North

:
(median KGE’ and AOF values585

<0.5
::::
0.58, see Figure 7), the TUWmodel appears to be flexible enough to compensate, to some extent, for differences between

P products. A similar conclusion was obtained by Elsner et al. (2014), who examined differences between four meteorolog-

ical forcing datasets and their implications in hydrological model calibration in western USA using the Variable Infiltration

Capacity model (VIC; Liang et al., 1994). Our results are also in agreement with Bisselink et al. (2016), who concluded that

parameter sets obtained during calibration partially compensated the bias of seven P products used to force the fully-distributed590

LISFLOOD model in four catchments in southern Africa.

An unexpected result from this study is that the spatial resolution of the P products did not play a major role in model per-

formance during calibration, verification and regionalisation; although CR2MET and RF-MEP have a higher spatial resolution

(0.05◦; ∼25 km2) than MSWEPv2.8 (∼0.10◦; ∼100 km2) and ERA5 (∼0.28◦; ∼625 km2), all four products performed well

during the individual
::::::::::
independent

:
calibration of the hydrological model and the two verification periods. The performance of595

ERA5 over the 25 smallest catchments during regionalisation (area < 353.1 km2) was similar to that obtained with products

with a higher spatial resolution (FigureS3
::::
S11

:
of the supplementmaterial). This can be attributed to the fact that Chile is domi-

nated by large-scale frontal systems (Zhang and Wang, 2021),
:
and therefore, coarse-resolution products may perform well over

small catchments. These results
:::
Our

::::::
results

:::
also

:
align with the findings of Maggioni et al. (2013), who concluded that the loss

of spatial information associated with coarser resolution (e.g., ERA5) can be compensated through model calibration.600

5.2 Evaluation
::::
How

:::::
does

:::
the

::::::::::
calibration of regionalisation techniques

::::::::::
TUWmodel

:::::::::::
compensate

:::
for

::::::::::
differences

::
in

:::
P ?

Feature similarity provided the best performance when the TUWmodel was forced with all
:::
The

:::::::::
calibration

::
of

::::::::::
TUWmodel

::::
was

:::
able

::
to

:::::::::::
compensate,

::
to

::::
some

::::::
extent,

:::
for

:::::::::
differences

::
in

::::::
annual

:::
and

::::::::::
intra-annual P products (Figure 8)

:::::::
amounts,

:::::::::::
intermittency,

::::
and

:::::::
extremes

::::
(see

::::::
Figures

::
2

:::
and

::
3)

::::::
among

:::
the

::::
four

:::::::
products.

::::::
Using

::
the

::::::::
example

::
of

::
the

:::::::::::
nivo-pluvial

:::::::::
catchments,

::::::
Figure

:::
12

::::::::
illustrates

:::
how

:::::::::::
TUWmodel

:::::::::
parameters

::::::::::
compensate

:::
for

::::::::::
differences

:::::::
between

:::
the

::
P

:::::::
forcings

:::::
used

::
in

::::::::::
calibration,

:::::
while

:::::
Figure

:::
13

::::::
shows605

::
the

::::::::::::
corresponding

:::::::::
variations

::
in

:::
the

:::::
mean

:::::::
monthly

:::::
water

::::::
balance

:::::::::::
components.

::::::
Similar

::::::
figures

:::
for

::::::::::::::
snow-dominated, reinforcing

the idea that this conceptual hydrological model has a flexible enough structure to correct inter-forcing differences without

losing predictive capability in space, as observed in the obtained Preg values (only applied to
:::::::::::
pluvio-nival,

:::
and

:::::::::::::
rain-dominated

:::::::::
catchments

:::
can

:::
be

:::::
found

::
in

:::
the

::::::::::
supplement

:::::::
(Figures

:::::::::
S12–S17).

::
In

::::::
general,

:
the best performing regionalisation technique, i. e.

::::::::
calibrated

:::::::::
parameters

::::::
behave

::
as

:::::::
expected

:::
for

::::
each

:::::::::::
hydrological610

::::::
regime.

::
A
:::::::

notable
::::::::
exception

:::
is

::::::
ERA5,

::::::
which

:::::
shows

::::
low

::::::
values

:::
for

:::
the

:::::
snow

:::::::::
correction

::::::
factor

:::::
(SCF)

:::
in

::::::::::
nivo-pluvial

::::
and

:::::::::::::
snow-dominated

::::::::::
catchments

::::::::
(Figures

::
12

::::
and

:::::
S12).

::::::
These

:::::::::
catchments

::::
are

::::::::
primarily

::::::
located

:::
in

:::
the

::::
arid

::::
Near

::::::
North

::::::
region

:::
(see

::::::
Figure

::
2

:::
and

::::::
Figure

:::::
S15),

:::::
where

:::
the

:::::::::
estimated

:::::
winter

::
P
::
is
:::::::::::
substantially

:::::
lower

:::
for

:::::::::
CR2MET, feature similarity). Spatial

::::::::
RF-MEP,

:::
and

::::::::::::
MSWEPv2.8,

:::
and

::
a

::::
high

::::
SCF

:::::::
corrects

:::
this

::::::::
apparent

::::::::::::::
underestimation.

:::
The

:::::
lower

::
P
::::::::
amounts

::::::::
presented

::
in

:::::
these
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:::::::
products

::::
may

::::::
reflect

:::
the

:::::::::::
incorporation

:::
of

::::::::::
information

:::::
from

:::
rain

:::::::
gauges

::::::
located

::
in
:::::

drier,
:::::::::
low-lying

:::::
areas

::
to

::::::
correct

::::
their

:::
P615

:::::::
estimates

::::
(see

::::::
Figure

::::
S1).

:::::
ERA5

::::::::
presented

:::::::::
relatively

:::
low

::::
SCF

::::::
values

::::
over

:::::::::::
nivo-pluvial

::::::::::
catchments

::::::::
compared

::
to
::::

the
::::
other

:::
P

:::::::
products

:::::::
(Figure

::::
13),

:::::
which

::
is

::::::::
expected

:::::::
because

::
it

:::::::
exhibits

:::
the

::::::
highest

::
P
:::::::

values.
::::::::::
Conversely,

:::::::
because

::::::::
RF-MEP

:::
has

:::
the

::::::
lowest

:::::
mean

:::::::
monthly

:::
P

:::
over

::::
the

::::::::::
nivo-pluvial

::::::::::
catchments,

:::
the

::::::
model

::::::
adjusts

:::
the

:::::::::::
evaporation,

:::::
snow

:::::
water

:::::::::
equivalent,

::::
and

::::
soil

:::::::
moisture

:::::::::::
components

::::::
(Figure

::::
13),

::::
thus

::::::::
increasing

:::
the

:::::::::
simulated

::
Q

:::
(to

:::::
match

:::
the

::::::::
observed

:::
Q).

::::::::::
Substantial

:::::::::
differences

:::::
were

:::::::
obtained

:::
for

:::::
LPrat

::::
and620

::::
field

:::::::
capacity

:::::
(FC),

:::::
which

:::::::
directly

:::::
affect

::::::::::
evaporation

::::
and

:::
soil

:::::::::
moisture.

:::
For

::::::::
example,

::::
over

:::
the

::::::::::
nivo-pluvial

:::::::::::
catchments,

:::
the

::::
LPrat

::::
and

:::
FC

:::::
values

:::
for

::::::::
RF-MEP

:::
are

::::::
similar

::
to

::::
those

::
of

::::::
ERA5,

:::::::
despite

:::::::
RF-MEP

::::::
having

:::::::::::
substantially

:::::
lower

::
P

:::::::
amounts,

::::::
which

::
in

:::
turn

::
is
::::::::
reflected

::
in

:::
the

:::::::
reduced

:::
soil

:::::::
moisture

::::
and

::::::::::
evaporation

::::::::
amounts.

:::
The

::::::::::
differences

:::::::
between

:::::
LPrat

:::
and

:::
FC

:::::::::
according

::
to

::
P

::::::
product

:::
are

::::
even

:::::
more

::::::::::
pronounced

:::
for

:::::::::::::
snow-dominated

::::::::::
catchments

::::::
(Figure

:::::
S12).

:

::::::
Finally,

::::::
higher

::::::
values

::
of

:::
the

::::::::
nonlinear

:::::::::
parameter

:::
for

::::::
runoff

:::::::::
production

:::::
Beta

::::::
reduce

:::
the

:::::::
amount

::
of

:::::
water

::::
that

::::::
leaves

:::
the625

::::::::
catchment

::
as

::::::
runoff

::::::::::::::::::::::::::
(Széles et al., 2020, their Eq. 7).

:::
For

:::
all

::::::::::
hydrological

:::::::
regimes

:::::
except

:::::::::::
pluvio-nival,

:::
the

::::::
median

::::
Beta

:::::::::
parameter

:
is
:::::::::::
substantially

::::::
higher

:::
for

:::::
ERA5

::::
than

:::
for

::::
the

::::
other

::
P
::::::::

products.
::::

The
:::::
larger

:::::
Beta

:::::
values

::::::::
obtained

::::
with

::::::
ERA5

:::
are

::::::::
expected

::
to

:::::::
attenuate

:::
the

::::::
runoff

:::::::::
generation

:::::
from

:::::::
extreme

::
P

::::::
events

::::
(see

:::::
Figure

::::::
3c–d).

:::::::::::
Interestingly,

:::
the

:::::
Beta

::::::::
parameter

::
is
:::::

zero
::
in

:::::
some

::::::::::
pluvio-nival

::::::::::
catchments,

:::::
which

::::::
means

:::
that

::
all

::::::
liquid

::
P

:::
and

::::::::
snowmelt

::::
was

::::
used

::
to

:::::::
generate

:::::
runoff

:::::::
(Figure

::::
S16).

::::
This

:::::::::
behaviour

:::
was

:::::
more

:::::::::
pronounced

::::
with

::::::::
RF-MEP

:::
and

::::::::::::
MSWEPv2.8,

:::::
which

::::::::
exhibited

:::
the

:::::
lowest

::
P
::::::::
amounts

:::
and

:::::
longer

:::
dry

:::::
spells

:::::::
(Figure

:::
3a)630

:::
over

:::::
these

::::::::::
catchments.

:::
In

:::::::
general,

:::
the

::::::
storage

:::::::::::
components

:::::::
obtained

:::::
from

::::
each

::
P

:::::::
product

:::::::::
(computed

:::
as

:::
the

::::
sum

::
of

:::
the

::::
two

::::::
deepest

::::::::
reservoirs

:::
of

::
the

::::::
model

:::::::::::::::::::::::::::::::
(see Széles et al., 2020, their Figure 3)

:
)
:::
are

::::::
similar

:::
for

::
all

::::
four

::
P

::::::::
products.

:

5.3
:::::::::
Evaluation

::
of

:::::::::::::
regionalisation

::::::::::
techniques

:::
The

::::::::::::
compensation

:::
due

:::
to

:::
the

::::::::
flexibility

::
of

:::
the

::::::::::
TUWmodel

::::::::
observed

::::::
during

:::
the

:::::::::::
independent

:::::::::
calibration

:::
and

::::::::::
verification

::::
(see

::::::
Section

::::
5.2)

::::
also

:::::::::
influences

:::
the

:::::::::::::
regionalisation

::::::::::::
performance.

::::::
Feature

:::::::::
similarity

::::::::
provided

:::
the

::::
best

:::::::::::
performance

:::::
when

::::
the635

::::::::::
TUWmodel

:::
was

::::::
forced

::::
with

:::
all

::
P

:::::::
products

:::::::
(Figure

::
8),

:::::
while

::::::
spatial

:
proximity provided similar performance to feature simi-

larity over southern-central Chile
::
the

:::::::
Central

::::
Chile

::::
and

:::::
South

::::::
regions, where there is a high density ofQ stations. These results

are in agreement with Parajka et al. (2005), Oudin et al. (2008) and Neri et al. (2020), who demonstrated that spatial proximity

performs well over densely gauged regions.

The inclusion of donor catchments with low model performance introduces a diversity that has the potential to benefit Q640

prediction in ungauged catchments, as discussed by Oudin et al. (2008). We decided to incorporate these catchments in the

regionalisation process because of the diversity of climates and physiographic characteristics across continental Chile (see

Figure 1), with the potential downside that this may lead to errors in the transferred model parameters. Additionally, the

similarity between the performance of spatial proximity and feature similarity can be partially attributed to the fact that six

of the nine selected catchment characteristics are directly or indirectly related to climate, which in Chile is highly related to645

catchment spatial proximity
:::
the

:::::::::::
geographical

:::::::
locations

::
of

:::
the

::::::::::
catchments. Parameter regression was the regionalisation method

that provided the worst results (Figures 6 and 8); however, Figure 7 shows that this method generated good results over
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Figure 12.
:::::
Model

::::::::
parameters

:::::::
obtained

::::::
through

:::::::::
calibration

:
in
::::::::::

nivo-pluvial
:::::::::
catchments.

:::
The

::::::
vertical

::::
blue

:::
lines

:::::::
indicate

::
the

:::::
upper

:::
and

:::::
lower

::::
limits

::
of

:::
the

:::::::
parameter

::::::
ranges.

southern-central Chile (except for high-elevation areas )
::::::::::
low-elevated

::::
areas

::
of
:::
the

:::::::
Central

:::::
Chile

:::
and

:::::
South

::::::
regions, where there

are many potential donor catchments . The equifinality of model parameters may also impact
::::::
located

::::::
nearby.

:::
The

::::::::::::
compensation

:::
for

:::
P

:::::::::
differences

::::::::
obtained

:::::::
through

::::::
model

::::::::::
calibration

::::
also

:::::::
affected

:
the relative performance of the650

regionalisation techniquesby producing unrealisitic parameter sets , particularly for the case of parameter regression. Unlike

::::::::::::
regionalisation techniques

:
,
::::::::
producing

:::::::::
unrealistic

:::::::::
parameter

:::
sets

:::
in

::::
some

::::::
donor

::::::::::
catchments.

::
In

:::::::::
particular,

::::
such

::::::::::::
compensation

:::
may

:::::
have

::::::::
impacted

:::
the

:::::
spatial

::::::::::::
transferability

::
of

::::::
model

:::::::::
parameters

::::
with

:::
the

:::::::::
parameter

:::::::::
regression

:::::::
method.

:::
the

::::
main

::::::
reason

:::
for

:::
this

::
is

::::
that,

::::::
unlike

:::::::::
techniques

:
that transfer the entire parameter sets, the regression process denatures the already uncertain

model parameters by applying independent regression procedures using climate and physiographic characteristics (Arsenault655

and Brissette, 2014). This challenge can be overcome by simultaneously optimising both the model parameters and the regres-

sion equations (e.g., Samaniego et al., 2010; Rakovec et al., 2016; Beck et al., 2020a), but such an exercise is out
::::::
outside of the

scope of this study.

Figures 9 and ?? show the performances of the three regionalisation techniques according to hydrological regimes (see

Figure 1). For both spatial proximity and feature similarity, the best and worst results were obtained for pluvio-nival catchments660

and rain-dominated catchments, respectively, regardless of the objective function. The relative performance of snow-dominated

catchments and nivo-pluvial catchments was related to the selection of the objective function. A better performance was

achieved over snow-dominated catchments when the KGE’ was used as the objective function, while the opposite was observed

for the AOF.
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a) b) c)

Figure 13.
:::::
Mean

::::::
monthly

:::::
water

::::::
balance

:::::::::
components

::::
over

:::::::::
nivo-pluvial

:::::::::
catchments,

:::::::
obtained

::
by

::::::
forcing

:::
the

::::
TUW

:::::
model

::::
with

:::::::
different

::
P

::::::
products

:::
for

:::
the:

::
a)

:::::::::
calibration

::::::::::
(2000–2014);

::
b)

:::::::::
Verification

:
1
:::::::::::

(1990–1999);
:::
and

::
c)

:::::::::
Verification

:
2
::::::::::

(2015–2018)
:::::::
periods.

::::
Mean

:::::::
monthly

::
P

:::
was

:::::
added

::
for

:::::::::
comparison

:::::::
purposes.
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We calculated Preg and Rreg to evaluate the ensemble spread in simulated Q resulting from the implementation of each665

of the 10 donor catchment parameter sets for feature similarity using both objective functions, as described in Section 3.4.2.

Figure ?? shows the catchments according to whether Preg was higher (indicating better performance) using the KGE’ (green)

or the AOF (orange), while catchments with Preg differences of less than 0.05 were excluded (plotted as empty circles). The

use of the AOF resulted in higher Preg values over northern Chile, implying that a larger fraction of daily Q observations

lie within the uncertainty bands, with median values for the P products ranging from 0.69 (MSWEPv2.8)to 0.74 (RF-MEP).670

:::::
Figure

::
9

:::::
shows

:::
the

:::::::::::
performances

:::
of

:::
the

::::
three

::::::::::::
regionalisation

:::::::::
techniques

:::::::::
according

::
to

:::::::::::
hydrological

::::::
regimes

::::
(see

::::::
Figure

:::
1d)

:::
for

::
the

::::::::::
calibration

::::::
period.

:::::::::
Comparing

:::::::
Figures

::
5

:::
and

::
9,

::
it

::
is

::::::
evident

::::
that

:::
the

::::::::::::::
snow-dominated

:::::::::
catchments

:::::::::
performed

:::::::::::
substantially

:::::
worse

::::
than

::
in

:::
the

::::::::::
independent

:::::::::::
performance

:::::
during

:::
the

:::::
same

::::::
period

::::::
(Figure

:::
5). On the other hand, the KGE’ resulted in higher

Preg values over the humid south-central Chile, with median values ranging from 0.69 (MSWEPv2.8) to 0.76 (CR2MET and

ERA5). These results are in agreement with (Beck et al., 2016), who reported that the inclusion of hydrological signatures in675

the objective function reduced regionalisationperformance over more humid (tropical) catchments. The comparison of the two

objective functions with the Rreg index (Figure S2 in the supplement material) shows that the uncertainty band was narrower

in the northern region when using KGE’, with median values ranging from 2.20 (ERA5) to 1.16 (RF-MEP). Conversely, the

use of the AOF over south-central and southern Chile provided better results, with median values ranging from 0.89 (ERA5)

to 0.81 (RF-MEP), suggesting that there is a trade off between Preg and Rreg . Interestingly, all P products, regardless of their680

differences, provided very similar spatial patterns of Preg and Rreg, with the exception of Rreg for RF-MEP, where the use of

the AOF consistently resulted in better Preg and Rreg values.

Comparison of whetherPreg is greater for KGE’ and AOF according to catchment. Catchments with similar results (difference

< 0.05) are plotted as empty circles.

Figure ?? displays
::::::::::
pluvio-nival

:::::::::
catchments

:::::::::
performed

::::::::::::
systematically

:::::
better

::
in

:::
the

::::::::::
independent

:::::::::
calibration

:::
and

::::::::::
verification

::
as685

:::
well

:::
as

::
in

::::::::::::
regionalisation.

::::
This

:::::
could

:::
be

::::::::
attributed

::
to:

::
i)
:::
the

::::::
ability

::
of

:::
the

:::::
model

::
to
:::::::::
reproduce Q time series for two catchments

where good performance was obtained with feature similarity as the regionalisation technique, over a snow-dominated (in

the north, Figure ??a) and a rain-dominated (in the south, Figure ??b) catchment, using CR2MET as the P forcing. In the

snow-dominated catchment, the AOF resulted in a higher Preg , while in the rain-dominated catchment , the KGE’ led to a

higher Preg value. In the snow-dominated catchment, the AOF was better at reproducing the recession curves of small events690

at the expense of returning a wider uncertainty band (i. e., higher Rreg). In the rain-dominated catchment, both objective

functions produced good representations of the recession curves, and again the KGE’ showed a slightly wider uncertainty band

(i.e., higherRreg) than AOF.
::
in

:::
this

:::::::
regime;

:::
and

:::
ii)

::
the

::::::::
increased

:::::::::
likelihood

::
of

::::::::::
transferring

:::::
model

:::::::::
parameters

:::::
from

:
a
:::::::::
catchment

::::
with

::
the

:::::
same

:::::::::::
hydrological

::::::
regime,

::
as

::::
they

:::
are

:::::::
grouped

::::::
closed

:::::::
together

:::
and

:::::
form

::::
40%

::
of

:::
the

::::
total

:::::::
number

::
of

::::::::::
catchments.

Visualisation of three hydrological years (2000–2005) of two well performing catchments: a) Rio Claro en Rivadavia695

(snow-dominated); and b) Rio Negro en Chahuilco (rain-dominated). The left panel shows the location of these catchments,

the middle panel plots its hydrographs, and the right panel shows the flow duration curves for the KGE’ and AOF calculated

over 2000–2014, emphasising the low flows.
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5.4 Impact of nested catchments

Nested catchments play an important role in the performance of regionalisation methods because nested catchments
::
as

::::
they700

are more likely to have a strong climatological and physiological similarity to each other. As observed in
:::::
Figure

:
10, the

regionalisation method that was most impacted by the exclusion of nested catchments was spatial proximity, followed by

feature similarity. These results are in agreement with previous studies where the exclusion of nested catchments reduced the

performance of regionalisation techniques (Merz and Blöschl, 2004; Oudin et al., 2008; Neri et al., 2020). Feature similarity

::::
only presented a slight decrease when the nested catchments were neglected, which can be attributed to the low degree of705

nestedness (i.e., the number of catchments
:::
that

:
are nested in a larger one). As expected, parameter regression was affected

the least by the
:::
the

:
exclusion of nested catchments , as their removal had

::
had

::
a
:::::::::
negligible

:::::
effect

:::
on

::::::::
parameter

::::::::::
regression,

::
as

:::
the

:::::::
removal

:::
of

::::::::
relatively

::::
few

:::::::::
catchments

::::
had

::
a
:
negligible impact on the non-linear relationships between the climatic

and physiographic characteristics and the model parameters that were determined using all potential donor catchments. The

reduction of regionalisation performance when the nested catchments were removed was lower compared to the results
::::
than710

::
the

::::::::
reduction

:
reported in a case study over Austria (Neri et al., 2020, ; their Figure 9a)

:::::::::::::::::::::::::::
(Neri et al., 2020, their Figure 9a), which

could be attributed to: i) the degree of nestednessof the selected catchments, as the unique geography of Chile limits, to some

extent, the number of nested catchments within any larger catchment (only 10 of the 100 selected catchments contained more

than 3
::::
three

:
nested catchments); and ii) the percentage of total catchments that are nested (42% in this study, compared to 65%

in the Austrian case study).715

5.5
::::::

Impact
::
of

:::::::
number

::
of

::::::
donor

::::::::::
catchments

::::::::
Increasing

:::
the

:::::::
number

::
of

:::::
donor

:::::::::
catchments

::
in

::::::
feature

::::::::
similarity

::::::::
improved

:::
the

::::::::::::
regionalisation

:::::::::::
performance.

::::
This

::
is

::
in

:::::::::
agreement

::::
with

::::::
several

::::::
studies

::::
that

::::
have

::::::::::::
demonstrated

:::
that

:::::
using

:::
an

::::::::
ensemble

:::
of

:::::::
multiple

:::::
donor

::::::::::
catchments

::::::::
improves

:::::::::::::
regionalisation

:::::
results

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(McIntyre et al., 2005; Zelelew and Alfredsen, 2014; Garambois et al., 2015; Beck et al., 2016; Neri et al., 2020).

::::::
Figure

::
11

:::::
shows

::::
that

::::
there

:::
is

:
a
:::::

slight
::::::::

increase
::
in

:::::::::::
performance

:::::
when

::
4
::::::
donors

:::
or

::::
more

::::
are

:::::
used,

::::::::::
independent

:::
of

:::
the

::
P

:::::::
product

::::
and720

::::::::
evaluated

::::::
period.

:::::
These

::::::
results

::
are

::::::
similar

::
to
:::::
those

::
of

::::::::::::::
Neri et al. (2020)

:
,
::::
who

:::::::::
determined

::::
that

::::
three

::::::
donors

::::
were

:::::::
optimal

:::
for

:::
the

::::::::::
TUWmodel

::::
over

:::::::
Austrian

::::::::::
catchments.

:::::::
Feature

::::::::
similarity

::::
still

:::::::::::
outperformed

::::::
spatial

:::::::::
proximity

:::::
when

::::
only

:::
one

:::::::::
catchment

::::
was

::::
used

::
to

::::::
transfer

:::
the

:::::
model

::::::::::
parameters

::
to

:::
the

::::::::
ungauged

::::::::::
catchments,

:::::
which

::
is

::
in

::::::::
agreement

::::
with

::::::::
multiple

::::::
studies

:::
that

::::
have

::::::
shown

::
the

::::::
ability

::
of

:::
this

:::::::
method

::
to

::::::
produce

:::::
good

::::::::::::
regionalisation

::::::
results

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Parajka et al., 2005; Oudin et al., 2008; Bao et al., 2012; Garambois et al., 2015; Neri et al., 2020)

:
.725
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6 Conclusion

Streamflow prediction
:::::::
Accurate

:::::::::
streamflow

::::::::::
predictions in ungauged catchments is an essential task

:::
are

::::::
critical

:
for water re-

sources management, and
::::
their

:::::::::
generation

::
is

:::::::::
challenged

:::
by

:
uncertainties arising from P productsprovide a challenge for the

accurate prediction of daily Q. In this paper, we assessed the relative performance of three common regionalisation techniques

(spatial proximity, feature similarity, and parameter regression) over 100 near-natural catchments located in the topographically730

and climatologically diverse Chilean territory. Four P products (CR2MET, RF-MEP, ERA5, and MSWEPv2.8) were used to

force the semi-distributed TUWmodel model at the daily temporal scale, and two objective functions (KGE’ and AOF) were

used for calibration
:::
time

:::::
scale,

:::::
using

::::
the

:::::
KGE’

::
as

::::
the

:::::::::
calibration

::::::::
objective

:::::::
function

::::
and

::::::
metric to assess: i) the impact of

selecting different P forcings on the relative performance of regionalisation techniques; and ii) possible connections between

regionalisation performance and hydrological regimes. Our key findings are as follows:735

1. For the selected P products, the one with
:::
that

::::::::
provided the best (worst) performance during independent calibration and

verification did not necessarily provide
::::::
yielded the best (worst) results during regionalisation.

2. From the selected
:::
The P products , the use of those that are corrected with daily gauge observations did not necessarily

translate into improved
::::::
yielded

:::
the

::::
best hydrological model performance. However, we expect that P products with

lower performances compared to
:::
than

:
the ones used in this study might benefit from such a correction.740

3. The spatial resolution of the P products did not noticeably affect model performance during both the calibration and

verification periods.

4.
:::
The

::::::::::
TUWmodel

::::
was

::::
able

::
to

::::::::::
compensate,

::
to

:::::
some

::::::
extent,

:::
the

:::::::::
differences

:::::::
between

::
P

:::::::
products

:::::::
through

::::::
model

:::::::::
calibration

::
by

::::::::
adjusting

:::
the

:::::
model

::::::::::
parameters

::::
and,

::::::::
therefore,

::::::::
adjusting

:::
the

::::
water

:::::::
balance

::::::::::
components

:::::
(e.g.,

:::::
snow

::::
water

::::::::::
equivalent,

::::::::::
evaporation,

:::
and

::::
soil

::::::::
moisture).

:
745

5. Feature similarity was the best performing regionalisation technique, regardless of the choice of gridded P product or

the calibration criteria we explored (KGE’ or AOF)
::::::::::
hydrological

::::::
regime.

6. Spatial proximity was the second best performing regionalisation method . This can be explained by the fact that
::::::
because,

in our study area, spatial proximity is a good proxy of climatic similarity for most neighbouring catchments.

7. Parameter regression provided the worst regionalisation performance, reinforcing the importance of transferring com-750

plete parameter sets to ungauged catchments.

8. The performance of regionalisation techniques can depend on the hydrological regime. We obtained the best results

in pluvio-nival catchments with spatial proximity and feature similarity, while the same techniques provided the worst

performance in rain-dominated catchments.

9. When using feature similarity, smaller uncertainty bands were obtained using the ensemble of parameter sets obtained755

with AOF calibrations across the arid north, while the KGE’ provided a more reliable ensemble in more humid central-southern
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Chile
:::
The

:::::::::
exclusion

::
of

::::::::
(relatively

:::::
few)

:::::
nested

::::::::::
catchments

:::
had

:
a
::::::::
minimal

::::::
impact

::
on

:::
the

:::::::::
non-linear

:::::::::::
relationships

:::::::
between

::
the

:::::::
climatic

::::
and

:::::::::::
physiographic

::::::::::::
characteristics

::::
(i.e.,

:::::::::
predictors)

:::
and

::::::
model

:::::::::
parameters

::::
(i.e.,

:::::::::::
predictands),

:::::
having

::
a
::::::::
negligible

:::::
effect

::
on

::::::::
parameter

:::::::::
regression

::::::
results.

:

10.
:::
The

:::::::::::
performance

::
of
:::::::

feature
::::::::
similarity

:::::::::
increased

:::::
when

::::
four

::
or

:::::
more

::::::::::
catchments

:::::
were

::::
used

:::
as

:::::::
donors;

:::::::
however,

::::
the760

:::::::::
differences

::
in

::::::::::
performance

:::::
were

:::
not

::::::::::
statistically

::::::::
significant

:::::
when

:::::::::
compared

::
to

:::
the

:::::
results

::
of
:::::
using

::::
only

::::
one

:::::
donor.

The results presented in this study
:::
here

:
are valid only for Chile and might not necessarily be valid for other regions. Despite

this
::::::::::
near-natural

:::::::::
catchments

::::::
across

:::::::::
continental

::::::
Chile.

:::::::::::
Nevertheless, they provide guidance for ongoing and future studies in-

volving the application of gridded P products for regionalisation of
::::::::::
regionalising hydrological model parameters in ungauged

basins. The feature similarity procedure described here could be used to refine the parameter transfer approach that has been765

preliminary adopted in
::::::::::::
regionalisation

::::::::
approach

:::::::
adopted

:::
for

:
national scale hydrological characterisations for

::
in

:
Chile (e.g.,

Bambach et al., 2018; Lagos et al., 2019). Additionally, further analyses could cover
:::::::
address: i) the effects that objective

functions may have on the simulation of streamflow-derived hydrological signatures (e.g., Pool et al., 2017); ii) other states

and fluxes derived from remote sensing data (e.g., Dembélé et al., 2020), ;
:
iii) the influence of parameter equifinality (mainly

for parameter regression), which can be accounted for by simultaneously optimising the model parameters and the regression770

equations, as described in Beck et al. (2020a); iv) the use of additional model structures, implemented through flexible mod-

elling platforms (e.g., Clark et al., 2008; Knoben et al., 2019); and v) assessments of the sensitivity of regionalisation results

with respect to modified climate scenarios.
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Appendix A: Selection
::::::::::
Conceptual

:::::
figure

:
of catchment characteristics for feature similarity

:::::::::::
hydrological

:::::::
regimes

Q

t

Snow-dominated 

Peak due to snowmelt

Q

t

Pluvio-nival
Higher peak corresponding to 
months with maximum P

Q

t

Lower peak due to snowmelt

Nivo-pluvial

Lower peak corresponding to 
months with maximum P

Q

t

Higher peak due to snowmelt

Rain-dominated 
Peak corresponding to 
months with maximum P

Figure A1.
::::::::
Conceptual

::::::::
illustration

::
of

:::
the

:::::::::
hydrological

::::::
regimes

::::
used

::
to

::::::
classify

:::
the

:::
100

:::::::::
near-natural

::::::::
catchments

::::
used

::
in

:::
this

:::::
study.

Appendix B:
:::::::
Selection

:::
of

:::::::::
catchment

:::::::::::::
characteristics

:::
for

:::::::
feature

::::::::
similarity775

To avoid including redundant information when quantifying catchment similarity, we examined the correlations between the

catchment characteristics described in Table 4. Figure B1 shows correlation matrices between catchment characteristics using

the Pearson correlation (a) and the Spearman rank (b) correlation coefficients. We only present correlations obtained with

CR2MET, since very similar results were obtained with the remaining P products. Because the mean and median elevation are

highly correlated (values of 1.0 and 0.99 for the Pearson and Spearman correlation coefficients, respectively), we decided to780

keep the median elevation under the assumption that it is more representative of topographic conditions, given the pronounced

elevation gradients in continental Chile. Similarly, mean annual PE was excluded because of high correlations between this

variable and
:
its

:::::
high

:::::::::
correlation

::::
with

:
mean annual T (0.87 and 0.86 for the Pearson and Spearman correlation coefficients,

respectively):
:
,
:
notwithstanding that T was used to calculate PE. SDII was also excluded due to its high correlation to the

rx5day (0.97 for both coefficients). Finally, we excluded the snow cover from CAMELS-CL, as we found it to be unreliable785

over the snow-dominated catchments selected in our analysis.
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Figure B1.
::::::::
Correlation

::::::
matrices

::
of
:::
the

::::::::
catchment

:::::::::::
characteristics

:::::::
described

::
in

:::::
Table

:
4
::::
using

::::::::
CR2MET

::
as

:::
the

::
P

::::::
product

:::
for:

::
a)

:::
the

::::::
Pearson

::::::::
correlation,

::
to

::::::
evaluate

:::::
linear

:::::::::
correlation;

:::
and

::
b)

::
the

::::::::
Spearman

::::::::
correlation

::
to

:::::::
evaluate

::
the

::::::::
monotonic

:::::::::
correlation.

Appendix C:
:::::::::::
Performance

::
of

:::
the

:::::::::::
components

::
of

:::
the

::::::
KGE’

Table C1.
:::::::
Quantiles

:::
0.25

:::
and

::::
0.75

::
of

:::
the

::::::::
correlation

::::::::
coefficient

::
(r)

::
of

:::
the

:::::
KGE’

:::
over

:::
the

::::::
selected

:::::::::
catchments.

:::::
Pearson

::::::::
correlation

::
(r)

:::::::
CR2MET

::::::
RF-MEP

::::
ERA5

:::::::::
MSWEPv2.8

:::::::
Calibration

::::
(cal.)

: :::::::
0.78–0.90

:::::::
0.77–0.88

:::::::
0.71–0.86

:::::::
0.77–0.88

::::::::
Verification

:
1
:::
(Ver.

::
1)

:::::::
0.74–0.88

:::::::
0.72–0.87

:::::::
0.67–0.87

:::::::
0.69–0.86

::::::::
Verification

:
2
:::
(Ver.

::
2)

:::::::
0.68–0.86

:::::::
0.59–0.85

:::::::
0.59–0.86

:::::::
0.67–0.85

:::::
Spatial

::::::
proximity

::::
(cal.)

:::::::
0.70–0.87

:::::::
0.68–0.84

:::::::
0.57–0.82

:::::::
0.66–0.84

:::::
Spatial

::::::
proximity

::::
(Ver.

::
1)

:::::::
0.66–0.86

:::::::
0.63–0.84

:::::::
0.61–0.84

:::::::
0.62–0.84

:::::
Spatial

::::::
proximity

::::
(Ver.

::
2)

:::::::
0.61–0.83

:::::::
0.51–0.82

:::::::
0.56–0.83

:::::::
0.59–0.82

:::::
Feature

:::::::
similarity

:::
(cal.)

: :::::::
0.74–0.89

:::::::
0.71–0.88

:::::::
0.69–0.85

:::::::
0.72–0.88

:::::
Feature

:::::::
similarity

:::
(Ver.

::
1)

:::::::
0.69–0.88

:::::::
0.70–0.88

:::::::
0.67–0.88

:::::::
0.69–0.86

:::::
Feature

:::::::
similarity

:::
(Ver.

::
2)

:::::::
0.64–0.87

:::::::
0.59–0.85

:::::::
0.64–0.87

:::::::
0.65–0.84

:::::::
Parameter

:::::::
regression

:::
(cal.)

: :::::::
0.54–0.80

:::::::
0.54–0.69

:::::::
0.60–0.82

:::::::
0.42–0.63

:::::::
Parameter

:::::::
regression

:::
(Ver.

::
1)

:::::::
0.58–0.80

:::::::
0.50–0.68

:::::::
0.64–0.86

:::::::
0.43–0.62

:::::::
Parameter

:::::::
regression

:::
(Ver.

::
2)

:::::::
0.50–0.79

:::::::
0.43–0.65

:::::::
0.59–0.84

:::::::
0.37–0.57

Correlation matrices of the catchment characteristics described in Table 4 using CR2METv2 as the P product for a) the

Pearson correlation, to evaluate linear correlation, and b) the Spearman correlation to evaluate the monotonic correlation.
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Table C2.
:::::::
Quantiles

:::
0.25

:::
and

::::
0.75

::
of

:::
the

:::
bias

::::
ratio

::
(β)

::
of
:::
the

:::::
KGE’

:::
over

:::
the

::::::
selected

:::::::::
catchment.

:::
Bias

:::
ratio

:::
(β)

:::::::
CR2MET

::::::
RF-MEP

::::
ERA5

:::::::::
MSWEPv2.8

:::::::
Calibration

::::
(cal.)

: :::::::
0.95–0.99

:::::::
0.93–1.01

:::::::
0.97–1.02

:::::::
0.90–1.02

::::::::
Verification

:
1
:::
(Ver.

::
1)

:::::::
0.89–1.03

:::::::
0.84–1.02

:::::::
0.90–1.12

:::::::
0.77–1.04

::::::::
Verification

:
2
:::
(Ver.

::
2)

:::::::
0.96–1.19

:::::::
0.86–1.11

:::::::
1.00–1.25

:::::::
0.74–1.06

:::::
Spatial

::::::
proximity

::::
(cal.)

:::::::
0.73–1.09

:::::::
0.70–1.15

:::::::
0.74–1.22

:::::::
0.70–1.13

:::::
Spatial

::::::
proximity

::::
(Ver.

::
1)

:::::::
0.72–1.12

:::::::
0.70–1.12

:::::::
0.72–1.22

::::::
0.69–1.08

:::::
Spatial

::::::
proximity

::::
(Ver.

::
2)

:::::::
0.73–1.30

:::::::
0.73–1.23

:::::::
0.77–1.46

:::::::
0.68–1.14

:::::
Feature

:::::::
similarity

:::
(cal.)

: :::::::
0.81–1.19

:::::::
0.78–1.29

:::::::
0.81–1.35

::::::
0.68–1.3

:::::
Feature

:::::::
similarity

:::
(Ver.

::
1)

:::::::
0.80–1.17

:::::::
0.74–1.24

:::::::
0.80–1.36

:::::::
0.69–1.29

:::::
Feature

:::::::
similarity

:::
(Ver.

::
2)

:::::::
0.86–1.40

:::::::
0.77–1.40

:::::::
0.86–1.57

:::::::
0.69–1.27

:::::::
Parameter

:::::::
regression

:::
(cal.)

: :::::::
0.99–2.04

:::::::
0.89–1.72

:::::::
0.76–1.78

:::::::
0.82–3.07

:::::::
Parameter

:::::::
regression

:::
(Ver.

::
1)

:::::::
0.99–1.73

:::::::
0.87–1.65

:::::::
0.76–1.62

:::::::
0.83–2.64

:::::::
Parameter

:::::::
regression

:::
(Ver.

::
2)

:::::::
1.10–2.05

:::::::
0.90–1.83

:::::::
0.88–1.94

:::::::
0.83–2.54

Table C3.
:::::::
Quantiles

:::
0.25

:::
and

::::
0.75

::
of

:::
the

:::::::
variability

::::
ratio

:::
(γ)

::
of

::
the

:::::
KGE’

::::
over

::
the

:::::::
selected

:::::::::
catchments.

:::::::
Variability

:::
ratio

:::
(γ)

:::::::
CR2MET

::::::
RF-MEP

::::
ERA5

:::::::::
MSWEPv2.8

:::::::
Calibration

::::
(cal.)

: :::::::
0.97–1.00

:::::::
0.95–1.00

:::::::
0.95–1.01

:::::::
0.96–1.01

::::::::
Verification

:
1
:::
(Ver.

::
1)

:::::::
0.93–1.07

:::::::
0.92–1.06

:::::::
0.93–1.07

:::::::
0.93–1.11

::::::::
Verification

:
2
:::
(Ver.

::
2)

:::::::
0.92–1.13

:::::::
0.91–1.17

:::::::
0.91–1.12

:::::::
0.79–1.05

:::::
Spatial

::::::
proximity

::::
(cal.)

:::::::
0.84–1.20

:::::::
0.84–1.23

:::::::
0.88–1.24

:::::::
0.88–1.22

:::::
Spatial

::::::
proximity

::::
(Ver.

::
1)

:::::::
0.89–1.24

:::::::
0.84–1.30

:::::::
0.85–1.32

:::::::
0.86–1.27

:::::
Spatial

::::::
proximity

::::
(Ver.

::
2)

:::::::
0.88–1.34

:::::::
0.85–1.37

:::::::
0.85–1.38

:::::::
0.75–1.19

:::::
Feature

:::::::
similarity

:::
(cal.)

: :::::::
0.74–1.06

:::::::
0.75–1.06

:::::::
0.75–1.10

:::::::
0.78–1.07

:::::
Feature

:::::::
similarity

:::
(Ver.

::
1)

:::::::
0.79–1.04

:::::::
0.76–1.06

:::::::
0.77–1.07

:::::::
0.81–1.03

:::::
Feature

:::::::
similarity

:::
(Ver.

::
2)

:::::::
0.79–1.13

:::::::
0.75–1.12

:::::::
0.79–1.15

:::::::
0.66–0.97

:::::::
Parameter

:::::::
regression

:::
(cal.)

: :::::::
0.80–1.18

:::::::
1.02–1.50

:::::::
0.84–1.23

:::::::
1.26–1.89

:::::::
Parameter

:::::::
regression

:::
(Ver.

::
1)

:::::::
0.82–1.20

:::::::
1.02–1.35

:::::::
0.87–1.25

:::::::
1.27–1.69

:::::::
Parameter

:::::::
regression

:::
(Ver.

::
2)

:::::::
0.86–1.38

:::::::
1.15–1.83

:::::::
0.86–1.46

:::::::
1.22–1.82
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