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GENERAL COMMENTS 

This paper introduces several variants of long short-term memory networks (LSTM) for the estimation of 
predictive uncertainty in rainfall-runoff modelling.  The methods are explored using the CAMELS dataset 
(Catchment Attributes and MEteorology for Large-sample Studies) (Addor et al., 2017) as a means to 
provide a large-scale benchmark for the proposed methods as well as others that may be explored in the 
future.  My takeaway is that both of these items are the main contributions of the paper, the latter, in 
my opinion, being the most relevant. 

In general, the paper is well-written and clear, the methodology is reasonable (however, some 
suggestions are included below), and the results seem promising.  The main point I feel important to 
raise is that the authors adopt LSTM as the sole model and do not compare it against a plethora of other 
‘simpler’ data-driven models that can provide estimates of the predictive uncertainty, likely with much 
less computational cost and onerous hyper-parameter tuning.  Since the authors are looking to create a 
benchmark for comparing different predictive uncertainty estimation techniques in the context of 
rainfall-runoff modelling, it seems reasonable that very simple approaches be explored as a baseline 
before considering more complex methods.  This critique is not meant to take anything away from the 
work that is done, since the reviewer understands LSTM may be a preferred method within this group 
(as is the case with process-based models within other groups), but more to seek justification for using 
more complicated (computationally intensive) models when it may suffice to use simpler ones that end 
up providing similar results, which seems relevant to consider from a benchmarking perspective. 

Aside form the above point, I consider most other comments below relatively minor but still important 
to address. 

If the authors can suitably address the comments noted below, I would be happy to recommend that 
the paper be published in Hydrology and Earth System Sciences. 

 

SPECIFIC COMMENTS 

1. Terminology: throughout the paper the authors mention both ‘prediction’ and ‘forecasting’, 
which have different purposes and (potentially) different modelling setups.  The authors should 
be consistent in their use of terminology throughout the manuscript.  It appears the term 
‘prediction’ is more appropriate considering their application. 
 



2. Introduction: in L20-31 it would be good for the authors to acknowledge other established and 
recent methods for probabilistic prediction (and forecasting) in hydrology including: quantile 
regression-based neural networks (Cannon, 2018, 2011), copula-based approaches (Li et al., 
2021; Liu et al., 2021),  and (parametric/distributional) probabilistic decision tree methods 
(Başağaoğlu et al., 2021; Schlosser et al., 2019),  the latter methods allow for the predictive 
distribution of the target variable to be easily estimated as part of the training procedure.  
Although I have yet to undertake such an analysis myself, I suspect the latter group of methods 
could estimate predictive uncertainty with much less computational expense than the LSTM 
variants adopted here. 
 

3. Introduction: the authors may want to acknowledge the recent paper by Althoff et al. (2021) 
whom also used MCD with LSTMs for daily streamflow forecasting. 
 

4. Section 2 and 2.3: while I appreciate the authors have been exploring LSTM in many former 
studies and are evolving a research program around this method, from my own experience, 
these methods are extremely computationally intensive (due to it’s recurrent formulation, 
gradient-based learning, need for careful hyper-parameter tuning, etc.), and thus tend to be a 
‘turn-off’ for those who do not have adequate computing resources to explore such methods.  It 
would seem beneficial for the reader to have a ‘simpler’ non-LSTM baseline to compare against 
the proposed LSTM variants.  If the results of the LSTM variants significantly outperform these 
simpler methods, then it may serve as a motivation for other researchers to devote more time 
and resources to incorporating LSTM into their research endeavours.  My feeling is that a simple 
benchmark method could include one of  the many variants of quantile regression forests (see 
for example, https://scikit-garden.github.io/examples/QuantileRegressionForests/).  This would 
not seem out of scope as the authors mention in Section 2 that their work is devoted to data-
driven methods, of which LSTM are only a small (but relevant) fraction. 
 

5. L177-180: This somewhat confusing.  If I understand correctly (based on the Althoff et al. (2021) 
paper), dropout is used during training at each iteration but it does not create a separate model 
at each iteration, only a ‘thinned’ network.  However, performing dropout during testing (or 
model implementation, evaluation, or whatever other term you wish to use), each time you 
make a prediction you simply turn on/off nodes according to the pre-specified probabilities used 
during training and you repeat this as many times as you desire, creating a number of ‘sister’ 
predictions.  Again, the model does not change, you simply ‘thin’ the network each time you 
create a ‘sister’ prediction.  If this is how MCD was used in the experiments described in this 
paper, it is not apparent and would be helpful to clarify. 
 

6. L193-4: why not use a regularized squared loss function?  Is it not a standard practice to perform 
L2 (and potentially L1) regularization to improve LSTM performance and reduce overfitting?  
Was this considered?  If not, why? 
 

7. L195-6: what dataset partition was used to select optimal hyper-parameters? 
 

8. Section 2.4.3: the authors should formally define first and second order uncertainties. 
 

9. Table 3: it’s not clear how the ‘obs’ data is to be used to ‘contextualize’ the results from the 
different models.  More detail should be provided (perhaps with an example in the relevant 

https://scikit-garden.github.io/examples/QuantileRegressionForests/


section). 
 

10. L286-289: it would seem like a good idea for the authors to investigate how best to use the 
CMAL and UMAL variants for improving predictive performance at low and high (tail) flows 
(from the point prediction point of view), as this tends to be a major impetus for creating 
models with uncertainty assessment capabilities.  In other words, what’s the point of going 
through the trouble of designing these more sophisticated methods if they cannot outperform 
the base approach (LSTMp) when assessed on highly relevant metrics.  Please don’t get me 
wrong, I am not trying to downplay the very interesting work done by the authors, I am simply 
trying to help them more fully explore the merits of their work and better ‘sell’ their approach 
to a ‘skeptic’. 
 

11. Section 3.2.2 is very interesting! 
 

12. Section 3.2.3: once first and second order uncertainties are formally defined (see comment 8), 
this section should give a good description of what is shown in Figure 11 but it is unclear what 
message the authors expect the reader to take-away from this figure.  What’s the relevance of 
this figure and why should the reader ‘care’ about it? 
 

13. Section 3.3: my understanding is that this is the time needed to make predictions with a trained 
model.  What is the training time for the different models?  Can the authors provide an example 
calculation for the overall run-time in Appendix A (or at the very least in their reply, it’s not clear 
how the 365 and 174 days were calculated)? 
 

14. Section 4: after L335 the authors may wish to very briefly summarize the adopted models and 
datasets used in the study before continuing with L336 onwards.  This should help the 
interested reader with a short ‘time-budget’, who may only jump from the abstract to the 
conclusion, get a decent idea of the methods and dataset involved (the dataset being one of the 
key strengths of this paper). 
 

15. Each equation in the appendices (B1, B2, etc.) should be properly cited (the rule is to cite all 
equations that are not developed by the authors in the paper). 

 

TECHNICAL CORRECTIONS 

• L4: ‘This contributions…’ 
• L9: Please rephrase ‘…and show that learn nuanced behaviors in different situations.’ 
• L182-3 seems to be repeated at L193-4? 
• Table 2 should be placed after it is mentioned in the text. 
• L207: remove ‘of’. 
• Spell out NSE and KGE at first use. 
• L216: perhaps indicate where the median aggregator is used in the paper? 
• L223: ‘produced’. 
• L33: ‘in the form of’. 
• Figure 10 and 11 legends: remove the 0 from ‘05’. 
• Figure 11 x-axis: ‘Dec’ not ‘Dez’. 



• L417: remove ‘single’ (duplicated). 
• L420-1: ‘They have seen…’? 
• L430 should be reviewed for duplicated words (‘the training data’) and typos. 
• L450: not clear what ‘i’ pertains to… 
• L470: remove ‘can be’ (duplicated). 
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