
REVIEWER 1: John Quilty

GENERAL COMMENTS

This paper introduces several variants of long short-term memory networks (LSTM)

for the estimation of predictive uncertainty in rainfall-runoff modelling. The

methods are explored using the CAMELS dataset (Catchment Attributes and

MEteorology for Large-sample Studies) ( Addor e t al ., 2017) as a means to provide a

large-scale benchmark for the proposed methods as well as others that may be

explored in the future. My takeaway is that both of these items are the main

contributions of the paper, the latter, in my opinion, being the most relevant. In

general, the paper is well-written and clear, the methodology is reasonable (however,

some suggestions are included below), and the results seem promising. The main

point I feel important to raise is that the authors adopt LSTM as the sole model and

do not compare it against a plethora of other ‘simpler’ data-driven models that can

provide estimates of the predictive uncertainty, likely with much less computational

cost and onerous hyper-parameter tuning. Since the authors are looking to create a

benchmark for comparing different predictive uncertainty estimation techniques in

the context of rainfall-runoff modelling, it seems reasonable that very simple

approaches be explored as a baseline before considering more complex methods.

This critique is not meant to take anything away from the work that is done, since

the reviewer understands LSTM may be a preferred method within this group (as is

the case with process-based models within other groups), but more to seek

justification for using more complicated (computationally intensive) models when it

may suffice to use simpler ones that end up providing similar results, which seems

relevant to consider from a benchmarking perspective. Aside form the above point, I

consider most other comments below relatively minor but still important to

address.If the authors can suitably address the comments noted below, I would be

happy to recommend that the paper be published in Hydrology and Earth System

Sciences.



Thank you for the thoughtful commentary. It was very helpful to us. We will respond

to each of these issues in specific comments below, however it is worthwhile to

address the larger point up front.

In general, we agree with the sentiment that complex approaches should be

compared with a simpler reference. The lack thereof is exactly the reason why we

proposed our baselines: We do not see any non-trivial method that would be easier

than approaches that only require differentiable model-backbones able to provide

the needed outputs. Especially if one considers that we gain fully distributional

predictions from them (see Figure I of our answers), which are extremely rich

representations that  render them very flexible. That is, they can be used for almost

all kinds of comparisons and benchmarking efforts in the future (e.g., we can

analytically analyse the distribution as such, sample from them, derive point

estimates such as the mean, the median or the maximum likelihood estimate, etc.;

see also Figure 1 of our ).

Further, just adding arbitrary methods to the paper just because we can do it from a

computational standpoint would be antithetical with the idea of letting

benchmarking become a community effort: Good benchmarking is not something

that can be done in a responsible way in any single contribution, unless that paper

itself is the outcome of a larger community effort (e.g., Best et al., 2015; Kratzert et

al., 2019). Constructing new benchmarking approaches in a vacuum can be

dangerous because they can easily become straw men (i.e., they might appear to be

bad in isolation, but in reality the performance just reflects the choices or inabilities

of the modellers). It can take a lot of knowledge, skill, and experience in any given

method to use it correctly (even for “simple” methods). Because there is so much

nuance to the current generation of ML and DL methods, because they take so much

knowledge and skill to implement correctly, and because the hydrology community is

just starting to build widespread expertise in these areas, it is all too easy to conduct

flawed comparative studies in a vacuum. The way to guard against this is community

benchmarking: We start with a set of self-contained baselines that are closed in

themselves and openly share our framework, data, and methods Over time, we as a

https://journals.ametsoc.org/view/journals/hydr/16/3/jhm-d-14-0158_1.xml
https://hess.copernicus.org/articles/23/5089/2019/
https://hess.copernicus.org/articles/23/5089/2019/


community can then improve, replace, or add to them. Everyone runs the model or

approach that they know best and results are compared at a community level.

As an example, in the specific comment 4 of reviewer 1 a particular method (QRF) is

suggested to us. This somewhat undermines our intention of establishing DL-based

baselines, since it is implied that practitioners can use it as a point of comparison.

Imagine if we either naively or nefariously included the results from our QRF

exploration (see our answer to specific comment #4) in the paper and showed that we

could beat it.  The end result would be that we would not have to push back against

the request — and also our methods would look better by comparison. Further, the

reviewer has not not used the method for the present setting (see specific comment

#4), so he would have to trust our evaluation and make our road to publication easier.

Despite this, we argue to not include QRF, since including it (and the corresponding

outcomes) would be unrigorous . That is, the results might paint a wrong picture of

the capabilities of the QRF, thus flawing the comparative benchmark and its

potential adaptation.

This is why community benchmarking is so important. Community benchmarking is

how a research community guards against this type of ad hoc and potentially

misleading comparison.  This study provides a UE benchmark on the CAMELS data,

which is a large, publicly curated, open dataset that has been used frequently for

model benchmarking. Our goal is to start a community benchmarking effort on this

dataset for UE. In our view adding ad hoc benchmarks would be counterproductive.



Figure 1. Different forms of predictions and their relation to each other. Note that

the point prediction in plot (a) is the mean of the distribution prediction of plot (c).

Lastly we would like to comment on the presumption that our use of the LSTM

perhaps is a subjective preference: While it might be true that some groups choose

which model to use based on subjective preferences instead of objective criteria (e.g.,

Addor and Melsen, 2018), we do not view our choice as such. We use LSTMs for one

reason: they are the best rainfall-runoff model that the hydrological sciences

community has so far discovered by almost any metric. As mentioned above, the

proposed UE approaches work with any differentiable model able to provide the

required outputs. CMAL, UMAL, and GMM are just specific final layers in a DL

network. MCD does not even require such a layer. If tomorrow some group

developed a model that works better than the LSTM we would switch immediately.

And, if said model would be based on the DL approach, say a transformer (Vasvani et

al., 2017), the proposed UE baselines could simply be added as a layer on top. The

LSTMs here are used only because they are currently the best rainfall-runoff model.

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018WR022958
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


SPECIFIC COMMENTS

1. Terminology: throughout the paper the authors mention both ‘prediction’ and

‘forecasting’, which have different purposes and (potentially) different modelling

setups. The authors should be consistent in their use of terminology throughout the

manuscript. It appears the term ‘prediction’ is more appropriate considering their

application.

Thank you for pointing this out. As mentioned in the original manuscript we tried to

stick to the convention laid out by Beven and Young (2013) who suggest to use the

word ‘simulation’ for a setting where the model uses a specific input for each time

step but does not receive information about the observed outputs, and to use the

term ‘forecast’ for settings where all information up to a given point in time is used

to make a prediction. The term ‘prediction’ can be used for either situation. Thus, we

should almost always use the term prediction or simulation here.

We used the term ‘forecast’ two times incorrectly in the paper - once in the abstract

L.2 and once in the conclusions L.332. We will replace these occurrences with the

term ‘prediction’ in the revised manuscript as proposed by the reviewer.  This is

unfortunate because we explicitly stated (and cited) our convention for this

terminology in L.182 to L.186 of the original manuscript, and we appreciate the

careful attention by the reviewer in catching this mistake.

2. Introduction: in L20-31 it would be good for the authors to acknowledge other

established and recent methods for probabilistic prediction (and forecasting) in

hydrology including: quantile regression-based neural networks (Cannon, 2018,

2011), copula-based approaches (Li et al., 2021; Liu et al., 2021), and

(parametric/distributional) probabilistic decision tree methods (Başağaoğlu et al.,

2021; Schlosser et al., 2019), the latter methods allow for the predictive distribution

of the target variable to be easily estimated as part of the training procedure.

Although I have yet to undertake such an analysis myself, I suspect the latter group

of methods could estimate predictive uncertainty with much less computational

expense than the LSTM variants adopted here.

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/wrcr.20393


This paper is not intended as a literature review of probabilistic prediction in

hydrology in general. There are dozens of methods that the review could have listed

here as examples of probabilistic prediction. The original manuscript already covers

many established and recent methods that are directly relevant to our study. There

are enough “probabilistic prediction” methods in the hydrology literature that if

someone wanted to do a comprehensive review, this would end up being a

stand-alone review paper. We do not see anything particularly special or relevant

about the suggested references. If there is a particular reason to cite a paper that is

directly relevant to this study, then we definitely want to cite it — for example, the

paper suggested in the next comment.

Regarding the performance: In our eyes, LSTMs are computationally cheap to train

and run. As of now, they can be trained and run using large data sets on any modern

computer with a GPU in a few hours. For comparison, take the QRF proposed in

specific comment 4. It required more resources (CPU) to run at a similar scale

(details provided in our answer to specific comment 4).

3. Introduction: the authors may want to acknowledge the recent paper by Althoff et

al. (2021) whom also used MCD with LSTMs for daily streamflow forecasting.

Thank you for this reference. It is indeed very relevant and we were not aware of it

(as can be seen from the arxiv submissions, we finished our paper before Althof et al.

(2021) was published and did not see it in the aftermath). We will include it in the

revised manuscript.

4. Section 2 and 2.3: while I appreciate the authors have been exploring LSTM in

many former studies and are evolving a research program around this method, from

my own experience, these methods are extremely computationally intensive (due to

it’s recurrent formulation, gradient-based learning, need for careful hyper-parameter

tuning, etc.), and thus tend to be a ‘turn-off’ for those who do not have adequate

computing resources to explore such methods. It would seem beneficial for the

reader to have a ‘simpler’ non-LSTM baseline to compare against the proposed

LSTM variants. If the results of the LSTM variants significantly outperform these

https://link.springer.com/article/10.1007/s00477-021-01998-y
https://link.springer.com/article/10.1007/s00477-021-01998-y


simpler methods, then it may serve as a motivation for other researchers to devote

more time and resources to incorporating LSTM into their research endeavours. My

feeling is that a simple benchmark method could include one of the many variants of

quantile regression forests (see for example,

https://scikit-garden.github.io/examples/QuantileRegressionForests/). This would not

seem out of scope as the authors mention in Section 2 that their work is devoted to

data-driven methods, of which LSTM are only a small (but relevant) fraction.

The answer to this comment is closely linked to our answer to the general comments

of reviewer 1. While the answer there gives our arguments with regard to our vision

(and is therefore more important), this answer can be seen as a technical addendum.

First, we would like to emphasize that we use the LSTM because it is the best model

that we (or any other hydrology group) has found for rainfall-runoff estimation. This

is the only reason. We care about providing information to research and operational

groups who want to do the best job possible. Within this “big-data regime” our team

has examined many different types of ML and DL models. For example, we have tried

transformers, MLPs, boosted regressions (XGBoost), experimented with neural

ODEs, and developed custom physics-informed neural network architectures (Hoedt

et al., 2020). We will continue to try other approaches whenever possible. So far

LSTMs simply work the best for the task of rainfall-runoff modeling.

Second, the LSTM does not constitute an uncertainty estimation approach, as such.

In this paper it is used as a base model and the uncertainty approaches are

independent of the LSTM in the sense that they could be applied to any type of ML

model (they are just a layer in the deep learning network). If tomorrow we discovered

that — for example — transformers were better than LSTMs for rainfall-runoff

modeling, we would simply apply the UMAL/CMAL/GMM methods tested here to

transformers.

Third, and irrespective of all of what we said above, we tested the quantile regression

forest (QRF) that the reviewer suggested: In summary, the QRF performed worse

with respect to the particular modeling problem. We did not anticipate these

problems before starting with QRFs — it seems like a reasonable method — but after

https://arxiv.org/pdf/2101.05186.pdf
https://arxiv.org/pdf/2101.05186.pdf


running the method and understanding why it fails, it seems to us that it is not fit for

this purpose. We have three things to say about this:

1) QRF doesn’t work for regional streamflow modeling. QRF gives a median NSE

of ~0.24 (Figure 2), whereas the lowest median NSE value in our work is from

GMM at ~0.74. Because the QRF loss function is based on counting bins (it is

the MSE of the predicted vs. actual number of observations that fall in each

quantile bin), it can learn a perfect probability plot (Figure 3) without learning

any dynamics of the system.  In our results it learns some dynamics, but not

enough to simulate realistic (probabilistic) hydrographs (Figure 4). The result

is that while the average QQ plot looks good (because it is  directly optimized

for this metric), it has large biases from basin to basin (Figure 5). QRF is

simply not designed for this type of modeling problem (Meinshausen, 2006).

2) The proposed QRF is computationally expensive (much more expensive than

the LSTM). Used naively, it would take a long time to train the QRF on the

same data for which we can train an LSTM in under 3 hours on a laptop with a

single GPU, even when QRF fitting is fully parallelized on a node with 40

cores. It is possible that the specific implementation that the reviewer linked

is poorly coded (there might be better ways to implement the QRF algorithm),

but we are not experts in this method and we had to make several adaptations

(in terms of hyperparameters) to get a performant variant to work.

3) This leads us to our third point, which is that using the QRF is not simple.

There are many hyperparameters that must be set based on a combination of

intuition, expert knowledge, and formal hyperparameter searching.

Informative hyperparameter tuning would require millions of CPU-hours for

QRF (as opposed to only hundreds of GPU hours for LSTM hypertuning).

Additionally, we are not experts in QRF, so if we were to include any QRF

results in this or any other paper, someone who is an expert could likely find

criticism of our implementation. This is why community benchmarking is so

important - groups who are actually invested in a method need to implement

that method in a reproducible way on open community datasets so that results

are directly comparable.

https://www.jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf


Figure 2. Empirical cumulative distribution function of the Nash-Sutcliffe

Efficiencies (NSE) obtained by using the median of the Quantile Random Forest as a

predictor. The x-axis is limited to -1 to 1, the mean NSE is depicted with a red

vertical line, and the median NSE with an orange vertical line.



Figure 3. Reliability benchmark for the Quantile Random Forest (qrf) and the

Countable Mixture of Asymmetric Laplacians (CMAL) in form of the probability plot

and the deviation plot in the style of Figure 8 of the original manuscript.



Figure 4. Working example hydrograph for a random basin. The observed

streamflow is shown in blue, the median in red and the interquartile-range (the

distance between the 25th and 75th percentiles) in orange.

Figure 5. Demonstration of using the absolute deviations from the 1:1 line as an

ad-hoc diagnostic, which does not allow trading-off performances between basins.



5. L177-180: This is somewhat confusing. If I understand correctly (based on the

Althoff et al. (2021) paper), dropout is used during training at each iteration but it

does not create a separate model at each iteration, only a ‘thinned’ network.

However, performing dropout during testing (or model implementation, evaluation,

or whatever other term you wish to use), each time you make a prediction you simply

turn on/off nodes according to the pre-specified probabilities used during training

and you repeat this as many times as you desire, creating a number of ‘sister’

predictions. Again, the model does not change, you simply ‘thin’ the network each

time you create a ‘sister’ prediction. If this is how MCD was used in the experiments

described in this paper, it is not apparent and would be helpful to clarify.

We are not sure if we can follow why the reviewer finds these lines confusing.

The reviewer’s interpretation of the dropout mechanism is correct, however this is

exactly what is described in lines 177-180. The reviewer also correctly assesses that a

thinned network is not a separate model in the sense that all thinned networks use

the same tensor network. Thus, the reviewer might be objecting to our use of the

term “sub-model” in this sentence, however this is the term used in the original

dropout paper (Srivastava et al., 2014) to describe the concept: “The central idea of

dropout is to take a large model that overfits easily and repeatedly sample and train smaller

sub-models from it.” (Srivastava et al., 2014). In our eyes it is very intuitive to think of

dropout as a way of building up an implicit ensemble (as a matter of fact, a very

particular one as shown in Gal and Ghahramani, 2016).

Alternatively, the reviewer’s confusion might arise due to the term  ‘sister prediction’,

which seems to be used incorrectly by Althoff et al. (2021). This term was not used in

the original papers on dropout (Srivastava et al., 2014) or Monte Carlo Dropout (Gal

and Ghahramani, 2016). The oldest source we could find was Liu et al. (2017): “Sister

forecasts are predictions generated from the same family of models, or sister models. While

sister models maintain a similar structure, each of them is built based on different variable

selection process, such as different lengths of calibration window and different group analysis

settings.” If this is the working definition of “sister-predictions” then the thinned

models resulting from dropout would not be sister models and the resulting forecasts

are not sister forecasts.

https://jmlr.org/papers/v15/srivastava14a.html
https://jmlr.org/papers/v15/srivastava14a.html
http://proceedings.mlr.press/v48/gal16.html
https://link.springer.com/article/10.1007%2Fs00477-021-01980-8
https://jmlr.org/papers/v15/srivastava14a.html
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
https://ieeexplore.ieee.org/document/7137662


We hope that this helps. Either way, the description of dropout in the text of our

paper is correct and uses language that is in agreement with primary sources.

6. L193-4: why not use a regularized squared loss function? Is it not a standard

practice to perform L2 (and potentially L1) regularization to improve LSTM

performance and reduce overfitting? Was this considered? If not, why?

There are many regularization techniques for neural networks. For example, we use

dropout as a regularization. This is quite common. L1 and L2 regularization can

yield good results in specific contexts, but they are not as trivially applicable as one

might think — for example, we did indeed try L1 and L2 regularizations in some

previous experiments, but did not obtain good results. For the use of L2

regularization specifically, it is now often implicitly used/approximated in the form

of weight-decay.

7. L195-6: what dataset partition was used to select optimal hyper-parameters?

As is customary, we used the training- and validation-sets as defined in the appendix.

We will mention this explicitly, since — as the reviewer rightfully points out — we

cannot assume that readers would know.

8. Section 2.4.3: the authors should formally define first and second order

uncertainties.

We will answer this together with comment 12.

9. Table 3: it’s not clear how the ‘obs’ data is to be used to ‘contextualize’ the results

from the different models. More detail should be provided (perhaps with an example

in the relevant  section).

We are not sure what the confusion is. Statistics from the observation sampling

distribution are given as a reference for statistics of model error distributions. We

are not sure what details could be provided or how there could be confusion about

this. Basically, variances and quantile widths mean relatively little on their own



without a point of reference, and comparing to the observation distribution shows

improvement due to using the UE approaches.

10. L286-289: it would seem like a good idea for the authors to investigate how best

to use the CMAL and UMAL variants for improving predictive performance at low

and high (tail) flows (from the point prediction point of view), as this tends to be a

major impetus for creating models with uncertainty assessment capabilities. In

other words, what’s the point of going through the trouble of designing these more

sophisticated methods if they cannot outperform the base approach (LSTMp) when

assessed on highly relevant metrics. Please don’t get me wrong, I am not trying to

downplay the very interesting work done by the authors, I am simply trying to help

them more fully explore the merits of their work and better ‘sell’ their approach to a

‘skeptic’.

There is likely some sort of confusion here from the reviewer. All of the reported

point metrics are relatively good in comparison (see e.g. Kratzert et al., 2019). The

low and high-flow metrics are however measuring a form of bias that assumes a

symmetric error distribution. And, the point of these sentences is that the mean of

the distributional predictions is biased in low and high flow regimes, since we can

expect that the underlying distributions are indeed asymmetric (e.g. there are now

flows below 0). This is a necessity: There is an inherent (not incidental) tradeoff

between predicting asymmetric distributions (hydrological uncertainty is

well-known to be asymmetric) and using the mean of an asymmetric prediction as a

point-estimate (compare Figure I of our answers).  This is a fundamental attribute of

probabilities that we just wanted to point out explicitly. It’s not about a difference

between models (no model can fix this problem), it is a fundamental artifact of

probabilistic prediction. If necessary, we can revise this sentence in the manuscript,

but it is not a matter of a poorly performing model or bad metric.

11. Section 3.2.2 is very interesting!

Thank you. This is much appreciated.

12. Section 3.2.3: once first and second order uncertainties are formally defined (see

comment 8), this section should give a good description of what is shown in Figure

https://hess.copernicus.org/articles/23/5089/2019/


11 but it is unclear what message the authors expect the reader to take-away from

this figure. What’s the relevance of this figure and why should the reader ‘care’ about

it?

We agree with the critique.

Formally, if a variable is described by a family of distributions that𝑦 𝑦 = 𝑓
0
(𝑦; θ

1
)

are functions of possibly multidimensional parameters , we call it first orderθ
1

uncertainty. If the potential distribution of said parameters are estimated — that is,

if the parameters are “stochasticized” — as in one calls it second orderθ
1

= 𝑓
1
(θ

1
; θ

2
)

uncertainty. As usual, higher orders can be derived recursively so that

. First order uncertainty is related to aleatoric uncertainty, andθ
𝑛

= 𝑓
𝑛
(θ

𝑛 
;  θ

𝑛+1
)

second- or higher-order uncertainties to epistemic uncertainty (we are however in a

very restricted setting here and the approaches do not necessarily disentangle the

different kinds of uncertainties). Similarly, the MDNs estimate first-order

uncertainties, while MCD estimates second-order uncertainty.

That said, we do not believe that a formalization is the right way to go at this point of

the paper. The above formalism will be familiar in one way or another to many. We

think the problem here lies in our unclear usage of language. That is, a more

thoughtful description is warranted. We will thus expand the section in the following

way:

“In this experiment we want to demonstrate an avenue for studying

higher-order uncertainties with CMAL. Intuitively, the distributional

predictions are estimations themselves and thus subject to uncertainty. And,

since the distributional predictions do already provide estimates for the

prediction uncertainty we can think about the uncertainty regarding

parameters and weights of the components as a second-order uncertainty. In

theory even higher-order uncertainties can be thought of. Here, as already

described in the method-section we use MCD on top of the CMAL approach

to “stochasticize” the weights and parameters and expose the uncertainty of

the estimations. Figure 11 illustrates the procedure: The upper part shows a



hydrograph with the 25%–75% quantiles and 5%–95% quantiles from CMAL.

This is the main prediction. The lower plots show kernel density estimates for

particular points of the hydrograph (marked in the upper part with black ovals

labeled ‘a’, ‘b’ and ‘c’, and shown in red in the lower subplots). These three

specific points represent different portions of the hydrograph with different

predicted distributional shapes and are thus well suited for showcasing the

technique. These kernel densities (in red) are superimposed with 25 sampled

estimations derived after applying MCD on top of the CMAL model (shown in

lighter tones behind the first order estimate). These densities are the

MCD-perturbed estimations and thus a gauge for how second order

uncertainty influences the distributional predictions.”

13. Section 3.3: my understanding is that this is the time needed to make predictions

with a trained model. What is the training time for the different models? Can the

authors provide an example calculation for the overall run-time in Appendix A (or at

the very least in their reply, it’s not clear how the 365  and 174  days were calculated)?

This is correct and the reviewer did indeed spot an error here. Training is much

faster, since no sampling is necessary! If we have one batch-size of 256, 531 basins, 10

years, with 365 days each, we have 256 x 531 x 10 x 365 = 1938150 data-points. Here,

the batch-size tells us how many can be processed in parallel. We need

approximately 7 minutes per epoch — i.e. to make a prediction for each data-point —

since each batch takes ~0.055 seconds to compute. For, say 30 epochs, this would

yield a model training-phase of 3.5 hours. The different hyper-parameter runs can of

course also be parallelized.

When using MCD for sampling, the samples are generated by repeatedly

re-executing the model. In the example, we originally wanted to take 75,000 samples

for the 531 basins over 10 years. This means that we would need to generate 75,000 x

531 x 10 x 365 points. For illustrative purposes we assumed a batch-size of 256, as

above. For practical purposes one could of course use much larger batch-sizes

(whatever fits on the GPU) at no additional cost. To get the number of days from this

we compute:



(75,000 x 531 x 10 x 365 x 0.055)/(256 x 60 x 60 x 24) ≈ 361.46 days

That is, approximately 360 days (providing a simple estimate, and accounting for

errors in the computation and numerical imprecisions etc.). The 174 are obtained by

replacing 0.055 with 0.026 in the above computation and rounding up.

In retrospect we should have stuck with the original 7500 (which would have yielded

36.1 and 17.4 days, respectively) that we used throughout the manuscript. We will

correct this for the revised version of the manuscript. and larger batch-sizes are

possible in practice.

14. Section 4: after L335 the authors may wish to very briefly summarize the adopted

models and datasets used in the study before continuing with L336 onwards. This

should help the interested reader with a short ‘time-budget’, who may only jump

from the abstract to the conclusion, get a decent idea of the methods and dataset

involved (the dataset being one of the key strengths of this paper).

This is a very good proposal. We will do so for the revised manuscript version.

15. Each equation in the appendices (B1, B2, etc.) should be properly cited (the rule is

to cite all equations that are not developed by the authors in the paper).

We agree that all equations should be properly cited. And, we believe that we did so:

The GMM mechanism stems from Bishop (1999), the UMAL from Brando et al. (2020)

and MCD from Gal and Ghahramani (2016). All of these are referenced. CMAL was

introduced by us, so no further references are necessary. Further, we adapted the

entire notation to put the equations into the present context and make it easier to see

where the approaches are similar or divergent. Also here, no further references are

necessary.

TECHNICAL CORRECTIONS

[...]

We will adapt all proposed technical corrections. Thank you for pointing these out.
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REVIEWER 2

Summary

This paper focuses on the use of several −mostly new for hydrology− concepts and

methods from the machine and deep learning fields for uncertainty quantification in

rainfall-runoff modelling. Specifically, it presents a large-scale application of these

concepts and methods under a new framework. This large-scale application can be

used as a guide for future works wishing to apply these (or similar) concepts and

methods.

GENERAL COMMENTS

Overall, I believe that the paper is meaningful, very interesting, and well-prepared in

general terms with room for improvements.

I recommend major revisions. To my view, these revisions should (mainly but not

exclusively) be made in the following key directions for the paper to reach its best

possible shape:

a) Key direction #1 (for details, see specific comments #1,2): To my view, the work’s

background should be better covered. In fact, to my knowledge there are two very

relevant published studies, additionally to the studies already included in the

“Introduction” section, that use LSTMs for uncertainty assessment in hydrological

modelling. Also, there are research works presenting machine learning concepts and

algorithms for uncertainty assessment in hydrological modelling (e.g., for

probabilistic hydrological post-processing), including some few ones that conduct

large-scale benchmark experiments using data from hundreds of catchments and

several machine learning models (thereby also introducing benchmark procedures,



which I agree that are very rare in the field and very important). Further, I would say

that the connection with the machine and deep learning fields needs to be better

highlighted as well.

We will respond to these points in specific comments below, where the reviewer

gives details about which papers and methods they are referring to.

b) Key direction #2 (for details, see specific comment #3): I agree with the main point

raised by the other reviewer (Dr John Quilty). To my view, only through a comparison

of the four deep learning methods of the paper to other statistical and machine

learning methods providing probabilistic predictions (with the latter methods

playing the role of benchmarks) will the paper fully achieve its aims in terms of

benchmarking. I believe that this is absolutely necessary, as (i) the paper devotes a lot

of space discussing its benchmarking contribution (but easier-to-apply methods are

currently missing from its contents, while they have already been exploited for

probabilistic hydrological modelling) and, (ii) the paper indeed offers interesting

results which would mean more to the reader if compared to the results provided by

easier-to-apply statistical and machine learning methods.

The reviewer has fundamentally misunderstood our aims for benchmarking. What

the reviewer suggests is antithetical to what we are trying to do in terms of

advancing benchmarking. We explained this more fully in response to reviewer #1’s

comment, however to summarize here, the reason that we feel strongly about not

doing ad hoc, one-off benchmarking is that it is generally impossible for authors to

correctly implement methods that they are not experts in (and are motivated to beat).

We see this consistently in papers where people benchmark against methods that we

are experts in — they almost never implement these methods correctly. This is why

modern scientific disciplines use community benchmarking (which has some of its

own challenges). The choice to *NOT* benchmark against an ad hoc selection of ad

hoc implemented methods was conscious and deliberate — doing so goes against

what we are trying to do with setting up a community benchmark on an open, public

community dataset. Doing what the reviewer suggests would perpetuate the exact

problem that we are trying to address.



Also, we are not aware of any UE methods that are easier to apply. It is possible to

design very simple UE methods around existing hydrological models, but in these

cases you still have to calibrate the hydrology model, and then afterward apply some

statistical procedure. Here, we do all this in one go (and we do it with the current

best-performing hydrological model that has been published). All we have to do here

is add a probabilistic head to the model (less than 10 lines of code), and change the

loss function (a few lines of code), and then use the same training procedure that any

LSTM rainfall-runoff model uses. How could there possibly be any method that is

simpler than this (either conceptually, computationally, or in terms of the effort it

takes to apply)?

c) Key direction #3 (for details, see specific comment #4): To my view, proper scores

(see e.g., Gneiting and Raftery 2007) should necessarily be computed for assessing the

issued probabilistic predictions. Currently, there is an important −from a practical

point of view− aspect of this work’s large-scale results that is not assessed. In fact,

the selected scores cannot directly and objectively inform the forecaster-practitioner

which method to prefer (and when), while proper scores can.

We will provide a more detailed answer to this comment in our answer to specific

comment 4 of reviewer 2.



SPECIFIC COMMENTS

1) To my view, the biggest contribution of this work is that it guides the reader on

how to use and combine (mostly) new deep learning concepts and methods for

uncertainty assessment in hydrological modelling (type-a contribution), while the

introduction of a general benchmarking framework for uncertainty assessment in

hydrological modelling is (as also mentioned in the “Introduction” section) a

secondary (but still important) contribution (type-b contribution). For both these

types of contribution and mainly for the former one, a better coverage of the study’s

background is required. For instance, in lines 15 and 16 it is written that “the

majority of machine learning (ML) and Deep Learning (DL) rainfall–runoff studies do

not provide uncertainty estimates (e.g., Hsu et al., 1995; Kratzert et al., 2019b, 2020;

Liu et al., 2020; Feng et al., 2020)”. This is inarguably true; however, there are

machine and deep learning rainfall-runoff studies (mostly machine learning

rainfall-runoff studies) that do provide uncertainty estimates, while some of them

also involve large-scale benchmarking across hundreds of catchments and also use

proper scoring rules (together with more interpretable scores) to allow practical

comparisons. In fact, this study is not the first one proposing and/or extensively

testing machine learning algorithms for probabilistic rainfall-runoff modelling and,

to my view, this should be somehow recognized in the “Introduction” section during

revisions. In this latter section, information on uncertainty quantification in

hydrological modelling using machine and deep learning algorithms is currently

scarce, although other topics (even less relevant ones) are well-covered. Especially as

regards LSTM-based methods for uncertainty quantification, to my knowledge there

are two published works proposing such methods in hydrological modelling and

forecasting (Zhu et al. 2020; Althoff et al. 2021). To my view, these studies should

necessarily be viewed as part of this work’s background.

The reviewer mentioned that there are UE benchmarking studies in hydrology using

large-scale, public datasets. Alas, no examples are given. But, if any such studies exist

that we did not cover, we would really like to know about them — and we would

include them as reference, as we did with the other UE studies we cite.



We will include Althoff et al. (2021) in the revision — this paper was published after

we completed writing this paper. It is a single-basin study (which is likely not

appropriate for deep learning), but it is directly relevant. We already cited the work

by Zhu et al. (2020), but we cited their primary methodological paper, not the

derivative study that the reviewer mentions here.

In view of specific comment 4 by reviewer 2 it is perhaps also worth mentioning that

neither of these publication reports CPRS; and Zhu et al. (2020) specifically do not

make use of any strictly proper scoring.

2) Moreover, I would say that the connection with the machine and deep learning

fields needs to be further highlighted for the paper to become more balanced with

respect to its nature. Perhaps, this could be established by referring the reader in

more places in the manuscript to the original sources of the concepts and algorithms,

and by adding a few examples of research works adopting (some of) the same

concepts and methods for non-hydrological applications (and possibly by

highlighting features that are especially meaningful for rainfall-runoff modelling

applications).

All original sources for all methods were cited. If the reviewer sees that we missed

one, we will definitely fix it.

3) I should also note that I agree with the main point raised by the other reviewer (Dr

John Quilty). As the paper aims to establish benchmarks and benchmark procedures

for future works (and as it emphasizes its practical contribution in terms of

benchmarking), it would be essential to also provide a comparison with respect to

easier-to-apply methods from the statistical and machine learning fields. Such

methods have already been applied in the field (mainly for probabilistic hydrological

post-processing), and include (but are not limited to) the following ones:

linear-in-parameters quantile regression, quantile regression forests, quantile

regression neural networks and gradient boosting machine.

https://link.springer.com/article/10.1007%2Fs00477-021-01980-8
https://doi.org/10.1007/s00477-020-01766-4
https://doi.org/10.1007/s00477-020-01766-4


This specific comment is largely covered by our responses to reviewer #1. In short:

As the title suggests this paper tries to establish baselines for benchmarking. As such

the suggestion is not in line with our intention for the framework and the baselines.

Further, in our eyes there are no simpler UE methods available that are the ones that

we propose. We cover post-processing in the paper already: We cited several seminal

post-processing papers and discussed the advantages of generative probabilistic

methods vs. post-processing beginning in line 20 of the manuscript. Be it as it may,

we view it as more complicated than building probabilistic models directly.

Quantile-regression is a form of regression and does not constitute an approach as

such. Random forests and gradient boosted models are not necessarily simpler.

Further, we already know that XGboost does not constitute rainfall-runoff models

that are as good as LSTMs (see: Gauch, Mai, Lin; 2021). Even if we were to adopt the

approach of creating our own ad hoc benchmarks (which, again, goes directly against

the point we are making about community benchmarking), none of these suggestions

are good examples.

4) Furthermore, in lines 94−99 it is written that “the best form metrics for comparing

distributional predictions would be to use proper scoring rules, such as likelihoods

(see, e.g., Gneiting and Raftery, 2007). Likelihoods, however do not exist on an

absolute scale (it is generally only possible to compare likelihoods between models),

which makes these difficult to interpret (although, see: Weijs et al., 2010).

Additionally, these can be difficult to compute with certain types of uncertainty

estimation approaches, and so are not completely general for future benchmarking

studies. We therefore based the assessment of reliability on probability plots, and

evaluated resolution with a set of summary statistics”. However, to my view proper

scores (Gneiting and Raftery 2007) should necessarily be computed in this paper, as at

the moment its large-scale results cannot be directly useful to

forecasters-practitioners (despite the fact that the currently computed scores provide

information that could be also of interest to the reader). For example, the continuous

ranked probability score—CRPS score could be computed across multiple quantiles.

As these scores are indeed difficult to interpret when stated in absolute terms, in the

literature they are mostly presented in relative terms by computing relative

improvements offered by an algorithm with respect to another (benchmark).

https://www.sciencedirect.com/science/article/abs/pii/S136481522030983X


Therefore, one of the compared methods could serve as a benchmark for the others,

and the mean (or median) relative improvements could be computed. These

computations will reveal the method that forecasters would choose among the four

compared ones.

We admit that we did not emphasize the general deficiencies of the (single)

metrics/statistics/distances enough in this paper. Taken alone every metric has

deficiencies and assumptions underlying it. And, in general we did not want to imply

that any of the proposed metrics are fixed, since it is very difficult to define a

meaningfully complete set of metrics for hydrological (probabilistic) predictions —

and every application will have its own unique purpose. Thus, we never wanted to

attempt to define a universal set of benchmarking metrics here. As a matter of fact,

we hope that the proposed metrics will be adapted, refined, exchanged and

complemented as benchmarking efforts will be  adopted by the community. In this

way, maybe at some point, canonical metrics for UE benchmarking will emerge. But,

we definitely would not dare to claim to do this. We discussed this briefly in the

conclusion of the current version of the manuscript. However given the reading by

the reviewer we now came to believe that we should also add a broad disclaimer

when introducing the method and deepen the discussion. We will do so in the

revision.

Regarding the proper scoring rules (sensu Gneiting and Raftey, 2007), we have to say

that we purposefully did not report them. This choice was made consciously and not

out of laziness or oversight. The reasoning for doing so is provided in the portion of

text that the reviewer cited. And, regarding CRPS specifically, one generally

distinguishes between the continuous ranked probability score (CRPS) and the

continuous ranked probability skill score (often abbreviated as CRPSS or CRPS

score). The former integrates over the different quantiles by construction (which

might be what the reviewer tries to indicate in his statement?). The latter is the usual

choice in literature for providing a more interpretable score, by using the CRPS in

the same style that the NSE uses variances of point estimates. This use does however

require sensible baselines, such as the ones proposed in our contribution. Our

approaches conceptually allow us to evaluate the performance in terms of CRPs (and

also in terms of likelihood). However, computing meaningful scores is not as simple

https://www.tandfonline.com/doi/abs/10.1198/016214506000001437?casa_token=rGPzAESSxcsAAAAA:Jf0VHOLV73j8il9zSw0ltwD-KIrtqAQs914Eqdc5lXXfax-oTmi626DlGcVQ510apa02rO_RO0QD


as the reviewer thinks: Whenever a probability density function is discretized,

information is lost (see for example: Gupta et al., 2021). Intuitively, (a) if the bins are

very wide, a bias is introduced because the difference between the mass of the bin

and of the actual continuous distribution becomes very large; (b) if the bins are very

thin, almost no data can be used to estimate its properties, which induces a large

variance in the estimation. In the hydrological context specifically, small bin-widths

should also be distrusted because of the inherent uncertainty of the variables. Apart

from a careful choice of bin-sizes, it is therefore in practice often more appropriate

to evaluate the properties of the UE approaches with regard to different metrics to

derive at a nuanced, paretian evaluation (see for example: Kumar, Lia and Ma, 2020).

This is what we choose to do in this paper.

Finally, we want to point out that CRPS are not common in hydrology. To

substantiate this claim, we did a literature review to provide a list of publications

that assess UE approaches in a hydrological context. The list is not exhaustive, but

we include a larger set of topics and settings than considered in our manuscript.

Notably, it includes all referenced sources by the reviewer himself, which did not

report proper scoring rules. In summary, from 38 references only 5 report proper

proper scores; and these also examine the performance in terms of probability plots

(or metrics derived thereof) and resolution.

1. Althoff et al. (2021) primarily use point-prediction metrics for evaluation, but

also percentage of coverage (related to the probability plot), average width of

the uncertainty intervals (i.e., a single statistic for the resolution), and average

interval score (a proper scoring rule, but nut CRPRS). They also use a set of

ad-hoc tests to get an intuition about the uncertainty estimation capacity.

2. Abbasour et al. (2015) report the performance in terms of point-metrics, and

show the 95% quantiles visually within hydrographs.

3. Ajami et al. (2007) count the number of observations within the 95% prediction

interval (i.e. a single point on the probability plot) and show visual evidence of

their approach in the form of hydrographs.

4. Berthet et al (2020) report CRPS scores, but since they found them so

uninformative they also evaluate in terms of the probability-plot, the

sharpness and point-metrics (as we do).

https://www.mdpi.com/1099-4300/23/6/740
https://arxiv.org/abs/1909.10155
https://link.springer.com/article/10.1007/s00477-021-01980-8
https://www.sciencedirect.com/science/article/pii/S0022169415001985?via%3Dihub
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005WR004745
https://hess.copernicus.org/articles/24/2017/2020/


5. Beven (1993) shows bounds for specific events.

6. Beven and Binley (2014) show the 90% quantiles for individual events.

7. Beven and Smith (2015) report the event-based coverage of the 95% prediction

intervals (related to the probability plot).

8. Bogner and Pappenberger (2011) report metrics for point-predictions, CRPS

scores (which they just interpret in terms of accuracy), and probability plots

(together with derived summary statistics).

9. Coxon et al (2015) evaluate the uncertainty in terms of bound-distances

(related to precision statistics) and report the performance of the

point-estimates.

10. Dogulu et al. (2015) report UE estimation performance in terms of prediction

interval coverage probability (related to the probability plot), mean prediction

interval (related to the precision statistics), and average relative interval length

related to the precision statistics).

11. Gopalan et al. (2019) report point-prediction metrics, p-factors (related to

coverage, thus to the probability plot) and simulation uncertainty indices (an

improper score, related to the width of the quantiles).

12. Huart and Mailhot (2008) show hydrographs and dotty-plots.

13. Kavetski et al. (2006) report RMSE and standard deviation and show the

prediction bounds visually using hydrographs.

14. Liu et al (2005) show dotty plots, and provide a visual inspection for specific

events.

15. Kim et al. (2020) report CRPS scores, together with probability plots and rank

histograms.

16. Mantovan and Todini (2006) report percentiles of MSE values for their derived

posteriors.

17. McMillan et al. (2010) use a rank histogram (similar to our deviation plot) as

primary diagnostic tool. They also show exemplary hydrographs with

uncertainty bounds.

18. Montanari and Koutsoyiannis (2012) report performance in terms of the

probability-plot and show some exemplary hydrographs.

https://www.sciencedirect.com/science/article/abs/pii/030917089390028E
https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.10082
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29HE.1943-5584.0000991
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010WR009137
https://doi.org/10.1002/2014WR016532
https://hess.copernicus.org/articles/19/3181/2015/
https://www.sciencedirect.com/science/article/pii/S0022169419309308
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2007WR005949
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005WR004368
https://hess.copernicus.org/articles/9/347/2005/
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019WR026262
https://www.sciencedirect.com/science/article/pii/S0022169406002162
https://doi.org/10.1002/hyp.7587
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011WR011412


19. Murphy and Winkler (1984) discuss the utility and usage of the probability plot

for weather forecasting. They are one of the earliest sources that we are aware

of.

20. Mustafa et al. (2019) do not evaluate the predictive uncertainty as such.

21. Papacharalampous, Tyralis, and Langousis et al. (2019) use proper scores, but

only report their relative performance with respect to an arbitrary benchmark

model (for the sake of clarity). They also report reliability scores (related to the

probability plot), the average width of the prediction interval (related to our

precision statistics).

22. Schoups and Vrugt (2010) report the UE performance in terms of probability

plots.

23. Shrestha and Solomatine (2008) report interval coverage probability (related to

the probability plot) and mean prediction interval (related to our precision

statistics). They use a derivative of the probability plot to relate model error

with probability of occurrence, as well as the model residuals in dependence

of the input variables.

24. Shrestha and Solomatine (2009) use a probability plot and the mean size of the

prediction intervals. They also show cumulative densities for specific events.

25. Shrestha, Kayastha, and Solomatine (2009) report interval coverage probability

(related to the probability plot) and mean prediction interval (related to our

precision statistics). They also show the 90% prediction intervals for specific

events.

26. Shortridge, Guikema, and Zaitchik (2016) do not use explicit diagnostics to

assess the UE estimation capacity, but use a scenario based approach.

27. Srivastav, Sudheer, and Chaubey (2007) show the quantiles within hydrographs

for specific events.

28. Teweldebrhan, Burkhart, and Schuler (2018) report point-metrics, critical

success index (similar to coverage ratio, thus related to the probability plot)

and show some exemplary hydrographs.

29. Tian et al. (2018) report point-estimation metrics, average size of the

uncertainty interval (related to our precision statistics) and the coverage ratio

differentUE quantiles (related to the probability plot).

https://www.tandfonline.com/doi/abs/10.1080/01621459.1984.10478075
https://hess.copernicus.org/articles/23/2279/2019/
https://www.mdpi.com/2073-4441/11/10/2126
https://doi.org/10.1029/2009WR008933
https://www.tandfonline.com/doi/abs/10.1080/15715124.2008.9635341?casa_token=uKOFyFfat14AAAAA:0RECYL_xy31AGF_Q_7F6OctagyDAcq7Nix-mNeQbWs2N9xV5kwoAdQeT_tRyTL1EQERnNjS5W92X
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008WR006839
https://hess.copernicus.org/articles/13/1235/2009/
https://hess.copernicus.org/articles/20/2611/2016/
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2006WR005352
https://hess.copernicus.org/articles/22/5021/2018/
https://doi.org/10.3390/w10111655


30. Thyer et al. (2009) report the uncertainty estimation performance in terms of

the probability plots.

31. Tolson and Shoemaker (2008) show prediction bounds explicitly.

32. Vrugt et al. (2005) report point-estimation metrics together with error

distribution plots.

33. Vrugt et al. (2008) report point-estimation metrics, show the obtained bounds

over the training and validation periods, and the standard deviation of the

estimated parameters.

34. Woldemeskel et al. (2018) report CRPSS (a scoring rule), a probability plot

derivative, and the 99% interquartile range (related to our precision statistics).

The authors also show the 98% quantiles for specific events.

35. Westerberg and McMillan (2015) show individual runs, and quantile

deviations (similar in kind to our deviation plot).

36. Zink et al. (2017) report the coefficient of variation and normalized 5%-95%

quantile ranges (both related to our precision statistics).

37. Zhu et al. (2020) primarily use point-prediction metrics and visually inspect

the uncertainty estimation capacities of the model.

38. Vaysse and Lagacherie (2017) report point-prediction metrics in conjunction

with probability plots.

5) Also, my general feeling is that the type-b contribution of the paper (see specific

comment #1) is emphasized somewhat more than its type-a contribution (see again

specific comment #1) throughout the paper. To my view, the opposite would be more

befitting to the contents of the paper. In any case, the type-a contribution could at

least be further discussed in the “Conclusions and Outlook” section.

Since the reviewer gave no reason or explanation as to why they hold this opinion it

is difficult for us to decide how (or whether) to act on this comment. What content is

missing from the conclusions and outlook section? Just asking to “add more” is not

helpful.

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008WR006825
https://doi.org/10.1029/2007WR005869
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2004WR003059
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007WR006720
https://hess.copernicus.org/articles/22/6257/2018/
https://doi.org/10.5194/hess-19-3951-2015
https://hess.copernicus.org/articles/21/1769/2017/
https://link.springer.com/article/10.1007/s00477-020-01766-4
https://www.sciencedirect.com/science/article/pii/S001670611631059X?casa_token=z1EqEBmOWJAAAAAA:4zegtkw7aeUgs4gplSDXS_hQHPbFTHHcTHGwCTAy4h2lSODmven-wDuMuSoej5LfIMDrks92HMg


6) Moreover, the following lines (and other similar statements) do not describe the

literature accurately (as some existing works on uncertainty assessment in

hydrological modelling and forecasting offer benchmarks and benchmarking

procedures; see also specific comment #1) and could be rephrased a bit (or removed)

to recognize the relevant work made so far in the field:

1. … “while standardized community benchmarks are becoming an increasingly

important part of hydrological model development and research, similar tools

for benchmarking uncertainty estimation are lacking” (lines 3 and 4).

2. “We struggled with finding suitable benchmarks for the DL uncertainty

estimation approaches explored here” (lines 51 and 52).

3. “Note that from the references above only Berthet et al. (2020) focused on

benchmarking uncertainty estimation strategies, and then only for assessing

postprocessing approaches” (lines 55−57).

4. “However, as of now, there is no way to assess different uncertainty estimation

strategies for general or particular setups” (lines 332 and 333).

To our knowledge, all of the above quoted statements from the paper are correct. The

reviewer provides no references that do any of these things — the reviewer only

asserts that such references exist. We looked extensively for such references and

found none.

The requirements for a suitable, standardized benchmark are (Nearing et al., 2018): (i)

that the benchmark uses a community-standard data set that is publicly available, (ii)

the model or method is applied in a way that conforms to community standards of

practice for that data set (e.g., standard train/test splits), and (iii) that the results of

the standardized benchmark runs are publicly available. To these we added a

post-hoc model examination step in our framework, which aims at exposing the

intrinsic properties of the model. Although this last step is important, especially for

ML approaches and imperfect approximations, we do not view it as a requirement

for benchmarking in general (and therefore would have included any paper that did

items i-iii but not this).

We spent considerable time searching for such UE benchmarks for this paper. We do

not believe that we “misrepresented the current research landscape” and we wrote



the quoted sentences in good faith. As a matter of fact, the difficulty to find such

benchmarks was a reason why we decided to include a focus on establishing a

community UE benchmark in the first place.

7) Lastly, to my view the same holds for the following lines, as there are research

works using machine learning ensembles for uncertainty quantification in

hydrological modelling:

“A perhaps self-evident example for the potential of improvements are ensembles:

Kratzert et al. (2019b) showed the benefit of LSTM ensembles for single-point

predictions, and we believe that similar approaches could be developed for

uncertainty estimation” (lines 367−369)

This text passage does not propose to estimate uncertainty by using ensembles. It

proposes to build ensembles of uncertainty estimators. We are not aware of any

publication in the hydrological sector that has done this so far. If a reference had

been provided we could cite it in this context, however we are unaware of such a

study.
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REVIEWER 3: Anna Sikorska-Senoner

GENERAL COMMENTS

This paper proposes a novel method for benchmarking uncertainty in river flow

simulations via using novel deep learning (DL) methods and an extensive sample of

531 catchments. The manuscript is generally well written and structured and it is of a

value for hydrological community and HESS readers. The great value of this work is a

combination of a large sample study with novel deep learning methods for

benchmarking uncertainty in rainfall-runoff models. Nevertheless, some issues as

described below should be addressed before possible publication. Thus, my

recommendation is a moderate to major revision.



SPECIFIC COMMENTS

1. The authors based their analysis on a large sample of CAMELS catchments (subset

of 531 catchments), which gives a great potential for the analysis they are conducting.

Thus, I found it a bit disappointing to see the results of the analysis reported only as

averaged values (i.e. averaged over all catchments). I think the usage of such a large

sample together with novel DL methods here applied creates a great potential to

present their results in a bit more detailed way. For instance, evaluation metrics or

probability plots could be presented not only for the averaged values but also giving

some sample details. One way could be to present ensemble of probability plots or

some ranges to give a reader a better feeling about the individual catchments’ results.

In a similar way, tabular values could be presented for some ranges and not only for

averaged values.

Adding variance to the evaluation table is a great idea and we will include it in the

revised manuscript.

Regarding the suggestion to include an ensemble of probability plots, Figure 9 in the

original manuscript shows almost the same information: it shows the distributions of

the results for the different quantiles over the different basins. This plot actually

provides a *more* detailed look at the different quintiles and basins than an

ensemble QQ plot would. We did actually try an ensemble of probability plots (before

the original submission) and packing ranges or all solutions directly into the

probability plot was more confusing than helpful, which is why we decided to show

the results over the different quantiles and as deviations from the 1:1 line in the form

of densities (which makes it much easier and comparable than point clouds or

line-plots). Anyway, it is very difficult to present results for 531 basins in a

constructive way, but the paper does already include almost exactly the information

that the reviewer requested.

2. It is not quite clear, which period the reported values of results for four tested

models referred to. Ideally, values and plots could be presented for all three periods,

i.e., for training, validation and test periods with sufficient details (see comment #1).



Thank you for pointing this out. As is convention for DL/ML approaches, we only

report the test period. Training and validation periods can exhibit arbitrarily good

performance, thus it is generally discouraged to report the model performance there.

We will add a statement about all statistics (except hypertuning) being from the test

period to all figures, tables and the textual description to make this clear for readers.

3. The method section is very well written. However it provides mostly details from a

single catchment perspective. Some additional details for a large sample study, as

used here, would be very useful, specifically for readers without sufficient

background in the methods applied here.

Thank you for this compliment. Alas, it might hint at a deficiency in our description

as no part of the method section was written with a single-catchment perspective in

mind. That is, the distributional predictions are certainly made for each basin and

time-steps, but the DL based model as such is and should not be trained on the basis

of individual basins. As is stated in line 191, all (training) data from all 531

catchments were used to train each model. Training a model per-basin would yield

bad solutions.

4. Finally, I agree with both previous reviewers that a comparison to other simpler

data-driven model(s) would be very useful for assessing the methods presented here.

At the current stage, one can only see which method among four tested performs

best. However it is difficult to judge their overall value as a comparison to simpler

methods is missing. Such analysis would also add a value to the “Conclusions and

Outlook” section.

Please see our answer to John Quilty’s general comments and his specific comment

4.



MINOR COMMENTS

Figure 1: make clear whether the figure presents all CAMELS catchments or the

subset you used in this study.

Thank you. The figure shows the entire CAMELS dataset. We will make sure that

this becomes clear in the revised manuscript version.

Figure 2: add a & b in the figure caption for a higher readability.

Good idea, we will do this.

Table 1: remove the index a with its notation as it duplicates information from the

figure caption.

It does not, but we are happy to move the information to the table caption

nevertheless.

Figure 7: what is ‘clipping’ here? It is also not quite clear what m and n refer to.

Maybe it would be easier to present figure as a scheme, when example is given for a

basin 1, 2, … and then n=531. Also it should be: “In total we have 531 basins….”. Add t

to “For each time step t we…”

Clipping here means that samples that are below zero are set to zero. We will

mention this in the figure description and weave in your suggestions.

Line 201: why do you take 7500 samples and not any other number?

The number itself is however not crucial here. We tested different cutoff-points for

the sampling during the preparation of the manuscript, both by sampling different

amounts of points and by using a Gaussian simulation (so that we can control the



actual underlying uncertainty. This way we found that at around 5000 points the

evaluation was relatively stable. To this we added 2500 points as a margin of safety

and thus obtained the 7500. The number might thus be seen as a compromise

between a relatively small number of samples provided and a relatively stable

statistical estimation that can be derived from the samples.

Table 3: Text ”a) All metrics are computed for the samples of each timestep and then

averaged over time and basins.” could be removed as it is already mentioned in the

table caption.

We will remove it. Our understanding is that table captions should not present new

information (except about how to read the table).

Table 4: for which period are these values presented?

We would only ever report values for the test period. No paper should ever, under any

circumstances, report values for training periods, unless there is a particular and

clearly stated reason. We will mention this in the table caption, but it is redundant

with strict rules of practice.

Figure 10: the figure presents an example of an event of some catchment. Maybe it

could be useful to pick up one catchment as an example and provide detailed results

for this catchment from probability plots to events.

Albeit interesting, that would be a post-hoc model examination with a different goal.

We do not see how it contributes at this point.

Conclusions and Outlook: as there is no discussion section, this part could be

extended. Particularly, the discussion of obtained (averaged) results is quite vague.



This part would also benefit from comparing the tested methods to a simpler

data-driven model.

We will extend the conclusions and outlook with regard to the limits of diagnostics.

That said, we are not aware of simpler data-driven models that could be used in this

context or would be beneficial here. The proposed approaches are quite simple

(either a direct estimation of the likelihood or a sampling based approach that can be

used for models that estimate the maximum likelihood) and can be used in context

with all models that are differentiable and able to provide the necessary estimates.

Finally, ad hoc benchmarking is antithetical to what we view as critical scientific

ethics, as discussed in our responses to reviewer #1.

Line 417: remove the word ‘single’ which is used twice.

Will be removed.

Line 430: the expression ‘the training data’ is used twice.

Will be removed.

Line 438: the word ‘intermediate’ is used twice.

Will be removed.


